SMT-based Verification of Persistency Invariants
of Px86 Programs

Tason Marmanis and Viktor Vafeiadis

MPI-SWS, Germany
{imarmanis,viktor}@mpi-sws.org

Abstract. While non-volatile memory (NVM) promises to be both per-
formant and durable, the semantics provided by the hardware architec-
tures are rather subtle and significantly complicate reasoning about the
possible observed state after a crash.

Starting from recent persistency extension of the x86 model, we present
the first automated approach for proving invariants about the persistent
state of bounded NVM programs. Our approach works by encoding the
program’s semantics along with its intended invariants into a compact
logical formula and querying an SMT solver for its satisfiability. We
propose two alternative encodings, which differ in the way the notion of
a crash is encoded. For a collection of small to medium-size benchmarks,
our implementation is able to detect or prove absence of persistency bugs
in time ranging from a couple of seconds to some minutes.

1 Introduction

Non-volatile memory (NVM) technology can yield large performance improve-
ments in applications that need to persist their data, since they can do so by
issuing memory writes to addresses mapped to NVM. Achieving these perfor-
mance improvements, however, is highly non-trivial because memory writes have
rather complex persistency semantics. They are generally persisted neither syn-
chronously nor in program order, unless programmers insert special fence and
cache-line flush instructions at the appropriate program points.

Due to the high cost of these instructions, programmers often insert fewer
fences than necessary, which can lead to data corruption upon a power failure,
thereby negating the benefits of NVM. To date, there are a few tools that can
help programmers with fence/flush placements, but sacrifice precision and/or
soundness for scalability. JAARU [10] is a stateless model checker that does not ex-
plore all program executions exhaustively and so cannot be used to prove absence
of bugs. Static analysis approaches assume that all appropriately annotated data
is to be flushed, thereby requiring many redundant flush instructions. Dynamic
analysis (testing) approaches (e.g., |18} 20]) can achieve precision but do not
provide any correctness guarantees beyond the executions actually explored, and
so they can be used only to find bugs—not to show absence of bugs.

In this work, we develop an automated approach for proving invariants about
the persistent state of concurrent bounded (loop-free) NVM programs, which

explores the whole state-space induced by both concurrency and persistency. We
employ symbolic model checking: we encode the program, its semantics, and its
specification as a logical formula that is satisfiable if and only if the program is
incorrect, and use an SMT (Satisfiability Modulo Theories) solver to check for
its satisfiability.

The main challenge is to find a suitable encoding so that satisfiability of the
constructed formula can be checked in a reasonable amount of time. This is by
no means easy because straightforward encodings of the program’s semantics
generate large formulas (typically, cubic in the size of the program) and checking
satisfiability is an NP-hard problem. It is therefore important to optimize the
translation because even a small increase in the formula size can quickly lead to
an intractable satisfiability problem.

To do so, we first have to choose an appropriate persistency semantics to
base our verification upon. Existing semantic models are either operational
in terms of a machine with multiple buffers [23| |24] or multiple views of the
shared state [3], or declarative/axiomatic in terms of a set of constraints over a
graph representing a single program execution (e.g., [14} 24l |25]). We choose the
declarative DPTSOgy,, model [14] for the x86 architecture because it can easily
be encoded into propositional logic and is much more suitable for automated
verification. Still, however, there are three important challenges that we need to
overcome.

First, a large part of the program’s state space is typically irrelevant for the
specifications we want to prove (invariants about the persisted state). For instance,
we do not care whether a write has persisted unless the invariant depends upon
the value written by that write. To overcome this challenge, we adopt the idea of
a recovery observer of Kokologiannakis et al. [15] from stateless model checking
setting and model the invariants as an additional thread that reads the relevant
memory locations.

Second, DPTSOgyy, along with the other recent x86 persistency models, places
constraints on partial program execution graphs (i.e., up until a program crash).
Directly encoding these partial graphs (e.g., by introducing variables describing
whether each event belongs to the executed prefix of the program) generates a
huge state space, which may slow down satisfiability checking. As an alternative,
we develop an equivalent reformulation of DPTSOgy, on full execution graphs,
which leads to a smaller state space without noticeably affecting verification time.

Third, there are a number of places in the DPTSOgyy, definition containing
sequential compositions of relations or where the acyclicity of a relation is checked.
A direct encoding of these in propositional logic leads to a formula cubic in the
size of the program. While acyclicity can be more effectively encoded using
theory of integer difference logic (IDL), this is not the case for general sequential
compositions of relations. Our solution here is to employ abstraction refinement
(SCAR) |27}, 28], i.e., to avoid encoding the constraints related to the memory
model in the initial formula and to add clauses on demand to rule out spurious
counterexamples. As shown by He et al. [11], SCAR can nicely be integrated
with the DPLL(T) framework of SMT solvers as a custom theory solver. He

et al. [11] address the case of sequential consistency, whose definition contains
only one instance of sequential composition. Here, we extend this approach to
the weak consistency/persistency x86 model, which contains several instances of
sequential composition, and which requires further care to handle TSO program
order relaxations and the semantics of cache-line flush operations.

Putting all of this together, we have developed a prototype tool for verifying
invariants about the persistent state of C programs against the DPTSOgyy
memory model. Our tool uses Z3 [19] for solving SMT queries and, following
SCAR, implements parts of the encoding natively as a custom theory solver on
top of Z3. We have used our tool on a collection of persistency benchmarks and
were able to find or prove absence of persistency bugs.

Outline We start by reviewing the x86 model . We then give an overview of
our approach and present our adaptation of DPTSOgyy, over full execution
graphs . We then discuss the encoding of the program and its semantics as
a logical formula , and our implementation of the theory solver (§6). We
evaluate our tool on a set of benchmarks , discuss related work , and

conclude .

2 Preliminaries

In this section, we review the terminology of axiomatic memory models and their
extensions to capture the persistency semantics of x86.

2.1 Axiomatic Memory Consistency Models

Axiomatic memory models define the semantics of a program as a set of execution
graphs that satisfy a certain consistency predicate. The nodes of these graphs are
called events and represent the execution of a single memory access or a fence.
Formally, an event e € Event is a tuple of the form (i, ¢, lab), where i € N is the
unique event identifier, t € Tid is the thread identifier of the executing thread,
and lab is the event label. The event label can be one of the following types:

— a read label, R(l, vg), accessing location [€ Loc and reading value vg € Val;

— a write label W(l, vy), writing value vy € Val to location [€ Loc;

— a read-modify-write (RMW) label U({, vg, vy), updating the value of location
[from vg to vw;

— a failed compare-and-swap (CAS) label Rex(l, vg), which reads the value vg
at location [, or

— a memory fence label MF.

When applicable, the functions tid, loc, valg, and valy project the thread
identifier, the location (1), the value read (vg), and the value written (vy) of
an event, respectively. For each type of label, we define the corresponding set of
events; the set of read events (R), all write events (W), etc. Let RU = R U U U Rex
and WU £ WU U.

An execution graph G also comprises a number of relations on its events,
representing the orders in which these events were executed and/or persisted.

Definition 1. An execution graph G is a tuple (E, I, po,rf, co), where:

— E is a set of events.

— I CE is a set of initialization events, comprising a single write event w € Wy,
for each location .

— po C E X E is the program order, which totally orders the events of each
thread, and the initialization events before all other events: I x (E\ I) C po.

— rf C (ENWU) x (ENRU) is the reads-from relation, relating events of the same
location with matching values, i.e., (a,b) € rf implies that loc(a) = loc(b)
and valy (a) = valg(b). Additionally, £ matches every read or read-modify-
write to exactly on write or read-modify-write.

— co C (ENWU) x (ENWU) is the coherence order, defined as the disjoint union
of relations {co;}icLoc, where each coy is a strict total order on E N WU;.

As an example of an execution graph, in Fig. [I] we can see the only execution
graph of the program P.

In the sequel, we often call execution graphs simply executions or graphs.

We define the inverse of a relation X, as X~ £ {(b,a) | (a,b) € X}. We
divide relations into their same-thread (internal) and different thread (external)
parts, suffixed i and e respectively. For example, we write rf_i for the relation
rf N (poUpo~1), and co_e for the relation co\ (po Upo~1). Additionally, given a
set of events A, we write [A] for the identity relation {(x,z) | x € A}. Given two
relations p,q on A, we write p; ¢ for their composition. Finally, we write rng(p)
for the codomain of a relation p.

Each memory model defines its own consistency predicate that imposes a
number of additional constraints on execution graphs. For example, sequential
consistency (SC) [16] requires that po U rf U co U fr be acyclic, where fr =
(rf~1;co) \ [E] is the from-reads relation, ordering a read event r before a write
event that is co-later that the write event that r reads-from.

The x86 memory model defines the preserved program order £ po\ (WxR)
as the largest subset of po that avoids ordering writes with respect to po-later
reads. The x86 consistency predicate requires that: 1. (rf_i U co_i Ufr_i) C po,
and 2. the ordered-before relation ob £ (ppoUrf_eUco_eUfr_e)t be irreflexive.

2.2 Modeling the Persistency Semantics of x86

To write programs with useful persistency behaviors, we introduce two types
of flush instructions (flush and flushep), which operate on a given cache line,
and the store fence instruction, which waits for preceding flush instructions to
complete. Accordingly, event labels are extended to also include:

— a flush label FL({) for the cache line containing location I,
— a flush-opt label FO(1) for the cache line containing location I, and
— a store fence label SF.

To simplify the presentation, we will henceforth elide the handling of flush-opt
instructions, and following [14], we assume cache lines contain a single location.
Our results extend straightforwardly to cover flush-opt instructions and larger
cache lines, for which we refer the reader to our appendix.)

The persistency semantics of x86 is modeled by an additional constraint that
describes the values of each location that can be observed after a crash. The
precise definition of this constraint is where the various x86 persistency models
in the literature differ.

The original persistent x86 model (Px86) [24] designates a subset of the
execution’s events—which includes the write events—as durable, and keeps
track in execution graphs of the non-volatile-order, nvo, a total order on the
durable events reflecting the order that they persisted. We note that nvo contains
information which is frequently irrelevant for verification, as only the last (nvo-
maximal) write to each location that persisted in each location is important.

Two additional models, Px86yicw [3] and PTSOgyy [14], have been developed
for the persistent x86 architecture, both equivalent to the Px86 model in the
absence of 1/O instructions. Their respective declarative models, Px86,yiom and
DPTSOSynﬂ avoid the use of the nvo total order, and are defined similarly,
with the main difference being that Px86,xiom tracks an additional non-derived
relation, thus making it less attractive for model checking. The recent PEx86
model [22], which extends Px86 to account for non-temporal writes and Intel-x86
memory types, also uses this relation to define an execution’s consistency.

An important difference in DPTSOgy,, is that execution graphs of a program
now also include partial executions, i.e., executions that crashed before they
fully executed. For example, the program P in Fig. [1| contains four executions,
depending on which of the instructions were executed before the crash, if any.

DPTSOgyn captures the notion of the recovered write after a crash using a
memory assignment p, with u € Loc — (ENWU), that maps each location [to
the last persisted event of that location. The definition of the execution graph is
extended accordingly to include the memory assignment.

To determine an execution’s consistency, DPTSOyy,, defines the derived T'SO
propagation order dtpo, and extends ob to also include dtpo, i.e.,

ob £ (ppoUrf_eUcoeUfr.eUdtpo)™

The relation is also redefined to reflect the additional allowed reorderings
introduced by the new instructions. For example, flush instructions can be
reordered w.r.t. to later load instructions. We refer the reader to our appendix
for the precise definition of

The dtpo orders a flush event before all the write events in the same location
that did not persist, i.e., they are co-after the write event that was recovered
after the crash. Intuitively, since the flush events are synchronous, every such
write must have happened after the flush, otherwise it should have also persisted.

! Khyzha et al. [14] actually present two versions of DPTSOgyn. Throughout this paper
we use the second version, which uses the coherence order to define consistency

As an example, consider again the program P in Fig. [[] where all the variables
are zero-initialized, and assume that after recovery the variable d contains the
initial value, while f reads the value one. Then, dtpo would order the flush
instruction before the -earlier write instruction to d, leading to an ob loop,
which renders the execution inconsistent.

dtpo £ | [FL.] x rrg(p; co; [WUL))
z€lLoc

3 Overview

Programs that use NVM do not differ from regular volatile-memory programs in
the way they access the memory. Programmers, however, have some expectations
about the persistent state of their programs, e.g., that some data structure will
be in a consistent state even if the program crashes mid-execution.

We formalize such expectations as persistency invariants, i.e., assertions which
must hold at any post-crash state of the program. We illustrate with the following
example. The program in writes some data to the variable d, flushes the
cache-line of d, and finally sets the flag f. The programmer’s intention is that
after a crash, if the flag f is observed to be set then the write to d will also
be observed. This can be made explicit by annotating the program with the
persistency invariant f = d.

init
d:=1; .
flush d; w(d.1) it (/)
— 1. J assert(d);
J=1 flush(d)
i Rec
P W(f,1)

Fig.1: A program P and its execution graph, along with its recovery routine Rec

3.1 Modeling Recovered Values

It is convenient to think of a persistency invariant as a special routine that runs
after the program crashes and checks for any violation of the property of interest.
We assume the that such recovery routines do not contain any write instructions.
The recovery routine for our previous example is depicted in Fig. [1} Following
Kokologiannakis et al. |[15], since a crash can occur at any point during the
execution of a program, one can model the recovery routine as an additional
thread running in parallel to the code, which is subject to somewhat different
constraints regarding the possible values it can read.

To encode those constraints, we extend the set of event labels (§ to include
recovery read labels, Rec(l, vg), which correspond to the read instructions of
the recovery routine. We also rewrite the definition of dtpo so that it does not

require the memory assignment p, instead recovering it from the writes that the
recovery reads read from. To this end, recall that dtpo orders the flush events on
a location x before the writes that happened co-after the last persisted write of
x, which are exactly the events in rng([Rec,];r£~!; co). By introducing a new
relation flush-before (£b) which orders every flush event with the recovery reads
on the same location, we can rewrite dtpo simply as £b; fr.

3.2 Symbolic Verification

Symbolic verification requires to construct a logical formula @ that captures
the program, its semantics, and its specification. Here we provide a high-level
overview of the construction of @ leaving the details for [§5] and

Representing Fxecution Graphs. To represent the set of possible execution graphs
in @, we associate with each instruction of the program an event in the execution
graph, and introduce variables denoting the various relations between events of
the graph. So, for example, for each pair (w,r) of a write event w and a read
event 7, we introduce the variable rf,, . which is set whenever r reads from w.

Since, however, it is possible that not all instructions of the program will be
executed, for each instruction n, we associate a formula enabled(n) representing
whether the instruction was actually executed, i.e., the control flow reached it. For
memory access instructions, we also associate terms such as loc(n) containing
the location accessed and val(n) the value read/written.

These variables and terms allow us to express their intended meaning as
a number of basic constraints stating, for example, that rf, , implies that
loc(w) = loc(r) and val(w) = val(r), that each read event reads from some
write event, and that co; is a total order for each location I. The exact constraints

are shown in §[5.2

Ezecution Graph Consistency. Apart from these basic axioms, we also need to
encode the specific consistency predicate of the memory model, which is typically
an acyclicity constraint on a set of relations including rf, co, and fr. Prior
work identified that the cubic encoding stemming from the relation composition
needed for fr dominates the resulting formula |27, 28], and proposed abstraction
refinement to circumvent it [11} 27) [28].

We adapt the approach of He et al. [11], avoiding completely the encoding of
the consistency predicate and delegating consistency checking of the explored
execution graph to a custom theory solver, which judges the satisfiability of
assignment to the variables concerning the memory model (e.g., rf and co). We
discuss the details of our theory solver for DPTSOgyy, in @

Modeling Crashes. The final issue we must address is how to encode the notion
of a crash, i.e., the possibility that some instructions were not executed because
the program terminated prematurely. This is necessary because the semantics
of programs under DPTSOgyy (and similarly in other models) is defined w.r.t.
partial execution graphs.

For example, consider the program P in Fig. [I] and a recovery routine that
asserts that the value recovered for d is 1. The approach outlined so far would
deem this program safe because it would only consider the full execution where
the write to d is followed by a flush.

The straightforward approach is to lift our encoding of enabled, so that it
reflects not only whether control flow reached the corresponding instruction,
but also whether the program did not crash until that point. To do so, we need
to include one additional boolean variable for each node, capturing whether
execution crashed just before the execution of the instruction. We discuss this
approach further in

To partially alleviate the need for these additional variables, we present in
an adaptation of the DPTSOyy, semantics which defines consistent executions
only in terms of full execution graphs. We discuss in [§5] the modifications needed
in the encoding to support our adaptation.

4 Adapting the DPTSOgy,, model

In this section, we reformulate DPTSOgyy, in terms of full execution graphs and
show that our reformulated model, DPTSOgyy s, is equivalent to DPTSOgyy,.

To define DPTSOgyy fu1, we first have to adapt the definition of dtpo con-
cerning the synchronous nature of the execution of flush operations. We can
no longer simply assume that all flush operations have executed before any
write that was not persisted, because the crash may well have happened much
before those flushes. Instead, only on the flushes that are observed to have been
executed should be ordered before any non-persisted writes. Such flushes are
those in the porf-prefix of a write that has been observed after the crash, where
porf £ (po U rf)*. Formally, this is:

dtpo £ | J dom([FL.];por; u™") x rng(yu; co; [WU,])
x€loc

We illustrate our argument using the example in Fig. [1} The program consists
of two write instructions to different locations, separated by a flush instruction
to the first location. Under DPTSOgyy, it is not consistent to recover the value 1
for f and the initial value for d, since the flush event is dtpo-before the -later
write, thus creating an ob cycle. However, it is also not consistent to recover the
initial value for d, regardless of the recovered value for f, for the same reason.

If we interpret a graph as any possible execution prefix that resulted from a
crash, we would want to still disallow the former behavior, while allowing the
latter. Indeed, both executions that crash before the flush instruction permit the
behavior in question.

Intuitively, the only reason to rule out these executions is if we can observe
that the flush instruction indeed happened, i.e., it is in the porf-prefix of a write
that was recovered after the crash, and thus the corresponding instruction was
executed. This is the case if we recover the write to f after the crash. In this

scenario, the flush has executed, and is thus included in dtpo, resulting in a ob
cycle.

We next establish the equivalence between the two models with the following
two lemmas. Their full proofs can be found in our technical appendix.

Lemma 1. If a partial ezecution G generated by a program P is consistent under
DPTSOgyn, then there is a full execution G' generated by P that extends G and
is consistent under DPTSOgyy un-

Proof sketch. We generate G’ by repeatedly adding events to G following the
program in a way that respects po, and making each event coherence-mazimal at
the point it was added. A write event is coherence-maximal if it is the co-latest
event, and a read event is coherence-maximal if it reads from the coherence-
maximal write. Observe that this construction avoids adding any edge towards
the events of G, as well as any dipo edge that starts from the new events, which
leads to G’ being DPTSOgyn fun-consistent. O

Lemma 2. If a full execution G' generated by a program P is consistent under
DPTSOgyn funl, then there is a porf-prefic of G’ that is DPTSOgyn-consistent.

Proof sketch. Take G = G'| gom(port;u—1) t0 be the porf-prefix of the recovered
events of G’. Observe that G is DPTSOgyy, fun-consistent and that DPTSOgy,
and DPTSOgyn fan only differ in the definition of dtpo, which, by construction
of G, gives rise to the same relation. Therefore G is also DPTSOgy,-consistent,
as required. O

5 Symbolic Encoding

5.1 From Verification to Formula Satisfiability

Following the standard conventions in bounded model checking, we assume that
programs are loop-free and in static single assignment form (SSA) [4], whereby
each variable is assigned to only once. Conversion to such format is possible by
bounding the loop iteration depth and standard compiler code transformations
(e.g., introducing fresh variable names for each assignment to a variable). From
this form, a logical formula $sg4 is generated, which represents the data and
control flow. For shared read memory accesses, the value that is read is left
unspecified and is restricted by a formula @,;5; that captures the memory
model’s semantics. Lastly, the program’s specification is encoded in a formula
Psppc, which indicates the violation of some property. The program is deemed
safe if ® = dgga APy A Psppe is unsatisfiable, which can be checked by an
SMT solver. Existing techniques differ on how @) is encoded.

5.2 Memory model encoding

Along with the SSA form, an event graph is constructed, with each node corre-
sponding to a memory event. As discussed in each node n is associated with

formulas loc(N),val(n), and enabled(n). A node also contains an event label,
specifying the type of the instruction it corresponds to.

As an example, consider the program Rec in Fig. [I] The event graph will
contain two events ry and rg, for the load instructions to f and d, respectively.
The $sppc component of the formula @ that corresponds to Rec is enabled(d) A
val(d) = 0, where enabled(d) £ enabled(f) A val(f) # 0 and enabled(f) £
true. Both val(f) £ u; and val(d) = wug are left unspecified, and will be
restricted by @asas.

Following He et al. [11], we encode directly into propositional logic only some
basic axioms about the memory model (e.g., that every read reads from some
write), whose size is at most quadratic in the size of the program.

Specifically, we introduce one boolean variable 7f,, , for each pair of write
event w and read event r denoting the presence of a rf-edge from w to r, and
one boolean variable co,, ., for each pair of write events denoting the presence
of a co-edge from w to w’.

Given a read event r and a pair w,w’ of write events, we encode the following
basic axioms:

enabled(r) = \/ T o r
wew

7fy,» = enabled(w) A enabled(r) A valw(w) = valr(r) A loc(w) = loc(r)
COww V €Oy 4 <= enabled(w) A enabled(w') A loc(w) = loc(w')

The first two axioms state that every enabled read reads from some write,
which is also enabled and acts on the same location. The third axiom captures
the totality of co for same-location writes.

Note that we do not encode the functionality of rf—that a read cannot read
from two different writes—because this constraint does not affect the consistency
of a plain execution graph (an rf relation violating functionality can be modified
to one satisfying it by removing rf edges).

As an optimization, for events that we can statically determine that they do
not access the same location, we avoid introducing new variables and encoding
the corresponding constraints.

5.3 Encoding x86 Consistency

To capture the reordering semantics of x86, we also have to add some additional
variables that correspond to the edges, instead of relying on the statically
predetermined po edges. To this end, for each pair (x,y) of ppo-related events,
we add a boolean variable ppo and require this variable to be set only when
both z and y are enabled.

As an optimization, we avoid encoding the transitive closure of , i.e.,
we avoid introducing a new variable ppo,, , if it can be derived from a pair of
variables ppo, . and ppo, .

x,y?

5.4 Encoding DPTSOgy,

Finally, to fully encode DPTSOsy,, we need to account for 1. the additional dtpo
edges 2. the fact that, due to a possible crash, a prefix of the program could have
been executed.

As discussed in dtpo can be rewritten as fb; fr, where fb is a relation
ordering every flush event f on a location x to all the recovery read events r on
the same location (Rec,). Thus it suffices to add a new boolean variable fb . for
each such pair of events, and capture the intended meaning with the following
constraint:

fb, = enabled(f) A enabled(r) A loc(f) = Lloc(r)

A straightforward way to encode the notion of a crash, is to further add
a new boolean variable crash,,, for each node n of the event graph, reflecting
the fact that execution crashed just before the execution of the corresponding
memory access. Encapsulating this inside the enabled(n) formula of each node,
so that it now signifies that control flow reached the memory accessing instruction
without crashing, gives us a full encoding for DPTSOgy,, without the need of any
additional change.

5.5 Alternative Crash Encoding

Alternatively, we can employ our adaptation (DPTSOgyn fu1) of DPTSOgyn to
partially circumvent the need for these additional crash variables.

DPTSOgyn funn defines the semantics of x86 programs in terms of full execution
graphs, and changes the definition of dtpo to achieve this. Following the same
reasoning as in it is easy to see that dtpo can again be rewritten as fb;fr.
Now, however, only the flush events that are in the porf-prefix of a recovery read
event take part in fb.

To capture this, we again introduce a boolean variable crash for each flush
event f and modify the fb constraint to:

fby, = enabled(f) A enabled(r) A loc(f) = Lloc(r) A —crashy

The intended meaning is that if an enabled node f has its crash; variable set
to true, it is was not executed due to a crash, and thus it cannot be porf-before
a recovery read event. This is checked and enforced by our custom theory solver

(86)-

6 Theory solver for DPTSOqy,

6.1 Preliminaries

Given a formula involving atoms from some first-order theories, DPLL(T) [9)
extends DPLL [5, [6] by replacing each atom with a new boolean variable, creating
its boolean abstraction, whose satisfiability is determined by the SAT core of the

solver. In case a model is produced, i.e., the boolean abstraction is satisfiable, the
theory solvers should be consulted to judge whether the model is also satisfiable
in the background theories.

This procedure can also take place online, with the theory solvers checking
the consistency of partial assignments as they are being explored by the SAT
solver. In case an inconsistency in detected, a conflict clause is generated that
captures the inconsistency. The conflict clause is propagated to the SAT solver,
which initiates a backjump, reverting the last N assignments. The conflict clause
prevents the same assignment from being explored, and additionally providing
some knowledge of the background theory to the SAT solver. The latter is also
supported independently of an inconsistency’s existence, i.e., the theory solver
can propagate additional clauses to assist the SAT solver’s exploration.

6.2 Z3 User Propagator

We base our implementation of the theory solver on Z3’s user propagator infras-
tructure, which allows implementing a custom theory solver externally without
the need to modify the Z3 codebase.

The user propagator allows the client of Z3’s library to track some of its
boolean variables, and register a callback that is initiated each time a value is
assigned to one of them. The callback’s implementation can respond by propa-
gating a logical consequence, whose antecedent is a subset of the set variables,
and the consequent is an arbitrary boolean expression. In case the consequent is
false, the negation of the antecedent corresponds to the conflict clause.

The user propagator’s interface provides two additional callbacks to inform
the solver about (1) backtracking points, and (2) initiation of a backtrack, so
that the theory solver reverts all assignments up to the last backtracking point.

6.3 Implementation

Given the event graph of the program together with its (static) po edges,
our theory solver is responsible for judging the satisfiability of the assignments
to the rf, co, fb, and crash variables, which corresponds to the consistency of the
execution graph that is being explored by the SAT solver.

To detect violations of DPTSOyy, consistency, it needs to check for 1. rf_i,

_i, or fr_i edges that contradict po, and 2. cycles consisting of ,rf_e, co_e,

fr_e, and fb edges. We note that fr edges are derived from their constituent
edges (fr £ rf~1; co).

Our adaptation DPTSOgyn rul additionally requires detecting paths of po and
rf edges, which start from a flush event f with crashy set to true, and end in a
recovery read event.

Detecting Inconsistent Assignments The non-trivial violations (i.e., exclud-
ing (rf.iUco_iUfr_i) ¢ po) require an algorithm to detect a cycle or a certain
path in the event graph.

These algorithms need to be incremental, in order to quickly rule out incon-
sistent assignments, and amendable for efficient backtracking, i.e., to revert a
suffix of their operations without the need to store a huge amount of state.

To incrementally detect ob cycles we use the incremental cycle detection
(ICD) on sparse graphs of Bender et al. [2], following He et al. [11]. As noted
by the authors, the correctness of the algorithm is preserved in a decremental
setting, without the need to revert the changes in the computed order.

To incrementally detect porf paths, we use Italiano [12]’s incremental tran-
sitive closure algorithm (Italiano-ITC) on the po and rf edges of the graph,
together with the optimizations suggested by Frigioni et al. [§]. Finally, extending
the algorithm to support backtracking is trivial, as we only need to revert the
value of the matrix’s elements to false.

Clearly, the theory for DPTSOgyn sun (and DPTSOgyy) is decidable; the sat-
isfiability of an assignment reduces to the two aforementioned problems.

Explaining Inconsistencies Apart from detecting inconsistencies, our theory
solver needs to succinctly explain them to the SAT core, by generating a conflict
clause. To achieve this, we associate each edge with its reason, the conjunction
of atoms that justify the edge’s existence. For the rf, co, fb, and edges,
this is just the corresponding atom, set by the SAT core during the construction
of model. For fr, it is the conjunction of the reasons of the constituent edges.
We lift the notion of reasons to paths, defining the reason of a path as the the
conjunction of the reasons of each constituent edge.

When an ob cycle is detected, during the addition of an edge e = (x,y), we
find the path p from the node y to node x that contains the fewest edges assigned
with a reason, i.e., all apart from the static edges, and propagate to the SAT
core the contradiction: reason(p) A reason(e) = false.

Similarly, when a porf path p is detected that originates from a node =,
whose crash variable crash, is set to true, and ends in a recovery read r, we
propagate to the SAT core that reason(p) A crash, = false.

7 Evaluation

In this section, we evaluate the overall performance of an implementation of our
approach and compare our two different encodings of the x86 semantics.

To evaluate our approach, we have implemented a prototype verification tool
for C programs that use NVM memory. Our tool uses LLVM/clang to transform
the input program into SSA form, generates a formula as described in[§5] and calls
a version of Z3 [19] containing our custom theory solver to check its satisfiability.
If the generated formula is satisfiable, an appropriate error message is reported
back to the user.

As benchmarks, we took three recent durably linearizable [13] libraries from the
literature: the read-write register library of Wei et al. [26] (FLIT), the persistent
queue of Friedman et al. 7], and the persistent set of Zuriel et al. [29]. For
each library, we constructed several multithreaded client programs that call the

various methods of the libraries, In each of these benchmarks, we wrote down a
persistency invariant that checks (consequences of) durable linearizability: e.g., if
a certain method has been executed, then its effects have persisted. A typical
invariant for a program that performs an enqueue operation followed by a write
instruction might say that if the write is observed, then the enqueue operation is
observed as well.

This way we obtain a set of safe benchmarks, i.e., whose invariants hold.
Removing some of the flush operations gives us a set of unsafe benchmarks,
where the invariants are violated.

Experimental Setup Our experiments are conducted on a Dell OptiPlex 7050
system, running Debian 11, with an Intel(R) Core(TM) i5-6600 CPU and 16 GB
of RAM. We used version 4.8.17 of z3.

7.1 Overall Performance

We first evaluate the overall performance of our tool using the DPTSOyy,, encoding.
For this purpose, we consider only the safe benchmarks, which are presented
in Table |1l For each benchmark, along with the verification time (in seconds),
we report the number of nodes in the event graph, to indicate the size of the
benchmark. The name represents the client itself; for example, e3+3dw is a client
that uses the queue library, and consists of one thread performing three enqeue
operations, and three threads performing a dequeue operation, followed by a
write.

The benchmarks are small client programs of persistent libraries with up to
4 threads, each invoking a couple of library operations. The library methods
vary in complexity, Flit is the simplest, with each method containing at most 4
memory accesses, while the set library is the most complex, as it can be observed
by the large number of nodes even when there are only two executing threads,
which is the reason that our tool scales much worse for the client using it. As
it can be seen, our tool succeeds in verifying these medium-sized clients, with
running time ranging from under 1 second to a bit over 7 minutes.

‘We note that we do not compare against any existing tools because, to our
knowledge, none is complete for (bounded) NVM programs. While YAT [17] and
JAARU [10] can find bugs in NVM programs, they are both incomplete and may
miss behaviors arising in multi-threaded programs.

7.2 Comparison of DPTSOgy,, and DPTSOgyy, a1 encodings

We next evaluate the two encodings we proposed to incorporate the notion of
crash. The first encoding is based on DPTSOgy,, and represents partial graphs
using an auxiliary enabled variable for each program node (§5)). The second
encoding is based on DPTSOgyn funl and partially avoids the need of encoding
the possible crashed executions of a program.

Our results are presented in Fig. [2| as a scatter diagram comparing the
verification time (in seconds) of each benchmark with the two different encodings.

Table 1: Safe benchmarks: flit, queue, set (DPTSOgy,)

Time Nodes
Time Nodes dw 0.35 70
etd 1.46 145
1dld 0.28 29 ee+dw 1.65 205 Time Nodes
ww 0.28 24 ete 3.07 157 ,
utuew 029 33 cetd 3.098 213 fw 12;? ggg
Ww-w 029 30 etde 6.63 222 i :
WArw-w 0.30 33 cetddw 8.54 272 irw 34.13 471
wututuw 039 47 cetdd 10.99 269 ir 37.42 469
Quutuww 0.46 60 etetd 18.16 213 fwhrw 6470 472
3uu 050 53 e2+2dw 34.38 332 it-crw 289'31 4§i
uu-+uu 0.50 39 etetd+d 36.70 269 i+i-w 260.89 5
2uut2uu-w2 0.87 75 etete 48.88 225 i+ 416.12- 505
4uu 208 67 ee+ddw+d 59.62 328 fi+r 1151.50 688
Quut2uuw-w 2.39 74 et+dete 60.94 281

et+dete+d 227.13 337
e3+3dw 427.54 459

We have also categorized our benchmarks depending on the verification result,
i.e., whether the assertion holds (safe) or does not hold (unsafe).

As we observe in Fig. [2| the two encodings yield similar performance, with
the relative difference never exceeding an order of magnitude. Sadly, there is
no clear trend suggesting that either encoding leads to better performance. In
principle, DPTSOgyp runn partially eliminates the need for encoding the semantics
of a crash, adding only some crash variables for flush events. However, by not
fully encoding this, the solver always has to explore a full execution, even though
a part of it is irrelevant. In contrast, while the DPTSOyy,, encoding leads to a
larger state space, only the events before the crash take part in the axioms that
concern the memory model, and so the basic axioms of §[5.2 are trivially satisfied
for crashed events.

8 Related Work

Several researchers have formalized the persistency semantics of the x86 archi-
tecture as an extension of the original x86-TSO memory consistency model [|21].
The first such model, Px86 [24], treats flush operations as asynchronous. This
is corrected in later models by Khyzha et al. |[14] and Cho et al. 3], who treat
flush operation as synchronous. More recently, |22] extended those formalizations
to cover additional features of the Intel-x86 architecture, such as non-temporal
writes and memory types.

There are many verification approaches that deal with multi-threaded pro-
grams under various memory consistency models. Among the symbolic techniques,
Alglave et al. [1] model program executions as a collection of partial orders and
encode acyclicity constraints using integer difference logic. YOGAR-CBMC
|27, 28] employs abstraction refinement to verify multi-threaded programs under
sequential consistency, and weak memory models, accordingly. He et al. [11]

[T T T T T TTTT] T T T T TTTT T 7
+ SAFE +
,| | UNSAFE
107 ¢ +
— § 1 i
N | X 4 N
z i +
S 10| ; * |
o F % e .
& i |
A, [4
a . +
10° ’ 1
g% |
L Lol Lol Lol |
10° 10" 10

DPTSOgyn (s)

Fig.2: Comparing the encoding of DPTSOgy, and DPTSOgyy runt

propose a new ordering consistency theory for dealing with the concurrency
related fragment of the encoding, and a theory solver that incrementally checks
for consistency of the explored executions.

In contrast, there is much less work on model checking programs that use
persistent memory. We are aware of two such works. YAT [17] eagerly explores
post-crash states by injecting crashes in a collected trace, while JAARU [10]
explores only the subset of pre-crash states that is relevant in the post-crash
execution. Nevertheless, both approaches are not complete for multi-threaded
programs since they do not explore the concurrency-induced nondeterminism.

9 Conclusion

In this paper, we have presented an automated approach for proving invariants
about the persistent state of concurrent (bounded) NVM programs. Our approach
is based on symbolic model checking and uses a custom theory solver to encode
certain aspects of the memory model that would otherwise lead to huge formulas.
Finally, we have considered two encodings of partial executions without, however,
observing any significant difference in performance between them. It may, however,
be the case that the two approaches would yield a noticeable difference in
performance if used in different contexts, e.g., with a stateless model checker.

Acknowledgments This work was supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 101003349).

References

[1]

[10]

Jade Alglave, Daniel Kroening, and Michael Tautschnig. “Partial orders for
efficient bounded model checking of concurrent software”. In: CAV 20185.
Vol. 8044. LNCS. Berlin, Heidelberg: Springer, 2013, pp. 141-157. DOI:
10.1007/978-3-642-39799-8_9.

Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E.
Tarjan. “A New Approach to Incremental Cycle Detection and Related
Problems”. In: ACM Trans. Algorithms 12.2 (Dec. 2015). 1sSN: 1549-6325.
DOI: [10.1145/2756553. URL: https://doi.org/10.1145/2756553.
Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang. “Re-
vamping Hardware Persistency Models: View-Based and Axiomatic Persis-
tency Models for Intel-X86 and Armv8”. In: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and
Implementation. PLDI 2021. Virtual, Canada: Association for Computing
Machinery, 2021, pp. 16-31. 1SBN: 9781450383912. DOI: [10.1145/3453483 |
3454027. URL: https://doi.org/10.1145/3453483.3454027.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. “Efficiently Computing Static Single Assignment Form
and the Control Dependence Graph”. In: ACM Trans. Program. Lang. Syst.
13.4 (Oct. 1991), pp. 451-490. 1sSN: 0164-0925. DOI: 10.1145/115372,
115320L URL: https://doi.org/10.1145/1156372.115320.

Martin Davis, George Logemann, and Donald Loveland. “A Machine Pro-
gram for Theorem-Proving”. In: Commun. ACM 5.7 (July 1962), pp. 394—
397. 18SN: 0001-0782. DOI: |10.1145/368273.368557. URL: https://doi.
org/10.1145/368273.368557.

Martin Davis and Hilary Putnam. “A Computing Procedure for Quantifi-
cation Theory”. In: J. ACM 7.3 (July 1960), pp. 201-215. 1sSN: 0004-5411.
DOI: [10.1145/321033.321034. URL: https://doi.org/10.1145/321033,
321034l

Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank.
“A Persistent Lock-Free Queue for Non-Volatile Memory”. In: Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. PPoPP ’18. Vienna, Austria: Association for Computing
Machinery, 2018, pp. 28-40. 1SBN: 9781450349826. DOI: |10.1145/3178487 |
3178490. URL: https://doi.org/10.1145/3178487.3178490.

Daniele Frigioni, Tobias Miller, Umberto Nanni, and Christos Zaroliagis.
“An Experimental Study of Dynamic Algorithms for Transitive Closure”. In:
ACM J. Exp. Algorithmics 6 (Dec. 2002), 9—es. 1SSN: 1084-6654. DOT: 10
1145/945394.945403, URL: https://doi.org/10.1145/945394.945403,
Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and
Cesare Tinelli. “DPLL(T): Fast Decision Procedures”. In: Computer Aided
Verification. Ed. by Rajeev Alur and Doron A. Peled. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 175-188. 1SBN: 978-3-540-27813-9.
Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. “Jaaru: Efficiently
Model Checking Persistent Memory Programs”. In: Proceedings of the

https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/2756553
https://doi.org/10.1145/2756553
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/945394.945403
https://doi.org/10.1145/945394.945403
https://doi.org/10.1145/945394.945403

[11]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

26th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 415-428. 1SBN: 9781450383172. URL:
https://doi.org/10.1145/3445814.3446735.

Fei He, Zhihang Sun, and Hongyu Fan. “Satisfiability modulo Ordering
Consistency Theory for Multi-Threaded Program Verification”. In: Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. PLDI 2021. Virtual, Canada: Associ-
ation for Computing Machinery, 2021, pp. 1264-1279. 1SBN: 9781450383912.
DOI: 10.1145/3453483 . 3454108, URL: https://doi.org/10. 1145/
3453483 .3454108.

G. F. Italiano. “Amortized Efficiency of a Path Retrieval Data Structure”.
In: Theor. Comput. Sci. 48.2-3 (Dec. 1987), pp. 273-281. 1SSN: 0304-3975.
Joseph Izraelevitz, Hammurabi Mendes, and Michael Scott. “Linearizability
of Persistent Memory Objects Under a Full-System-Crash Failure Model”.
In: vol. 9888. Sept. 2016, pp. 313-327. 1SBN: 978-3-662-53425-0. DOI: 10/
1007/978-3-662-53426-7_23.

Artem Khyzha and Ori Lahav. “Taming X86-TSO Persistency”. In: Proc.
ACM Program. Lang. 5. POPL (Jan. 2021). DOI: 10.1145/3434328. URL:
https://doi.org/10.1145/3434328,

Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor Vafeiadis.
“PerSeVerE: Persistency semantics for verification under ext4”. In: Proc.
ACM Program. Lang. 5. POPL (Jan. 2021). DOI: 10.1145/3434324. URL:
https://doi.org/10.1145/3434324,

Leslie Lamport. “How to Make a Multiprocessor Computer that Correctly
Executes Multiprocess Programs”. In: IEEE Trans. Computers 28.9 (Sept.
1979), pp. 690-691. DOI: [10.1109/TC. 1979 . 1675439, URL: http://dx|
doi.org/10.1109/TC.1979.1675439.

Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran, and
Jeff Jackson. “Yat: A Validation Framework for Persistent Memory Soft-
ware”. In: Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference. USENIX ATC’14. Philadelphia, PA: USENIX Asso-
ciation, 2014, pp. 433-438. 1SBN: 9781931971102.

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Manabi
Khan. “PMTest: A Fast and Flexible Testing Framework for Persistent
Memory Programs”. In: ASPLOS 2019. Ed. by Iris Bahar, Maurice Herlihy,
Emmett Witchel, and Alvin R. Lebeck. ACM, 2019, pp. 411-425. DOI:
10.1145/3297858.3304015.

Leonardo de Moura and Nikolaj Bjgrner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by C. R. Ramakrishnan and Jakob Rehof. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 337-340. 1SBN: 978-3-540-78800-3.

Ismail Oukid, Daniel Booss, Adrien Lespinasse, and Wolfgang Lehner. “On
Testing Persistent-Memory-Based Software”. In: DaMoN ’'16. ACM, 2016.
ISBN: 9781450343190. DOI: |10.1145/2933349.2933354.

https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/3434328
https://doi.org/10.1145/3434328
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3434324
https://doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1145/2933349.2933354

[21]

[22]

Scott Owens, Susmit Sarkar, and Peter Sewell. “A better x86 memory model:
x86-TSO”. In: TPHOLs 2009. Munich, Germany: Springer, 2009, pp. 391—
407. 1SBN: 978-3-642-03358-2. DOI: 10.1007/978-3-642-03359-9_27. URL:
http://dx.doi.org/10.1007/978-3-642-03359-9_27.

Azalea Raad, Luc Maranget, and Viktor Vafeiadis. “Extending Intel-X86
Consistency and Persistency: Formalising the Semantics of Intel-X86 Mem-
ory Types and Non-Temporal Stores”. In: Proc. ACM Program. Lang.
6.POPL (Jan. 2022). poI: 10.1145/3498683. URL: https://doi.org/10|
1145/3498683.

Azalea Raad and Viktor Vafeiadis. “Persistence semantics for weak memory:
Integrating epoch persistency with the TSO memory model”. In: Proc.
ACM Program. Lang. 2.00PSLA (Oct. 2018). pOI: 10 . 1145 /3276507,
URL: https://doi.org/10.1145/3276507.

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. “Persis-
tency semantics of the Intel-x86 architecture”. In: Proc. ACM Program.
Lang. 4 (POPL Dec. 20, 2019), 11:1-11:31. poI: |10.1145/3371079. URL:
https://doi.org/10.1145/3371079| (visited on 06/17/2020).

Azalea Raad, John Wickerson, and Viktor Vafeiadis. “Weak persistency
semantics from the ground up”. In: Proc. ACM Program. Lang. 3 (OOPSLA
Oct. 10, 2019), 135:1-135:27. DOI: 10.1145/3360561. URL: https://doi,
org/10.1145/3360561| (visited on 02/07/2020).

Yuanhao Wei, Naama Ben-David, Michal Friedman, Guy E. Blelloch, and
Erez Petrank. “F1liT: A Library for Simple and Efficient Persistent Al-
gorithms”. In: CoRR abs/2108.04202 (2021). arXiv: 2108 .04202. URL:
https://arxiv.org/abs/2108.04202.

Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. “Scheduling Constraint
Based Abstraction Refinement for Multi-Threaded Program Verification”.
In: IEEE Transactions on Software Engineering PP (Aug. 2017). DOL:
10.1109/TSE.2018.2864122.

Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. “Scheduling Constraint
Based Abstraction Refinement for Weak Memory Models”. In: Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. New York, NY, USA: Association for Computing Machinery,
2018, pp. 645-655. 1SBN: 9781450359375. URL: https://doi.org/10.1145/
3238147 .3238223l

Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez
Petrank. “Efficient Lock-Free Durable Sets”. In: Proc. ACM Program.
Lang. 3.00PSLA (Oct. 2019). DOI: |10.1145/3360554. URL: https://doil
org/10.1145/3360554.

https://doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doi.org/10.1145/3360561
https://doi.org/10.1145/3360561
https://arxiv.org/abs/2108.04202
https://arxiv.org/abs/2108.04202
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1145/3238147.3238223
https://doi.org/10.1145/3238147.3238223
https://doi.org/10.1145/3360554
https://doi.org/10.1145/3360554
https://doi.org/10.1145/3360554

	SMT-based Verification of Persistency Invariants of Px86 Programs

