
Program logics for relaxed consistency
UPMARC Summer School 2014

Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

1st Lecture, 28 July 2014

Outline

Part I. Weak memory models
1. Intro to relaxed memory consistency
2. The C11 memory model
Part II. Program logics
3. Separation logic
4. Relaxed separation logic
5. GPS : ghosts & protocols
6. Advanced features

http://www.mpi-sws.org/~viktor/rsl/

Viktor Vafeiadis Program logics for relaxed consistency 2/29

http://www.mpi-sws.org/~viktor/rsl/

Sequential consistency

Sequential consistency (SC):
I Interleave each thread’s atomic accesses.
I The standard model for concurrency.
I Almost all verification work assumes it.
I Fairly intuitive.

Initially, x = y = 0.

x := 1;
print(y);

y := 1;
print(x);

In SC, this program can print 01, 10, or 11.

But SC is invalidated by:
I Hardware implementations
I Compiler optimisations

Viktor Vafeiadis Program logics for relaxed consistency 3/29

Sequential consistency

Sequential consistency (SC):
I Interleave each thread’s atomic accesses.
I The standard model for concurrency.
I Almost all verification work assumes it.
I Fairly intuitive.

Initially, x = y = 0.

x := 1;
print(y);

y := 1;
print(x);

In SC, this program can print 01, 10, or 11.

But SC is invalidated by:
I Hardware implementations
I Compiler optimisations

Viktor Vafeiadis Program logics for relaxed consistency 3/29

Store buffering in x86-TSO

cpu 1
write

write-back

read

cpu n

. . .

. . .

Memory

Initially, x = y = 0.

x := 1;
print(y);

y := 1;
print(x);

This program can also print 00.
Viktor Vafeiadis Program logics for relaxed consistency 4/29

Basic compiler optimisations break SC / TSO

Initially, x = y = 0.

x := 1;
y := 1;

print(x);
print(y);
print(x);

Can the program print 010?

Justification:
The compiler may perform CSE:

Load x into a temporary t
and print t, y , and t.

Viktor Vafeiadis Program logics for relaxed consistency 5/29

IRIW: Not just store buffering

Initially, x = y = 0.

x := 1 y := 1 print(x);
print(y);

print(y);
print(x);

Both threads can print 10.

x:=1

print(x)
print(y)

y:=1

print(y)
print(x)

Viktor Vafeiadis Program logics for relaxed consistency 6/29

From IRIW to the store buffering example

Take the IRIW example:

x := 1 y := 1 print(x);
print(y);

print(y);
print(x);

Linearize twice (threads 1-3 and 2-4):

x := 1;
print(x);
print(y);

y := 1;
print(y);
print(x);

That’s the store buffering example (with two extra
print statements).

Viktor Vafeiadis Program logics for relaxed consistency 7/29

Coherence

Initially, x = 0.

x = 1;
x = 2;

print(x);
print(x);

Cannot print 10 nor 20 nor 21.

I Programs with one shared variable have SC
semantics.

I Ensured by the cache coherence protocol.

Viktor Vafeiadis Program logics for relaxed consistency 8/29

Message passing

Initially, x = y = 0.

x = 1;
[WW fence]
y = 1;

print(y);
[RR fence]
print(x);

Cannot print 10.

I No fences needed on x86-TSO
I lwsync/isync on Power
I dmb/isync on ARM

Viktor Vafeiadis Program logics for relaxed consistency 9/29

Understanding weak memory consistency

Read the architecture/language specs?
I Too informal, often wrong.

Read the formalisations?
I Fairly complex.

Run benchmarks / Litmus tests?
I Observe only subset of behaviours.

We need a better methodology. . .

Viktor Vafeiadis Program logics for relaxed consistency 10/29

Which memory model?

Hardware or language models?
I Want to reason at “high level”
I TSO ; good robustness theorems

C/C++ or Java?
I JMM is broken [Ševčík & Aspinall, ECOOP’08]
I So, only C11 left

Goals:
I Understand the memory model
I Verify intricate concurrent programs

Viktor Vafeiadis Program logics for relaxed consistency 11/29

The C11 memory model

Two types of locations: ordinary and atomic
I Races on ordinary accesses ; error

A spectrum of atomic accesses:
I Relaxed ; no fence
I Consume reads ; no fence, but preserve deps
I Release writes ; no fence (x86); lwsync (PPC)
I Acquire reads ; no fence (x86); isync (PPC)
I Seq. consistent ; full memory fence

Primitives for explicit fences

Viktor Vafeiadis Program logics for relaxed consistency 12/29

C11 executions

I Execution = set of events & a few relations:
I sb: sequenced before
I rf: reads-from map
I mo: memory order per location
I sc: seq.consistency order
I sw [derived]: synchronized with
I hb [derived]: happens before

I Axioms constraining the consistent executions.
I C(|prog |) = set of all consistent exec’s.
I if all C(|prog |) race-free on ordinary accesses,

JprogK = C(|prog |); otherwise, JprogK =“error”

Viktor Vafeiadis Program logics for relaxed consistency 13/29

Release-acquire synchronization: message passing in C11

atomic_int x = 0; int a = 0;(
a = 7; if (x .load(acq) 6= 0)
x .store(1, release); print(a);

)

Wna(x , 0)
sb��

Wna(a, 0)
sb
vv

sb
((

Wna(a, 7)
sb��

rf ..

Racq(x , 1)
sb��

Wrel(x , 1)
sb
��

rf, sw 11 22

Rna(a, ?)
sb
��

happens-before def= (sequenced-before ∪ sync-with)+

sync-with(a, b) def= reads-from(b) = a ∧ release(a) ∧ acquire(b)

Viktor Vafeiadis Program logics for relaxed consistency 14/29

Rel-acq synchronization is weaker than SC

Example (SB)
Initially, x = y = 0.

x .store(1, release);
t = y .load(acquire);

y .store(1, release);
t ′ = x .load(acquire);

This program may produce t = t ′ = 0.

Example (IRIW)
Initially, x = y = 0.

x .store
(1, rel);

y .store
(1, rel);

a=x .load(acq);
b=y .load(acq);

c=y .load(acq);
d=x .load(acq);

May produce a = c = 1 ∧ b = d = 0.

Viktor Vafeiadis Program logics for relaxed consistency 15/29

Coherence

Example (Read-Read Coherence)
Initially, x = 0.

x .store
(1, rel);

x .store
(2, rel);

a=x .load(acq);
b=x .load(acq);

c=x .load(acq);
d=x .load(acq);

Cannot get a = d = 1 ∧ b = c = 2.

I Plus similar WR, RW, WW coherence properties.
I Ensure SC behaviour for a single variable.
I Also guaranteed for relaxed atomics

(the weakest kind of atomics in C11).

Viktor Vafeiadis Program logics for relaxed consistency 16/29

Part II
Relaxed Program Logics

Today:
I Separation logic
I Relaxed separation logic

When should we care about relaxed memory?

All sane memory models satisfy the DRF property:

Theorem (DRF-property)
If JPrgKSC contains no data races, then
JPrgKRelaxed = JPrgKSC.

I Program logics that disallow data races are
trivially sound.

I What about racy programs?

Viktor Vafeiadis Program logics for relaxed consistency 18/29

Separation logic assertions

Assertions describe the heap (Loc ⇀ Val):
I emp: the empty heap
I ` 7→ v : a cell at address ` containing v

h |= ` 7→ v ⇐⇒ h = {` 7→ v}

I P ∗ Q: separating conjunction

h |= P ∗ Q ⇐⇒
∃h1h2. h = h1] h2 ∧ h1 |= P ∧ h2 |= Q

I ∧,∨,¬, true, false,∀,∃: as usual

Viktor Vafeiadis Program logics for relaxed consistency 19/29

The separating conjunction

Some basic properties:
I ∗ is commutative & associative.
I P ∗ emp ⇐⇒ emp ∗ P ⇐⇒ P
I ` 7→ v ∗ ` 7→ v ′ =⇒ false

Useful for describing inductive data structures:
I list(x) def= (x = 0 ∧ emp) ∨ ∃y . x 7→ y ∗ list(y)
I ls(x , z) def= (x = z ∧ emp)∨∃y . x 7→ y ∗ ls(y , z)
I tree(x) def= (x = 0 ∧ emp) ∨ ∃y , z .

x 7→ y ∗ x+1 7→ z ∗ tree(y) ∗ tree(z)

Viktor Vafeiadis Program logics for relaxed consistency 20/29

Separation logic

Key concept of ownership :
I Resourceful reading of Hoare triples{

P1
}

C1
{
Q1

} {
P2
}

C2
{
Q2

}
{
P1 ∗ P2

}
C1‖C2

{
Q1 ∗ Q2

} (Par)

{
P
}

C
{
Q
}

{
P ∗ R

}
C
{
Q ∗ R

} (Frame)

I Ensure memory safety & race-freedom

Viktor Vafeiadis Program logics for relaxed consistency 21/29

Separation logic rules for non-atomic accesses

I Allocation gives you permission to access x .{
emp

}
x = alloc();

{
∃v . x 7→ v

}

I To access a normal location, you must own it:{
x 7→ v

}
t = ∗x ;

{
x 7→ v ∧ t = v

}
{
x 7→ v

}
∗x = v ′;

{
x 7→ v ′

}

Viktor Vafeiadis Program logics for relaxed consistency 22/29

Release-acquire synchronization: message passing

Initially a = x = 0.

a = 5;
x .store(release, 1);

while (x .load(acq) == 0);
print(a);

This will always print 5.

Justification:
Wna(a, 5)

�� ((

Racq(x , 1)
��

Wrel(x , 1)

66

Rna(x , 5)

Release-acquire
synchronization

Viktor Vafeiadis Program logics for relaxed consistency 23/29

Rules for release/acquire accesses
Relaxed separation logic [OOPSLA’13]

Ownership transfer by rel-acq synchronizations.
I Atomic allocation ; pick loc. invariant Q.{

Q(v)
}

x = alloc(v);
{
WQ(x) ∗ RQ(x)

}
I Release write ; give away permissions.{

WQ(x) ∗ Q(v)
}

x .store(v , rel);
{
WQ(x)

}
I Acquire read ; gain permissions.{

RQ(x)
}

t = x .load(acq);
{
Q(t) ∗ RQ[t:=emp](x)

}

Viktor Vafeiadis Program logics for relaxed consistency 24/29

Message passing in RSL

Let Q(v) def= v = 0 ∨&a 7→ 5.{
true

}
atomic_int x = 0; int a = 0;{
&a 7→ 0 ∗WQ(x) ∗ RQ(x)

}

{
&a 7→ 0 ∗WQ(x)

}
a = 5;{
&a 7→ 5 ∗WQ(x)

}
x .store(1, release);{
true

}

{
RQ(x)

}
while (x .load(acq) == 0);{
&a 7→ 5

}
print(a);{
&a 7→ 5

}

{
true

}

Viktor Vafeiadis Program logics for relaxed consistency 25/29

Multiple readers/writers

Write permissions can be duplicated:

WQ(`) ⇐⇒ WQ(`) ∗WQ(`)

Read permissions cannot, but may be split:

RQ1∗Q2(`) ⇐⇒ RQ1(`) ∗ RQ2(`)

a = 7;
b = 8;
x .store(1, rel);

t = x .load(acq);
if (t 6= 0)

print(a);

t ′ = x .load(acq);
if (t ′ 6= 0)

print(b);

Viktor Vafeiadis Program logics for relaxed consistency 26/29

Relaxed accesses

Basically, disallow ownership transfer.
I Relaxed reads:{

RQ(x)
}

t = x .load(rlx)
{
RQ(x) ∗ (Q(t) 6≡ false)

}
I Relaxed writes:

Q(v) = emp{
WQ(x)

}
x .store(v , rlx)

{
WQ(x)

}

Unfortunately not sound because of
a bug in the C11 memory model.

Viktor Vafeiadis Program logics for relaxed consistency 27/29

Relaxed accesses

Basically, disallow ownership transfer.
I Relaxed reads:{

RQ(x)
}

t = x .load(rlx)
{
RQ(x) ∗ (Q(t) 6≡ false)

}
I Relaxed writes:

Q(v) = emp{
WQ(x)

}
x .store(v , rlx)

{
WQ(x)

}

Unfortunately not sound because of
a bug in the C11 memory model.

Viktor Vafeiadis Program logics for relaxed consistency 27/29

Dependency cycles in C11

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

The formal C11 model allows x = y = 1.

Justification:
Rrlx(x , 1)

��

Rrlx(y , 1)
��

Wrlx(y , 1)

66

Wrlx(x , 1)

hh Relaxed accesses
don’t synchronize

Viktor Vafeiadis Program logics for relaxed consistency 28/29

Dependency cycles in C11

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

The formal C11 model allows x = y = 1.

What goes wrong:
Non-relational invariants are unsound.

x = 0 ∧ y = 0

The DRF-property does not hold.

Viktor Vafeiadis Program logics for relaxed consistency 28/29

Dependency cycles in C11

Initially x = y = 0.

if (x .load(rlx) == 1)
y .store(1, rlx);

if (y .load(rlx) == 1)
x .store(1, rlx);

The formal C11 model allows x = y = 1.

How to fix this:
Don’t use relaxed writes

∨
Require acyclic(sb ∪ rf).
(Disallow RW reodering.)

Viktor Vafeiadis Program logics for relaxed consistency 28/29

Conclusion

Topics covered today:
I The C11 memory model
I Separation logic
I Relaxed separation logic

Tomorrow:
I Compare and swap
I GPS
I Advanced C11 features

Viktor Vafeiadis Program logics for relaxed consistency 29/29

