Program logics for relaxed consistency
UPMARC Summer School 2014

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

2nd Lecture, 29 July 2014

Recap

Topics covered yesterday:
» The C11 memory model
» Separation logic

» Relaxed separation logic

Today:
» Compare and swap
» GPS
» Advanced features

Viktor Vafeiadis Program logics for relaxed consistency

2/30

Recap: Rules for release/acquire accesses

Ownership transfer by rel-acq synchronizations.

» Atomic allocation ~» pick loc. invariant Q.

{Q(v)} x = alloc(v); {WQ(X) * RQ(X)}

» Release write ~» give away permissions.
{Wo(x) * Q(v)} x.store(v, rel); {Wo(x)}

» Acquire read ~» gain permissions.

{Ro(x)} t = x.load(acq); {QO(t) * Ropr—emp(x) }

Viktor Vafeiadis Program logics for relaxed consistency 3/30

Recap: relaxed accesses

Basically, disallow ownership transfer.

» Relaxed reads:

[Ro(x)} t = x.load(rlx) {?QQ((:)) ; false)}

» Relaxed writes:

Q(v) =emp
{WQ(X)} x.store(v, rlx) {Wg(x)}

Viktor Vafeiadis Program logics for relaxed consistency 4/30

Compare and swap (CAS)

A standard primitive for implementing concurrent
algorithms

x.CAS(v, v/, M) &
atomic {
if (x.load(M) == v){
x.store(v', M);
return true;

}

return false;

}

Viktor Vafeiadis Program logics for relaxed consistency 5/30

Reasoning about CAS in RSL

» New assertion form, P := ... | Co(x).
» “Permission to do a CAS”

» Duplicable:

Co(x) < Co(x) * Co(x)
» Also allows writing:

Co(x) < Co(x) * Wg(x)
» And reading without ownership transfer:

Co(x) <= Col(x) * Remp(x)

Viktor Vafeiadis Program logics for relaxed consistency

6/30

Reasoning about CAS in RSL

Allocation rule:
{O(v)} x = alloc(v); {Co(x)}

CAS rule:

tAPxQ(v)= 9Q(V)*R
-tA\P=R
X e{rel,rix} = Q(v) =emp
X €{acq,rix} = Q(V') =emp
{Co(x) = P} t = x.CAS(v, v, X) {R}

Viktor Vafeiadis Program logics for relaxed consistency 7/30

Mutual exclusion locks

Attach a ‘resource invariant’ at each lock:
Lock(x,J) <= Lock(x,J)* Lock(x,J)
Specifications for mutex operations:

{J} x = new-lock() {Lock(x, J)}
{Lock(x, J)} lock(x) {Lock(x,J) = J}

{Jx Lock(x,J)} unlock(x) {Lock(x,J)}

Viktor Vafeiadis Program logics for relaxed consistency 8/30

Mutual exclusion locks

new-lock() &
)
res = alloc(1)
{Lock(res, J)}

unlock(x) &
{J x Lock(x,J)}
x.store(1, rel)
{Lock(x,J)}

Viktor Vafeiadis

V(v=1AJ)

lock(x) &

{Lock(x,J)}

repeat
{Lock(x,J)}
t = x.CAS(1,0, acq)
{Lock(x,J)* (t = J)}

until t

{J x Lock(x, J)}

Program logics for relaxed consistency 9/30

GPS: Towards a better logic for C11

» Protocols

» Ghosts & escrows

GPS: A better logic for release-acquire

Three key features:
» Location Invartants protocols

» Ghost state/tokens

» Escrows for ownership transfer

Example (Racy message passing)

Initially, x =y = 0.

t = y.load(acq);
t' = x.load(acq);

x.store(1, rel);
y.store(1, rel);

x.store(1, rel);
y.store(1, rel);

Cannot get t =1At =0.

Viktor Vafeiadis Program logics for relaxed consistency 11/30

Racy message passing in GPS

Protocol for x: |A: x = 0 B: x =1

Protocol for y: |C: y =0—D: y=1Ax.st > B

Acquire reads gain knowledge, not ownership.

{X.st > ANyst> C}
Pest = Any.st =} U7 o,

x.store(1, rel);
{xst=BAy.st>Cj {\/tzl/\xst>3}
y.store(l,re/); t = x. Ioad(va)

[x.st > B Ay.st > D) [t=0V(t=1At=1))

Viktor Vafeiadis Program logics for relaxed consistency 12/30

Rules for reads and writes

Read rule:
Vs' >, s inv. (s, t)« P = Q
Q& Qx*Q
x.st >_s = x load(acq); Js’. x.st >. ¢
x P - % 9 * Px Q

Write rule:
P=inv.(s",v)* Q
Vs' >, s inv (s, _)xP=5s">.¢
{x.st >, s % P} x.store(v, rel); {x.st >, 5"+ Q|

Viktor Vafeiadis Program logics for relaxed consistency 13/30

GPS ghosts and escrows

We can create ghost unduplicable tokens:

K is fresh
P=PxK K * K = false

We can also create escrows:
P x P = false
Q = Esc(P, Q) Esc(P,Q)*xP = Q

Escrows are duplicable:

Esc(P, Q) < Esc(P, Q) * Esc(P, Q)
but only one component can ‘unlock’ them.

Viktor Vafeiadis Program logics for relaxed consistency 14/30

GPS ghosts and escrows

To gain ownership, we use ghost state & escrows.

P x P = false
Q = Esc(P, Q) Esc(P,Q)*xP = Q

Example (Message passing using escrows)
Invariant for x: x = 0V Esc(K, &a — 7).

{&a — 0} {K}
a=T, if (x.load(acq) # 0)
&a s T} K « Esc(K,&a > 7)}

Esc(K,&a— 7))} &a 7}
x.store(1, rel); print(a);

Viktor Vafeiadis Program logics for relaxed consistency 15/30

Rule for CAS

With a successful CAS we can gain not only
knowledge, but also ownership:

Vs" >, s. inv.(s",v)« P=inv (s, V)*« QAS >, &
Vs" >, s. W' #£ v. inv.(s" V')« P=R
R< RxR

x.st >_s| t = x.CAS (t Ax.st >, 5" % Q)

{ * P }(v,v’,rel—acq); {\/ﬂt/\P*R }

Viktor Vafeiadis Program logics for relaxed consistency 16/30

Reasoning about advanced C11 features

(Work in progress)
» Fences

» Consume reads

Message passing

int a; atomic_int x = 0;

if (x.load(acq) # 0){)
print(a); }

a=~"I,
x.store(1, rel);

Wia(x,0)
L ~
Wna(ay 7) sw Racq(x, 1)
| ;
Wiat(,1) - Ru(a7)
v v

Viktor Vafeiadis Program logics for relaxed consistency

Incorrect message passing

int a; atomic_int x = 0;
if (x.load(rlx) # 0){
print(a); }

a=="=1;
x.store(1, rix);

Wia(x,0)
/ \

Wna(aa 7) _ - > erx(X7 1)
Vo= v
Wik(x, 1) race =~ -~ >R ,(a,7)
v v

Viktor Vafeiadis Program logics for relaxed consistency 18/30

Message passing with C11 memory fences

int a; atomic_int x =0;

a=1", if (x.load(rlx) # 0){
fence(release); fence(acq);
x.store(1, rix); print(a); }
Wha(x,0)
/ \
Wna(a, 7) RI‘]X(X7 1)
o T
Fence, =< s>w/ Fenceacq
¢ -~ B o NS V
erx(Xy 1) Rna(aa 7)
\ |

Viktor Vafeiadis Program logics for relaxed consistency

18/30

Reasoning about fences
Introduce two ‘modalities’ in the logic.
{P} fence(release) {AP}
{VP} fence(acq) {P}

{Ro(x)} t == x.load(rlx) {Rojr—emp)(x) * VO(t)}

{WQ(X) * AQ(V)} x.store(v, rix) {WQ(X)}

Viktor Vafeiadis Program logics for relaxed consistency 19/30

Reasoning about fences

Let Q(v)défv:O\/&a»—>5.

{&a — 0% Wo(x) * RQ(X)}

{&a— 0% Wg(x)}
a=2>;

{&a — b % WQ(X)}
fence(release);
{A(&a— 5) « Wo(x)}
x.store(1, rix);

{true}

Viktor Vafeiadis

t = x.load(rlx);
{V(t=0V&a+s 5)}
if (t #0)

fence(acq);

{&a -y 5}

print(a); }
{true}

Program logics for relaxed consistency

20/30

Why two modalities?

Consider the program, where initially x = y = 0:

a=>s;
fence(release);
x.store(1, rix);

t = x.load(rlx);

if (t #0)

y.store(1, rix);

t' = y.load(rlx);

if (t' #0) {
fence(acq);
print(a);

}

If VP = AP, we can ‘verify' this program.
But the program is racy.

Viktor Vafeiadis Program logics for relaxed consistency

21/30

Release-consume synchronization

Initially a = x = 0.
a=5 t = x.load(consume);

x.store(release, &a); || if (t # 0) print(xt);

This program cannot crash nor print 0.

Justification:
Wia(a,b) Reon(x, &a)

o=

Wia(x, &a) Rpa(a, b)

Release-consume
synchronization

Viktor Vafeiadis Program logics for relaxed consistency 22/30

Release-consume synchronization

D_4

Initially a = x = 0. Let J(t) M t—0vtes.

{&QHO*WJ(X)} {RJ }
a=>5; t = x.load(consume);

{&a 5% W (x)} {Vi(t =0Vt 5)]
x.store(release, &a); | if (t # 0) print(xt);

This program cannot crash nor print 0.

Index the V with program variable t.
t data dependence — locally open V.

Viktor Vafeiadis Program logics for relaxed consistency 22/30

Proposed rules for consume accesses

{RQ(X)} t := x.load(cons) {RQ[t::emp](X) * Vi Q(t)}

1P} C{Qy

C is basic command mentioning t

{V: P} C{V,Q}

Question: Is the following valid?

{Wo(x) = V:O(v)} x.store(v, rel); {Wo(x)}

Viktor Vafeiadis Program logics for relaxed consistency 23/30

Release-acquire too weak in the presence of consume

Initially x =y = 0.

while (x.read(consume) # 1);
a=1 y.store(1, release);
x.store(1, release); | () while (y.load(acquire) # 1);
(%) a=2;

C11 deems this program racy.
» Only different thread rel-acq synchronize.

What goes wrong in PL:
On ownership transfers, we must prove
that we don't read from the same thread.

Viktor Vafeiadis Program logics for relaxed consistency 24/30

Release-acquire too weak in the presence of consume

Initially x =y = 0.

while (x.read(consume) # 1);

a=1; y.store(1, release);
x.store(1, release); | (x) while (y.load(acquire) # 1);
(%) a=2;

C11 deems this program racy. But, it is not racy:
» On x86-TSO, Power, ARM, and Itanium.
» Or if we move the (%) lines to a new thread.
So, drop the “different thread” restriction.

Viktor Vafeiadis Program logics for relaxed consistency 24/30

Summary so far

We know how to reason about:
» Release-acquire
» Consume reads

» C11 memory fences

We found a number of bugs in the model:
» Dependency cycles (also in [Batty et al. '03])
» Same thread rel-acq don’t synchronize

» Semantics of SC accesses odd and too weak. ..
... when mixed with non-SC accesses

» Release sequences too strong

Viktor Vafeiadis Program logics for relaxed consistency 25/30

Soundness proof challenges

» Assertions in heaps
— Store syntactic assertions (modulo *-ACl)
» No (global) notions of state and time
—> Define a logical local notion of state
—> Annotate hb edges with logical state
» No operational semantics
—> Use the axiomatic semantics

— Induct over max hb-path distance from top

Viktor Vafeiadis Program logics for relaxed consistency 26/30

Basic structure
» Annotate hb edges of executions with heaps.

\LWQ(X) *Rg(x)*a—0

Wo(x) *aio/ ' \Rf(x)

Wia(a, 10) Racq(X, 1)

a—10
Wo(x) * a—10)) / | Remp (x) 210

Wrel(Xa 1) B na(a 10)
WQ(X)\L ¢Remp(x Yxa—10

» Local annot. validity: 3" ins + node-effect = 3" outs.

» Configuration safety: can extend a valid
annotation for n further events.

Viktor Vafeiadis Program logics for relaxed consistency 27/30

A key lemma

Definition (Pairwise independence)
T is pairwise independent iff V(a, '), (b,b') € T,
(a, b) ¢ hb*.

Lemma (Independent heap compatibility)

If hmap is a valid annotation, and T C hb is
pairwise independent, then ®yc7 hmap(x) is
defined.

N

Viktor Vafeiadis Program logics for relaxed consistency 28/30

Conclusion

Formal reasoning about weak memory
is possible & not too difficult.

We're not quite there yet; there's still a lot to do:

Liveness, refinement, tool support, ... J

Viktor Vafeiadis Program logics for relaxed consistency 29/30

A final remark

Relaxed program logics
are a useful tool for
understanding
weak memory models

Viktor Vafeiadis Program logics for relaxed consistenc

30/30

