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Abstract— A high performance packet switching archi-
tecture called the Pipeback switch is proposed. This archi-
tecture ensures lossless packet delivery while maintaining
linear buffer complexity. The Pipeback switch improves
upon the popular Knockout switch proposed by Y. Yeh
et al. Both switches use an N × N space division fabric
with output queuing and both designs are motivated by the
observation that the probability of more than L packets
arriving in a given timeslot being destined for one partic-
ular output port sharply decreases as L is increased. This
probability is comparable to the packet loss probability
due to transmission errors for L � N . While the arrival of
more than L packets destined for a single output in a single
timeslot in the Knockout switch results in dropped packets
due to buffer blocking, the Pipeback switch avoids such
loss by maintaining a separate shared buffer architecture
common to all the output ports. This common architecture
consists of a novel Pipeback concentration network and a
buffer pool. The buffer pool accommodates all the knocked
out packets that the Knockout switch would have dropped
as a result of buffer blocking, and pipes them back to a
separate input line. We further show that the use of buffer
pool leads to a reduction in the number of separate output
buffers required at each output port.

I. INTRODUCTION

It is well known that input queuing and its associated
head-of-line (HOL) blocking limits the throughput to
approximately 58% in an N × N non-blocking space
division switch. Output queuing, on the other hand,
achieves 100% throughput because the output queues
only saturate as the utilization approaches unity [1]–
[4]. Furthermore, mean queue lengths are greater for
input queuing compared to when output queuing is
employed. Thus, output queuing yields far better results
as compared to input queuing in terms of maximum
throughput and average packet delay. Implementation
of output queuing is, however, comparatively difficult
because of the following: during a single timeslot, many
input ports might receive packets that are all addressed
to a single output port. To ensure that no packet is lost in
the switch fabric before it arrives at the output queue, the
switch must be capable of transferring multiple packets

in a single timeslot. In the worst case, packet transfer
must be performed at N times the speed of the input
ports. Physically this constraint translates into a need
for a special mechanism to increase the bus speed of the
switch [5]–[8] or requires more hardware components
to allow all input ports to simultaneously access all
output ports [9], [10]. Many switches used in practice
are based on output buffering. The IFS Knockout, GPS,
Self-routing GPS, Distributed KS, Tandem I, Shuffleout
I, Christmas Tree, SCOQ and MULTIPAR are typical
output queuing switches.

The Pipeback switch improves upon the Knockout
switch which is a fully connected architecture that pro-
vides the implementation simplicity of input queuing
while maintaining the throughput performance of output
queuing. The primary motivation behind an N × N
Knockout switch is that the probability of all N packets
arriving at a given timeslot being destined for one
particular output port is so low that the switch can be
constructed to cater to L such packets, where L is a small
fraction of N . Arrival of more than L packets destined
for a single output in a single timeslot results in dropped
packets due to buffer blocking. For an appropriate value
of L, the number of dropped or knocked out packets as
a result of buffer blocking is negligible. In this paper,
we propose a scheme to reduce the number of output
buffers at each output port required in the Knockout
switch whilst also ensuring that no packet is dropped due
to buffer blocking. The Pipeback switch avoids packet
loss by using a shared buffer architecture common to all
the output ports; the shared buffer is called the buffer
pool. The buffer pool accommodates all the knocked
out packets and pipes them back to a separate Pipeback
input line. The benefit of this new architecture lies in the
possibility of reducing L due to the added assurance that
the otherwise knocked out packets are accommodated in
the buffer pool. The memory at each output port can
then receive the L packets that reach it. While these
packets are being processed, any additional packets for



the same output will be piped back through the buffer
pool and come back during subsequent timeslots. We
show that the increase in the average packet delay when
compared to the Knockout switch is negligible for an
adequate value of L.

A characteristic of the Pipeback switch is that FIFO
may be violated for a given input: a packet ℘ that is piped
back may be delivered after a packet that arrived subse-
quent to the original arrival of ℘. Packet mis-sequencing
is not strictly disallowed in a router [11], nor is it entirely
uncommon for Internet traffic. Parallelism in various
network components and links causes packets to be
mis-sequenced under normal operation [12]. Such mis-
sequencing may adversely affect the performance of TCP
[12], [13]. This, however, can be mitigated by making
TCP more robust to packet mis-sequencing [13]–[15].
Furthermore, the Pipeback switch mis-sequences only
those packets that are piped back. Since the probability
of packets being piped back is low, the mis-sequencing
of packets in the Pipeback switch is limited. We also note
that the piped back packets delivered out of sequence,
would have otherwise been dropped in an equivalent
Knockout switch. Packet loss caused by the Knockout
switch has worse implications on the performance of
TCP than mis-sequencing resulting from the Pipeback
switch. Nonetheless current implementations of TCP
work best when the packets are not mis-sequenced [16].
Packet re-sequencing problem can be addressed in the
Pipeback switch by adding a re-sequencing buffer at each
output port. However, this entails increased hardware
complexity. Efficient packet re-sequencing is a problem
of interest for the Internet community and is currently
being investigated.

This paper is organized as follows: Section II gives
a brief description of the Knockout switch. Section III
details the architecture of the Pipeback switch and also
provides a description of the Pipeback concentration
network. Performance analysis of the Pipeback switch
and comparison with the Knockout switch is presented
in section IV. We present our conclusions in section V.

II. THE KNOCKOUT SWITCH

The interconnection fabric of an N × N Knockout
switch has two basic characteristics: each input has a
separate broadcast bus, and each output has access to
packets arriving at all inputs. Thus, an output module
directly interfaces with each of the N broadcast buses.
Each output module has four major components: N
packet filters, an N × L concentrator where L � N ,
a shifter to ensure that the output buffers are filled
cyclically, and L output buffers. An output module and
with these components is illustrated in Fig. 1. Fixed-
length packets arrive at the inputs in discrete timeslots
and are broadcast to each output module. The packet
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filters examine each packet and set an activity bit if
the packet is addressed to that output. The packets then
enter an N × L concentrator that forwards up to L
active packets to the output buffers through the shifter.
If more than L packets arrive for one output in a single
timeslot, the additional packets are dropped (knocked
out). By properly choosing L, the probability of packet
loss can be controlled to be comparable to the packet
loss probability due to transmission errors [10].
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This self-induced source of packet loss is motivated
by the desire to reduce the number of output buffers.
The Knockout switch provides complete sharing of the
L output buffers and a first-in-first-out discipline for the
transmission of packets arriving in those buffers.

Fig. 2 shows an 8×4 Knockout concentrator composed
of 2× 2 switch elements and delay elements marked by
D. At each switch element, packets compete and the
winner comes out of the left output. The algorithm to
set the switch elements is that an active packet never
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loses to an inactive packet. When two active packets
or two inactive packets compete among themselves, the
winner is chosen randomly. Thus, if there is only one
active packet, it comes out of the output labelled 1. If
there is another active packet, it comes out of the output
labelled 2, and so on. When the number of active packets
exceeds 4 (L in general), four packets are transferred to
the shifter and the rest are knocked out appearing at
the knockout lines. An important observation used in the
design of the Pipeback concentration network, detailed
in the next section, is that active packets appear at the
knockout lines in an ordered fashion, from a to d. This
means that the output labelled c has an active packet only
if outputs labelled a and b both have active packets.

III. THE PIPEBACK SWITCH

A. Pipeback Switch Architecture

The switch fabric used in the Pipeback architecture
is similar to that used in the Knockout switch. The
Pipeback switch consists of N + 1 inputs and outputs.
The inputs include the N regular inputs as are present
in the case of the Knockout switch and an additional
Pipeback input as shown in Fig. 3. As in the Knockout
switch, each fixed-length packet arriving at one of the
input ports is placed on the broadcast bus for that port.
The packet filters mark the active packets, which then
enter an (N + 1) × L Knockout concentrator that feeds
the L output buffers through the shifter. Thus, up to L
active packets are accommodated in the output buffers.
Any active packets in excess of L, which would have
been dropped by the Knockout switch, are directed
to another concentration network called the Pipeback
concentration network. It is important to note that there
is a single Pipeback concentration network common to
all the output modules as shown in Fig. 4. This network
takes N − L + 1 inputs from each of the N output
modules, therefore having a total of N(N−L+1) inputs,
and achieves an N(N−L+1) to N−L+1 concentration.
Since the maximum number of active packets arriving at
the Pipeback concentration network in a single timeslot
is N − L + 1 (when all N + 1 packets are addressed
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to the same output port), no active packet is lost in the
Pipeback concentration network.

The Pipeback concentration network interfaces
through a shifter to another shared memory referred to
as the buffer pool. The buffer pool is implemented as a
set of N − L + 1 physical queues and is synchronized
so that it may pipe back its contents through the
Pipeback input, one packet at a time, during subsequent
timeslots. Thus, the common buffer pool provides a
mechanism that precludes the possibility of packets
being knocked out while retaining the linear complexity
of the Knockout switch. We will further show that
the use of buffer pool leads to a reduction in L, the
number of output buffers at each output port, without
any significant increase in the average packet delay.

B. Pipeback Concentration Network Structure

The Pipeback concentration network has N − L + 1
inputs from each of the N output modules for a total
of N(N −L + 1) inputs. These inputs are concentrated
onto N − L + 1 outputs. From [10], we note that each
of the L sections of the Knockout concentrator contains
approximately N switch elements. The number of switch
elements needed to construct an Knockout concentrator
is, therefore, NL. Constructing the Pipeback concen-
tration network exactly like the Knockout concentrator
results in a switch element complexity of O

(
N3
)
.

The switch element complexity of the Pipeback con-
centration network can be reduced. To show this, we note
that among the N(N − L + 1) inputs to the Pipeback
concentration network, a maximum of N −L+1 inputs
may be active during a single timeslot, assuming there
is no multicast traffic. Further note that the knocked out
packets from the Knockout concentrator at each output
module are ordered such that if m active packets are
knocked out, they come out at the first m of the N−L+1



knockout lines of that output module, as shown in Fig. 2
and explained in section II. We label the N − L + 1
knockout lines from 1 to t for each output module, where
t = N − L + 1. We then divide the Nt inputs coming
from the knockout lines of all the N output modules
into t mutually exclusive and collectively exhaustive sets,
each with cardinality N . The knockout lines having the
same label and belonging to different output modules
constitute one set, as indicated in Fig. 5. The sets are
also labelled and the label of a set is the same as the
labels of the knockout lines included in it.

If there are y active packets in set i, where i is an
integer between 1 and t, then at least y(L + i) active
packets arrived at the switch during that timeslot. Since
the maximum number of packets that can arrive in one
timeslot is N+1, we get the constraint y(L+i) ≤ N+1.
Therefore, xi, the maximum number of knockout lines
in set i with an active packet in a single timeslot, can
be obtained from xi(L+ i) = N +1, which yields xi =⌊

N+1
L+i

⌋
. It is evident that xi is maximum for i = 1 and

minimum for i = t.
Fig. 5 depicts the implementation of the Pipeback

concentration network. Each of the t sets of knockout
lines is input to a corresponding N × xi Knockout con-
centrator. The outputs of these knockout concentrators
collectively feed another Knockout concentrator with∑t

i=1 xi inputs and t outputs. These outputs interface
with the buffer pool through a shifter network. The buffer
pool can receive a maximum of t packets in a single
timeslot, which is also the maximum number of packets
that may appear on all the knockout lines. Therefore, the
Pipeback concentration network ensures that all knocked
out packets are accommodated in the buffer pool. The
number of switch elements required for the Pipeback
concentration network is given by:

N
t∑

i=1

⌊
N + 1
L + i

⌋
+ t

t∑
i=1

⌊
N + 1
L + i

⌋
(1)

For L � N , we have t ≈ N , then the switch element
complexity of the Pipeback concentration network is
given by:

O

(
N

N∑
i=1

⌊
N

i

⌋)
= O

(
N2 log N

)
(2)

IV. PERFORMANCE ANALYSIS

A. Assumptions

In this section, we present the performance analysis of
the Pipeback switch and use it to compare the Pipeback
and the Knockout switching architectures. Towards this
end, we assume the following for both switches:

i) Fixed-length packets arrive at the switches in syn-
chronized timeslots.
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ii) Arrivals at each input are independent and identi-
cally distributed over time.

iii) Arrival processes at inputs are independent of each
other and have the same arrival rate ρ.

iv) For each packet, destinations are uniformly dis-
tributed over all outputs.

For the Pipeback switch, these assumptions apply to
the N external inputs. The arrival process at the Pipeback
input, however, is internally controlled by the switch
architectural parameters.

B. The Knockout Switch

The probability βKO(k) for k packets arriving in a
timeslot destined for a given output is given by the
binomial distribution:

βKO(k) =
(

N

k

)( ρ

N

)k (
1 − ρ

N

)N−k

(3)

From above expression, the probability of packet loss in
the Knockout concentrator is [10]:

πc =
1
ρ

N∑
k=L+1

(k − L) βKO(k) (4)

As N → ∞, this probability is given by [10]:

πc =
(

1 − L

ρ

)[
1 −

L∑
k=0

ρke−ρ

k!

]
+

ρLe−ρ

L!
(5)

For large N , the value of L required to maintain a given
loss rate is relatively small and is independent of N . For
example, L = 8 is sufficient to maintain the concentrator



packet loss rate at one packet per million, for large N
and full input load. Moreover, L only needs to grow
logarithmically for further reduction in the loss rate. For
example, L = 11 reduces the loss rate to one packet in
a billion.

The L output buffers at each output behave as a
Geom(L)/D/1/B0 queue with offered load λload =
ρ(1 − π0) [17]. As B0 → ∞, the queue becomes
Geom(L)/D/1 and the average waiting time for a
packet is given by [17]:

τb =
L − 1

L
· λload

2(1 − λload)
(6)

C. The Pipeback Switch

As we noted above, the packet loss probability can
be characterized in terms of the probability of packets
arriving in a single timeslot destined for the same output.
While the latter follows a binomial distribution for the
Knockout switch and it is straightforward to write its
expression, writing a similar expression for the Pipeback
switch requires considering three distinct scenarios:

i) k−1 packets arrive at any of the N external inputs
and 1 packet arrives at the Pipeback input destined
for the output we are considering, or

ii) k packets arrive at N external inputs and no packet
arrives at the Pipeback input, or

iii) k packets arrive at any of the N external inputs
and 1 packet that arrives at the Pipeback input is
destined for one of the N − 1 outputs other than
the one we are considering

All of these three scenarios result in k packets arriving
in a single timeslot destined for the same output – the
one that we are considering. Let αi be the probability
of a packet arriving at the Pipeback input in timeslot i.
Then, the probability βPB(k, i) of k packets arriving in
timeslot i destined for a particular output is given by:

βPB(k, i) =
(

N

k

)( ρ

N

)k (
1 − ρ

N

)N−k (
1 − αi−1

N

)

+
(

N

k − 1

)( ρ

N

)k−1 (
1 − ρ

N

)N−k+1 (αi−1

N

)
(7)

For bounded queue size, αi is the same as the average
number of arrivals into the Pipeback queue from the N
concentrators in timeslot i and is given by:

αi = N
N∑

k=L+1

(k − L) βPB(k, i) (8)

Since equations (7) and (8) are collectively recursive,
we simplify the analysis by first assuming that the
Pipeback input has a packet in every timeslot, i.e., we
take α0 = 1 in equation (7) to evaluate βB(k, 1) for
the worst case performance of the Pipeback switch. And
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then, we perform two recursions of these equations to
get:

Pk = βPB(k, 2); λPB = α2 (9)

For further analysis, we use Pk and λPB to bound the
performance of the Pipeback switch. Note that Pk is the
probability of k packets arriving in a single timeslot
destined for the same output and λPB is the arrival
rate at the Pipeback input queue. Since the Pipeback
input queue sends one packet per timeslot, the theoretical
maximum value for λPB is 1. The arrival rate λOP at
each of the output queues can also be given in terms of
Pk as follows:

λOP =
L∑

k=0

kPk + L

N+1∑
k=L+1

Pk (10)

Since the arriving packets have a fixed length and the
transmission time for each packet is deterministic (i.e.,
one timeslot), the queuing processes at each output queue
and at the Pipeback input queue can be modeled as
M/D/1 queuing disciplines. Thus, the average waiting
times in these queues can be evaluated as:

For Pipeback input queue: τPB =
λPB

2(1 − λPB)
(11)

For the output queue: τOP =
λOP

2(1 − λOP )
(12)

Finally, the average waiting time for a packet through
the Pipeback switch is:

τW = τOP +
(

λPB

λPB + NλOP

)
τPB (13)

where the term in parentheses indicates the fraction of
packets that are piped back. Fig. 6 depicts the mean
waiting times of packets in a Knockout switch with
L = 8 and a Pipeback switch with L = 3 for various
arrival rates. The mean waiting times in the two cases
are almost identical. The Pipeback switch, however, uses
fewer buffers (L = 3 as compared to L = 8) and does
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not suffer from buffer blocking, thus avoiding packet
loss.

The mean waiting times for the Pipeback switch as a
percentage of the mean waiting times for the Knockout
switch, for three different arrival rates, are shown in
Fig. 7. It can be seen that the difference between the two
mean waiting times is marginal and quickly diminishes
for increasing values of L. Additionally, the Pipeback
implementation provides the assurance that a packet
knocked out of an output module will subsequently be
piped back. Note that a knocked out packet always
leaves at least L packets in the output buffers. With the
Pipeback mechanism, it can go to the Pipeback input
to arrive before the L packets in the output buffers
are processed. Thus, there is no use putting buffers to
separately queue the packets knocked out of different
output modules.

Our results show that for L ≥ 4, and packet arrival
probability less than or equal to 0.9, the increase in the
mean waiting times of packets from Knockout switch
to the Pipeback switch is insignificant. Therefore, the
Pipeback switch reduces the number of required output
buffers while ensuring lossless packet delivery

V. CONCLUSIONS

A fully connected high performance packet switching
architecture called the Pipeback switch is proposed. The
Pipeback switch, like the Knockout switch, achieves
the performance advantages of output queuing with the
implementation simplicity of input queuing. At each
output module, the Knockout switch uses L � N
output buffers and drops packets in excess of L in a
single timeslot. It is observed that while such dropping
is negligible for a single concentrator, this is not the
case when many Knockout switches are connected in
series. We, therefore, proposed the Pipeback switch that
pipes back all the knocked out packets to a separate
Pipeback input. Thus, the Pipeback switch avoids buffer
blocking ensuring lossless packet delivery. We showed
that the Pipeback architecture allows a reduction in the
number of output buffers required at each output module.

We further demonstrated that this reduction does not
significantly increase the mean waiting time for the
packets. This is possible because a packet is only piped
back when there are at least L packets in the output
buffers of the same output module. Thus, with high
probability, the piped back packet will come back before
other L packets in the output buffers are processed. We
also provided a design for the Pipeback concentration
network to reduce its switch element complexity. As
such the Pipeback switch offers high performance packet
switching with linear buffer complexity and lossless
packet delivery.
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