
Weak memory consistency
Lecture 1

Viktor Vafeiadis
MPI-SWS

2022-11-14

The illusion of sequential consistency

Sequential consistency (SC)
I The standard simplistic concurrency model.
I Threads access shared memory in an interleaved fashion.

cpu 1
writeread

cpu n. . .

Memory

But. . .
I No multicore processor implements SC.
I Compiler optimizations invalidate SC.

2

The illusion of sequential consistency

Sequential consistency (SC)
I The standard simplistic concurrency model.
I Threads access shared memory in an interleaved fashion.

cpu 1
writeread

cpu n. . .

Memory

But. . .
I No multicore processor implements SC.
I Compiler optimizations invalidate SC.

2

Weak consistency

Hardware provides weak consistency.
I Weak memory models ; semantics of shared memory.
I Every hardware architecture has its own WMM:

x86-TSO, ARM, Power, Itanium.

x86-TSO model (2010)

CPU
write

write-back

read

CPU

. . .

. . .

Memory

ARMv8 model (2016)

Memory

3

Weak consistency examples

Store buffering (SB)
Initially, x = y = 0

x := 1;
a := y //0

y := 1;
b := x //0

x86-TSO
CPU

write

write-back

read

CPU

. . .

. . .

Memory

Load buffering (LB)
Initially, x = y = 0

a := y ; //1
x := 1

b := x ; //1
y := 1

ARMv8

Memory

4

Weak consistency in “real life”

I Messages may be delayed.

MsgX := 1;
a := MsgY ; //0

MsgY := 1;
b := MsgX ; //0

I Messages may be sent/received out of order.

Email := 1;
Sms := 1;

a := Sms; //1
b := Email ; //0

5

Operational memory models

A simple concurrent programming language

Basic domains:

r ∈ Reg – Registers (local variables)
x ∈ Loc – Locations
v ∈ Val – Values including 0
i ∈ Tid = {1, ... ,N} – Thread identifiers

Expressions and commands:

e ::= r | v | e + e | ...
c ::= skip | if e then c else c | while e do c |

c ; c | r := e | r := x | x := e |
r := FAA(x , e) | r := CAS(x , e, e) | fence

Programs, P : Tid→ Cmd, written as P = c1‖ ... ‖cN

7

Basic set up

Thread subsystem
I Thread-local steps: c , s l−→ c ′, s ′.
I Interpret sequential programs.
I Lift them to program steps: P, S i :l−→ P ′, S ′.

Storage subsystem (defined by the memory model)
I Describe the effect of memory accesses and fences.
I M i :l−→ M ′ where M is the state of the storage subsystem.

Linking the two
I Either the thread or the storage subsystem make an

internal step, ε; or they make matching i :l steps.
I P, S,M =⇒ P ′, S ′,M ′.

8

The thread subsystem

Store: s : Reg→ Val (Initial store: s0
4= λr . 0)

State: 〈c , s〉 ∈ Command× Store

Transitions:

skip; c, s ε−→ c, s

c1, s
l−→ c ′

1, s ′

c1; c2, s
l−→ c ′

1; c2, s ′

s ′ = s[r 7→ s(e)]
r := e, s ε−→ skip, s ′

l = R(x , v)

r := x , s l−→ skip, s[r 7→ v]

l = W(x , s(e))

x := e, s l−→ skip, s

s(e) 6= 0
if e then c1 else c2, s

ε−→ c1, s
s(e) = 0

if e then c1 else c2, s
ε−→ c2, s

while e do c, s ε−→ if e then (c;while e do c) else skip, s

9

The thread subsystem: RMW and fence commands

Fetch-and-add:
l = U(x , v , v + s(e))

r := FAA(x , e), s l−→ skip, s[r 7→ v]

Compare-and-swap:

l = R(x , v) v 6= s(er)
r := CAS(x , er , ew), s l−→ skip, s[r 7→ 0]

l = U(x , s(er), s(ew))
r := CAS(x , er , ew), s l−→ skip, s[r 7→ 1]

Fence:

fence, s F−→ skip, s
10

Lifting to concurrent programs

State: 〈P, S〉 ∈ Program× (Tid→ Store)
I Initial stores: S0

4= λi . s0

I Initial state: 〈P, S0〉

Transition:

P(i), S(i) l−→ c , s
P, S i :l−→ P[i 7→ c], S[i 7→ s]

11

SC storage subsystem

CPU 1

writeread

CPU n. . .

Memory

12

SC storage subsystem

Machine state: M : Loc→ Val
I Maps each location to its value.
I Initial state: M0

4= λx . 0
(i.e., the memory that maps every location to 0)

Transitions:

l = W(x , v)
M i :l−→ M[x 7→ v]

l = R(x , v) M(x) = v
M i :l−→ M

l = U(x , vr , vw) M(x) = vr

M i :l−→ M[x 7→ vw]
l = F

M i :l−→ M

13

SC: Linking the thread and storage subsystems

silent
P, S i :ε−→ P ′, S ′

P, S,M =⇒ P ′, S ′,M

non-silent
P, S i :l−→ P ′, S ′ M i :l−→ M ′

P, S,M =⇒ P ′, S ′,M ′

Definition (Allowed outcome)
I An outcome is a function O : Tid→ Store.
I An outcome O is allowed for a program P under SC if

there exists M such that
P, S0,M0 =⇒∗ skip‖ ... ‖skip,O,M.

14

TSO storage subsystem

CPU

Bu
ffe
r

CPU

Bu
ffe
r

CPU

Bu
ffe
r

Memory

15

TSO storage subsystem

The state consists of:
I A memory M : Loc→ Val
I A function B : Tid→ (Loc× Val)∗

assigning a store buffer to every thread.

Initial state: 〈M0,B0〉 where
I M0 = λx . 0 (the memory maps 0 to every location)
I B0 = λi . ε (all store buffers are empty)

16

TSO storage subsystem transitions

write
l = W(x , v)

M,B i :l−→ M,B[i 7→ 〈x , v〉 · B(i)]

propagate
B(i) = b · 〈x , v〉

M,B i :ε−→ M[x 7→ v],B[i 7→ b]

read
l = R(x , v)

B(i) = 〈xn, vn〉· ... ·〈x2, v2〉 · 〈x1, v1〉
M[x1 7→ v1][x2 7→ v2] ... [xn 7→ vn](x) = v

M,B i :l−→ M,B

rmw
l = U(x , vr , vw) B(i) = ε M(x) = vr

M,B i :l−→ M[x 7→ vw],B

fence
l = F B(i) = ε

M,B i :l−→ M,B

17

TSO: linking thread and storage subsystems

silent-thread
P, S i :ε−→ P ′, S ′

P, S,M,B =⇒ P ′, S ′,M,B

silent-storage
M,B i :ε−→ M ′,B ′

P, S,M,B =⇒ P, S,M ′,B ′

non-silent
P, S i :l−→ P ′, S ′ M,B i :l−→ M ′,B ′

P, S,M,B =⇒ P ′, S ′,M ′,B ′

Definition (Allowed outcome)
An outcome O is allowed for a program P under TSO if there
exists M such that P, S0,M0,B0 =⇒∗ skip‖ ... ‖skip,O,M,B0.

18

