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There is an increasing body of literature proposing new and efficient persistent versions of concurrent data

structures ensuring that a consistent state can be recovered after a power failure or a crash. Their correctness is

typically stated in terms of durable linearizability (DL), which requires that individual library operations appear

to be executed atomically in a sequence consistent with the real-time order and, moreover, that recovering

from a crash return a state corresponding to a prefix of that sequence. Sadly, however, there are hardly any

formal DL proofs, and those that do exist cover the correctness of rather simple persistent algorithms on

specific (simplified) persistency models.

In response, we propose a general, powerful, modular, and incremental proof technique that can be used to

guide the development and establish DL. Our technique is (1) general, in that it is not tied to a specific persistency
and/or consistency model, (2) powerful, in that it can handle the most advanced persistent algorithms in the

literature, (3)modular, in that it allows the reuse of an existing linearizability argument, and (4) incremental, in
that the additional requirements for establishing DL depend on the complexity of the algorithm to be verified.

We illustrate this technique on various versions of a persistent set, leading to the link-free set of Zuriel et al.
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1 INTRODUCTION
Non-volatile memory (NVM) [Kawahara et al. 2012; Lee et al. 2009; Strukov et al. 2008] is a new

kind of memory, which ensures that its contents survive crashes (e.g. due to power failure) while

having performance similar to that of RAM. As such, it has generated a lot of interest in the systems

community, with an increasing body of work proposing persistent data structures that can be

restored to a consistent state after a crash.

These persistent data structures are typically adaptations of existing linearizable concurrent data
structures, and so their correctness is given in terms of durable linearizability (DL) [Izraelevitz

et al. 2016], an extension of linearizability [Herlihy and Wing 1990] to account for crashes. Similar

to how linearizability requires all operations to appear to execute atomically in some legal total

order consistent with their real-time execution order, DL requires the same to also hold for the
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state recovered after a crash: it should correspond to some legal execution of a subsequence of the

operations before the crash containing at least all the operations that completed before the crash.

The adaptations required to make a concurrent data structure persistent, however, are far from

trivial, especially when the goal is to achieve optimal performance. The reason is that hardware

implementations do not persist every write to NVM immediately, which would automatically turn

any linearizable data structure to a persistent one, but rather put them into a buffer to be persisted

at some later point. Writes in such buffers can moreover be persisted out of order, leading to weak
persistency semantics, which is another layer of complexity above the weak memory consistency
semantics of modern CPUs. To ensure that writes are persisted, programs can issue a special

flush(x) instruction (e.g. CLFLUSH x on Intel-x86 machines), which blocks until all pending writes

to x are persisted. Introducing an appropriate flush instruction after every memory access (i.e. both

reads and writes) can restore the sane strict persistency [Pelley et al. 2014] model, where the order

in which writes persist (the “persistency” or “non-volatile” order) agrees with the order in which

they become visible to other processors in the system (the “volatile” order). Doing so, however,

incurs a prohibitive cost, and so programmers of persistent libraries strive to use as few flushes as

possible, which may in turn require adding auxiliary state to the algorithm or redesigning part of it.

A natural question arises. If persistent data structures are adaptations of concurrent ones, can

we establish their correctness by reusing the correctness proof of their concurrent analogues? In

other words, is it possible to dissect the DL requirements in a way that we can reuse the invariants

established by the linearizability proof? The existing literature sadly does not provide an answer

to this question. Most papers (e.g. [Friedman et al. 2018; Zuriel et al. 2019]) come with informal

proof arguments in English that do not consider the intricacies of NVM semantics, while in the few

papers that come with formal proofs [Raad and Vafeiadis 2018; Raad et al. 2019b] their arguments

are highly entangled with a specific memory consistency/persistency model, and are not able to

disentangle the concurrency aspects of the proof from the persistency ones.

In this work, we show that such modularity and reuse are possible. We present the first formal

proofmethodology for verifying durable linearizability of persistent algorithms. Our proof technique

enjoys the following four properties:

• It is modular, in that it separates out the proof obligations concerning linearizability from

those concerning persistency and from those concerning the recovery code, thereby allowing

the reuse of an existing linearizability proof.

• It is general in that it is not tied to a specific model like epoch persistency [Izraelevitz et al.

2016], Px86 [Raad et al. 2020], or PArm [Raad et al. 2019b], but supports arbitrary models

with different volatile and non-volatile orders.

• It is powerful in that it can handle the most advanced persistent algorithms in the literature.

We will illustrate this point by applying it to produce the first formal DL proof of the recent

link-free set of Zuriel et al. [2019], an algorithm, whose linearizability argument is already

challenging, as it cannot be shown correct using fixed linearization points.

• It is incremental in the sense that the difficulty of the additional requirements for establishing

DL is proportional to the complexity of the algorithm to be verified.

Our proof technique is captured by our Pathway Theorem in Section 4, which presents a detailed

methodology for establishing DL following the “linearize-first” implementation scheme, where

the effects of an operation are first committed to volatile memory and are later persisted, i.e. the

operation first reaches its linearization point and later, what we call, its persistency point. The key

idea is to add to a proof of linearizability a number of general conditions on commutativity of the

operations restricting when operations may be linearized and persisted in different orders.
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1 record Node:
2 key: N ⊎ {+∞,−∞}
3 nxt: B × X⊥
4

5

6 def find(h, k):
7 p = h
8 ⟨_,c⟩ = p.nxt
9 while(1):
10 if c.nxt == ⟨0,_⟩:
11 if c.key ≥ k:
12 if p.nxt == ⟨0,_⟩:
13 return ⟨p,c⟩
14 c = h
15 p = c
16 else:
17 trim(p, c)
18 ⟨_,c⟩ = c.nxt
19

20

21 def trim(p, c):
22 flush(c)
23 ⟨_,s⟩ = c.nxt
24 CAS(p.nxt, ⟨0,c⟩, ⟨0,s⟩)
25 flush(p)

26 def insert(h, k):
27 while(1):
28 ⟨p,c⟩ = find(h, k)
29 if c.key == k:
30 flush(c); flush(c.orig)
31 return false
32 n = alloc(Node)
33 n.key = k
34 n.nxt = ⟨0,c⟩
35 n.orig = p; flush(n); flush(p.orig)
36 if CAS(p.nxt, ⟨0,c⟩, ⟨0,n⟩):
37 flush(p)
38 return true
39

40 def delete(h, k):
41 while(1):
42 ⟨p,c⟩ = find(h, k)
43 if c.key≠ k:
44 return false
45 ⟨b,n⟩ = c.nxt
46 if b == 0:
47 flush(c.orig)
48 if CAS(c.nxt, ⟨0,n⟩, ⟨1,n⟩):
49 trim(p, c)
50 return true

Fig. 1. A list-based set implementation (in black). The addition of the flushes (in red) makes it durable.

We also have a dual version of our Pathway Theorem suitable for the data structure implementa-

tions following the “persist-first” approach, e.g. SOFT [Zuriel et al. 2019], where persistency points

precede linearization.

Outline. We start, in Section 2, with an informal overview of our approach. In Section 3, we

develop a memory-model-agnostic definition of durable linearizability, which is used to specify

persistent libraries. In Section 4, we present our proof technique culminating in our Pathway

Theorem. Then, in Section 5 as an extended case study, we obtain the first formal proof of the

link-free set as an application of the Pathway Theorem. We conclude with discussion of related

work. All the omitted definitions and proofs, including the full verification of the link-free set can

be found in the extended version of this paper [D’Osualdo et al. 2022].

2 OVERVIEW
Our goal is to produce a proof of durable linearizability, starting from a proof of standard lineariz-

ability. To make the discussion concrete, we will use a standard set implementation based on Harris

[2001] as a running example.

The basic algorithm, shown in black in Fig. 1, is designed to implement a finite set of numeric

keys in volatile memory. A set 𝑆 ⊆ Key is represented in memory as a singly linked list of nodes.

Each node has a key field storing an element of Key ⊎ {+∞,−∞}. Two sentinel head and tail nodes

(with keys −∞ and +∞ resp.) are always present. The linked list is ordered in strict increasing order.

Each node can be marked or unmarked; only unmarked nodes reachable from the head represent

elements of 𝑆 , and the marked nodes are considered deleted (they can be lazily unlinked from the

list). The marking is stored as the least-significant bit of the nxt field, the pointer to the next node.
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In our pseudo-code we represent the nxt field explicitly as a pair ⟨𝑏, 𝑝⟩ where 𝑏 ∈ {0, 1} is the
marking bit (0 for unmarked, 1 for marked as deleted) and 𝑝 is the address of the next node.

The set operations are insert(ℎ, 𝑘) and delete(ℎ, 𝑘) where ℎ is the address of the head node

(fixed throughout the lifetime of the set) and 𝑘 ∈ Key is the key to be inserted/deleted. A successful

insert returns true; if the 𝑘 was found to be already in the set, the operation returns false. Similarly,

the return value of a delete indicates whether the operation was successful.

Linearizability. Linearizability [Herlihy and Wing 1990] ensures that, from the perspective of a

client of the library, each call to a library function appears as a single abstract event; furthermore,

these library events are ordered by a total order lin which satisfies the abstract semantics of the

library (e.g. pops and pushes match), and respects the execution (or “real-time”) order of calls.

A common way to prove linearizability, under sequential consistency (SC) [Lamport 1979],

is through identifying the linearization point of each function call, namely the concrete event

(i.e. memory access) in the function implementation that represents the moment when the function’s

effects become observable to other operations. Such a proof starts by identifying:

• A set of abstract states, Q, representing the data-type abstractly presented to the client.

Associated with the states is a set of allowed transitions for each operation.

• A (volatile) representation function, 𝛼vol : Q→ 𝒫(Mem), formalising how the specific imple-

mentation represents an abstract state in memory.

• For each execution with events 𝐸, an injective partial function, ℓ : Cid ⇀ 𝐸, that identifies

the linearization point of each call. The function is partial because there might be pending

calls that have not reached their linearization points yet.

In our example, the abstract states are finite sets of numeric keys 𝑆 ∈ 𝒫fin (Key). The transition
system on abstract states asserts e.g. that a successful insert of 𝑘 is only allowed on a set not con-

taining 𝑘 and leads to a state where 𝑘 is added to the set. The representation function e.g. constrains

the memory representing a set 𝑆 to be such that all and only the keys in 𝑆 ⊎ {+∞,−∞} are stored
in unmarked nodes in the ordered linked list reachable from the head.

The linearization points for the Harris list are as follows:

• The successful CAS at Line 36 linearizes a successful insert.

• A failed insert linearizes at Line 10 during the call to find of Line 28.

• The successful CAS at Line 48 linearizes a successful delete.

• A failed delete linearizes at Line 10 during the call to find of Line 42.

Given 𝛼vol and ℓ , linearizability can be then reduced to an induction over the interleaving

sequence of events 𝑒0 . . . 𝑒𝑛 of an arbitrary execution. Let𝑀𝑖 be the memory contents before 𝑒𝑖 is

executed. Assuming𝑀𝑖 ∈ 𝛼vol (𝑞) for some abstract state 𝑞, one must prove that:

• if 𝑒𝑖 is the linearization point of an operation op, then𝑀𝑖+1 ∈ 𝛼vol (𝑞′) for some 𝑞′ such that

(𝑞, 𝑞′) is a valid transition for op;
• otherwise, the concrete step 𝑒𝑖 preserves the abstract state, i.e.𝑀𝑖+1 ∈ 𝛼vol (𝑞).

We refer to the proof scheme above as “induction over execution sequences”.

Linearizability in weak memory models. In declarative presentations of weak-memory models,

an execution is represented as a graph of events, related through a number of relations (e.g. po, the
“program order” in each thread) witnessing the execution’s consistency. In such models the notion

of “execution order” is in fact weaker than in SC. In particular, the program order po on memory

accesses does not necessarily agree with the order in which the accesses take global effect.

To recover a global “execution order” in a proof of linearizability, we can ask the prover to

provide, in addition to 𝛼vol and ℓ , a strict “volatile order” vo. We can then use vo to order the
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𝛼dur (𝑞1 ) 𝛼dur (𝑞1 )𝛼dur (𝑞0 )
𝛼dur (𝑞0 ) ∩ 𝛼vol (𝑞0 ) 𝛼dur (𝑞1 ) ∩ 𝛼vol (𝑞1 )

Era 1 Era 2 Era 3

Fig. 2. An execution chain with eras separated by crashes ( ). For each era we draw the initial memory ( ),
the recovery events ( ) the persisted writes ( , ), and the writes which were executed but had not persisted
yet when the crash happened ( ). In each era, the last persisted writes to each location ( ) provide the initial
memory of the next era. In the last era every write has persisted.

execution sequences in the proof of linearizability. More precisely, we would consider execution

sequences 𝑒0 . . . 𝑒𝑛 that respect vo. Any such sequence induces a memoryMJ𝑒0 . . . 𝑒𝑛K ∈ Mem ≜
L⇀ V which assigns to each location 𝑥 the last value written to it in 𝑒0 . . . 𝑒𝑛 . The linearizability

proof would then be performed by induction over vo-respecting execution sequences 𝑒0 . . . 𝑒𝑛 ,

defining𝑀𝑖 = MJ𝑒0 . . . 𝑒𝑖−1K.
An essential component of the traditional linearizability definition is that linearization agrees

with po between calls. To obtain this we can require that po between linearization points be

preserved by vo, i.e. po|LP ⊆ vo with where LP ≜ {ℓ (𝑐) | 𝑐 ∈ dom(ℓ)}.

Non-volatile memory. Non-volatile memory (NVM) introduces another level of complication.

Writes to NVM persist (survive crashes) but not necessarily in the order they were executed. For

example, on Px86 (describing the Intel-x86 persistency model) [Raad et al. 2020], if locations 𝑥 and 𝑦

are not stored in the same cache line, two sequential writes to 𝑥 and 𝑦 may persist in any order. To

ensure the write on 𝑥 persists before that on 𝑦, one must issue a flush on 𝑥 before writing to 𝑦.

Px86 thus introduces the strict, total “non-volatile order”, nvo, on durable events (i.e. writes,

updates or flushes) describing in which order these events persist, and a set 𝑃 of those events

that have persisted before the crash. The persisted events 𝑃 have to be consistent with nvo, i.e. if
(𝑒, 𝑒′) ∈ nvo and 𝑒′ ∈ 𝑃 then 𝑒 ∈ 𝑃 .

In this setting, linearizability is not an adequate correctness criterion as it does not account

for crashes. A linearizable data-structure without any modifications would not be correct under

Px86: a crash might leave the persisted memory in an inconsistent state. Specifically, if no flush is

issued, there is no guarantee that any change at all is persisted even for operations that already

returned to the client. Moreover, even if flushes are issued before returning, pending calls might

have already executed their linearization points, making the update observable to other threads,

but their updates might not reach the NVM before the crash. In the Harris list, for example, a key 𝑘

might be inserted in the set, and observed by other concurrent inserts, but after a crash one might

find that the node carrying 𝑘 is not reachable from the head, or that it is, but has an uninitialized

key field. That is, it is possible for a crash to invalidate the invariants encoded in 𝛼vol.

To account for crashes, instead of single executions, formal persistency models consider execution
chains: sequences of executions, where each execution, called an era, is abruptly terminated by

a crash (with the exception of the last one). Figure 2 shows an example chain: the shaded area

denotes the set of events that have persisted before the crash. The frontier of the persisted events

represents the nvo-latest persisted writes to each location: this defines the initial memory of the

next era. At the beginning of each era, a data-structure-specific recovery routine is run sequentially

before resuming normal execution.

To ensure correctness in the presence of crashes, durable linearizability (DL) [Izraelevitz et al.

2016] requires that: (1) each execution era be linearizable; (2) the effects of every completed
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(returned) call be persisted before the next crash;
1
(3) concatenating the linearizations of all eras

forms a valid linearization. To achieve DL, the programmer has two main tools: flushes, and the

recovery procedure run after each crash. Let us first focus on schemes that do not require recovery.

A brute-force way to ensure DL is by issuing a flush after each memory access. Specifically,

flushing after a write𝑤 ensures that𝑤 is persisted before continuing; flushing after a read 𝑟 ensures

that the write observed by 𝑟 is persisted before continuing.

When proving DL, this scheme ensures that vo includes nvo. As such, since persisted mem-

ory is simply MJ®𝑒K where ®𝑒 is the nvo-respecting enumeration of the persisted events 𝑃 (writ-

ten MJnvo|𝑃 K), proving linearizability using ℓ and 𝛼vol proves that the original volatile invariants

are now maintained in persistent memory. When a crash occurs, the persisted memory belongs

to 𝛼vol (𝑞) for some legal 𝑞 and the post-crash execution can continue without recovery.

While this aggressive flushing strategy allows for a straightforward adaptation of linearizability

to DL, it yields poor performance. For this reason, libraries such as FliT [Wei et al. 2022] and

Mirror [Friedman et al. 2021] employ alternatives that more efficiently implement a strict persistency

abstraction on top of weaker models. Conceptually, these libraries improve performance by avoiding

redundant flushes on the same write. Is it possible to do better? Indeed, Cohen et al. [2018] proved

that any DL library can be implemented using one flush per operation, which is far lower than what

using Mirror or FliT can produce. To approach this optimum, it is necessary to optimise flushes

manually, and genuinely relax the order of persistency on writes.

A first optimisation. An analysis of the Harris list example reveals that flushing during find is
not strictly necessary: when traversing keys 𝑘1, . . . , 𝑘𝑛 on the way to finding 𝑘 , the presence (or

absence) of 𝑘𝑖 in the abstract set does not influence whether inserting/deleting 𝑘 is legal. Therefore,

observing a key 𝑘𝑖 ≠ 𝑘 in the set during traversal does not require the insertion/marking of 𝑘𝑖 to

be persisted: the result of inserting 𝑘 does not reveal information about the presence or absence

of 𝑘𝑖 . This is the key insight of NVTraverse [Friedman et al. 2020], proposing a flushing scheme for

tree-based data structures with traverse-and-update operations, with no flushes during traversal.

The program in Fig. 1 with the inclusion of the commands in red, instantiates the scheme for

the Harris list as follows. Consider insertions: a successful insert must first persist (flush) the new

node 𝑛. The second obvious flush needed is the one of p after the successful CAS which inserted 𝑛.

These flushes alone, however, are insufficient: when the CAS on p swings the pointer, we cannot be

sure p is reachable from the head in persistent memory. There could be a long list of pending inserts
of keys 𝑘1 . . . 𝑘𝑛 which all executed their linearization points but have not reached the final flush;

when this is the case, a concurrent insert of 𝑘𝑛 can traverse the 𝑘1 . . . 𝑘𝑛 nodes without flushing

them, persist 𝑘𝑛 and 𝑘𝑛−1, and report to the client that 𝑘𝑛 is already in the set. If a crash happens

then, the node storing 𝑘𝑛 would not be reachable from the head. The solution is to ensure p is

reachable from the head in persistent memory by flushing the node that initially made p reachable,

i.e. its origin. We thus record the origin of each node in its orig field. The other flushes are issued

with analogous motivations.

This more sophisticated scheme cannot be proven by simply adapting the linearizability argument.

In fact, the order of persistency is relaxed, and as a consequence nvo ̸⊆ vo, contrary to the brute-force
approach. A synthetic example that shows this basic pattern is reproduced in Fig. 3(a), comprising

two concurrent operations op1 (on the left) and op2 (on the right). The two CAS instructions represent
linearization points of op1 and op2 ; x and y are distinct locations storing 0 initially. Figure 3(b)

1
The requirement that completed calls must have persisted is only achievable if the flush primitive is synchronous,

i.e. blocks until it takes effect. When flushes are asynchronous, the correctness criterion can be weakened to buffered durable

linearizability that removes the constraint on completed calls. In this paper we will only consider synchronous flushes and

the unbuffered version of durable linearizability.
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(a)

CAS(x,0,1)

flush(x)

a = *x

flush(x)

CAS(y,0,1)

flush(y)
(b)

U 𝑥 0 1

FL 𝑥

R 𝑥 1

FL 𝑥

U 𝑦 0 1

rf

nvo

vo nvo

(c)

U 𝑥 0 1

FL 𝑥

R 𝑥 1

U 𝑦 0 1

rf
vo

nvo

Fig. 3. Optimizing flushes might introduce disagreement between linearization and persistency orders.
Figure (a) shows two parallel operations with each CAS acting as a linearization point. Removing the flush
in red allows 𝑦 to be persisted before 𝑥 is. Figures (b) and (c) explain why in terms of an execution graphs
generated by the program. Each memory access is a node labelled with U (successful CAS), R (read), or FL
(flush). The unlabelled arrows indicate program order, rf is the “reads-from” order. Figure (b) is generated by
the program with the red flush, which forces nvo and vo to order the CASes in the same way. Figure (c) is a
possible execution if the red flush is removed.

shows a possible execution graph generated by the program under Px86: every memory access leads

to a node, labelled with the access’ effect. The linearization of op2 is observed via a read by op1 as
signified by the “read-from” rf edge, but the linearization point on y does not depend on the value

read from x. This observation of the x value, however, implies that the CAS on x comes vo-before
the CAS on y. The brute-force flushing strategy would mandate the issuing of the red flush (in op2)
after the read of x, thus implying that vo on the CASes is the order in which they will be persisted

(thus vo and nvo agree on them). The read of x in op2 represents a read during a traversal, and the

corresponding flush would be optimized away by the NVTraverse-style optimization. Without the

red flush, the CASes can be persisted in either order, and thus it is possible for nvo and vo to order

them differently. This is shown in the execution graph of Fig. 3(c) generated by the program with

the red flush removed.

The overall difference induced by the optimization can be observed if a crash happens after both

CASes have executed, and the CAS on y has persisted. In the unoptimized version, the CAS on xwould
be persisted too, yielding x = y = 1. In the optimized version, we might see x = 0 and y = 1 after

the crash. The question is: when is such optimisation sound? We propose to look at the question by

identifying the discrepancies between the linearizations constructed by the (volatile) linearizability

argument using 𝛼vol, ℓ and vo and a DL argument built from 𝛼vol, ℓ and nvo. These discrepancies
can be grouped in two categories: (1) two linearization points might be ordered one way by vo and

the other way by nvo; and (2) operations whose linearization points are reads are not meaningfully

ordered by nvo. The proof strategy we propose is to first prove (volatile) linearizability, and then

prove some properties that entail that the legality of the nvo-induced order on linearization points

follows from the legality of the vo-induced one. Concretely, for each execution we ask to prove:

(1) Linearizability of the execution using 𝛼vol, ℓ and vo.
(2) If two linearization points ℓ (𝑐1) and ℓ (𝑐2) are such that ℓ (𝑐1)

nvo−−→ ℓ (𝑐2) then
either ℓ (𝑐1)

vo−→ ℓ (𝑐2), or the calls 𝑐1 and 𝑐2 abstractly commute.

By “abstractly commute” here we mean that, according to the library specification, 𝑐1 followed by

𝑐2 produces the same abstract state as 𝑐2 followed by 𝑐1. What these two conditions imply is that

the sequence of linearization points in nvo is legal; therefore any prefix of it is legal. What is left to

prove is that the prefix that persisted (i.e. the prefix in 𝑃 ) produces some abstract state 𝑞 which is

the one encoded in persisted memory:

(3) MJnvo|𝑃 K ∈ 𝛼vol (𝑞).
For the Harris list, this strategy allows us to reuse the vanilla linearization argument (flushes and

the orig field have no bearing on that proof). The proof of condition (2) is done by contraposition:
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one shows that it is impossible for two non-commuting operations to be ordered in opposite ways

by vo and nvo. This is because an operation on a key 𝑘 always flushes the nodes relevant to 𝑘

before linearizing. For example, take an insert and a vo-subsequent delete of 𝑘 , where no other

operation on 𝑘 took place in between in vo order. The delete must have found the inserted node c
in the linked list (we know this from the vanilla linearization proof) and therefore flushed the node

that first made c reachable at Line 47. Since the linearization point of the insert is the update of

the next pointer of c.orig, the flush implies that the linearization point of the insert is nvo-before
that of the delete. When proving condition (3), we already know that the nvo-induced sequence

is legal; we can also safely ignore linearization points which are reads because they have already

been proven sound in condition (1).

Decoupling recovery. So far we have only considered schemes with a trivial recovery. This imposes

a greater onus on the implementation which has to ensure that persisted memory satisfies the

invariants at all times. The possibility of using a non-trivial recovery opens opportunities for much

more radical optimizations. For instance, in the Harris list, if we know which nodes belong to the

set, the links between the nodes are indeed redundant and can be reconstructed upon recovery.

Before examining how these more sophisticated optimisations work, we structure our proof

technique in a way that decouples the correctness of the recovery and the correctness of the other

library operations. To do so, we introduce a further parameter of a DL proof: the durable represen-
tation function 𝛼dur : Q→ 𝒫(Mem). The idea is that 𝛼vol (𝑞) imposes stronger (or incomparable)

constraints on the memory than 𝛼dur (𝑞), and the constraints of 𝛼dur (𝑞) are enough for the recovery

to repair the memory in such a way that it belongs to 𝛼vol (𝑞) before resuming execution.

The verification of DL then comprises two parts:

(1) Verifying that each step of the recovery takes any 𝑀 ∈ 𝛼dur (𝑞) to some 𝑀 ′ ∈ 𝛼dur (𝑞), and
when the recovery terminates the memory is in 𝛼dur (𝑞) ∩ 𝛼vol (𝑞). Note that this verification
can be done under SC since the recovery is sequential.

(2) Verifying that an execution of the operations, with initial memory in 𝛼dur (𝑞) ∩ 𝛼vol (𝑞) is DL,
producing a history taking 𝑞 to 𝑞′ and producing a persisted memory in 𝛼dur (𝑞′).

These proof obligations allow for an inductive argument proving that any chain is durably lineariz-

able, as illustrated in Fig. 2. The schemes so far had 𝛼dur = 𝛼vol. Let us next consider a variation of

the Harris list with a non-trivial recovery called a “link-free set” [Zuriel et al. 2019].

Decoupling linearization and persistency points. The idea of the link-free set, in Fig. 4, is to adopt a

Harris list data structure as the volatile representation of the set, but let the persistent representation

forgo the links between nodes. More precisely, each node has a boolean valid field (set to 0 at

allocation) indicating whether the node is a persistent member of the set, if not marked as deleted.

Provided the validity field is updated correctly, the recovery can scan the memory for all the

allocated nodes and newly arrange all the ones that are unmarked (not deleted) and valid (persisted)

into a sorted linked list. This then eliminates the need for persisting the updates on links in any

specific order. To ensure consistency between the volatile view and the persisted view, the link-free

set adopts a “linearize first, persist second” strategy: a new node is first inserted in the volatile

linked list, where it becomes visible to other threads, then its validity field is set and the node is

flushed. If another operation observes the node (for example a concurrent insert of the same key

returning false) then it will help persist the node by first setting its validity and then flushing it

(possibly with a benign race, generating a redundant flush), before returning. As in the optimized

version before, nodes that are traversed but do not influence the legality of some operation need

not be helped to persist.
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1 record Node:
2 key: N ⊎ {+∞,−∞}
3 nxt: B × X⊥
4 valid: B
5

6 def init():
7 t = alloc(Node)
8 t.key = +∞; t.valid = 1
9 t.nxt = ⟨0,⊥⟩
10 h = alloc(Node)
11 h.key = −∞; h.valid = 1
12 h.nxt = ⟨0,t⟩
13 return h
14

15

16 def find(h, k):
17 p = h
18 ⟨_,c⟩ = p.nxt
19 while(1):
20 if c.nxt == ⟨0,_⟩:
21 if c.key ≥ k:
22 if p.nxt == ⟨0,_⟩:
23 return ⟨p,c⟩
24 c = h
25 p = c
26 else:
27 trim(p, c)
28 ⟨_,c⟩ = c.nxt
29

30 def trim(p, c):
31 flush(c)
32 ⟨_,s⟩ = c.nxt
33 CAS(p.nxt, ⟨0,c⟩, ⟨0,s⟩)

34 def insert(h, k):
35 while(1):
36 ⟨p,c⟩ = find(h, k)
37 if c.key == k:
38 c.valid = 1
39 flush(c)
40 return false
41 n = alloc(Node)
42 n.key = k
43 n.nxt = ⟨0,c⟩
44 if CAS(p.nxt, ⟨0,c⟩, ⟨0,n⟩):
45 n.valid = 1
46 flush(n)
47 return true
48

49 def delete(h, k):
50 while(1):
51 ⟨p,c⟩ = find(h, k)
52 if c.key≠ k:
53 return false
54 ⟨_,n⟩ = c.nxt
55 c.valid = 1
56 if CAS(c.nxt, ⟨0,n⟩, ⟨1,n⟩):
57 trim(p, c)
58 return true
59

60 def recover(nodes):
61 h = init()
62 for n in nodes:
63 if n.valid == 1:
64 ⟨b,_⟩ = n.nxt
65 if b == 0 and n.key ∈ Key:
66 seqInsert(h, n)

Fig. 4. A simple link-free set implementation.

This optimization has a number of ramifications for verification. First, we now have 𝛼vol ≠ 𝛼dur:

the volatile representation insists that the links must describe a sorted linked list; the durable

representation only asks that there be a unique, valid and unmarked node for each key in the set.

Second, the original linearization points are still valid with respect to the volatile structure, but

they do not represent the point where the update they implement is made persistent. For inserts,

for instance, the update to the links is the volatile linearization point, but even if that update is

persisted, the inserted node would still be seen as not part of the set after a crash, until the validity

field is set and persisted. The latter update makes the node persistently inserted; we call this kind of

update a persistency point. This duplicity directly reflects the difference between 𝛼vol and 𝛼dur: while
linearization points induce an update from a memory in 𝛼vol (𝑞) to a memory in 𝛼vol (𝑞′), persistency
points (if persisted) change the persisted memory from one in 𝛼dur (𝑞) to one in 𝛼dur (𝑞′).

We thus ask the prover to specify persistency points using a partial function 𝑝 : Cid ⇀ 𝑃 : 𝑝 (𝑐) is
the persisted event that records the effect of the call 𝑐 in persistent memory. The function is partial

because the persistency point of a call might not have been executed/persisted yet.
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The persistency points of the link-free set example are as follows:

• For successful inserts, it is the moment when the inserted node is first made valid, i.e. on

Line 45 of Fig. 4 at the latest.

• For successful deletes, it coincides with the operation’s linearization point, Line 56 of Fig. 4.

We have thus two overlaid linearization arguments: the volatile one on 𝛼vol, ℓ , vo; and the

persistent one on 𝛼dur, 𝑝 , nvo. On one hand, to prove DL it would suffice to provide the argument

on 𝛼dur, 𝑝 , nvo. On the other hand, however, proving linearizability directly on nvo is challenging.

First, as we noted above, we would need some special treatment of “read” operations. Second, and

more important, the reasons for the legality of the sequence are typically justified by the volatile

data structure, and not just the persisted one. For instance, the reason why a successful insert of 𝑘

is legal is due to the traversal of the linked list providing evidence that no other unmarked node

holding 𝑘 is present. Since the links in persisted memory might not be consistent, this argument

cannot consider persisted memory only. As such, just as we sketched above, we propose a proof

scheme that allows most of the correctness argument to be done on vo. Then, we identify the

potentially problematic reorderings of the linearization produced by the mismatch between ℓ and 𝑝 ,

and vo and nvo. For those problematic reorderings we require the operations involved to commute.

Together, these conditions would entail that the linearization induced by 𝑝 and nvo is legal. Then,

one needs to verify that the final abstract state reached through this legal linearization is in fact

the one recoverably encoded in the final persisted memory.

All in all, our proof technique requires to prove, roughly:

(1) Linearizability of the execution using 𝛼vol, ℓ and vo.
(2) If 𝑝 (𝑐1)

nvo−−→ 𝑝 (𝑐2), then either ℓ (𝑐1)
vo−→ ℓ (𝑐2) or 𝑐1 and 𝑐2 abstractly commute.

(3) If ℓ (𝑐1)
vo−→ ℓ (𝑐2) but 𝑝 (𝑐1) = ⊥, then either 𝑝 (𝑐2) = ⊥ or 𝑐1 and 𝑐2 abstractly commute.

(4) Assuming the linearization induced by 𝑝 and nvo on persisted events abstractly produces a

state 𝑞′, the persisted memory belongs to 𝛼dur (𝑞′).
Condition (2) considers pairs of calls that have linearized and persisted, but such that volatile

and persistent linearizations would disagree on their ordering. In that case they are required to

abstractly commute. This allows us to perform reorderings of the volatile linearization until the

sequence respects nvo, while preserving its legality.
Condition (3) corrects for what we call the “voided” calls: those that are linearized in the middle

of the volatile linearization, but have not persisted. They are required to commute with all the

persisted calls in front of them. This ensures that we can move all of them at the end of the

linearization and then remove them, while preserving legality.

Our Pathway Theorem (Section 4) formalises a generalisation of this scheme. As we show in

Section 5 the scheme makes it possible to prove the volatile linearization argument first, and exploit

it to deduce the invariants needed to show the commutation lemmas. The necessity of proving these

lemmas can be seen as the underlying motivation for the placement of the flushes. Finally, proving

that the persisted memory representation of states is correct can be done while assuming the

sequence of persistency points is legal, effectively making available the relevant volatile invariants

in support of the persistent argument.

Our full proof technique also supports two advanced techniques: hindsight linearization and

persist-first implementations. Hindsight [O’Hearn et al. 2010] refers to linearizable operations for

which it is not possible to find a fixed event representing their linearization point. Their correctness

is thus proven “after the fact”. Our General Pathway Theorem, presented in [D’Osualdo et al. 2022],

supports hindsight by allowing a standard linearization for the other operations to be carried out

first, and then adding hindsight operations, with a limited impact on the commutation conditions.
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Persist-first implementations (e.g. SOFT [Raad et al. 2020] and Mirror [Friedman et al. 2021])

maintain two versions of their data, one in persistent memory and one volatile version used for

enabling fast access, and write first to the persistent version and then update the volatile one.

This reduces the needed flushes to the lowest theoretical bound. The commutation conditions we

presented apply to the “linearize-first” implementations. In Section 4.4 we present a Persist-First

Pathway Theorem which, using dual commutation conditions, applies to persist-first schemes.

3 OPERATIONAL MODEL AND DURABLE LINEARIZABILITY
3.1 Preliminaries

Relations. We write [𝑋 ] for the identity relation on 𝑋 , rel+ for transitive closure, rel∗ for reflexive
transitive closure, rel? for reflexive closure, rel! ≜ {(𝑥,𝑦) ∈ rel | �𝑧.(𝑥, 𝑧) ∈ rel ∧ (𝑧,𝑦) ∈ rel}, and
rel−1

for inverse. We say rel is acyclic if rel+ is irreflexive.

Sequences. We use the notation ®𝑒 to range over finite sequences, |®𝑒 | for the length of the sequence,

®𝑒 (𝑖) for the item at position 0 ≤ 𝑖 < |®𝑒 | in the sequence, (®𝑒 )𝑖⌋ for the sequence ®𝑒 (0) . . . ®𝑒 (𝑖), and (®𝑒 )⌊𝑖
for the sequence ®𝑒 (𝑖) . . . ®𝑒 ( |®𝑒 | − 1). The empty sequence is denoted by 𝜖 . We sometimes implicitly

coerce ®𝑒 to the set of its items. Given a set 𝐴 we write 𝐴∗
for the set of finite sequences of elements

of 𝐴. We write ®𝑒 · ®𝑒′ for the concatenation of the two sequences. Given sequences ®𝑒, ®𝑒′ ∈ 𝐴∗
,

we say ®𝑒 is a scattered subsequence of ®𝑒′, if all the items of ®𝑒 appear in ®𝑒′ in the same order. The

expression ®𝑒 |𝐵 denotes the longest scattered subsequence of ®𝑒 consisting only of elements of 𝐵,

e.g. 𝑐𝑎𝑏𝑐𝑏𝑎𝑐𝑏 |{𝑎,𝑏} = 𝑎𝑏𝑏𝑎𝑏. For ®𝑒 ∈ 𝐴∗
, we also write ®𝑒 \ 𝐵 for ®𝑒 |𝐴\𝐵 .

Definition 3.1 (Enumeration). Given a relation rel ⊆ 𝐴×𝐴, and a finite set𝑋 ⊆ 𝐴 with 𝑛 elements,

we write rel�
𝑋
for the set of enumerations 𝑥0 . . . 𝑥𝑛 of 𝑋 such that ∀𝑖, 𝑗 ≤ 𝑛.(𝑥𝑖 , 𝑥 𝑗 ) ∈ rel ⇒ 𝑖 < 𝑗 .

Notice that if rel is an acyclic relation, then rel�
𝑋
≠ ∅. If rel is a strict total order on𝑋 , then rel�

𝑋
= {®𝑒}

and we write rel�
𝑋
for ®𝑒 directly. We omit 𝑋 when clear from the context.

Partial functions. We write 𝑓 : 𝐴 ⇀ 𝐵 if 𝑓 is a partial function from 𝐴 to 𝐵, i.e. a function of

type 𝑓 : 𝐴 → 𝐵 ⊎ {⊥}. The domain of 𝑓 is dom(𝑓 ) ≜ {𝑎 ∈ 𝐴 | 𝑓 (𝑎) ≠ ⊥}. The range of 𝑓 is

rng(𝑓 ) ≜ {𝑓 (𝑎) ∈ 𝐴 | 𝑎 ∈ 𝐴, 𝑓 (𝑎) ≠ ⊥}. We say 𝑓 is finite if its domain is finite.

3.2 Actions and Events
We make a number of simplifying modelling choices. First, we only model the scenario where the

whole of working memory is NVM. Second, we abstract memory management issues and we will

assume memory is managed and garbage collected. We thus include an atomic allocation primitive

but no de-allocation. Third, the algorithms we are interested in do not use pointer arithmetic, so

we will only model pointers as opaque references and prove no null-dereference is possible. Finally,

we model the heap as a uniform collection of structured records, with some fixed finite set of field

names F. None of these choices are fundamental.

A location 𝑙 ∈ L ≜ X × F is a pair of an address 𝑥 ∈ X and a field name f ∈ F, and we will

write them as 𝑥 .f. The set V collects all possible values associated to fields. The set of locations is

partitioned into cache lines CL. The fields of an address are assumed to fit in a single cache line, so

we postulate that: ∀®𝑙 ∈ CL:𝑥 .f ∈ ®𝑙 ⇒ ∀f′ ∈ F:𝑥 .f′ ∈ ®𝑙 .
The set Act is the set of actions 𝛼 which are of the form:

𝛼 F R 𝑥 .f 𝑣 | W 𝑥 .f 𝑣 | U 𝑥 .f 𝑣 𝑣 ′ | MF | FL 𝑥 | A 𝑥 | Ret 𝑣 | Err

where 𝑥 ∈ X, f ∈ F, 𝑣, 𝑣 ′ ∈ V. We include the standard read (R), write (W) and update (U) actions,
memory fences (MF), flushes (FL), and three non-standard actions. Allocation actions A 𝑥 initialise

all the fields at a fresh 𝑥 with zero. Return actions Ret 𝑣 represent the return instruction of a library
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call; we will use them as the atomic event representing the whole invocation in the abstract traces

of linearizable libraries. An error action Err is emitted when reading from or writing to a location

with invalid address (⊥ or not allocated).

Each action (bar Ret 𝑣) mentions a single address 𝑥 which we can access with addr(𝛼). Sim-

ilarly, loc(𝛼) is the location mentioned in an action, if any. As an exception, loc(A 𝑥) is the

set {𝑥 .f | f ∈ F} since an allocation initializes all fields to zero. The value of a return action

is val(Ret 𝑣) ≜ 𝑣 . We also speak of the read value (valr) and written value (valw) of an action:

valr (R 𝑥 .f 𝑣) ≜ valr (U 𝑥 .f 𝑣 𝑣 ′) ≜ 𝑣 , valw (W 𝑥 .f 𝑣 ′) ≜ valw (U 𝑥 .f 𝑣 𝑣 ′) ≜ 𝑣 ′, and valw (A 𝑥) ≜ 0. We

assume a fixed set of operation names Op. For the set library Op = {insert, delete}.
We also assume an enumerable universe of events E equipped with three functions:

• act : E→ Act, associating an action to every event. We lift functions on actions to events in

the obvious way, e.g. loc(𝑒) = loc(act(𝑒)) and write (𝑒 :𝛼) to indicate that act(𝑒) = 𝛼 .

• cid : E → Cid⊥ ⊎ {rid}, associating a call identifier to every event and ⊥ to client events.

Here Cid is a fixed enumerable set of call identifiers, and rid is a special identifier reserved

for the call to the recovery procedure; We require cid(𝑒) ≠ ⊥ if (𝑒 : Ret _).
• call : Cid → Call, where Call ≜ (Op × V∗), returns the operation called and its parameters.

The following sets group events by their action type:

U ≜ {𝑒 ∈ E | 𝑒 : U 𝑥 .f 𝑣 𝑣 ′} MF ≜ {𝑒 ∈ E | 𝑒 : MF} FL ≜ {𝑒 ∈ E | 𝑒 : FL 𝑥}
W ≜ {𝑒 ∈ E | (𝑒 : W 𝑥 .f 𝑣) ∨ (𝑒 : A 𝑥)} WU ≜ W ∪ U D ≜ W ∪ U ∪ FL
R ≜ {𝑒 ∈ E | 𝑒 : R 𝑥 .f 𝑣} RU ≜ R ∪ U

We also group events based on their call identifier:

RET ≜ {𝑒 ∈ E | 𝑒 : Ret 𝑣, cid(𝑒) ∈ Cid} C𝑖 ≜ {𝑒 ∈ E | cid(𝑒) = 𝑖}
Elib ≜ {𝑒 ∈ E \ RET | cid(𝑒) ≠ ⊥} cid= ≜ {(𝑒1, 𝑒2) | cid(𝑒1) = cid(𝑒1) ≠ ⊥}

The set RET collects all return events associated with calls (excluding the one of the recovery), the

set C𝑖 collects all events of the call identified by 𝑖 , the set Elib includes all internal library events

(returns are considered to be visible by the client). The relation cid= relates all events belonging to

the same call. Subscripting a set of events with a location selects the events for which that location

is relevant: for each of the sets of events S defined above, their location-subscripted variant is

S𝑙 = S ∩ E𝑙 and S𝐿 = S ∩ E𝐿 , where E𝑙 ≜ {𝑒 ∈ E | 𝑙 ∈ loc(𝑒)}, and E𝐿 ≜ {𝑒 ∈ E | 𝐿 ∩ loc(𝑒) ≠ ∅}.

3.3 Executions
We adopt the declarative approach of weak memory model specifications, where executions are

represented using graphs of events and dependency relations. The events of an execution should

be understood as the concrete low-level instructions issued by a closed multi-threaded program. In

the context of the verification of a library, this closed program would be an arbitrary client issuing

both instructions produced by calls to the library, and arbitrary instructions on its own locations

(which are assumed to be disjoint from the ones manipulated by the library).

Definition 3.2 (Execution). An execution is a structure 𝐺 = ⟨𝐸, 𝐼, 𝑃, po, rf,mo, nvo⟩ where
• 𝐸 ⊆ E is a finite set of events. In the context of the execution 𝐺 , the setsW, R, etc should be

understood as subsets of 𝐸. Moreover, 𝐺.Cid = cid(𝐸).
• 𝐼 ⊆ W is the set of initialisation events, with ∀𝑒1, 𝑒2 ∈ 𝐼 : 𝑒1 ≠ 𝑒2 ⇒ loc(𝑒1) ∩ loc(𝑒2) = ∅ and

∀𝑒 ∈ 𝐼 : cid(𝑒) = ⊥. Moreover, there are no double allocations: for all 𝑒 ∈ 𝐸 with (𝑒 : A 𝑥),
∀𝑒′ ∈ 𝐼 : addr(𝑒′) ≠ 𝑥 and ∀𝑒′ ∈ 𝐸: ((𝑒′: A 𝑦) ∧ 𝑒′≠ 𝑒) ⇒ 𝑥 ≠ 𝑦.

• 𝑃 ⊆ D is the set of persisted events, with 𝐼 ∪ FL ⊆ 𝑃 .
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• po ⊆ 𝐸 × 𝐸 is the ‘program-order’ relation, a strict partial order with 𝐼 × (𝐸 \ 𝐼 ) ⊆ po.
• rf ⊆ WU×RU is the ‘reads-from’ relation between events of the same location with matching

values; i.e. ∀(𝑎, 𝑏) ∈ rf: loc(𝑎)= loc(𝑏) ∧valw (𝑎)= valr (𝑏). Moreover, rf is total and functional
on its range, i.e. every read or update is related to exactly one write or update.

• mo ⊆ 𝐸 × 𝐸 is the ‘modification-order’, required to be a disjoint union of relations {mo𝑙 }𝑙∈L,
such that each mo𝑙 is a strict total order onWU𝑙 , and 𝐼𝑙 × (WU𝑙 \ 𝐼𝑙 ) ⊆ mo𝑙 .

• nvo ⊆ D × D is the ‘non-volatile-order’, required to be a strict total order on D, such that

𝐼 × (D \ 𝐼 ) ⊆ nvo and (𝑒1, 𝑒2) ∈ nvo ∧ 𝑒2 ∈ 𝑃 ⇒ 𝑒1 ∈ 𝑃 .

The derived happens-before relation is defined as hb ≜ (po ∪ rf)+.

A memory model is characterised by the subset of executions that are feasible, called consistent
executions. Different models can be used by adopting a different consistency criterion.

Although our proof technique applies independently of the choice of consistency criterion,

we will articulate it on the Px86 memory model, defined in full in [D’Osualdo et al. 2022]. An

execution 𝐺 is Px86-consistent if there exists a strict total store order tso ⊆ 𝐺.𝐸 ×𝐺.𝐸 representing

the global order in which durable instructions are observed to affect the memory, which satisfies the

usual x86 axioms [Sewell et al. 2010]. In addition, tso must satisfy the following three conditions:

∀®𝑙 ∈ CL: [D®𝑙 ]; tso; [D®𝑙 ] ⊆ nvo [FL]; tso; [D] ⊆ nvo 𝐸 ∩ FL ⊆ 𝑃

The first condition requires that all the durable events on the same cache line be persisted in the

same order in which they affected the volatile memory. The second condition says that durable

events tso-following a flush will be persisted after the flush (and thus after all the durable events

on the flushed cache line that happened tso-before the flush). The third condition characterises the

synchronous flush semantics: flushes are persisted as soon as they are included in an execution.

This model deviates slightly from Px86sim of Raad et al. [2020], where nvo only preserves tso on

durable events on the same location, not the same cache line. Our stronger semantics is consistent

with the actual hardware implementations [SNIA 2017, §10.1.1]. In fact, the algorithms of [Zuriel

et al. 2019] are only correct and optimal under the stronger model we adopt in this paper. For

instance, for the insert in Fig. 4 it is crucial that the valid and key fields get persisted together,

or a crash might leave a valid node in memory with an uninitialized key.

Definition 3.3 (Memory). The memory relative to some sequence of events ®𝑒 , is the finite partial
function MJ®𝑒K : L ⇀ V defined as: MJ®𝑒K(𝑙) ≜ valw (®𝑒 (𝑖)) where 𝑖 = max{ 𝑗 | ®𝑒 ( 𝑗) ∈ WU𝑙 }. The
function is undefined on 𝑙 if ®𝑒 ∩ WU𝑙 = ∅. If rel ⊆ E × E is a strict total order on WU, then
rel�WU = {®𝑒} for some ®𝑒 , and we write MJrelK for MJ®𝑒 K. We write Mem for the set of finite partial

functions from locations to values.

A set of initial events, by definition, contains at most one write event per location. Memories

and sets of initial events are therefore in a 1-to-1 correspondence modulo identity of events. By

virtue of this, we shall implicitly coerce memories into sets of initial events and vice versa.

Definition 3.4 (Chain). A chain is a sequence𝐺0 . . . 𝐺𝑛 of consistent executions such that𝐺0.𝐼 = ∅,
𝐺𝑖+1.𝐼 = MJ𝐺𝑖 .nvo|𝐺𝑖 .𝑃 K for every 0 ≤ 𝑖 < 𝑛, and 𝐺𝑛 .𝑃 = 𝐺𝑛 .D.

A library implementation is a pair I = ⟨Iop,Irec⟩ where Iop describes the implementation of each

operation, and Irec describes the implementation of the recovery. An execution of I is a consistent

execution where the recovery is run sequentially at the beginning, and then arbitrary client events

and calls of operations run concurrently. We only consider executions where libraries and clients

work on disjoint locations. A chain of I is a chain of executions of I. The formal definitions are

unsurprising and relegated to [D’Osualdo et al. 2022].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 26. Publication date: January 2023.



26:14 Emanuele D’Osualdo, Azalea Raad, and Viktor Vafeiadis

(a)

rf rf rf
(b)

rf

lin

lin

(c)

rflin lin

Fig. 5. The concrete execution graph of Figure (a) shows client events ( ), and library events ( ) and return
events ( ) generated by calls (encircled). Figures (a) and (b) represent the only two possible abstract executions
of Figure (a): the rf edge between client events constrains the possible linearization orders.

An execution of a library implementation contains both client events, and internal events that

are conceptually opaque to the client. From the perspective of the client, all operation calls should

be viewable as instantaneous return events giving back control to the client, ordered by some

(legal) total order. Abstract executions encode such a client-side view of an execution. Since some

calls might not have returned yet, the abstract execution can insert the return events for the calls

that have not returned yet but have already conceptually carried out their work. An important

constraint is that the abstract execution sees all return events (including the inserted ones) as being

persisted. This means that the operations need to ensure their updates have been persisted before

returning, to be consistent with their abstract execution.

Definition 3.5 (Abstract execution). Fix an execution 𝐺 . A set of completion events for 𝐺 is a

set 𝐶 ⊆ RET \𝐺.RET such that ∀𝑒 ∈ 𝐶:∃𝑒′ ∈ 𝐺.𝐸: cid(𝑒) = cid(𝑒′) ∧𝐺.ret(𝑒′) = ⊥.
Given a set 𝐶 of completion events for 𝐺 , we define the execution 𝐺

♯

𝐶
as follows:

• 𝐺
♯

𝐶
.𝐸 = 𝐸♯ ≜ (𝐺.𝐸 \ Elib) ⊎𝐶 .

• 𝐺
♯

𝐶
.𝑃 = (𝐺.𝑃 \ Elib).

• 𝐺
♯

𝐶
.po = (𝐺.po ∪𝐶po)+ |𝐸♯ where 𝐶po = (𝐺.𝐸 ×𝐶) ∩ cid=

• 𝐺
♯

𝐶
.rf = 𝐺.rf |𝐸♯ , 𝐺

♯

𝐶
.mo = 𝐺.mo|𝐸♯ , and 𝐺

♯

𝐶
.nvo = 𝐺.nvo|𝐸♯ .

An abstract execution of 𝐺 is a tuple ⟨𝐺♯

𝐶
, lin⟩ consisting of the execution 𝐺

♯

𝐶
, and

a strict total order lin on 𝑃RET ≜ 𝐺.RET ⊎𝐶 such that𝐺
♯

𝐶
.hb|𝑃RET ⊆ lin. Henceforth we use𝐺♯

as a

meta-variable ranging over the possible abstract executions of 𝐺 .

Figure 5 shows an example. As shown in Fig. 5(a), an execution 𝐺 will in general include client

events (i.e. 𝐺.𝐸 \ Elib ≠ ∅). In particular this means that 𝐺
♯

𝐶
.hb would include edges between client

events, and between client events and return events. The requirement that lin should preserve those

edges encodes the idea that the linearization order should never contradict the client-observable

ordering of calls. In the example, Fig. 5(b) and Figure 5(c) are the only abstract executions of𝐺 that

respect 𝐺
♯

𝐶
.hb: the rf edge between client events is preserved in the abstract execution, requiring

that the call of the thread at the top is linearized before the second call of the thread at the bottom.

Definition 3.6 (Histories). A history is a sequence ℎ ∈ Hist ≜ (Call × V)∗. Given a sequence of

events 𝑒0 . . . 𝑒𝑛 ∈ RET∗, their history is defined as

hist(𝑒0 . . . 𝑒𝑛) ≜ ⟨call(cid(𝑒0)), 𝑣0⟩ . . . ⟨call(cid(𝑒𝑛)), 𝑣𝑛⟩
where 𝑒𝑖 : Ret 𝑣𝑖 . The legal histories of a library are specified as a set L ⊆ Hist.

Definition 3.7 (Durable linearizability). A library with legal histories L and implementation I
is linearizable if for all executions 𝐺 of I, there exist an abstract execution ⟨𝐺♯, lin⟩ of 𝐺 such

that hist(lin�) ∈ L. The library is durably linearizable if for every chain 𝐺0 . . . 𝐺𝑛 of I there are

abstract executions ⟨𝐺♯

0
, lin0⟩, . . . , ⟨𝐺♯

𝑛, lin𝑛⟩ such that each ⟨𝐺♯

𝑖
, lin𝑖⟩ is an abstract execution of 𝐺𝑖

and hist(lin�
0
· . . . · lin�

𝑛) ∈ L.
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3.4 Library Specifications
Legal histories are all that is needed to specify the desired abstract behaviour of a linearizable

library. We introduce an abstract-machine-based way of specifying legal histories, that will allow

us to give a more structured proof technique for proving persistent linearizability.

Definition 3.8 (Library Specification). A library specification is an abstract machine that accepts

legal histories of library calls. Formally, a specification is a tuple ⟨Q,Δ, 𝑞⟩ whereQ is a set of abstract
states, Δ : Call × V→ 𝒫(Q × Q) is the transition relation indexed by a call and return value, and

𝑞 ∈ Q is the initial abstract state. The legal histories of ⟨Q,Δ⟩ from𝑞 to𝑞′ form the setL(𝑞, 𝑞′) ⊆ Hist,
defined as the smallest such that 𝜖 ∈ L(𝑞, 𝑞), and if ℎ ∈ L(𝑞, 𝑞′) and (𝑞′, 𝑞′′) ∈ Δ(call, 𝑣) then
ℎ · ⟨call, 𝑣⟩ ∈ L(𝑞, 𝑞′′). The legal histories of ⟨Q,Δ, 𝑞⟩ are defined asL(𝑞) ≜ ⋃

𝑞∈Q L(𝑞, 𝑞). If 𝑐 ∈ Cid,
we may write Δ(𝑐, 𝑣) for Δ(call(𝑐), 𝑣).

A specification is deterministic if ∀⟨call, 𝑣⟩:∀𝑞, 𝑞1, 𝑞2: (𝑞, 𝑞1), (𝑞, 𝑞2) ∈ Δ(call, 𝑣) ⇒ 𝑞1 = 𝑞2.

The legal histories for a set data structure can be formalised as follows. Assume a numeric totally

ordered type of keys Key. The legal histories of a library implementing a finite set of keys are the

legal histories of the following (deterministic) library specification. The abstract states form the set

KSet ≜ 𝒫fin (Key). The transition relation is defined as:

Δ(insert, 𝑘, true) = {(𝑆, 𝑆 ⊎ {𝑘}) | 𝑘 ∉ 𝑆} Δ(delete, 𝑘, true) = {(𝑆, 𝑆 \ {𝑘}) | 𝑘 ∈ 𝑆}
Δ(insert, 𝑘, false) = {(𝑆, 𝑆) | 𝑘 ∈ 𝑆} Δ(delete, 𝑘, false) = {(𝑆, 𝑆) | 𝑘 ∉ 𝑆}

We define a natural notion of equivalence on histories which we will use to justify the history

manipulations in our Pathway Theorem.

Definition 3.9 (Equivalent histories). Fix some specification ⟨Q,Δ, 𝑞⟩ and histories ℎ1, ℎ2 ∈ Hist;
we define ℎ1 ≡ ℎ2 to hold when ∀𝑞, 𝑞′ ∈ Q:ℎ1 ∈ L(𝑞, 𝑞′) ⇔ ℎ2 ∈ L(𝑞, 𝑞′).

Our proof strategy for durable linearizability exploits some notions of independence between

operations: commutativity, and the weaker voidability.

Definition 3.10 (Commutativity). Fix some specification ⟨Q,Δ, 𝑞⟩ and let ⟨𝑐, 𝑣⟩, ⟨𝑐′, 𝑣 ′⟩ ∈ Call × V.
We say ⟨𝑐, 𝑣⟩ commutes with ⟨𝑐′, 𝑣 ′⟩, written ⟨𝑐, 𝑣⟩ ∝ ⟨𝑐′, 𝑣 ′⟩, if ⟨𝑐, 𝑣⟩⟨𝑐′, 𝑣 ′⟩ ≡ ⟨𝑐′, 𝑣 ′⟩⟨𝑐, 𝑣⟩.

For example ⟨insert, 𝑘, 𝑏⟩ commutes with ⟨insert, 𝑘 ′, 𝑏′⟩ if 𝑘 ≠ 𝑘 ′.

Definition 3.11 (Voidable call). Let ⟨Q,Δ, 𝑞⟩ be a library specification, ⟨𝑐, 𝑣⟩ ∈ Call × V, and
ℎ ∈ Hist. We say ⟨𝑐, 𝑣⟩ is ℎ-voidable if ∀𝑞 ∈ Q: (⟨𝑐, 𝑣⟩ · ℎ) ∈ L(𝑞) ⇒ ℎ ∈ L(𝑞).

Lemma 3.12 (Voidability in KSet). For the set specification, the following hold

• ⟨insert, 𝑘, false⟩ and ⟨delete, 𝑘, false⟩ are ℎ-voidable for every ℎ.
• ⟨insert, 𝑘, true⟩ is ℎ-voidable if and only if ℎ contains no calls to operations on the key 𝑘 , or
⟨insert, 𝑘, true⟩ · ℎ is not legal.

• ⟨delete, 𝑘, true⟩ is ℎ-voidable if and only if ℎ contains no calls to operations on the key 𝑘 , or
⟨delete, 𝑘, true⟩ · ℎ is not legal.

Note that operations which affect the abstract state may still be voidable. Moreover, if the

operation op commutes with all the operations in ℎ then op is ℎ-voidable, but the converse is not

necessarily true. For example, a failed insert of 𝑘 is ℎ-voidable when ℎ consists of a successful delete

of 𝑘 , but the two calls do not commute.
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4 A PROOF TECHNIQUE FOR PERSISTENT LINEARIZABILITY
In this section we formalize, through series of lemmas, our methodology for proving durable

linearizability. The first step is to decouple the verification of recovery and of the operations, by

identifying an interface between the two in the form of the durable and recovered state representa-

tion functions. Then linearizability is reduced to an induction over appropriate sequences of events.

Finally, Section 4.3 presents our Pathway Theorem. Throughout the section, we fix some arbitrary

library specification ⟨Q,Δ, 𝑞⟩.

4.1 Decoupling Recovery
As a first step, we decouple the verification of recovery and of the operations, so that they can be

combined in persistently linearizable chains. To do so, we specify two invariants, the durable and

recovered memories. Assume the library is specified using the style of Definition 3.8. The proof

technique we propose requires the definition of two functions 𝛼dur, 𝛼rec : Q→ 𝒫(Mem):
• 𝛼dur (𝑞) is the set of all durable memory representations of 𝑞,

• 𝛼rec (𝑞) is the set of all recovered memory representations of 𝑞.

We say a memory 𝑀 encodes a durable state 𝑞 if 𝑀 ∈ 𝛼dur (𝑞), or that it encodes a recovered
state 𝑞 if𝑀 ∈ 𝛼rec (𝑞). For the recovery, 𝛼dur (𝑞) acts both as a precondition, and as an invariant that

must be preserved by each of its steps; 𝛼rec (𝑞) is the postcondition of the recovery. When verifying

the operations, one assumes that the initial memory has been recovered. At any point in time, the

code of operations maintains the invariant ∃𝑞:𝛼dur (𝑞). Technically, we start by defining when we

consider a recovery sound with respect to 𝛼dur and 𝛼rec.

Definition 4.1 (Sound recovery). Given 𝛼dur, 𝛼rec : Q→ 𝒫(Mem), a recovery implementation Irec
is said ⟨𝛼dur, 𝛼rec⟩-sound if, for any execution 𝐺 of ⟨Iop,Irec⟩, with 𝐺.𝐼 ∈ 𝛼dur (𝑞) for some 𝑞 ∈ Q,
and with Iop arbitrary, the following hold:
(1) if 𝐺.RET ∩ Crid ≠ ∅ then MJ𝐺.po|𝐺.𝐼∪CridK ∈ 𝛼rec (𝑞);
(2) ∀𝑤 ∈ 𝐺.Crid:∀𝑞 ∈ Q, ®𝑒, ®𝑒′:MJ𝐺.𝐼 · ®𝑒 ·𝑤 · ®𝑒′K ∈ 𝛼dur (𝑞) ⇔ MJ𝐺.𝐼 · ®𝑒 · ®𝑒′K ∈ 𝛼dur (𝑞).

Condition 4.1(1) considers the recovery run from a memory encoding a durable state 𝑞, and
ensures that, when the recovery returns, the volatile memory encodes the recovered state 𝑞. Condi-

tion 4.1(2) requires that any write issued by the recovery, preserve the durable state encoded by the

memory. More precisely, the writes of the recovery should be irrelevant for 𝛼dur. This requirement

implies that any crash occurring during recovery will leave the memory in a recoverable state,

without altering the encoded abstract state. It is also used in the verification of operations, to argue

that the abstract state of the persisted memory at the time of a crash is not affected if some recovery

events have not been persisted.

Definition 4.2 (⟨𝛼dur, 𝛼rec⟩-Linearizability). Consider an implementation of operations Iop. We

say Iop is ⟨𝛼dur, 𝛼rec⟩-linearizable if, for every ⟨𝛼dur, 𝛼rec⟩-sound Irec, all 𝑞 ∈ Q, all 𝐺 execution

of ⟨Iop,Irec⟩ with 𝐺.𝐼 ∈ 𝛼dur (𝑞), there is a 𝑞′ ∈ Q such that:

(1) there is an abstract execution ⟨𝐺♯, lin⟩ of 𝐺 with hist(lin�) ∈ L(𝑞, 𝑞′);
(2) MJ𝐺.nvo|𝐺.𝑃 K ∈ 𝛼dur (𝑞′).

Condition 4.2(1) asks to find a linearization that is a legal history from abstract state 𝑞 to 𝑞′;
Condition 4.2(2) requires that the persisted memory encode the same apparent final state 𝑞′.

Theorem 4.3. If, for some 𝛼dur, 𝛼rec : Q → Mem with ∅ ∈ 𝛼dur (𝑞), Irec is ⟨𝛼dur, 𝛼rec⟩-sound and
Iop is ⟨𝛼dur, 𝛼rec⟩-linearizable, then ⟨Irec,Iop⟩ is durably linearizable.
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4.2 Linearizability Proofs
The first component of a linearizability proof is the volatile order.

Definition 4.4. A volatile order of 𝐺 is a transitive relation vo ⊆ 𝐺.𝐸 ×𝐺.𝐸 such that:

(1) 𝐺.𝐼 × (𝐺.𝐸 \𝐺.𝐼 ) ⊆ vo
(2) 𝐺.Crid × (𝐺.𝐸 \ (𝐺.𝐼 ∪𝐺.Crid)) ⊆ vo
(3) [WU ∩𝐺.Crid]; po; [WU ∩𝐺.Crid] ⊆ vo

If an order rel satisfies condition 4.4(1), then for every ®𝑒 ∈ 𝐺.rel� we have that for some 𝑖0 < |®𝑒 |,
(®𝑒 )𝑖0⌋ = 𝐺.𝐼 . Henceforth, we write 𝜄0 (®𝑒 ) for such 𝑖0. If rel also satisfies condition 4.4(2), there is

some 𝑗 such that 𝑖 ≤ 𝑗 ⇔ ®𝑒 (𝑖) ∈ 𝐺.𝐼 ∪𝐺.Crid . We write 𝜄 (®𝑒 ) for such index 𝑗 . Finally, if rel also
satisfies 4.4(3) then MJ(®𝑒 )𝜄 ( ®𝑒 )⌋K = MJ𝐺.po|𝐺.𝐼∪CridK.

Next, we introduce linearization strategies, which package in a tuple the components needed to

define a linearization through the identification of linearization points.

Definition 4.5 (Linearization strategy). Given an execution 𝐺 , a linearization strategy for 𝐺 is a

tuple ⟨𝜋, 𝑟, rel, 𝛼⟩ where:

• 𝜋 : 𝐺.Cid ⇀ 𝐺.𝐸 is an injective finite partial function, which identifies so-called linearization
event (if any), for the calls of 𝐺 ;

• 𝑟 : 𝐺.Cid ⇀ Val associates to each call a return value;

• rel ⊆ 𝐺.𝐸 ×𝐺.𝐸 is an acyclic relation on events;

• 𝛼 : Q→ 𝒫(Mem) is the state representation function.

We require:

(1) ∀𝑐 ∈ dom(𝜋): cid(𝜋 (𝑐)) ≠ ⊥ ∧ cid(𝜋 (𝑐)) ≠ rid,
(2) dom(𝜋) ⊆ dom(𝑟 ), and
(3) ∀𝑒 ∈ 𝐺.RET: 𝑟 (cid(𝑒)) = val(𝑒).

The function 𝜋 identifies the event at which each operation is seen to have taken effect; since

not all calls might have reached that event, the function is partial. The function 𝑟 records the

return values; it is required to agree with any return event present in the execution, but it might

assign return values to calls that have not returned yet, but have already linearized. The relation rel
is the one used to order the linearization events to induce the linearized sequence of calls. The

representation function 𝛼 formalises how an abstract state can be represented in memory.

We overload the ‘hist’ symbol so we can extract histories from sequences of events, through

linearization strategies.

Definition 4.6. Let ⟨𝜋, 𝑟, rel, 𝛼⟩ be a linearization strategy. We define:

hist
𝑟
𝜋 (®𝑒 ) ≜


𝜖 if ®𝑒 = 𝜖

⟨call(𝑐), 𝑟 (𝑐)⟩ · hist
𝑟
𝜋 (®𝑒′) if ®𝑒 = 𝑒 · ®𝑒′ ∧ 𝜋 (𝑐) = 𝑒

hist
𝑟
𝜋 (®𝑒′) if ®𝑒 = 𝑒 · ®𝑒′ ∧ ∀𝑐:𝜋 (𝑐) ≠ 𝑒

We defined the notion of strategy generically because we will instantiate it in two ways in

proofs: once with the “volatile” parameters 𝜋 = ℓ , rel = vo, 𝛼 = 𝛼vol, and once with the “persistent”

parameters 𝜋 = 𝑝 , rel = nvo, 𝛼 = 𝛼dur. In both cases, we want to use the strategy to validate an

execution by induction on rel-preserving sequences of events.
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(a) 𝑀1 ®𝑒 (1) 𝑀2 ℓ (𝑐) 𝑀3 ®𝑒 (3) 𝑀4vo

𝑞1 𝑞1 𝑞2 𝑞2

𝛼vol 𝛼vol 𝛼vol 𝛼vol

Δ(𝑐, 𝑟 (𝑐))

. . .

(b) 𝑀1 ®𝑒 (1) 𝑀2 𝑝 (𝑐) 𝑀3 ®𝑒 (3) 𝑀4nvo

𝑞1 𝑞1 𝑞2 𝑞2

𝛼dur 𝛼dur 𝛼dur 𝛼dur

Δ(𝑐, 𝑟 (𝑐))

. . .

Fig. 6. Examples of (a) validating volatile strategy, and (b) validating persistent strategy. Events from an
enumeration ®𝑒 of vo (resp. nvo) are examined in sequence; each event may modify the volatile (resp. persisted)
memory 𝑀𝑖 which is related to some abstract state 𝑞𝑖 via 𝛼vol (resp. 𝛼dur). Only linearization events are
allowed to update the abstract state, and the update needs to be legal according to Δ.

Definition 4.7 (Validating strategy). The strategy ⟨𝜋, 𝑟, rel, 𝛼⟩ 𝜄0-validates 𝐺 if for all ®𝑒 ∈ rel�, all
𝑞0 ∈ Q such thatMJ(®𝑒 )𝜄0 ( ®𝑒 )⌋K ∈ 𝛼 (𝑞0), all 𝜄0 (®𝑒 ) < 𝑖 < |®𝑒 |, and all 𝑞 ∈ Q, if hist

𝑟
𝜋 ((®𝑒 )𝑖−1⌋) ∈ L(𝑞0, 𝑞)

and MJ(®𝑒 )𝑖−1⌋K ∈ 𝛼 (𝑞), then:
(1) if ®𝑒 (𝑖) ≠ 𝜋 (𝑐) for all 𝑐 , then MJ(®𝑒 )𝑖⌋K ∈ 𝛼 (𝑞);
(2) if ®𝑒 (𝑖) = 𝜋 (𝑐) for some 𝑐 , thenMJ(®𝑒 )𝑖⌋K ∈ 𝛼 (𝑞′) for some 𝑞′ such that (𝑞, 𝑞′) ∈ Δ(𝑐, 𝑟 (𝑐)).

The strategy 𝜄-validates 𝐺 if it satisfies the above conditions using 𝜄 instead of 𝜄0.

The idea of Definition 4.7 is illustrated in Fig. 6. When applied to volatile strategies (Fig. 6(a)),

showing that an execution is validated by the strategy is done by induction on sequences ®𝑒 respect-
ing vo. For each position 𝑖 in the sequence, assuming the vo-induced memory𝑀𝑖 = MJ(®𝑒 )𝑖−1⌋K at
that point encodes some state 𝑞 through 𝛼vol, one checks if the event ®𝑒 (𝑖) is a linearization point or

not according to ℓ . If it is, one checks that the event transforms the memory to one that encodes

some 𝑞′ that is legal for the linearizing operation. If it is not, one checks that the encoded state is

preserved. The end result is to have proven the linearization induced by the strategy is legal.

The same proof scheme can be applied to persistent strategies (Fig. 6(b)), with the aim of proving

that the persistency points produce a persisted memory that encodes the expected state.

Lemma 4.8. Let 𝐺 be an execution of ⟨Iop,Irec⟩ for some ⟨𝛼dur, 𝛼rec⟩-sound Irec, with𝐺.𝐼 ∈ 𝛼dur (𝑞):
(1) ⟨ℓ, 𝑟, vo, 𝛼vol⟩ 𝜄-validates 𝐺 ⇒ ∀®𝑒 ∈ 𝐺.vo�

:∃𝑞′: hist
𝑟
ℓ (®𝑒 ) ∈ L(𝑞, 𝑞′).

(2) ⟨𝑝, 𝑟, nvo|𝐺.𝑃 , 𝛼dur⟩ 𝜄0-validates𝐺 ⇒ ∀®𝑒 ∈ nvo�
𝐺.𝑃

:∃𝑞′: hist
𝑟
𝑝 (®𝑒 ) ∈ L(𝑞, 𝑞′)∧MJ®𝑒K ∈ 𝛼dur (𝑞′).

Remark 4.9 (Completeness). As shown by [Schellhorn et al. 2014], identifying linearization points

is a complete technique for proving linearizability, provided that (1) linearization points can be

dependent on future events, and (2) a single event can linearize multiple calls. Since we define a

linearization strategy given a full execution 𝐺 , the first item above is fully supported. Even when

extended with support for hindsight, however, linearization strategies cannot fully accommodate

the second item, since the maps from calls to linearization events are required to be injective. This is

an obstacle when multiple writer operations linearize together (e.g. in the elimination stack, where

a push and pop cancel out). In principle, it is possible to allow a linearization map ℓ to return, for

each call, a pair ⟨𝑒, 𝑖⟩ of an event and a 𝑖 ∈ N. This way, ℓ can be injective and still associate multiple

calls to the same event (their relative order being determined by 𝑖). For the sake of simplicity, we

use here the simpler, incomplete definition.
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4.3 The Pathway Theorem
We are now ready for our Pathway Theorem, which we first state and then explain.

Theorem 4.10 (Pathway Theorem). Consider a library with deterministic specification ⟨Q,Δ, 𝑞⟩
and operations implementation Iop. Let 𝛼dur, 𝛼rec, 𝛼vol : Q → 𝒫(Mem) with ∀𝑞:𝛼rec (𝑞) ⊆ 𝛼vol (𝑞).
To prove Iop is ⟨𝛼dur, 𝛼rec⟩-linearizable, it is sufficient to prove the following. Fixing arbitrary 𝑞 ∈ Q,
⟨𝛼dur, 𝛼rec⟩-sound Irec, and 𝐺 execution of ⟨Iop,Irec⟩ with 𝐺.𝐼 ∈ 𝛼dur (𝑞), find:

• a volatile order vo
• ℓ : 𝐺.Cid ⇀ 𝐺.𝐸

• 𝑟 : 𝐺.Cid ⇀ V

• 𝑝 : 𝐺.Cid ⇀ 𝐺.𝑃

• a persisted readers set
PR ⊆ 𝐺.Cid \ dom(𝑝)

such that:
(1) dom(𝑝) ∪ PR ⊆ dom(ℓ).
(2) ∀𝑐 ∈ PR: Δ(𝑐, 𝑟 (𝑐)) ⊆ [Q] .
(3) ∀𝑐, 𝑐′: ℓ (𝑐) hb−−→ ℓ (𝑐′) ⇒ ℓ (𝑐) vo−→ ℓ (𝑐′).
(4) ∀𝑐 ∈ dom(ℓ):∃𝑒1, 𝑒2 ∈ 𝐺.C𝑐 : 𝑒1

hb?

−−→ ℓ (𝑐) hb?

−−→ 𝑒2 .

(5) ⟨ℓ, 𝑟, vo, 𝛼vol⟩ 𝜄-validates 𝐺 .
(6) cid(𝐺.RET) ⊆ dom(𝑝) ∪ PR.

(7) For any 𝑐, 𝑐′ ∈ dom(𝑝), either:
⟨call(𝑐), 𝑟 (𝑐)⟩ ∝ ⟨call(𝑐′), 𝑟 (𝑐′)⟩ or 𝑝 (𝑐) nvo−−→ 𝑝 (𝑐′) ⇒ ℓ (𝑐) vo−→ ℓ (𝑐′).

(8) For any 𝑐 ∈ dom(ℓ) \ (dom(𝑝) ∪ PR), and all ®𝑒 ∈ vo�
𝐺.𝐸

:
if ®𝑒 = ®𝑒′ · ℓ (𝑐) · ®𝑒′′ then ⟨call(𝑐), 𝑟 (𝑐)⟩ is ℎ-voidable, where ℎ = hist

𝑟
ℓ (®𝑒′′) | (dom(𝑝 )∪PR) .

(9) hist
𝑟
𝑝 (nvo�

𝐺.𝑃
) ∈ L(𝑞) ⇒ ⟨𝑝, 𝑟, nvo|𝐺.𝑃 , 𝛼dur⟩ 𝜄0-validates 𝐺 .

The theorem follows the high-level description of Section 2. To prove ⟨𝛼dur, 𝛼rec⟩-linearizability
of𝐺 , we have to provide two linearization strategies: the volatile one ⟨ℓ, 𝑟, vo, 𝛼vol⟩ and the persistent
one ⟨𝑝, 𝑟, nvo|𝐺.𝑃 , 𝛼dur⟩. Since the persistency points must be durable events, dom(𝑝) only represents
the persisted “writer” calls, i.e. calls that induce an abstract state change. The persisted readers

set PR indicates which of the “reader” calls should be considered (logically) persisted.

Then the theorem asks us to check a number of conditions. Condition 4.10(1) checks that every

persisted operation has a linearization point. Condition 4.10(2) ensures that the persistent readers

are indeed readers.

The goal of conditions 4.10(3) and 4.10(4) is to make sure the final linearization respects the hb
order between the calls, as required by Definition 3.5. In particular, we do not want the linearization

to contradict the po ordering between calls. In fact vomight not preserve hb in general: typically vo
reconstructs a global notion of time which might contradict some po edges, for examples the ones

between write and read events. Condition 4.10(3) states that vo has to preserve hb on linearization

points, which are typically either reads or updates. Condition 4.10(4) requires a linearization point

to be hb-between two events of the call it linearizes. This ensures that an hb edge between calls

implies an hb edge between the respective linearization points. If linearization points are local to

the call they linearize, the condition is trivially satisfied.

The conditions so far represent well-formedness constraints that usually hold by construction.

The conditions that follow are the ones where the actual algorithmic insight is involved.

Condition 4.10(5) requires to prove regular volatile linearizability using the volatile linearization

strategy. This is typically a straightforward adaptation of the proof of a non-durable version of the
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same data structure (e.g. Harris list for the link-free set). The adaptation simply needs to ensure

that the events added to make the data structure durable preserve the encoded state when executed.

When making a linearizable data structure durable, after having decided how the persisted

memory represents an abstract state (through 𝛼dur), the main design decision is which flushes

to issue and when. Conditions 4.10(6), 4.10(7), and 4.10(8) are the ones that check that all the

flushes needed for correctness are issued by the operations. This can help guiding optimizations, as

redundant flushes would be the ones not contributing to the proofs of these conditions.

Condition 4.10(6) reflects the unbuffered nature of durable linearizability: it requires every

returned call to be considered as persisted. The only way to ensure a writer operation is persisted

before returning is to issue a (synchronous) flush on the address of the persistency point of the call,

which we dub the “flush before return” policy.

Condition 4.10(7) deals with the discrepancies between the volatile and the persistent linearization

orders. Specifically, it consider two calls that have both persisted. If they abstractly commute, their

relative order in the linearization does not matter. Otherwise, it must be the case that they are

ordered by the volatile linearization strategy in the same order as they are by the persistent strategy.

In implementations, this is typically achieved by making every call execute their linearization point

after having made sure that the persistency point of earlier non-commuting calls are flushed.

Condition 4.10(8) deals with the second source of discrepancies between volatile and persistent

linearizations: voided calls, i.e. calls that the volatile argument sees as having linearized, but have

not persisted. A simpler (but less general) version of the condition would mirror the previous

condition using commutativity:

(8′) For any 𝑐 ∈ dom(ℓ) \ (dom(𝑝) ∪ PR) and 𝑐′ ∈ dom(𝑝) ∪ PR, either:
⟨call(𝑐), 𝑟 (𝑐)⟩ ∝ ⟨call(𝑐′), 𝑟 (𝑐′)⟩ or ℓ (𝑐′) vo−→ ℓ (𝑐).

Condition (8
′
) considers the situation where the volatile linearization places a voided call 𝑐 before a

persisted call 𝑐′. If such calls commuted, it would be possible to rearrange the volatile linearization

until all the voided calls appear at the end, while preserving legality of the sequence. Then the

persistent linearizationwould be a prefix of the volatile one, which is also a legal sequence. Condition

(8
′
) therefore asks that the calls either commute, or that the voided call is vo-after the persisted one.
The case study of Section 5, however, does not satisfy (8

′
), but satisfies the more permissive

4.10(8), which uses voidability instead of commutativity: the condition asks to prove that voided

calls are voidable with respect to the rest of the linearization ahead of them. More precisely, one

considers the linearization induced by vo and ℓ , and finds the linearization point of a voided call 𝑐 .

Then one needs to check that the call is voidable with respect to the volatile history of non-voided

calls ahead (ℎ). This means it can be removed from the linearization without affecting its legality.

The condition is typically enforced by making sure that possibly conflicting calls in ℎ issue a flush

on the address of the persistency point of 𝑐 before persisting themselves: if that is the case, then

either ℎ does not contain conflicting calls, or 𝑐 has been persisted, which means it is not voided.

When the conditions presented so far hold, the legality of the volatile linearization implies the

legality of the persistent linearization. What remains to prove is that the persistency points modify

the persisted memory so that it encodes the output state expected given the legal linearization.

This is checked by condition 4.10(9), which allows us to assume the persisted linearization is legal

(a fact that follows from the other conditions) and asks us to prove by induction on nvo that each

persistency point modifies the memory so that the encoded state reflects the expected change.

Proving this does not involve flushes, but merely checks that the persistency points enact changes

that are compatible with the durable state interpretation 𝛼dur.
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4.4 The Persist-First Pathway Theorem
The Pathway Theorem applies to schemes that first linearize operations and then persist them, as

codified by condition 4.10(1). These schemes are natural as in hardware writes are first propagated in

working memory and then persisted asynchronously. Persist-first schemes store the data structure

in two redundant versions, one used for durability and a purely volatile one. They reverse the usual

scheme by first committing the effects of an operation in the persistent representation and then

linearizing it in the volatile representation.

To the best of our knowledge, every durable data structure in the literature adopts either a

linearize-first or a persist-first scheme, never mixing the two. We therefore opted for providing a

separate theorem for persist-first, although in principle it is possible to provide a joined version.

𝑞0

𝑞1

𝑞2

𝑞3

𝑐

ℎ

ℎ

⇐

Voidable

𝑞0

𝑞1

𝑞2

𝑞3

ℎ

𝑐

𝑐

⇒

Appendable

Fig. 7. Duality between voidability
and appendability.

The Persist-First Pathway Theorem, shown in [D’Osualdo

et al. 2022] coincides with the Pathway Theorem, except for

conditions 4.10(1), 4.10(7), and 4.10(8). The obvious substitute

of 4.10(1) is dom(ℓ) ⊆ dom(𝑝). This excludes the presence of
voided calls, but allows for what we call “prematurely persisted”

calls: calls that get persisted at some point in the persistent

linearization, but have not linearized yet. To account for this,

condition 4.10(7) is modified to additionally require any persisted

and linearized call 𝑐 to be persisted nvo-before any prematurely persisted 𝑐′, unless 𝑐 and 𝑐′ commute.

Finally, just as condition 4.10(8) of the Pathway Theorem requires voided calls to be “voidable”,

the Persist-First Pathway Theorem requires prematurely persisted calls to be “appendable”.

Definition 4.11 (Appendable call). Let ⟨𝑐, 𝑣⟩ ∈ Call × V, andℎ ∈ Hist. We say ⟨𝑐, 𝑣⟩ isℎ-appendable
if, for all 𝑞 ∈ Q we have

(
𝑐 ∈ L(𝑞) ∧ ℎ ∈ L(𝑞)

)
⇒ (ℎ · ⟨𝑐, 𝑣⟩) ∈ L(𝑞).

Figure 7 shows in which sense voidability and appendability can be considered duals. For persist-

first, the voidability condition 4.10(8) is replaced with one that requires each prematurely persisted

call 𝑐 to be ℎ-appendable where ℎ is the history induced by vo and ℓ , that comes vo-after the
persistency point of 𝑐 .

5 CASE STUDY: THE LINK-FREE SET
In this section we sketch how our Pathway Theorem can be used to provide a formal proof of the

link-free set of Zuriel et al. [2019] with respect to the Px86 memory model. The full argument is

presented in [D’Osualdo et al. 2022].

5.1 State Representation
We begin by formalizing the intended memory representation of a set. We use a distinguished

address head as the entry point of the data structure for the current era. We have two overlaid

representations: the recoverable and the volatile ones.

Definition 5.1 (Durable state representation). We define 𝛼dur : KSet → 𝒫(Mem) as the function
such that𝑀 ∈ 𝛼dur (𝑆) if and only if𝑀 = 𝑀s ⊎𝑀d ⊎𝑀g where

𝑀s =
⊎

𝑘∈𝑆 [𝑥𝑘 .key ↦→ 𝑘, 𝑥𝑘 .nxt ↦→ ⟨0, _⟩, 𝑥𝑘 .valid ↦→ 1]
𝑀d =

⊎
𝑦∈𝑋d

[𝑦.key ↦→ _, 𝑦.nxt ↦→ ⟨1, _⟩, 𝑦.valid ↦→ 1]
𝑀g =

⊎
𝑦∈𝑋g

[𝑦.key ↦→ _, 𝑦.nxt ↦→ ⟨0, _⟩, 𝑦.valid ↦→ 0]
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for some sets of addresses𝑋s = {𝑥𝑘 |𝑘 ∈ 𝑆},𝑋d, and𝑋g. Intuitively,𝑀s collects the nodes representing

members of 𝑆 ,𝑀d collects deleted nodes,𝑀g collects garbage nodes.
2

Definition 5.2 (Volatile state representation). We define 𝛼vol : KSet → 𝒫(Mem) as the function
such that𝑀 ∈ 𝛼vol (𝑆) iff𝑀 = 𝑀s ⊎𝑀d ⊎𝑀u where 𝑥−∞ = head, 𝑆 ∪ {+∞,−∞} = {𝑘1, . . . , 𝑘𝑛}, and

𝑀s =
⊎

1≤𝑖≤𝑛
[
𝑥𝑘𝑖 .key ↦→ 𝑘𝑖 , 𝑥𝑘𝑖 .nxt ↦→ ⟨0, _⟩, 𝑥𝑘𝑖 .valid ↦→ _

]
𝑀d =

⊎
𝑦∈𝑋d

[𝑦.key ↦→ _, 𝑦.nxt ↦→ ⟨1, _⟩, 𝑦.valid ↦→ 1]
𝑀u =

⊎
𝑦∈𝑋u

[𝑦.key ↦→ _, 𝑦.nxt ↦→ ⟨0, _⟩, 𝑦.valid ↦→ 0]

for some sets of addresses 𝑋d, 𝑋u, and 𝑋s = {𝑥𝑘1
, . . . , 𝑥𝑘𝑛 } and such that

∀𝑥,𝑦 ∈ X:

(
𝑀 (𝑥 .key) < +∞ ∧𝑀 (𝑥 .nxt) = ⟨_, 𝑦⟩

)
⇒ 𝑀 (𝑥 .key) < 𝑀 (𝑦.key) (1)

∀𝑖 < 𝑛:∃𝑚 ≥ 0:∃𝑦1, . . . , 𝑦𝑚 ∈ 𝑋d:∃𝑦𝑚+1 = 𝑥𝑘𝑖+1
:

𝑀 (𝑥𝑘𝑖 .nxt) = ⟨0, 𝑦1⟩ ∧
(∧

1≤ 𝑗≤𝑚 𝑀 (𝑦 𝑗 .nxt) = ⟨1, 𝑦 𝑗+1⟩
) (2)

∀𝑦 ∈ 𝑋d:∃𝑦′ ∈ 𝑋s ∪ 𝑋d:𝑀 (𝑦.nxt) = ⟨_, 𝑦′⟩ (3)

That is,𝑀s is a sorted linked list of valid unmarked nodes representingmembers of the store, possibly

interleaved with deleted notes;𝑀d represents deleted nodes, and𝑀u represents uninitialised nodes.

Note that even links in𝑀d and𝑀u are sorted, although they are not required to form a list. Moreover,

the sortedness constraint (1) implies 𝑘𝑖 < 𝑘𝑖+1 for all 𝑖 < 𝑛.

The recovery function’s goal is to repair some memory in 𝛼dur (𝑆) so that it belongs to 𝛼vol (𝑆).
The recovered state representation is therefore 𝛼rec (𝑆) ≜ 𝛼dur (𝑆) ∩ 𝛼vol (𝑆).

Showing that the recovery function is sound is easy. The first soundness condition requires to

prove that from some memory in 𝛼dur (𝑞), upon termination, the recovery produced a memory in

𝛼rec (𝑞). This is easy to establish with standard sequential reasoning. The second condition requires

the recovery to never introduce intermediate memories which are not in 𝛼dur (𝑆). Since the recovery
only modifies the nxt fields, which are not constrained by 𝛼dur, the condition follows immediately.

5.2 Volatile Linearizability
We sketch how to prove linearizability by providing a suitable pre-linearization strategy. To start,

we need to pick an appropriate volatile order. For Px86 a natural choice is the global happens before
order [Alglave 2012], which reconstructs the possible order of events from a global point of view:

ghb ≜
( (
po \ ((W ∪ FL) × R)

)
|E\RET ∪mo ∪ (rf−1

;mo) ∪ (rf \ po)
)+

The Pathway Theorem asks to provide a set of events 𝑋 which includes all linearization points

and on which vo preserves hb. For the link-free set, we let 𝑋 = RU, since [RU]; hb; [RU] ⊆ ghb.

Lemma 5.3 (ghb includes hb on RU). [RU]; hb; [RU] ⊆ ghb.

Next, we have to pick linearization points by defining ℓ and return values 𝑟 .

Definition 5.4 (Linearization points). Given an execution𝐺 of the link-free set of Fig. 4, we define

the finite partial functions ℓ : 𝐺.Cid ⇀ 𝐺.RU and 𝑟 : 𝐺.Cid ⇀ V as the smallest such that:

• if call(𝑐) = ⟨insert, _⟩ then
– If there is an event (𝑒 : U 𝑝.nxt ⟨0, _⟩ ⟨0, _⟩) ∈ 𝐺.C𝑐 generated at Line 44 then ℓ (𝑐) = 𝑒 and

𝑟 (𝑐) = true.

2
For simplicity we assume head and tail nodes (i.e. nodes with key ±∞) do not survive a crash; they would otherwise also

accumulate as garbage nodes since recovery re-allocates them.
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– If there is an event (𝑟 : Ret false) ∈ 𝐺.C𝑐 then there is at least one read event of 𝐺.C𝑐
generated by Line 20 in the call to find at Line 36; let (𝑒 : R 𝑐.nxt ⟨0, _⟩) be the po-last
such event. Then we set ℓ (𝑐) = 𝑒 and 𝑟 (𝑐) = false.

• if call(𝑐) = ⟨delete, _⟩ then
– If there is an event (𝑒 : U 𝑐.nxt ⟨0, _⟩ ⟨1, _⟩) ∈ 𝐺.C𝑐 generated at Line 56, then ℓ (𝑐) = 𝑒 and

𝑟 (𝑐) = true.
– If there is an event (𝑟 : Ret false) ∈ 𝐺.C𝑐 , then there is at least one event in𝐺.C𝑐 generated
by Line 20 in the call to find at Line 51; let (𝑒 : R 𝑐.nxt ⟨0, _⟩) be the po-last such event.

Then we set ℓ (𝑐) = 𝑒 and 𝑟 (𝑐) = false.

By construction we have ∀𝑐 ∈ dom(ℓ): cid(ℓ (𝑐)) = 𝑐 , ℓ is injective, cid(𝐺.RET) ⊆ dom(ℓ),
dom(𝑟 ) = dom(ℓ), and (𝑒 : Ret 𝑣) ∈ 𝐺.RET⇒ 𝑟 (cid(𝑒)) = 𝑣 .

It is easy to check that ⟨ℓ, 𝑟, ghb, 𝛼vol⟩ is a linearization strategy. With these parameters we could

already prove standard linearizability by showing that ⟨ℓ, 𝑟, ghb, 𝛼vol⟩ 𝜄-validates every execution.

Theorem 5.5. Assume an arbitrary ⟨𝛼dur, 𝛼rec⟩-sound Irec. If𝐺 is an execution of ⟨ILFS
op ,Irec⟩, then

⟨ℓ, 𝑟, ghb, 𝛼vol⟩ 𝜄-validates 𝐺 .

We omit the proof as it is subsumed by the proof on the optimized algorithm provided in the

extended version of this paper [D’Osualdo et al. 2022].

5.3 Persistency Points
We now define the final parameters needed to instantiate the Pathway Theorem: the persistency

points through 𝑝 and the persisted readers PR.

Definition 5.6 (Persistency points). Given an execution𝐺 of the link-free set in Fig. 4, we define

the finite partial function 𝑝 : 𝐺.Cid ⇀ 𝐺.𝑃 as the smallest such that:

• if call(𝑐) = ⟨insert, _⟩ and ℓ (𝑐) = (𝑒 : U 𝑝.nxt _ ⟨0, 𝑛⟩) then
𝑝 (𝑐) = minnvo{𝑒′ | (𝑒′ : W 𝑛.valid 1) ∈ 𝐺.𝑃} (undefined if 𝐺.𝑃 contains no write to n.valid);

• if call(𝑐) = ⟨delete, _⟩ and ℓ (𝑐) = (𝑒 : U _ .nxt ⟨0, _⟩ ⟨1, _⟩) then 𝑝 (𝑐) = 𝑒 .

We also define PR = {𝑐 | (𝑟 : Ret false) ∈ 𝐺.C𝑐 }. By construction we have that 𝑝 is injective,

dom(𝑝) ∩ PR = ∅ and dom(𝑝) ∪ PR ⊆ dom(ℓ).

5.4 Applying the Pathway Theorem
We have now picked all the parameters we need to apply the Pathway Theorem: we set vo = ghb,
𝑋 = 𝐺.RU, ℓ and 𝑟 as defined in Definition 5.4, 𝑝 and PR as defined in Definition 5.6. We can now

check each condition of the Pathway Theorem.

Conditions 4.10(1) and 4.10(2) are satisfied by construction. Condition 4.10(3) follows from

Lemma 5.3. Condition 4.10(4) is straightforward from cid(ℓ (𝑐)) = 𝑐 (which allows us to pick

𝑒1 = 𝑒2 = ℓ (𝑐)). Condition 4.10(5) is a direct consequence of Theorem 5.5. The rest of the conditions

represent the crucial steps in the correctness proof.

Flush before returning. Condition 4.10(6) reflects the unbuffered nature of durable linearizability:

it requires every returned call to be considered as persisted. The only way to enforce something is

persisted before returning is to issue a (synchronous) flush on the address of the persistency point

of the call. In our case, the “read-only” calls that have returned are included in PR by construction.

For successful inserts/deletes we can prove that if they returned: (1) they have issued a flush on

the address of their persistency point, and (2) the persistency point happens nvo-before the flush.
Since 𝐺.FL ⊆ 𝐺.𝑃 , we conclude that if those calls returned, their persistency point was persisted.
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Commuting calls. To prove 4.10(7) we focus on persisted calls 𝑐, 𝑐′ ∈ dom(𝑝) that do not commute,

that is persisted successful inserts or deletes of the same key 𝑘 . As a preliminary step, we can

show that any such 𝑐, 𝑐′ are related by ghb in some order. Thus, since nvo is total on𝐺.𝑃 , condition

4.10(7) can be reduced to proving that if ℓ (𝑐)
ghb
−−→ ℓ (𝑐′) then 𝑝 (𝑐) nvo−−→ 𝑝 (𝑐′). By transitivity, we can

focus on calls whose linearization points are adjacent, i.e. there are no linearization points of calls

on key 𝑘 between 𝑐 and 𝑐′ in ghb order. Since we already established legality of the ghb-induced
sequence of linearization points, we can focus on legal pairs of calls. This leaves us with two cases:

• 𝑐 is a successful insert of 𝑘 , and 𝑐′ a adjacent successful delete of 𝑘 . From the volatile invariants

on the ghb-induced memory, we know that 𝑐′ will be deleting the node 𝑛 inserted by 𝑐 . This

means that 𝑛.valid will be written before ℓ (𝑐′) (either by 𝑐 or 𝑐′). The earliest such write is

𝑝 (𝑐) which would then be nvo-before ℓ (𝑐′) = 𝑝 (𝑐′) as desired.
• 𝑐 is a successful delete of 𝑘 , and 𝑐′ a adjacent successful insert of 𝑘 . Wme can prove that

before ℓ (𝑐) is executed, at least one call to trim on the deleted node has been run. The flush

at line 31 would then ensure the desired nvo order.

Voided calls. We now check condition 4.10(8), which asks that every call 𝑐 which reached its

linearization point but has not persisted must be voidable. Lemma 3.12 tells us that the only possible

problematic calls are successful inserts or deletes, ghb-followed by operations on the same key.

Lemma 5.7. Take any 𝑐 ∈ dom(ℓ) \ (dom(𝑝) ∪ PR), and all ®𝑒 ∈ vo�
𝐺.𝐸

such that ®𝑒 = ®𝑒′ · ℓ (𝑐) · ®𝑒′′.
Then ⟨call(𝑐), 𝑟 (𝑐)⟩ is ℎ-voidable, where ℎ = hist

𝑟
ℓ (®𝑒′′) | (dom(𝑝 )∪PR) .

The proof proceeds by contradiction: assume ⟨call(𝑐), 𝑟 (𝑐)⟩ is not ℎ-voidable. We have two cases:

either 𝑐 is a successful insert or a successful delete, of some key 𝑘 . Let us focus on the insert case, as

the delete case is analogous. ®𝑒′′ must contain the linearization point of a persisted call involving the

same key. Let 𝑐′ be the id of such call. We can show that if 𝑐′ persisted, the persistency point of 𝑐

must have been executed and persisted. We therefore reach a contradiction with the assumption

that 𝑐 ∈ dom(ℓ) \ (dom(𝑝) ∪ PR). Since we already established legality of histories induced by ℓ

and ghb, we are left with the following cases:

• call 𝑐′ = ⟨insert, 𝑘⟩, 𝑟 (𝑐) = false: then lines 38 and 39 have been both executed so at least

one event setting valid to 1 has been persisted, implying 𝑐 ∈ dom(𝑝).
• call 𝑐′ = ⟨delete, 𝑘⟩, 𝑟 (𝑐) = true then line 55 has been executed; since 𝑐′ has persisted, we
know that the successful CAS at line 56 also persisted; since c.nxt and c.valid fit in the

same cache line, both writes have been then persisted, implying 𝑐 ∈ dom(𝑝).

Persisted memory correctness. We have finally arrived at condition 4.10(9). Until now, we mostly

considered ghb-induced sequences of events and invariants on memory. When nvo was involved,
we only needed to prove that some writes/flushes were inserted in some crucial points. This is

intentional: the fundamental correctness argument typically rests on the volatile invariants. The

Pathway Theorem allows us to focus on those for as long as possible. What the proof so far entails

is the legality of the (persisted) volatile history, and, the fact that the nvo-induced history is legal

and equivalent to the volatile one. What is missing is to prove that the contents of the persisted
memory encode the output state of the (legal) history, with respect to 𝛼dur.

Concretely, consider proving ⟨𝑝, 𝑟, nvo|𝐺.𝑃 , 𝛼dur⟩ 𝜄0-validates 𝐺 , for the link-free set. The first
condition that Definition 4.7 asks us to prove is that events that are not persistency points preserve

the encoded abstract state. This is easy to prove: the only non-trivial writes affect the links, which

are ignored by 𝛼dur; the other fields are only updated on uninitialized nodes. The second condition

we need to prove is that persistency points induce the desired legal transitions. Proving this directly

is challenging. When considering the persistency point of a successful insert of 𝑘 , for example, we
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need to prove that when the valid field of the new node 𝑛 is first set to 1, the persisted memory

is in 𝛼dur (𝑆) for some 𝑆 with 𝑘 ∉ 𝑆 . The reason why this is true is exclusively due to the volatile

invariants which apply to the ghb-induced memory, memory that may be encoding (via 𝛼vol) some

different 𝑆 ′′ ≠ 𝑆 . The proof strategy embedded in our Pathway Theorem resolves the mismatch

by letting us assume (by virtue of the other conditions) that the nvo-induced history is legal. In

particular, in the insert case, we are allowed to assume 𝑘 ∉ 𝑆 , which by 𝛼dur (𝑆) would imply that

after the persistency point, exactly one valid unmarked node would be holding the key 𝑘 . Finally,

another notable simplification introduced by this proof strategy, is that we can safely ignore the

“read-only” operations like failed inserts and deletes, since their place in the linearization has already

been provided through the volatile argument.

5.5 Optimizations and Extensions
The full link-free algorithm includes a number of further optimizations and a wait-free contains
operation. The extended version of this paper [D’Osualdo et al. 2022] presents a formal proof of

the full algorithm by using a generalization of the Pathway Theorem.

In particular, the full algorithm optimizes the find function by removing lines 22 and 24 from

Fig. 4: it is not necessary to check that the predecessor is unmarked before returning. This opti-

mization introduces the need for hindsight linearization of failed deletes. The issue is that, we can

no longer identify a point in the program where the 𝑝 and 𝑐 returned by find are both unmarked,

adjacent and reachable. This makes it impossible to find any particular event that can serve as the

linearization of a failed delete of some 𝑘 . In fact, when we check 𝑝 is unmarked it might be too

early: a node 𝑛 holding 𝑘 might be ahead in the list and unmarked. Then 𝑛 might have been marked

before we reached it. By the time we reach 𝑐 , a new 𝑛′ holding 𝑘 might have been added behind in

the list, and so at this point we are too late to linearize the delete. The operation is still correct:

between reading 𝑝 unmarked and reading 𝑐 unmarked, there must have been a point when no

unmarked node in between them held 𝑘 . This kind of “after the fact” argument is called a “hindsight

lemma” in [O’Hearn et al. 2010].

The general version of our Pathway Theorem supports hindsight by means of a partial map

ℓh (®𝑒 ) : Cid ⇀ N, which associates to each call 𝑐 that needs hindsight, an index ℓh (®𝑒 ) (𝑐) indicating
where in the (vo-ordered) sequence of events ®𝑒 the call is logically linearized. Crucially, ℓh can

be specified after ℓ has been defined and has been used to prove ⟨ℓ, 𝑟, ghb, 𝛼vol⟩ 𝜄-validates the
execution. The definition of ℓh can therefore assume the history induced by ℓ and ®𝑒 is legal, and
find a position where the hindsight calls linearize, in the same way we informally argued above.

6 RELATEDWORK
The literature includes attempts at strengthening and simplifying the original notion of lineariz-

ability [Herlihy and Wing 1990] such as strict linearizability [Aguilera and Frolund 2003], as well

as sophisticated proof strategies for establishing linearizability (e.g. [O’Hearn et al. 2010]). As the

original definition of linearizability was based on the strong sequential consistency (SC) [Lamport

1979] memory model, Burckhardt et al. [2012] later adapted linearizability to the weaker TSO

model [Sewell et al. 2010], while Batty et al. [2013] adapted it to a fragment of the even weaker C11

model [Batty et al. 2011]. Raad et al. [2019a] developed a general framework for specifying various

correctness conditions for concurrent libraries, including linearizability.

In order to account for the durability guarantees of implementations in the context of persistent

memory, Izraelevitz et al. [2016] extended linearizability to durable linearizability (DL). As with

the original notion of linearizability, this original DL definition was tied to the strong SC model.

Raad and Vafeiadis [2018] later developed a weak persistency model known as PTSO and adapted

the notion of DL to PTSO. Raad et al. [2020, 2019b] subsequently developed the PARMv8 and Px86
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models, respectively formalising the (weak) persistency semantics of the ARMv8 and Intel-x86

architectures, and accordingly adapted DL to account for PARMv8 and Px86. Unlike our memory-

model-agnostic approach here, these DL definitions are tied to specific persistency models.

Some memory models admit the so-called data-race freedom property (DRF), which guarantees

that, in absence of data-races, only SC behaviour is observable. When DRF applies, proving lin-

earizability would be simpler, but the order in which writes are persisted may still be different from

the SC order; our technique would then still be useful and provide a viable proof strategy for DL.

The existing literature includes several examples of durable libraries and data structures. The

most notable example is PMDK [Intel 2015], a collection of libraries for persistent programming.

However, as of yet the PMDK libraries lack formal specifications and have not been formally

verified. Friedman et al. [2018] developed several durable queue libraries over the Px86 model;

however, they provide an informal argument (in English) that their implementations are correct

(satisfy DL) and do not provide a formal correctness proof. Similarly, Zuriel et al. [2019] developed

two durable set implementations (over Px86), including the link-free set we verify here. Once again,

they do not provide a formal correctness proof of their implementations, and instead present an

informal argument without accounting for the intricacies of the underlying Px86 model.

Raad et al. [2020, 2019b] develop durable variants of the Michael-Scott queue [Michael and

Scott 1996] over the PARMv8 and Px86 models, and formally prove that their implementations are

correct. These implementations are much simpler than those we verify here (e.g. they do not involve

hindsight reasoning). Moreover, unlike our approach here, their proofs are non-modular in that

they do not separate the linearizability, persistency and recovery proof obligations. As such, they

do not provide any insights that can be adapted to reason about other durable implementations.

Derrick et al. [2021] proposed a sound and complete refinement-based proof technique for DL

in the context of SC, which they use to prove a queue from [Friedman et al. 2018]. Their thread-

local simulation technique could in principle be combined with our Pathway Theorem, yielding a

powerful technique for DL under SC. We leave this exploration to future work.
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