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Sequential consistency

Sequential consistency (SC):
I Interleave each thread’s atomic accesses.
I The standard model for concurrency.
I Almost all verification work assumes it.
I Fairly intuitive.

Initially, x = y = 0.

x := 1;
print(y);

y := 1;
print(x);

In SC, this program can print 01, 10, or 11.

But SC is invalidated by:
I Hardware implementations
I Compiler optimisations
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Store buffering in x86-TSO

cpu 1
write

write-back

read

cpu n

. . .

. . .

Memory

Initially, x = y = 0.

x := 1;
print(y);

y := 1;
print(x);

This program can also print 00.
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Basic compiler optimisations break SC / TSO

Initially, x = y = 0.

x := 1;
y := 1;

print(x);
print(y);
print(x);

Can the program print 010?

Justification:
The compiler may perform CSE:

Load x into a temporary t
and print t, y , and t.
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IRIW: Not just store buffering

Initially, x = y = 0.

x := 1 y := 1 print(x);
print(y);

print(y);
print(x);

Both threads can print 10.

x:=1

print(x)
print(y)

y:=1

print(y)
print(x)
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From IRIW to the store buffering example

Take the IRIW example:

x := 1 y := 1 print(x);
print(y);

print(y);
print(x);

Linearize twice (threads 1-3 and 2-4):

x := 1;
print(x);
print(y);

y := 1;
print(y);
print(x);

That’s the store buffering example (with two extra
print statements).
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Coherence

Initially, x = 0.

x = 1;
x = 2;

print(x);
print(x);

Cannot print 10 nor 20 nor 21.

I Programs with one shared variable have SC
semantics.

I Ensured by the cache coherence protocol.
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Message passing

Initially, x = y = 0.

x = 1;
[WW fence]
y = 1;

print(y);
[RR fence]
print(x);

Cannot print 10.

I No fences needed on x86-TSO
I lwsync/isync on Power
I dmb/isync on ARM
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Understanding weak memory consistency

Read the architecture/language specs?
I Too informal, often wrong.

Read the formalisations?
I Fairly complex.

Run benchmarks / Litmus tests?
I Observe only subset of behaviours.

We need a better methodology. . .
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Which memory model?

Hardware or language models?
I Want to reason at “high level”
I TSO ; good robustness theorems

C/C++ or Java?
I JMM is broken [Ševčík & Aspinall, ECOOP’08]
I So, only C11 left

Goals:
I Understand the memory model
I Verify intricate concurrent programs
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The C11 memory model

Two types of locations: ordinary and atomic
I Races on ordinary accesses ; error

A spectrum of atomic accesses:
I Relaxed ; no fence
I Consume reads ; no fence, but preserve deps
I Release writes ; no fence (x86); lwsync (PPC)
I Acquire reads ; no fence (x86); isync (PPC)
I Seq. consistent ; full memory fence

Primitives for explicit fences
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C11 executions

I Execution = set of events & a few relations:
I sb: sequenced before
I rf: reads-from map
I mo: memory order per location
I sc: seq.consistency order
I sw [derived]: synchronized with
I hb [derived]: happens before

I Axioms constraining the consistent executions.
I C(|prog |) = set of all consistent exec’s.
I if all C(|prog |) race-free on ordinary accesses,

JprogK = C(|prog |); otherwise, JprogK =“error”
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Release-acquire synchronization: message passing in C11

atomic_int x = 0; int a = 0;(
a = 7; if (x .load(acq) 6= 0)
x .store(1, release); print(a);

)

Wna(x , 0)
sb��

Wna(a, 0)
sb
vv

sb
((

Wna(a, 7)
sb��

rf ..

Racq(x , 1)
sb��

Wrel(x , 1)
sb
��

rf, sw 11 22

Rna(a, ?)
sb
��

happens-before def= (sequenced-before ∪ sync-with)+

sync-with(a, b) def= reads-from(b) = a ∧ release(a) ∧ acquire(b)
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Rel-acq synchronization is weaker than SC

Example (SB)
Initially, x = y = 0.

x .store(1, release);
t = y .load(acquire);

y .store(1, release);
t ′ = x .load(acquire);

This program may produce t = t ′ = 0.

Example (IRIW)
Initially, x = y = 0.

x .store
(1, rel);

y .store
(1, rel);

a=x .load(acq);
b=y .load(acq);

c=y .load(acq);
d=x .load(acq);

May produce a = c = 1 ∧ b = d = 0.

Viktor Vafeiadis Program logics for relaxed consistency 15/29



Coherence

Example (Read-Read Coherence)
Initially, x = 0.

x .store
(1, rel);

x .store
(2, rel);

a=x .load(acq);
b=x .load(acq);

c=x .load(acq);
d=x .load(acq);

Cannot get a = d = 1 ∧ b = c = 2.

I Plus similar WR, RW, WW coherence properties.
I Ensure SC behaviour for a single variable.
I Also guaranteed for relaxed atomics

(the weakest kind of atomics in C11).

Viktor Vafeiadis Program logics for relaxed consistency 16/29



Part II
Relaxed Program Logics

Today:
I Separation logic
I Relaxed separation logic



When should we care about relaxed memory?

All sane memory models satisfy the DRF property:

Theorem (DRF-property)
If JPrgKSC contains no data races, then
JPrgKRelaxed = JPrgKSC.

I Program logics that disallow data races are
trivially sound.

I What about racy programs?
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Separation logic assertions

Assertions describe the heap (Loc ⇀ Val):
I emp: the empty heap
I ` 7→ v : a cell at address ` containing v

h |= ` 7→ v ⇐⇒ h = {` 7→ v}

I P ∗ Q: separating conjunction

h |= P ∗ Q ⇐⇒
∃h1h2. h = h1 ] h2 ∧ h1 |= P ∧ h2 |= Q

I ∧,∨,¬, true, false,∀,∃: as usual
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The separating conjunction

Some basic properties:
I ∗ is commutative & associative.
I P ∗ emp ⇐⇒ emp ∗ P ⇐⇒ P
I ` 7→ v ∗ ` 7→ v ′ =⇒ false

Useful for describing inductive data structures:
I list(x) def= (x = 0 ∧ emp) ∨ ∃y . x 7→ y ∗ list(y)
I ls(x , z) def= (x = z ∧ emp)∨∃y . x 7→ y ∗ ls(y , z)
I tree(x) def= (x = 0 ∧ emp) ∨ ∃y , z .

x 7→ y ∗ x+1 7→ z ∗ tree(y) ∗ tree(z)
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Separation logic

Key concept of ownership :
I Resourceful reading of Hoare triples{

P1
}

C1
{
Q1

} {
P2
}

C2
{
Q2

}
{
P1 ∗ P2

}
C1‖C2

{
Q1 ∗ Q2

} (Par)

{
P
}

C
{
Q
}

{
P ∗ R

}
C
{
Q ∗ R

} (Frame)

I Ensure memory safety & race-freedom
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Separation logic rules for non-atomic accesses

I Allocation gives you permission to access x .{
emp

}
x = alloc();

{
∃v . x 7→ v

}

I To access a normal location, you must own it:{
x 7→ v

}
t = ∗x ;

{
x 7→ v ∧ t = v

}
{
x 7→ v

}
∗x = v ′;

{
x 7→ v ′

}
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Release-acquire synchronization: message passing

Initially a = x = 0.

a = 5;
x .store(release, 1);

while (x .load(acq) == 0);
print(a);

This will always print 5.

Justification:
Wna(a, 5)

�� ((

Racq(x , 1)
��

Wrel(x , 1)

66

Rna(x , 5)

Release-acquire
synchronization
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Rules for release/acquire accesses
Relaxed separation logic [OOPSLA’13]

Ownership transfer by rel-acq synchronizations.
I Atomic allocation ; pick loc. invariant Q.{

Q(v)
}

x = alloc(v);
{
WQ(x) ∗ RQ(x)

}
I Release write ; give away permissions.{

WQ(x) ∗ Q(v)
}

x .store(v , rel);
{
WQ(x)

}
I Acquire read ; gain permissions.{

RQ(x)
}

t = x .load(acq);
{
Q(t) ∗ RQ[t:=emp](x)

}
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Message passing in RSL

Let Q(v) def= v = 0 ∨&a 7→ 5.{
true

}
atomic_int x = 0; int a = 0;{
&a 7→ 0 ∗WQ(x) ∗ RQ(x)

}

{
&a 7→ 0 ∗WQ(x)

}
a = 5;{
&a 7→ 5 ∗WQ(x)

}
x .store(1, release);{
true

}

{
RQ(x)

}
while (x .load(acq) == 0);{
&a 7→ 5

}
print(a);{
&a 7→ 5

}

{
true

}
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Multiple readers/writers

Write permissions can be duplicated:

WQ(`) ⇐⇒ WQ(`) ∗WQ(`)

Read permissions cannot, but may be split:

RQ1∗Q2(`) ⇐⇒ RQ1(`) ∗ RQ2(`)

a = 7;
b = 8;
x .store(1, rel);

t = x .load(acq);
if (t 6= 0)

print(a);

t ′ = x .load(acq);
if (t ′ 6= 0)

print(b);
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Relaxed accesses

Basically, disallow ownership transfer.
I Relaxed reads:{

RQ(x)
}

t = x .load(rlx)
{
RQ(x) ∗ (Q(t) 6≡ false)

}
I Relaxed writes:

Q(v) = emp{
WQ(x)

}
x .store(v , rlx)

{
WQ(x)

}

Unfortunately not sound because of
a bug in the C11 memory model.
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Dependency cycles in C11

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

The formal C11 model allows x = y = 1.

Justification:
Rrlx(x , 1)

��

Rrlx(y , 1)
��

Wrlx(y , 1)

66

Wrlx(x , 1)

hh Relaxed accesses
don’t synchronize
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Dependency cycles in C11

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

The formal C11 model allows x = y = 1.

What goes wrong:
Non-relational invariants are unsound.

x = 0 ∧ y = 0

The DRF-property does not hold.
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Dependency cycles in C11

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

The formal C11 model allows x = y = 1.

How to fix this:
Don’t use relaxed writes

∨
Require acyclic(sb ∪ rf ).
(Disallow RW reodering.)
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Conclusion

Topics covered today:
I The C11 memory model
I Separation logic
I Relaxed separation logic

Tomorrow:
I Compare and swap
I GPS
I Advanced C11 features
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