
Connection Preemption in Multi-Class Networks
Fahad Rafique Dogar

Carnegie Mellon University
Pittsburgh, PA

fahad@andrew.cmu.edu

Laeeq Aslam and
Zartash Afzal Uzmi

LUMS, Lahore, Pakistan
{laeeq,zartash}@lums.edu.pk

Sarmad Abbasi
NUCES

Lahore, Pakistan
sarmad.abbasi@nu.edu.pk

Young-Chon Kim
Chonbuk National University

Jeonju, Korea
yckim@chonbuk.ac.kr

Abstract— We address the problem of connection preemption
in a multi-class network environment. Our objective is: i) to
minimize the number of preempted connections, and ii) to
minimize the total preempted bandwidth, in that order. We show
that this problem is NP-complete by reducing it to a well-known
NP complete problem – the subset sum problem. Therefore, a
known polynomial time algorithm, such as Minn Conn [1], to
solve this problem is suboptimal.

We present an optimal algorithm with exponential complexity
that can be used when the network load is light. We also present
a fully polynomial time approximation algorithm that performs
within a bounded factor from the optimal, and can be used in
large networks having thousands of connections. We compare the
performance of exact and approximate algorithms in a practical
scenario by conducting simulations on a network representing
twenty largest metros in the U.S. The simulations show that, on
average, the approximate algorithm preempts bandwidth which
is only a small fraction more as compared to that preempted by
the exact algorithm, but is an order of magnitude more efficient
in terms of execution time.

I. INTRODUCTION

Internet is evolving from the traditional best effort service
to a multi-class Quality of Service (QoS) aware environment.
This is driven by an increasing demand for multimedia applica-
tions such as VoIP and video streaming, which has created new
challenges for network service providers. One major challenge
is to satisfy the QoS requirements of various traffics while
judiciously managing the scarce network resources, such as
bandwidth. This requires efficient bandwidth reservation and
management mechanisms that account for the bandwidth re-
quirements of every request, keeping in view available network
resources.

The problem of bandwidth reservation and management in
a multi-class network becomes more difficult if requests come
in an online manner such that no information about future
requests is available. Routing of online requests may lead to
sub-optimal decisions. For example, a decision to admit the
current request may result in insufficient available resources
for future high priority requests [2]. On the other hand, it is
also undesirable to reject requests, in anticipation of future
higher priority requests. Preemption allows the flexibility to
accept a request and to later retract it, incase a future higher
priority request needs resources. This allows efficient use of
network resources since bandwidth for higher priority con-
nection requests may be made available through preempting
less important connections. Therefore, preemption has become
an important component of multi-class QoS provisioning pro-

posals such as DiffServ based Traffic Engineering (DS-TE)
[3], [4]. While these proposals allow preemption strategies to
be incorporated in earlier traffic engineering approaches, they
leave open the choice of preemption algorithm that should
be used. The preemption algorithm determines the set of
connections that should be preempted in order to free up
enough resources to accept the new request.

Several preemption algorithms have been proposed that try
to optimize different criteria while selecting the set of con-
nections to be preempted [2], [5]–[8]. Common objectives of
these preemption algorithms include: minimizing the priority
of preempted connections, minimizing the preempted band-
width, and minimizing the number of preempted connections.
Many algorithms try to meet one or a combination of these
objectives. Network service providers select the preemption
algorithms according to their requirements. This selection
depends on several factors such as the cost of rerouting
a preempted connection or loss in revenue associated with
preempting bandwidth. Therefore, in a practical scenario,
priority of preempted connections is not the only important
factor: number of preempted connections and the preempted
bandwidth also become important.

In this paper, we consider the objective of i) minimizing the
number of preempted connections, and ii) minimizing the total
preempted bandwidth, in that order. That is, we first minimize
the number of connections that need to be preempted and
incase there are multiple feasible options, we minimize the
total bandwidth of the preempted connections. We show that
this problem is NP-complete by reducing it to a well-known
NP complete problem – the subset sum problem. Thus, any
polynomial time algorithm, such as Minn Conn [1], to solve
this problem is suboptimal. A counter example is provided
which shows that Minn Conn is, in fact, suboptimal. We pro-
vide exact and fully polynomial time approximate algorithms
to solve this problem. These algorithms represent the tradeoff
between optimal result and execution time. We show through
simulations that the approximate algorithm preempts only a
small fraction more bandwidth on average compared to the
exact algorithm but is an order of magnitude more efficient in
terms of execution time.

The rest of the paper is organized as follows: In section II,
we define the preemption problem and discuss some earlier
work related to this problem. In section III, we formally
prove this problem to be NP-complete. Exact and approximate
algorithms to solve this problem are presented in section IV

while simulation results comparing their performance are
discussed in section V. Finally, we give our conclusions in
section VI.

II. PROBLEM BACKGROUND

In this section, we formally define the general preemption
problem and discuss earlier work related to the specific prob-
lem that we are addressing in this paper.

A. Problem Definition

We consider a multi-class network which has provision for
bandwidth guaranteed paths, similar to the one specified in
the DS-TE proposal [3]. Requests arrive in an online manner
and no information about future requests is assumed. The
requests arrive at a source node, which calculates the path
to the destination and subsequently reserves resources along
this computed path. This path calculation uses a constraint-
based approach, where the constraint we use is that the
bandwidth requirements are satisfied. While calculating the
path all bandwidth reserved for lower classes is included as
available bandwidth,1 with the assumption that this bandwidth,
currently belonging to lower class traffic, will be available in
case a preemption is needed. If a feasible path is found then
the request is accepted, otherwise the request is rejected.

In case a request is accepted, the computed path is signalled
through resource reservation protocols such as RSVP-TE [10].
Each node along this path makes bandwidth reservations for its
outgoing link, completing the path reservation in a distributed
fashion. If the residual bandwidth on the link is greater
than the bandwidth request then preemption is not required.
Otherwise, a preemption algorithm is used to free up enough
resources so that the residual bandwidth on the link becomes
greater than the bandwidth request. The connections marked
for preemption are retracted and bandwidth reservations are
made for the new request. The preempted connections may or
may not be rerouted depending on the choice and policies of
the network service provider.

B. Related Work

The above mentioned distributed approach, where each node
has to make preemption decision on its outgoing link, is
more suitable for integration with distributed protocols such
as OSPF and RSVP [11]. However, we can also have a
centralized scenario where a central entity having complete
information about the network state makes the preemption
decision. The preemption decision has to account for changes
in the whole network as a result of preempting any connection.
Therefore, the preemption decision must be based on a global
view of the whole network. This makes optimization of
objectives, such as minimizing the preempted bandwidth or
minimizing the number of preempted connections, an NP-
complete problem in a centralized scenario [2]. However,
considering the distributed nature of Internet protocols, a

1Such information is readily available through extensions to link state
routing protocols; see [9] for details.

distributed preemption approach is preferred, and has there-
fore been the subject of several recent studies [2], [5]–[7].
These distributed preemption algorithms try to achieve various
objectives such as: minimizing the preempted bandwidth,
minimizing the number of preempted connections, minimizing
the priority of preempted connections or a combination of the
above. Note that each node tries to optimize the preemption
decision for its outgoing link only regardless of how this
decision would affect other preemptions in the networks.

A distributed preemption algorithm Min Conn was proposed
by Peyravian et al. in [1] to optimize the following crite-
ria: i) minimizing the number of preempted connections, ii)
minimizing the preempted bandwidth, and iii) minimizing the
priority of preempted connections, in that order. The Min Conn
algorithm, reproduced in Figure 1, runs in polynomial time but
it does not provide optimal results as claimed by the authors.

Fig. 1. Min Conn Algorithm

1) while Bp > aj do
2) W := Bp − aj ;
3) i = 0;
4) for l = 1 to k do
5) if i = 0 and Bl ≥ W then i := l;
6) if i > 0 and Bl ≥ W and
7) (Bl < Bi or (Bl = Bi and Pl < Pi)) then i := l;
8) endfor;
9) if i = 0 then

10) i = 1;
11) for l = 1 to k do
12) if Bl > Bi or (Bl = Bi and Pl < Pi) then
13) i := l;
14) endfor;
15) C := C − {Ci};
16) P := P ∪ {Ci};
17) aj := aj + Bi.
18) endwhile

In the Min Conn algorithm, Bp is the bandwidth demand of
the new high-priority request on a link which has free residual
bandwidth aj . Preemption will be required on that link only
when the bandwidth demand exceeds the residual bandwidth;
the excess required bandwidth is W which needs to be freed
up by preempting some existing connections. The link is
assumed to have a number of existing low-priority preemptable
connections represented in a set C = {C1, C2, C3, . . . , Ck},
where each connection Ci has an associated pair (Bi, Pi) with
Bi and Pi representing the bandwidth and priority of the
connection, respectively. Note that the Min Conn algorithm
is invoked for a link on the computed path where the path
computation algorithm ensures that Bp will not exceed the
sum of residual and preemptable bandwidth on that link.

The Min Conn algorithm returns P , a set of connections
that should be preempted. If all preemptable connections
have the same priority, then the algorithm first minimizes
the number of preempted connections and then minimizes
the preempted bandwidth. In the loop starting at step 4, the
algorithm checks for a single request that could satisfy the
preemption requirement and selects the one which minimizes
the preempted bandwidth. If multiple connections need to
be preempted, indicated by a true condition at step 9, then

the algorithm adopts a greedy approach and includes the
connection with the largest bandwidth in the preemption step.
The procedure is repeated until enough resources are made
available to accommodate the new request.

To show that Min Conn is suboptimal, consider a link with
C = {70, 50, 50, 20}, aj = 0, and a new request has a
required bandwidth Bp = 100. The output of the Min Conn
algorithm will be P = {70, 50} whereas the optimal result is
P = {50, 50}. Clearly, the greedy approach of selecting the
largest bandwidth connection is sub-optimal.

III. PROOF OF NP-COMPLETENESS

We now show that the problem of minimizing the number
of preempted connections, and minimizing the preempted
bandwidth, in that order, is NP-complete2.

A. Formal definitions

Let V is the set of bandwidths of preemptable connections
and t is the bandwidth that needs to be preempted. Recall
that preemption is only required when the bandwidth of a
new high-priority connection exceeds the remaining bandwidth
available on the link. We first consider the following problem:

Problem 3.1: Given a set V = {a1, . . . , an} of n positive
integers and a number t, find a minimum cardinality subset,
S, of V such that

∑
ai∈S

ai ≥ t

This problem has an easy polynomial-time solution. We may
first sort the elements of set V in O(n log n) time such that
a1 > a2 > · · · > an, after which we find the minimum K
such that

∑K
i=1 ai ≥ t. The output set is S = {a1, . . . , aK} if

the constraint can be satisfied, otherwise a null set is returned.
Next, we consider the following problem:

Problem 3.2: Given a non-null set S = {a1, . . . , aK} of K
positive integers and a number t, is the sum of elements of S
equal to t?

The solution to this problem is trivial. Finally, we formally
define the preemption problem we are addressing in this paper
(i.e., first find the minimum number of connections to be
preempted and then find the actual set of connections to be
preempted while minimizing the bandwidth overshoot):

Problem 3.3: Given a set V = {a1, . . . , an} of n positive
integers and a number t, find a set S such that the following
conditions are satisfied:

i)
∑
ai∈S

ai ≥ t

ii) |S| = K

iii)
∑
ai∈T

ai < t, ∀T : |T | < K

iv)
∑
ai∈S

ai is minimized

2This is the special form of Min Conn [1] where the priority of all
preemptable connections is assumed to be the same. Proving that the first
two criteria make this an NP-complete problem is sufficient since any further
criterion would only add to the complexity of the problem.

Solution to this problem, which internally generates K, will
be a null set if the threshold constraint (i) cannot be satisfied.
When (i) can be satisfied, computing the value of K is not
difficult. Indeed, it is the cardinality of the set that solves
Problem 3.1.

We show that the solutions to the above three problems can
be used to solve the subset sum problem. Since the subset sum
problem is known to be NP-complete [12], and Problems 3.1
and 3.2 are solvable in polynomial time, this will lead to the
conclusion that Problem 3.3 is NP-complete. The subset sum
problem is defined as [12]:

Problem 3.4 (Subset Sum): Given a set V = {a1, . . . , an}
of n positive integers and a number t, is there a subset S, of
V , such that ∑

a∈S

a = t

B. NP-completeness of Problem 3.3

We first provide a polynomial-time construction to show
that solutions to Problems 3.1, 3.2 and 3.3 may be used to
find a solution to subset sum problem in a polynomial time.
Suppose we are trying to solve subset sum problem with inputs
V = {a1, . . . , an} and t. Without loss of generality, we may
assume that each integer in V can be expressed in l bits where
l can be arbitrarily large.

We construct V ′ = {b1, . . . , bn, c1, . . . , cn} from V as a set
of 2n positive integers where each integer is a log n + l + 3n
bit number. All the bits of integer bi have a value 0 except the
bits at the (log n)-th and (log n+2i)-th position from the left,
which have a value 1. We also choose ci = bi +ai. Pictorially
bi and ci are represented as:

bi =

log n bits︷ ︸︸ ︷
00 · · · 01

n pairs︷ ︸︸ ︷
︷︸︸︷
00 · · ·

︷︸︸︷
00

i-th︷︸︸︷
01

︷︸︸︷
00

n zeros︷ ︸︸ ︷
00 · · · 00

l zeros︷ ︸︸ ︷
00 · · · 00

ci =

log n bits︷ ︸︸ ︷
00 · · · 01

n pairs︷ ︸︸ ︷
︷︸︸︷
00 · · ·

︷︸︸︷
00

i-th︷︸︸︷
01

︷︸︸︷
00

n zeros︷ ︸︸ ︷
00 · · · 00

ai︷ ︸︸ ︷
01 · · · 10

We also construct t′ as given in the following picture:

t′ =

n
(in log n bits)︷ ︸︸ ︷
011 · · · 010

n pairs︷ ︸︸ ︷︷︸︸︷
01

︷︸︸︷
01 · · ·

︷︸︸︷
01

t
(in l + n bits)︷ ︸︸ ︷

000110 · · · 010

It is now straightforward to prove that the subset sum
problem is solvable in polynomial time if Problem 3.3 is
solvable in polynomial time. To show this, we observe that
construction of V ′ and t′ from V and t, respectively, is a
polynomial-time operation. We can then use the following
steps in trying to solve the subset sum problem:

1) Invoke Problem 3.1 and if the returned set is null,
the subset sum problem is solved (i.e., there does not
exist a subset that can satisfy the constraint). No further
processing is necessary.

2) If the returned set in above step is not null, construct
V ′ and t′ from V and t, respectively, and invoke
Problem 3.3 with inputs V ′ and t′. Save the returned
set S′.

3) Generate a set S′′ from S′ by keeping only l least
significant bits of each element.

4) Invoke Problem 3.2 with inputs S′′ and t.

We claim that the answer in the last step would be the same
as the answer provided by the subset sum problem. To show
this, we note the following:

a) When Problem 3.3 is invoked in step 2 above, the most
significant log n bits of the elements of V ′ and of t′

ensure that the internally generated value of K is at
least n. Since the process did not terminate at step 1,
the internally generated value of K is at most n. Thus,
the invocation of Problem 3.3 in step 2 would result in
a set S′ whose cardinality is n.

b) The construction also ensures that one and only one
from the pair (bi, ci) is returned in S′. If both bi and ci

are included in S′, then there is at least one other pair
(bj , cj) such that neither of bj and cj are selected. If
j < i, then the threshold condition will not be satisfied,
and if j > i, then overshoot is not minimized. Thus
exactly one from the pair (bi, ci) is selected in S′.

c) An element cj is included in S′ if and only if aj

would have been included in the result obtained from
Problem 3.3 with inputs V and t.

d) The set S′′ contains trimmed versions of elements in-
cluded in S′. For any value of i, the number obtained
by trimming bi to l least significant bits is 0. On the
other hand, the number obtained by trimming ci to l
least significant bits is ai. Thus, summation of elements
of S′′ is exactly the same as obtained by summing the
elements of a set obtained by invoking Problem 3.3 with
inputs V and t.

e) The final step where Problem 3.2 is invoked simply
results in the solution of subset sum problem.

In summary, we have shown that a solution to subset sum
problem can be obtained in polynomial time by using solutions
to Problems 3.1, 3.2 and 3.3. Since the subset sum problem
is known to be NP-complete and Problems 3.1 and 3.2 are
solvable in polynomial time, we conclude that Problem 3.3 is
NP-complete.

IV. ALGORITHMS

In this section, we present exact and approximate algorithms
to solve Problem 3.3. We use the exposition used in [12]
for solving the subset sum problem. As mentioned in the
last section, finding the minimum number of connections for
preemption, K, is possible in O(n log n) steps. Therefore, for
both the algorithms we provide K as input, in addition to the
preemptable set of connections, V = {a1, . . . , an}, and the
bandwidth required for preemption t.

A. Exact Algorithm

The proposed exact algorithm, shown in Figure 2, consists
of n iterations. In each iteration i, ai is added to each element
of another list L. Therefore the list L, at any iteration i,
maintains all the possible sum values that can be obtained by
adding any combination of elements from the set {a1, . . . , ai}.
We initialize list L with 0 so that each element ai, when
added with zero, also becomes part of the list. A counter is
maintained for each sum value in L which keeps track of the
number of elements that add up to make that particular sum
value.

Fig. 2. Exact algorithm (V, t, K)

1) L0 := 0
2) SolutionSum := ∞
3) for every element ai in V
4) Add ai to every element of L and
5) insert the sum values in sorted order in L
6) if duplicate then keep element with smaller counter
7) for every element Lj in L
8) if (Lj > t and Lj < SolutionSum)
9) then SolutionSum := Lj

10) if Counter(Lj) > K or Lj ≥ SolutionSum
11) then discard element

Steps 4-6 of the exact algorithm perform the process of
adding new sum values to list L in sorted manner. Note that
if there are multiple elements with the same sum value then
we only keep the element with the lowest counter value. We
only need to keep this value since we are assured that the
threshold t cannot be exceeded with K − 1 elements. Once
the new sum values are added to L, we completely traverse
L and discard all those elements whose counter values are
greater than K. This ensures that all those elements whose
value exceeds the threshold have a counter value of exactly
K. Such values are compared with SolutionSum which keeps
track of the least bandwidth that exceeds the threshold t. Either
we update SolutionSum or we discard the element. At the end
of the algorithm, SolutionSum gives a solution to our problem.
Since the length of L, in any iteration i, can be as much as
2i, the exact algorithm runs in exponential time.

B. Approximate Algorithm

Note that the exact algorithm given above runs in exponen-
tial time because the worst-case length of L is exponential
in n. Our approximate algorithm is the same as the exact
algorithm except that it ensures that the size of list L remains
polynomial in n. An algorithm called Trim is used to constrain
the length of list L after step 6 in exact algorithm. Trim is
based on the idea that if two values are quite close, then for
the purpose of approximation there is no need to store both
the values: we can always store only the larger value which
can act as a representative of the smaller value. This ensures
that our solution, although not optimal, is still feasible since
the optimal value can only be replaced by a larger value.

The Trim algorithm, listed in Figure 3, takes as input the
monotonically increasing list L and a trim factor δ. We define
δ in such a way that if L′ is the trimmed list, then for every

element y that was removed from L, there is an element z,
with the same counter value, still in L′ that approximates y,
such that y ≤ z ≤ y(1 + δ). The Trim algorithm keeps record
of the last value stored for each counter in an array, Last,
which is indexed by the counter values.

Fig. 3. Trim(L, δ) returns L′

1) m := |L|
2) L′ := empty list
3) Last[j] := ∞ for each counter value j
4) for i = m to 1
5) if yi(1 + δ) < Last[counter(yi)]
6) append yi to the start of L′

7) Last[counter(yi)] := yi

Trim ensures that, for any non-zero counter value, there are
at most �1+ log1+δ 2t� elements in L′.3 Since L is initialized
with 0 and there are at most K non-zero counter values
represented in L, the total number of elements in L′ are at
most 1+K�(1+log1+δ 2t)� with complexity O(K log t

δ). This
makes the list size polynomial in the size of the input. We
further note that the approximate algorithm runs in O(nK log t

δ)
time.

Each time Trim is called, the maximum departure from the
optimal solution is limited to a factor 1+ δ. Since the counter
value never exceeds K, the maximum accumulated deviation
from the optimal solution is limited to a factor (1+ δ)K . That
is, if S is the optimal solution then, the approximate algorithm
is guaranteed to output a solution S∗ such that S∗

S ≤ (1+δ)K .
A trivial solution can be constructed for δ ≥ 1, therefore, we
only consider δ < 1 for which S∗

S ≤ (1 + δ)K < 1 + 2Kδ.
In order to guarantee a solution that is within a factor of ε,
we can take δ = ε

2K . In this case, the running time becomes

O(nK2 log t
ε), thereby making our approximation algorithm a

fully polynomial time approximation scheme.

C. Example

We now present an example with V = {40, 45, 50, 55, 80}
and t = 140 to illustrate the working of above algorithms. We
show the list L and SolutionSum at the end of each iteration
as a collection T . The subscript with the sum values in L
represents their counter value. The sums L∗

j represent those
values that are removed from list L during the iteration but
are shown only for illustration.

First, for the exact algorithm, the collection T at each
iteration is shown in Figure 4. The exact algorithm gives
a solution of 140 which is exactly equal to the required
bandwidth t.

The working of approximate algorithm that uses Trim with
δ = 0.2 is shown in Figure 5. The sums Lt

j represent those
values that are trimmed during this iteration and subsequently
eliminated from the list but are shown only for illustration.

3This assumes that no element in the original list V is greater than or equal
to t in which case the solution is trivial. Thus, for any given non-zero counter
value, the element values in L′ may not exceed 2t and, additionally, these
values must be apart by a minimum factor of 1 + δ.

Fig. 4. Example: Exact Algorithm
i T
0 {{00},∞}
1 {{00, 401},∞}
2 {{00, 401, 451, 852},∞}
3 {{00, 401, 451, 501, 852, 902, 952, 1353},∞}
4 {{00, 401, 451, 501, 551, 852, 902, 952, 1002, 1052, 1353,

140∗
3 , 145∗

3 , 150∗
3 , 190∗

4}, 140}
5 {{00, 401, 451, 501, 551, 801, 852, 902, 952, 1002, 1052, 1202,

1252, 1302, 1352, 165∗
3 , 170∗

3 , 175∗
3 , 180∗

3 , 185∗
3 , 215∗

4}, 140}

Fig. 5. Example: Approximate Algorithm
i T
0 {{00},∞}
1 {{00, 401},∞}
2 {{00, 40t

1, 451, 852},∞}
3 {{00, 45t

1, 501, 85t
2, 952, 1353},∞}

4 {{00, 50t
1, 551, 95t

2, 1052, 135t
3, 150∗

3 , 190∗
4}, 150}

5 {{00, 551, 801, 1052, 1352, 185∗
3}, 150}

The solution obtained through the approximate algorithm is
150. Note that Minn Conn would adopt a greedy approach,
thereby selecting 80 and 55 as the first two connections. For
the last connection, Minn Conn would try to minimize the
overshoot and would therefore select 40. So the result of
Minn Conn algorithm would be 175, compared to 140 and
150 for exact and approximate algorithms, respectively.

V. SIMULATION EXPERIMENTS

In this section, we describe the simulation experiments
used to compare the exact and approximate algorithms. Our
experiments depict the tradeoff between an exact solution and
the time taken for computation. To this end, we present results
that show the extra bandwidth that is preempted because
of approximation. Similarly, we also show the performance
benefit gained, in terms of execution time,4 when using the
approximate algorithm. Our results show that the approximate
algorithm has significantly lower execution time while pre-
empting little extra bandwidth when compared to the exact
algorithm.

The simulation experiments are conducted on a homoge-
neous network topology which is adapted from the network
used in [13]. It represents the Delaunay triangulation for the
twenty largest metros in continental Unites States [13]. All
links in the network are uni-directional having a capacity
of 48 units. The bandwidth constraint model used for link
advertisement and reservation is the Russian Doll bandwidth
constraint model [14]. There are two QoS classes: high priority
and low priority with bandwidth constraints 50% and 100%,
respectively.

The traffic matrix consists of 10,000 connections, where
20% of the requests are of high priority class while the rest
are of low priority. Requests arrive with a constant inter-arrival
time of one unit5 and are characterized by a source, a desti-
nation, traffic class, the associated bandwidth, and the holding
time of the request. The source and destination nodes are
chosen randomly from amongst all source-destination pairs.

4The execution time was measured on a Pentium IV, 2.8 GHz machine with
1 GB RAM.

5Total simulation time is 10,000 units.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

δ

%
 D

iff
er

en
ce

 fr
om

 e
xa

ct
 a

lg
or

ith
m

Performance of approximate algorithm

Fig. 6. Performance of approximate algorithm for different values of δ

The bandwidth demand for a request is uniformly distributed
between 21 and 24 units for the high priority class and between
0.1 and 15 units for lower priority class. Finally, the call
holding time for each request is uniformly distributed between
300 and 800 units.

Fig. 7. Comparison of Execution Time
Algorithm Execution Time (sec)
exact 2137
approx(δ = 0.001) 134
approx(δ = 0.01) 64
approx(δ = 0.1) 59
approx(δ = 1.0) 58

With the above topology and traffic matrix, we generate
results to compare the performance of exact and approximate
algorithms. To run the approximate algorithm we have to
choose an approximation parameter ε and set δ = ε

2k . Instead,
we run the approximate algorithm for different values of δ
from 0 to 1. Our simulation results show that output of these
algorithms give significantly improved results than the ones
guaranteed by the worst case analysis of section IV-B. Setting
the value of δ to a fixed constant independent of n has the
positive effect of reducing the running time to O(nk log t)
and thus making the algorithm more practical.

Figure 6 shows the deviation exhibited by the approximate
algorithm from the exact algorithm, in terms of preempted
bandwidth, for different values of δ. For generating this result,
while we preempt connections according to the exact algo-
rithm, we also compute the bandwidth that would have been
preempted by the approximate algorithm for each preemption
case. The results show that as we increase δ, the error caused
by approximation increases. The extra bandwidth preempted
for δ = 0.1 is only about 1% and goes up to approximately
6.5% for δ = 1.0.

In another simulation, we separately run the exact and ap-
proximate algorithms and compare their total execution time.
Figure 7 shows this comparison, which clearly indicates the

exponential nature of the exact algorithm compared to the ap-
proximate algorithm. The exact algorithm takes approximately
2137 seconds which is significantly higher than the execution
time of approximate algorithm. Results of approximate algo-
rithm for different values of δ show that the average execution
time becomes almost constant for δ ≥ 0.01. This indicates that
for a given traffic matrix, the improvement in execution time
gained through increasing δ, becomes negligible after a certain
value of δ is reached.

VI. CONCLUSIONS

In this paper, we discussed the problem of minimizing the
number of preempted connections and minimizing the pre-
empted bandwidth, in that order. We proved that this problem
is NP-complete by reducing it to the subset sum problem.
We also showed that Minn Conn, which claims to solve this
problem in polynomial time, gives sub-optimal results. We
proposed exact and fully polynomial approximation algorithms
and performed simulations to compare their performance
under practical conditions. Our simulations show that, on
average, the approximate algorithm preempts bandwidth which
is only a small fraction more as compared to that preempted
by the exact algorithm, but is an order of magnitude more
efficient in terms of execution time. Therefore, it can be used
for large networks having thousands of connections.

REFERENCES

[1] M. Peyravian and A. D. Kshemkalyani, “Connection Preemption: Issues,
Algorithms, and a Simulation Study,” in Proceedings of Infocom, 1997,
pp. 143–151.

[2] J. A. Garay and I. S. Gopal, “Call Preemption in Communication
Networks,” in Proceedings of Infocom, 1992, pp. 1043–1050.

[3] F. L. Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan,
P. Cheval, and J. Heinanen, “RFC 3270: Multi-protocol Label Switching
(MPLS) Support for Differentiated Services,” May 2002.

[4] ——, “RFC 3564: Requirements for support of differentiated services-
aware MPLS traffic engineering,” July 2003.

[5] J. D. Oliveira, C. Scoglio, I. Akyildiz, and G. Uhl, “New Preemption
Policies for DiffServ-Aware Traffic Engineering to Minimize Rerouting
in MPLS networks,” in Transactions on Networking, vol. 12, no. 4,
August 2004, pp. 733–745.

[6] S. Jeon, R. T. Abler, and A. E. Goulart, “The Optimal Connection
Preemption Algorithm in a Multi-Class Network,” in Proceedings of
ICC, 2002, pp. 2294–2298.

[7] L. Lei and S. Sampalli, “Backward Connection Preemption in Multi-
class QoS-aware Networks,” in Proceedings of ICC, 2004, pp. 153–157.

[8] S. Poretsky and T. Ganon, “An Algorithm for Connection Precedence
and Preemption in Asyncronous Traansfer Mode (ATM) Networks,” in
Proceedings of ICC, 1998, pp. 299–303.

[9] F. L. Faucheur(Editor), “Internet Draft: Protocol Extensions for Support
of Differentiated-Service-Aware MPLS Traffic Engineering,” March
2004.

[10] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels,” Decem-
ber 2001.

[11] R. B. (Editor), L. Zhang, S. Berson, S. Herzog, and S. Jamin, “RFC
2205: Resource ReSerVation Protocol (RSVP) – Version 1 Functional
Specifications,” September 1997.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction
to Algorithms,” 2001.

[13] S. Norden, M. M. Buddhikot, M. Waldvogel, and S. Suri, “Routing
Bandwidth Guaranteed Paths with Restoration in Label Switched Net-
works,” in Proceedings of ICNP, November 2001, pp. 71–79.

[14] F. L. Faucheur, “RFC 4127: Russian Doll Bandwidth Constraint Model
for DiffServ-aware MPLS Traffic Engineering,” June 2005.

