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Abstract
There has been great progress in recent years on developing ef-
fective techniques for reasoning about program equivalence in
ML-like languages—that is, languages that combine features like
higher-order functions, recursive types, abstract types, and general
mutable references. Two of the most prominent types of techniques
to have emerged are bisimulations and Kripke logical relations
(KLRs). While both approaches are powerful, their complementary
advantages have led us and other researchers to wonder whether
there is an essential tradeoff between them. Furthermore, both ap-
proaches seem to suffer from fundamental limitations if one is
interested in scaling them to inter-language reasoning.

In this paper, we propose relation transition systems (RTSs),
which marry together some of the most appealing aspects of KLRs
and bisimulations. In particular, RTSs show how bisimulations’
support for reasoning about recursive features via coinduction can
be synthesized with KLRs’ support for reasoning about local state
via state transition systems. Moreover, we have designed RTSs to
avoid the limitations of KLRs and bisimulations that preclude their
generalization to inter-language reasoning. Notably, unlike KLRs,
RTSs are transitively composable.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms Languages, Theory, Verification

Keywords Kripke logical relations, bisimulations, relation transi-
tion systems, contextual equivalence, higher-order state, recursive
types, abstract types, transitivity, global vs. local knowledge

1. Introduction
One of the grand challenges in programming language semantics is
to find scalable techniques for reasoning about the observational
equivalence of programs. Even when the intuitive principles of
local reasoning suggest that a change to some program module
should not be observable to any client, it can be fiendishly difficult
to establish that formally. Denotational semantics offers a tractable
way of proving equivalence of programs by showing that they mean
the same thing in some adequate model of their language. How-
ever, traditional denotational methods do not scale well to general-
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purpose languages like ML that combine support for functional,
value-oriented programming (e.g., higher-order functions, poly-
morphism, abstract data types, recursive types) with support for
imperative, effect-oriented programming (e.g., mutable state and
control effects, among other things).

Fortunately, in recent years, there has been a groundswell of
interest in the problem of developing effective methods for reason-
ing about program equivalence in ML-like languages. A variety of
promising techniques have emerged [29, 36, 19, 20, 34, 33, 23,
5, 35, 12, 25], and while some of these methods are denotational,
most support direct reasoning about the operational semantics of
programs. In particular, there has been a healthy rivalry between
techniques based on Kripke logical relations (KLRs) [29, 5, 26,
13, 12, 17, 37] and bisimulations [36, 19, 34, 33, 23, 35].

This paper is motivated by two high-level concerns:

(1) KLRs and bisimulations offer complementary advantages,
which we would like to synthesize in a single proof method.

(2) There is a specific sense in which both KLRs and bisimulations
appear to be fundamentally limited, and some fresh idea seems
necessary to circumvent this limitation.

Concerning motivation (1): The latest KLR techniques [5, 12]
use state transition systems to provide more flexible principles for
reasoning about local state than bisimulations do. However, in or-
der to account for the presence of recursive features, such as re-
cursive types and higher-order state, KLRs require tedious manip-
ulation of tricky “step-indexed” constructions [6, 2].1 In contrast,
bisimulation techniques use coinduction to model such recursive
features very elegantly, but their support for reasoning about local
state is weaker than KLRs’ (see Section 9). These complementary
strengths have led us and other researchers to wonder whether there
is some fundamental tradeoff between KLRs and bisimulations.

Concerning motivation (2): We are interested in scaling equa-
tional reasoning techniques to the setting of inter-language reason-
ing, i.e., reasoning about equivalences between programs in dif-
ferent languages. Inter-language reasoning is essential to the de-
velopment of compositional certified compilers [7, 17], and may
also have applications to the verification of multi-language (inter-
operating) programs [4]. Unfortunately, both KLR and bisimulation
methods rely on technical devices that prevent them (it seems) from
scaling to the inter-language setting. Specifically, in order to deal
with higher-order functions, bisimulation methods employ various
“syntactic” devices that restrict the applicability of the methods
to single-language reasoning (see Section 3 for details). KLRs, in
contrast, have been shown to generalize to inter-language reason-
ing [17], but there remains a key problem: KLR proofs are in gen-
eral not transitively composable, at least in part due to the use of
step-indexed constructions as mentioned above. In order to prove
compositional correctness of multi-phase compilers for ML-like

1 This has led to a series of papers—some written by authors of the present
paper—on how to hide the “ugliness” of step-indices [11, 13, 8].
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languages, it is crucial to be able to prove the correctness of each
phase individually and then compose them transitively, so KLRs’
lack of transitivity is a showstopper for that application.

1.1 Contributions
In this paper, we present a new technique for reasoning about
program equivalence, called Relation Transition Systems (RTSs).
RTSs marry together some of the most appealing features of KLRs
and bisimulations, while circumventing their limitations.

In particular, RTSs show how the use of state transition systems
(from KLRs) can be synthesized with the coinductive, step-index-
free style of reasoning (from bisimulations), thereby enabling clean
and elegant proofs about local state and recursive features simul-
taneously. Thus, concerning the long-standing open question of
whether there is a fundamental tradeoff between KLRs and bisim-
ulations, we provide a definitive answer: no, there is not.

We explore RTSs here in the setting of Fµ!—a CBV λ-calculus
with general recursive types, products, sums, universals, existen-
tials, and general references [5]—as this provides a clear point of
comparison with recent work on both KLRs [12] and bisimula-
tions [35]. With one notable exception (see Section 9), we believe
RTSs are capable of reasoning effectively about all the challeng-
ing Fµ! equivalences studied in the aforementioned papers, and we
demonstrate RTSs’ effectiveness on several such equivalences.

Although we do not study inter-language reasoning in this pa-
per, we have designed RTSs so as to avoid the use of any techni-
cal devices that would preclude a future generalization to the inter-
language setting. To achieve this goal, we had to come up with a
novel way of accounting for higher-order functions in the context
of a coinductive bisimulation-like proof method, without relying on
the “syntactic” devices that previous bisimulation methods use. Our
solution—a new technique we call global vs. local knowledge—
is one of the major contributions of this paper. Relying heavily on
this new technique, we have proven that RTS equivalence proofs
are transitively composable, which suggests they may serve as a
superior foundation to KLRs for inter-language reasoning.

The remainder of this paper is structured as follows. In Sec-
tion 2, we define Fµ!, the language under consideration. In Sec-
tion 3, we motivate our key novel technical idea of global vs. lo-
cal knowledge. We then present the formal development of RTSs.
For pedagogical reasons, we begin in Section 4 with the presen-
tation of a relational model for λµ (a pure subset of Fµ! with re-
cursive types), and then proceed in Sections 5 and 6 to extend that
model to handle the full language Fµ!. In Section 7, we demonstrate
the expressive power of our method by proving several challenging
equivalences from the literature. In Section 8, we briefly sketch our
proof of transitivity for the λµ model. (The transitivity proof for
full Fµ! is complex and sophisticated, meriting a detailed discus-
sion that is beyond the scope of the present paper. We will present
it in a follow-on paper.) Finally, in Sections 9 and 10, we discuss
related and future work, and conclude.

Our online appendix provides detailed proofs of the metatheory
of RTSs, both on paper and machine-checked in Coq.

2. The Language Fµ!

In Figure 1, we present the syntax and the operational semantics of
Fµ!, a completely standard PCF-like language extended with prod-
ucts, sums, universals, existentials, general recursive types, and
general reference types. Formally, we distinguish between “static”
programs p, which are explicitly typed and do not include memory
locations ` (since the programmer cannot write them), and “dy-
namic” expressions (or terms) e, which include memory locations
and in which all type information is erased. The static semantics of
Fµ! (see the online appendix) defines the program typing judgment
∆; Γ ` p : τ , wherein ∆ ::= · | ∆, α and Γ ::= · | Γ, x : τ , while

τbase ::= unit | int | bool

τ ∈ Typ ::= α | τbase | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | µα. τ |
∀α. τ | ∃α. τ | ref τ

p ∈ Prog ::= x | 〈〉 | n | tt | ff | if p0 then p1 else p2 |
〈p1, p2〉 | p.1 | p.2 | inj1τ p | inj2τ p |
(case p of inj1 x⇒ p1 | inj2 x⇒ p2) | rollτ p |
unroll p | fix f(x:τ1):τ2. p | p1 p2 | Λα. p | p[τ ] |
pack 〈τ, p〉 as ∃α. τ ′ | unpack p1 as 〈α, x〉 in p2 |
ref p | !p | p1 := p2 | p1 == p2

v ∈ Val ::= x | 〈〉 | n | tt | ff | 〈v1, v2〉 | inj1 v | inj2 v | roll v |
fix f(x). e | Λ. e | pack v | `

e ∈ Exp ::= v | if e0 then e1 else e2 |
〈e1, e2〉 | e.1 | e.2 | inj1 e | inj2 e |
(case e of inj1 x⇒ e1 | inj2 x⇒ e2) | roll e | unroll e |
e1 e2 | e[] | pack e | unpack e1 as x in e2 |
ref e | !e | e1 := e2 | e1 == e2

K ∈ Cont ::= • | if K then e1 else e2 | 〈K, e〉 | 〈v,K〉 |K.1 |K.2 |
inj1 K | inj2K | caseK of[inji x⇒ ei] |
roll K | unroll K |K e | v K |K[] |
pack K | unpack K as x in e |
ref K | !K |K := e | v := K |K == e | v == K

h ∈ Heap ::= Loc
fin
⇀ CVal Loc = {`1, `2, . . .}

h, if tt then e1 else e2 ↪→ h, e1
h, if ff then e1 else e2 ↪→ h, e2

h, 〈v1, v2〉.i ↪→ h, vi
h, case injj v of[inji x⇒ ei] ↪→ h, ej [v/x]

h, (fix f(x). e) v ↪→ h, e[(fix f(x). e)/f, v/x]
h, (Λ. e)[] ↪→ h, e

h, unpack (pack v) as x in e ↪→ h, e[v/x]
h, unroll (roll v) ↪→ h, v

h, ref v ↪→ h ] [`7→v], ` where ` /∈ dom(h)
h ] [`7→v], !` ↪→ h ] [`7→v], v

h ] [`7→v], ` := v′ ↪→ h ] [`7→v′], 〈〉
h, ` == ` ↪→ h, tt
h, ` == `′ ↪→ h,ff where ` 6= `′

h,K[e] ↪→ h′,K[e′] where h, e ↪→ h′, e′

Figure 1. The syntax and semantics of Fµ!.

the dynamic semantics says how to execute expressions e. There
is a straightforward erasure of programs p into expressions, writ-
ten |p|; and when discussing equivalence informally, we will often
gloss over the program/expression distinction.

Using evaluation contexts (aka continuations) K, we define the
small-step reduction relation, ↪→, between configurations consist-
ing of a heap and an expression. The reduction rules shown in Fig-
ure 1 are deterministic except for the rule for allocating reference
cells, which is completely non-deterministic. For technical reasons,
we find it convenient to assume that allocation is in fact determinis-
tic, but we do not care which deterministic allocator is used. Thus,
we will assume that ↪→ is some unknown determinization of the
rules shown in the figure, and our model will be parametric w.r.t.
that determinization. It is easy to show that if two Fµ! programs are
contextually equivalent under all deterministic allocators, then they
are contextually equivalent under a non-deterministic allocator, so
nothing is lost by this assumption.

In the following, we write ↪→∗ for the reflexive, transitive clo-
sure of ↪→. We also say that a configuration diverges, denoted
h, e↑, if it can perform an infinite sequence of ↪→-reductions.

Two programs are contextually equivalent if, under any well-
typed closing context C (as defined in the appendix), they either
both terminate or both diverge.

Definition 1 (Contextual equivalence).
Let ∆; Γ ` p1 : τ and ∆; Γ ` p2 : τ . Then:
∆; Γ ` p1 ∼ctx p2 : τ

def
= ∀C, h, τ ′.

` C : (∆; Γ; τ) ; (·; ·; τ ′) =⇒ (h, |C[p1]|↑ ⇐⇒ h, |C[p2]|↑)
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3. Global vs. Local Knowledge
Our new method of relation transition systems (RTSs) is essentially
coinductive, following the style of existing bisimulation techniques
in many respects. As explained in the introduction, coinductive
reasoning makes it easy to deal with recursive features (such as
recursive types and higher-order state) without requiring the use of
step-indexed constructions.

The two main ways in which RTSs differ from existing bisimu-
lation techniques are in their treatment of:

Local state. From recent work on KLRs [5, 12], we borrow the
idea of using state transition systems (STSs) to establish invari-
ants on how a module’s local state may evolve over time. STSs
enable one to encode more flexible state invariants than are ex-
pressible using “environmental” bisimulations [33, 35].

Higher-order functions. In order to reason about higher-order
functions in a coinductive style, but without confining ourselves
to single-language reasoning, we employ a novel technical idea:
global vs. local knowledge.

The treatment of local state using state transition systems follows
prior work very closely, so we postpone further discussion of that
idea until Section 5 and focus attention here instead on motivating
our new idea of global vs. local knowledge.

Coinductive Reasoning One way of formulating contextual
equivalence is as the largest adequate congruence relation [28].
Being adequate means that if two terms of base type are related,
then either they both diverge (run forever) or they both evaluate to
the same value (e.g., if one term evaluates to 3, then the other must
evaluate to 3 as well). Being a congruence means the relation is
closed under all the constructs of the language (e.g., if f1 and f2

are related at τ ′ → τ , and e1 and e2 are related at τ ′, then f1 e1

and f2 e2 are related at τ ).
To prove using coinduction that two terms e1 and e2 are con-

textually equivalent at type τ , one must exhibit a (type-indexed)
term relation L that contains (τ, e1, e2) and then prove that L is
an adequate congruence. The relation L serves as a “generalized
coinduction hypothesis”, by which one proves equivalence for all
pairs of terms related by L simultaneously. However, while it is
possible for one to employ this kind of “brute-force” coinductive
proof, it is typically not very pleasant, because proving a relation
to be a congruence directly can be incredibly tedious.

Bisimulation techniques help make coinductive proofs manage-
able by lightening the congruence proof burden. Typically, this is
achieved by only requiring one to show that L is closed under type-
directed uses (i.e., evaluation or deconstruction) of the terms it re-
lates. This results in proof obligations that look like the following:

(1) If (τ, e1, e2) ∈ L, then either e1 ↑ and e2 ↑,
or ∃v1, v2. e1 ↪→∗ v1 and e2 ↪→∗ v2 and (τ, v1, v2) ∈ L.

(2) If (int, v1, v2) ∈ L, then ∃n. v1 = v2 = n.

(3) If (τ ′ × τ ′′, v1, v2) ∈ L, then ∃v′1, v′′1 , v′2, v′′2 . vi = 〈v′i, v′′i 〉
and (τ ′, v′1, v

′
2) ∈ L and (τ ′′, v′′1 , v

′′
2 ) ∈ L.

(4) If (µα. τ, v1, v2) ∈ L, then ∃v′1, v′2. vi = roll v′i
and (τ [µα. τ/α], v′1, v

′
2) ∈ L.

The most problematic proof obligation is the one for function
values. It usually looks something like this (simplifying fix to λ):

(5) If (τ ′ → τ, v1, v2) ∈ L, then ∃x, e1, e2. vi = λx.ei and
∀v′1, v′2. (τ ′, v′1, v

′
2) ∈ G ⇒ (τ, e1[v′1/x], e2[v′2/x]) ∈ L.

In other words, ifL relates function values v1 and v2, then applying
them to any “equivalent arguments” v′1 and v′2 should produce
results that are also related by L. The big question is: what is this
relation G from which the arguments v′1 and v′2 are drawn?

Global vs. Local Knowledge First, some (non-standard) termi-
nology: There are many equivalent terms in the world, but when we
do a bisimulation proof, we only make a claim about some of them.
So let us make a distinction between “local” and “global” knowl-
edge about term equivalence. The relation L describes our local
knowledge: these are the terms whose equivalence we aim to vali-
date in our proof. The relation G, on the other hand, embodies the
global knowledge about all terms that are equivalent in the world. In
proof obligation (5), we draw equivalent function arguments from
G (rather than L) since they might indeed originate from “some-
where else” in the program (some unknown client code), and thus
our local knowledge L may not be sufficient to justify their equiv-
alence. This leaves us with the question of how to define G.

Whence Global Knowledge? Coming up with a sound (and prac-
tically usable) choice forG is far from obvious, and existing bisim-
ulation methods make a variety of different choices. For example:

• Applicative bisimulations [1] define G to be the syntactic iden-
tity relation on closed values.

This is a nice, simple choice, which works well for pure λ-calculus.
Unfortunately, for higher-order stateful languages like Fµ!, it is
unsound [18], so more advanced approaches are needed:

• Environmental bisimulations [36, 19, 33, 35] take G to be the
“context closure” of L, i.e., the relation that extends the syntac-
tic identity relation on closed values by including closures of
open values v with pairs of values (w1, w2) that are related by
L (formally: {(σ, v[w1/y], v[w2/y]) | {(σ′, w1, w2)} ⊆ L}).2

• Normal form (or open) bisimulations [21, 34, 22, 23] sidestep
the whole question by choosing a fresh variable name x and
representing equivalent arguments by the same x. As a result,
these bisimulations are built over open terms, and proof obli-
gation (1) above must be updated to account for the possibility
that the evaluations of e1 and e2 get stuck trying to deconstruct
the same free variable x (more about that below).

All of these methods define global knowledge in a very “syntactic”
way that is well suited to proving contextual equivalences. How-
ever, as explained in the introduction, we wish to develop a method
that will be capable of generalizing to the setting of inter-language
reasoning, where G may relate different languages. We therefore
seek an account of global knowledge that is more “semantic”.

Parameterizing Over Global Knowledge The essential difficulty
in choosing G has to do with higher-order functions: if the argu-
ment type τ ′ is (or contains) a function type, then equivalence at
τ ′ is very hard to characterize directly.3 Our solution is simple: we
don’t try to define the global knowledge at all; instead, we take G
to be a parameter of our model!

Our key observation is that it is not necessary to pin down
exactly what G is, so long as we make our coinductive proof for
L as parametric as possible with respect to it. (We will clarify what
“as parametric as possible” means in Section 4.) This parametricity
makes our proofs quite robust by allowing G to be instantiated in
a variety of different ways. In particular, we make no assumptions
whatsoever about the values that G relates at function type. For all
we know, G might even include “garbage” like (int→ int, 4, tt).4

Our approach can be viewed as a more semantic account of
the idea behind normal form bisimulations (see above), which is

2 We are glossing over a lot of details here. To be precise, environmental
bisimulations are actually sets of L’s. For more details, see Section 9.
3 Conversely, if τ ′ were arrow-free (e.g., in a first-order language), it would
be easy to characterize equivalence at τ ′ directly.
4 The ability to instantiate G with a “trashy” relation is surprisingly useful.
We will make critical use of it in our transitivity proof in Section 8.
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to model “equivalent arguments” as black boxes about which noth-
ing is known. Consequently, just as for normal form bisimulations,
we need to adapt proof obligation (1) above to account for the pos-
sibility that e1 and e2 get stuck. For normal form bisimulations, e1

and e2 may get stuck if they try to deconstruct a free variable x, and
so normal form bisimulations loosen proof obligation (1) to allow
e1 and e2 to reduce to terms of the form K1[x v1] and K2[x v2],
where K1 and K2 are equivalent continuations and v1 and v2 are
equivalent values. In our case, e1 and e2 may get stuck if they try
to apply some bogus functions that are equivalent according to the
global knowledge but that turn out (like 4 and tt) to not even be
functions. Hence, we will allow e1 and e2 to reduce to terms of the
form K1[f1 v1] and K2[f2 v2], where K1 and K2 are equivalent
continuations, and where {(τ ′ → τ, f1, f2), (τ ′, v1, v2)} ⊆ G. In
this way, the parameter G serves as a semantic analogue of free
variables in normal form bisimulations.

Intuitively, although the idea of parameterizing over the global
knowledge may seem surprising at first, we find it to be comfort-
ingly reminiscent of Girard’s method for modeling System F [14].
In Girard’s method, a potential cycle in the definition of the log-
ical relation for impredicative universal types ∀α.τ is avoided by
parameterizing over an arbitrary relational interpretation of the ab-
stract type α. In our scenario, the problem of how to define the
global knowledge is avoided by parameterizing over an arbitrary
relational interpretation of function types. In essence, we are treat-
ing a function type τ1 → τ2 as an unusual kind of abstract type:
the coinductive proofs about different “modules” in a program all
treat the global interpretation of τ1 → τ2 abstractly, while simulta-
neously they each contribute to defining it.

Parameterizing over the global knowledge turns out to be very
useful. First and foremost, it makes it easy to soundly compose
our coinductive proofs for different “modules” together (and hence
prove soundness of our method w.r.t. contextual equivalence). Sec-
ond, it enables us to reason about open terms (Section 4) and
higher-order state invariants (Section 6), replacing the use of con-
text closure or free variables for those purposes in environmental
and normal form bisimulations, respectively. Finally, it is the key
to establishing transitivity for our proof method (Section 8).

4. Warmup: A Relational Model for λµ

To ease the presentation of relation transition systems (RTSs), we
begin in this section by using the idea of global vs. local knowledge,
motivated in the previous section, to define a relational model
for λµ, a sub-language of Fµ! containing base, function, product,
sum, and recursive types, but not universal, existential, or reference
types. This model cannot properly be called an RTS model, since
it does not include any transition systems! The transition systems
will come into play when dealing with state in Sections 5 and 6.
However, by ignoring the transition-systems aspect of RTSs for the
time being, we can focus attention on other aspects of the model.

Figure 2 lists the various semantic domains we will be using.
Here, Type denotes the types of λµ, and CType denotes closed
types (i.e., types with no free type variables α). The next four
are standard: relations on closed values, closed expressions, closed
continuations, and heaps, indexed by the relevant types (in case of
KRel, input and output types).

Next, we define what we call the flexible types, CTypeF, along
with the flexible relations, VRelF, which are just relations on
closed values indexed by such flexible types. Whereas bisimulation
methods typically allow terms of arbitrary type to be included
in the bisimulation, we find it useful to restrict local and global
knowledges to relate only values of “flexible” types. Intuitively,
these are the types at which value equivalence may depend on
module-specific knowledge. In Fµ!, there will be several kinds of
flexible types, but in λµ, the only flexible types are function types.

τ ∈ Type ::= α | τbase | τ1 → τ2 | τ1 × τ2 | τ1 + τ2 | µα. τ
VRel := CType→ P(CVal× CVal)
ERel := CType→ P(CExp× CExp)
KRel := CType× CType→ P(CCont× CCont)
HRel := P(Heap×Heap)
CTypeF := { (τ1 → τ2) ∈ CType }
VRelF := CTypeF→ P(CVal× CVal)

Figure 2. Semantic domains for λµ.

R(τ) := R(τ) if τ ∈ CTypeF
R(τbase) := IDτbase

R(τ1 × τ2) := { ((v1, v
′
1), (v2, v

′
2)) |

(v1, v2) ∈ R(τ1) ∧ (v′1, v
′
2) ∈ R(τ2) }

R(τ1 + τ2) := { (inj1 v1, inj1 v2) | (v1, v2) ∈ R(τ1) } ∪
{ (inj2 v1, inj2 v2) | (v1, v2) ∈ R(τ2) }

R(µα. τ) := { (roll v1, roll v2) | (v1, v2) ∈ R(τ [µα. τ/α]) }

Figure 3. Value closure for λµ (if R ∈ VRelF, then R ∈ VRel).

beta(e) :=

{
e′ if e ↪→ e′

undef otherwise

FunVal := { f ∈ CVal | ∀v. beta(f v) defined }
R′ ⊇ R := ∀τ. R′(τ) ⊇ R(τ)

LK := {L ∈ VRelF→VRelF | L is monotone w.r.t. ⊆ ∧
∀G.∀(f1, f2)∈L(G)(τ1→τ2). f1, f2 ∈ FunVal }

GK(L) := {G ∈ VRelF | G ⊇ L(G) }

Figure 4. Definition of local and global knowledge for λµ.

In contrast, value equivalence at the remaining types—base,
product, sum, and recursive types, which we call rigid—is fixed
and agreed upon by all modules once the meaning of the flexible
types is defined. This is achieved by a closure operation that takes a
relationR ∈ VRelF and returns its closureR ∈ VRel. It is defined
as the least fixed-point of the set of equations in Figure 3. Note that
R only occurs covariantly, so R is inductively well defined, even
though the type gets bigger on the r.h.s. in the case of µα. τ .

Local and Global Knowledge In λµ, a local knowledge L ∈ LK
is essentially a flexible relation, except that, as shown in Figure 4,
this relation is actually parameterized by the global knowledge,
G. In effect, L(G) describes the values that we wish to prove
are equivalent, assuming that G correctly represents the global
knowledge. This parameterization is necessary in order to reason
about open terms, and we will see its utility below in the proof
of compatibility for fix. We require that L is monotone w.r.t. G:
intuitively, passing in a larger global knowledge should never result
in fewer terms being related by L.

We also require that the values related by the local knowledge
at function type are indeed functions, in the sense that their appli-
cation to an arbitrary value should not be a stuck configuration, but
should reduce at least for one step. This is a technical requirement
that is used in our transitivity proof in Section 8.

We want to restrict attention to global knowledges that are
closed w.r.t. the local knowledge in question: For a particular L, we
define GK(L) to be the set of flexible relations G s.t. G ⊇ L(G).
This requirement makes sense since the global knowledge must by
definition be a superset of any local knowledge. Observe, however,
that we do not restrict what other values G relates. Indeed, G may
relate values at function type that are not actually functions, or that
are obviously inequivalent (e.g., 4 and tt, cf. Section 3).

Relating Expressions and Continuations Figure 5 shows how
equivalence is defined for expressions, e, and continuations, K.
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E(G)(τ) := { (e1, e2) | (e1↑ ∧ e2↑) ∨ (∃v1, v2. e1 ↪→∗ v1 ∧ e2 ↪→∗ v2 ∧ (v1, v2) ∈ G(τ))

∨ (∃τ ′,K1,K2, e
′
1, e
′
2. e1 ↪→∗ K1[e′1] ∧ e2 ↪→∗ K2[e′2] ∧ (e′1, e

′
2) ∈ S(G,G)(τ ′) ∧ (K1,K2) ∈ K(G)(τ ′, τ)) }

K(G)(τ1, τ2) := { (K1,K2) | ∀(v1, v2) ∈ G(τ1). (K1[v1],K2[v2]) ∈ E(G)(τ2) }
S(Rf , Rv)(τ) := { (f1 v1, f2 v2) | ∃τ ′. (f1, f2) ∈ Rf (τ ′ → τ) ∧ (v1, v2) ∈ Rv(τ ′) }
consistent(L) := ∀G ∈ GK(L). ∀(e1, e2) ∈ S(L(G), G)(τ). (beta(e1), beta(e2)) ∈ E(G)(τ)

Γ ` e1 ∼L e2 : τ := consistent(L) ∧ ∀G ∈ GK(L). ∀γ1, γ2 ∈ dom(Γ)→ CVal.
(∀x:τ ′ ∈ Γ. (γ1(x), γ2(x)) ∈ G(τ ′)) =⇒ (γ1e1, γ2e2) ∈ E(G)(τ)

Γ ` e1 ∼ e2 : τ := ∃L. Γ ` e1 ∼L e2 : τ

Figure 5. Mutually coinductive definitions of (closed) expression equivalence, E ∈ VRelF → ERel, and continuation equivalence,
K ∈ VRelF→ KRel, and definitions of consistency and program equivalence for λµ.

Specifically, we introduce two new relations, E ∈ VRelF→ ERel
and K ∈ VRelF→ KRel, which are defined coinductively.

Given a type τ , a local knowledge L ∈ LK, and a global
knowledgeG ∈ GK(L), we say that two expressions are “locally”
equivalent, written (e1, e2) ∈ E(G)(τ), if they either both diverge
or both terminate producing related values. Along the way, how-
ever, they may make calls to “external” functions, that is, functions
that are related by G, but not necessarily by the local knowledge
L(G). More precisely, we say two closed expressions are equiva-
lent if and only if one of the following three cases holds:

1. Both expressions diverge (run forever).

2. Both expressions run successfully to completion, producing
related values.

3. Both expressions reduce after some number of steps to some
expressions of the form Ki[fi vi], where both the fi and vi are
related by the global knowledge G at the appropriate types,
and the continuations, K1 and K2, are equivalent. We say
that two continuations are equivalent if instantiating them with
equivalent values (according to the global knowledge G) yields
equivalent expressions.

As E and K are defined mutually dependent over a complete
lattice and all operations involved are monotone, we can take the
meaning of these definitions to be either the least or the greatest
fixed-point. We choose the greatest fixed-point, corresponding to
coinduction, because this can in principle relate more terms and is
somewhat easier to work with.5

Consistency and Program Equivalence We say that a local
knowledge L is consistent (in Figure 5) if and only if any two
functions that it declares equivalent do in fact beta-reduce to equiv-
alent expressions when applied to equivalent arguments. In the
formal definition, we parameterize over an arbitrary global knowl-
edge G ∈ GK(L); the functions being tested for equivalence are
drawn from the local knowledge, L(G), while the arguments to
which they are applied are drawn from the global knowledge, G.

We say that two expressions are equivalent at type τ in the
context Γ, written Γ ` e1 ∼ e2 : τ , if and only if there exists a
consistent local knowledge, L, that shows that γ1e1 and γ2e2 are
equivalent at type τ for arbitrary value substitutions γ1 and γ2 that
are related at Γ by an arbitrary global knowledge G extending L.

Two programs are equivalent simply if their type-erased ver-
sions are equivalent expressions: Γ ` |p1| ∼ |p2| : τ .

4.1 Properties of Program Equivalence and Soundness
We move on to some properties of our constructions.

5 In particular, were we to extend the language with other forms of recursion
(such as while loops or primitive recursion), the coinductive interpretation
would be essential for proving congruence of expression equivalence.

Γ, f :τ ′ → τ, x:τ ′ ` e1 ∼ e2 : τ

Γ ` fix f(x). e1 ∼ fix f(x). e2 : τ ′ → τ
FIX

Γ ` e1 ∼ e2 : τ ′ → τ Γ ` e′1 ∼ e′2 : τ ′

Γ ` e1 e
′
1 ∼ e2 e

′
2 : τ

APP

Γ ` p : τ

Γ ` |p| ∼ |p| : τ REFL
Γ ` e2 ∼ e1 : τ

Γ ` e1 ∼ e2 : τ
SYMM

Γ ` e1 ∼ e2 : τ ` C : (Γ; τ) ; (Γ′; τ ′)

Γ′ ` C[e1] ∼ C[e2] : τ ′
CONG

Γ, x:τ ′ ` e1 ∼ e2 : τ Γ ` v1 ∼ v2 : τ ′

Γ ` e1[v1/x] ∼ e2[v2/x] : τ
SUBST

Γ ` e′1 ∼ e′2 : τ
∀γ. γe1 ↪→∗ γe′1 ∀γ. γe2 ↪→∗ γe′2

Γ ` e1 ∼ e2 : τ
EXPAND

Γ, x:τ ′ ` e1 ∼ e2 : τ Γ ` v1 ∼ v2 : τ ′

Γ ` (λx. e1) v1 ∼ e2[v2/x] : τ
BETA

Figure 6. Some basic properties of our equational model.

The following lemma states that consistency of local knowl-
edges is preserved under (pointwise) union. This is important for
ensuring that equivalence proofs for different subterms, which rely
on different local knowledges, can be soundly composed.

Lemma 1.
If consistent(L) and consistent(L′), then consistent(L ∪ L′).

Figure 6 shows some of the basic properties of our program
equivalence relation. First, we have a set of rules stating that equiv-
alence is compatible with all the language constructs. These rules
state that if two terms start with the same term constructor and
their immediate subterms are component-wise equivalent, then so
are the composite terms. For brevity, we just present the rules for
recursive function definition (FIX) and function application (APP),
whose proofs are the most interesting.

We briefly sketch the proof of the FIX rule. From the premise,
there exists L such that Γ, f :τ ′ → τ, x:τ ′ ` e1 ∼L e2 : τ . Define

L′(G) := { (τ ′ → τ, γ1fix f(x). e1, γ2fix f(x). e2) |
γi ∈ dom(Γ)→ CVal ∧
∀y:τ ′ ∈ Γ. (γ1(y), γ2(y)) ∈ G(τ ′) }.

Note here how the parameterization of L′ over G provides it with
a source from which to draw the closing substitutions γ1 and γ2.

The goal now is to prove

Γ ` fix f(x). e1 ∼ fix f(x). e2 : τ ′ → τ .

Showing that L′ (and thus L∪L′) relates any appropriately closed
instances of these two values is simply a matter of unfolding def-
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initions. It therefore remains to establish consistent(L ∪ L′). By
Lemma 1, this boils down to showing

(γ′1e1, γ
′
2e2) ∈ E(G)(τ)

for any G ∈ GK(L ∪ L′), where

• γi ∈ dom(Γ)→ CVal,

• ∀y:τ ′ ∈ Γ. (γ1(y), γ2(y)) ∈ G(τ ′),

• (v1, v2) ∈ G(τ ′),
• γ′i = γi, f 7→(γifix f(x). ei), x 7→vi.

Finally, as (γ1fix f(x). e1, γ2fix f(x). e2) ∈ L′(G)(τ ′ → τ) ⊆
G(τ ′ → τ), we can instantiate Γ, f :τ ′ → τ, x:τ ′ ` e1 ∼L e2 : τ
with γ′i and are done.

The proof of rule APP relies on Lemma 1 as well, in order to
show that the consistent local knowledges for its two premises com-
bine to form a consistent local knowledge for the conclusion. In
addition, the proof relies on the following lemma about plugging
equivalent expressions or continuations into equivalent continua-
tions, proved by mutual coinduction and case analysis.

Lemma 2. If (K1,K2) ∈ K(G)(τ ′, τ), then:

1. (e1, e2) ∈ E(G)(τ ′)
=⇒ (K1[e1],K2[e2]) ∈ E(G)(τ).

2. (K′1,K
′
2) ∈ K(G)(τ ′′, τ ′)

=⇒ (K1[K′1],K2[K′2]) ∈ K(G)(τ ′′, τ).

To prove APP, we apply the first case of this lemma with ei :=
γi ei and Ki := • γie′i, which leaves us to prove K1 and K2

to be equivalent according to K. Unfolding the definition of K,
we have to show that for arbitrary equivalent values v1 and v2,
(v1 γ1e

′
1, v2 γ2e

′
2) is in E, for which we apply Lemma 2 again

with ei := γi e
′
i and Ki := vi •. Then we are left to prove v1 •

and v2 • equivalent, i.e., that (v1 v
′
1, v2 v

′
2) is in E for arbitrary

equivalent values v′1 and v′2, which follows from the third disjunct
of the E definition.

As a consequence of these “compatibility” rules, by a straight-
forward induction on the typing derivation, we can show that equiv-
alence is reflexive on well-typed programs (rule REFL). This cor-
responds to the “fundamental property” of logical relations. Equiv-
alence is also symmetric: this follows trivially from the symmet-
ric nature of our definition. Likewise, by induction on the typing
derivation of contexts, we can show that our equivalence is a con-
gruence: if two equivalent terms are placed in the same contexts,
the resulting compositions are equivalent.

Next, we have a substitutivity property for values, an expansion
law for pure execution steps, and finally a direct corollary of these
two, namely β-equivalence (on value arguments).

We move to a key lemma about E. Given a consistent local
knowledge L, if the global knowledge extends L with some ad-
ditional external knowledge R, then the third case in the definition
of E can be restricted so that it applies only to external function
calls (i.e., calls to functions related by R, not by L).

Lemma 3 (External call). For any consistent(L), any G ∈
GK(L) and R ∈ VRelF, we have:

G = L(G) ∪R =⇒ E(G) = ER(G)

where the definition of ER is the same as E except that, in the third
disjunct, S(G,G) is replaced by S(R, G).

The ⊇ follows directly from the observation that R ⊆ G. To
prove the other direction, we essentially have to eliminate all uses
of the third disjunct of E where the functions being invoked are
related by G \ R. Since all such functions are by definition in

L(G), and since we know consistent(L), we can in fact always
“inline” the equivalence proofs for all such function calls.

A corollary of Lemma 3 (for G = µR.L(R) and R = ∅)
is adequacy, which says that equivalent closed terms either both
diverge or both terminate returning proper values. In particular,
they never get stuck during evaluation.

Lemma 4 (Adequacy). If ` e1 ∼ e2 : τ , then:

(e1 ↑ ∧ e2 ↑) ∨ (∃v1, v2. e1 ↪→∗ v1 ∧ e2 ↪→∗ v2)

Finally, combining adequacy and congruence, we show our
main soundness theorem: for well-typed programs, our equivalence
relation is included in contextual equivalence.

Theorem 5 (Soundness). Let Γ ` p1 : τ and Γ ` p2 : τ .
If Γ ` |p1| ∼ |p2| : τ , then Γ ` p1 ∼ctx p2 : τ .

4.2 Example
Consider the following example concerning streams as functions
(taken from Sumii and Pierce [36]):

τ := µα. unit→ int× α
ones : unit→ int× τ := fix f(x). 〈1, roll f〉
twos : unit→ int× τ := fix f(x). 〈2, roll f〉
succ : τ → τ := fix f(s). let 〈n, s′〉 = unroll s 〈〉 in

roll λx. 〈n+1, f s′〉
The goal is to show ` roll twos ∼ succ (roll ones) : τ .

Constructing a Suitable Local Knowledge Note that we have

succ (roll ones) ↪→∗ roll twos′

for twos′ := λx. 〈1 + 1, succ (roll ones)〉. We define a local
knowledge L that relates exactly twos and twos′:

L(G) := { (unit→ int× τ , twos, twos′) }

Proving Its Consistency For G ∈ GK(L) we must show:

(〈2, roll twos〉, 〈1+1, succ (roll ones)〉) ∈ E(G)(int× τ)

Using the second case in E and the definition of G, this reduces
to showing (2, 2) ∈ G(int) and (roll twos, roll twos′) ∈ G(τ).
The former is trivial. The latter is equivalent to (twos, twos′) ∈
G(unit → int× τ), which holds by construction because G ex-
tends L(G).

Showing the Programs Related By It It remains to show:

∀G ∈ GK(L). (roll twos, succ (roll ones)) ∈ E(G)(τ)

Again using the second case in E we end up having to show
(roll twos, roll twos′) ∈ G(τ), which we have already done above.

5. Local State Transition Systems: A Review
In the next section, we will extend our model to account for abstract
types and state. The key extension there will be to incorporate sup-
port for state transition systems (STSs) in the style of Dreyer et al.’s
recent work on KLRs [5, 12]. We use this section to review the ba-
sic idea behind that work by means of a concrete example.

Perhaps the simplest example that demonstrates the utility of
STSs for reasoning about local state is the “well-bracketed state
change” example, due originally to Jacob Thamsborg (which is
itself a variant of Pitts and Stark’s “awkward” example) [5, 29]:

τ := (unit→ unit)→ int
v1 := λf. (f 〈〉; f 〈〉; 1)
e2 := let x = ref 0 in λf. (x := 0; f 〈〉;x := 1; f 〈〉; !x)

(Here and in later examples we write λx. e for fix f(x). e when f
is not free in e.) The goal is to show that v1 and e2 are contextually
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equivalent (at the type τ ). To see intuitively why they are equiv-
alent, observe that e2 allocates a fresh (local) location x, which
initially points to 0, and then returns a function value—call it v2.
When v1 and v2 are applied (at any point in the future) to some call-
back function f , they both call f twice. Before the first and second
calls, v2 will set x to 0 and 1, respectively. Thus, even if the second
call to f internally applies v2 again, the last thing x will get set to
(before it is dereferenced) is always 1. Note that this reasoning as-
sumes that control flow in the language is “well-bracketed”—in the
sense that the call to f cannot escape its current continuation—and
also that the language lacks exceptions (both are true for Fµ!).

In order to prove this example, we need to be able to establish
an invariant concerning the local state of v2. However, we really
need more than just a simple fixed invariant because the only such
invariant that holds here is the one stating that x points to either 0
or 1, and that is not strong enough. This is where STSs come in.
Dreyer et al. [12] prove this example using the following STS:

x 7→ 0 x 7→ 1

public
,,

private

ll

The states of this STS represent the possible “abstract” states in
which the functions we are proving equivalent may find themselves,
and associated with each abstract state is a “physical” relation on
heaps. In the left state, the heap of the second program must contain
[x 7→ 0], and in the right state, it must contain [x 7→ 1]. (No
restrictions are placed on the heap of the first program, since v1

does not manipulate any local state.)
The accessibility relation between these abstract states is gov-

erned by two transition relations (preorders on the state space): a
private and a public one. The rough intuition is that the private (or
“full”) transition relation includes all legal state transitions, while
the smaller, public transition relation governs the legal transitions
that function calls can make (when their behavior is viewed exten-
sionally). For proving equivalence of v1 and v2, we require transi-
tions of some kind from each of these states to the other because
repeated applications of v2 will indeed result in x flip-flopping back
and forth between 0 and 1. However, the transition from x 7→ 1 to
x 7→ 0 may be considered private, not public, because when the
behavior of v1 is viewed end-to-end, it will never start with x 7→ 1
and end with x 7→ 0. Moreover, restricting the public transition re-
lation in this way is essential to making the proof go through: since
the second call to f starts with x 7→ 1 and is required (by defini-
tion) to make a public transition, we know that, when it returns, x
must still point to 1, and thus !x will evaluate to 1.

What we have described here is the high-level idea of the equiv-
alence proof of v1 and e2, which is essentially the same when us-
ing our RTSs as it is when using STS-indexed KLRs. One differ-
ence is that, with KLRs, the proof is driven by the need to show
that (v1, e2)—and thus also (v1, v2)—are in the logical relation at
the type τ . With RTSs, there is no logical relation defining what it
means for functions to be related at type τ . Instead, in typical coin-
ductive style, we need to enter v1 and v2 into the “local knowledge”
of our RTS, which in turn generates a proof obligation to show that
these function values do in fact behave equivalently when passed
arguments that are related by the global knowledge. Fundamentally,
this ends up being only a minor change to the structure of the proof.
(We will see the formal RTS proof of this example in Section 7.1.)

6. Relation Transition Systems for Fµ!

In this section, we present our full-blown relation transition system
(RTS) model for Fµ!. This RTS model generalizes the model from
Section 4 in a superficially very simple way: whereas previously

τ ∈ Type ::= . . . | ∀α. τ | ∃α. τ | ref τ | n
CTypeF := . . . ∪ { (∀α. τ) ∈ CType } ∪ { ref τ ∈ CType }

∪ {n ∈ TypeName }

Figure 7. Semantic domains for Fµ!.

R(τ) := R(τ) if τ ∈ CTypeF
...

R(∃α. τ) := { (pack v1, pack v2) | ∃τ ′. (v1, v2) ∈ R(τ [τ ′/α]) }

Figure 8. Value closure for Fµ! (if R ∈ VRelF, then R ∈ VRel).

DepWorld(P ) := { (S,v,vpub,N, L,H) ∈
Set× P(S× S)× P(S× S)× P(TypeName)×
(SP→S→VRelF→VRelF)× (SP→S→VRelF→HRel) |
v,vpub are preorders ∧ vpub is a subset of v ∧
L monotone in 1st arg w.r.t. vP , in 2nd w.r.t. v, in 3rd w.r.t. ⊆ ∧
H monotone in 3rd arg w.r.t. ⊆ ∧
∀sP, s, G.
(∀n /∈ N. L(sP)(s)(G)(n) = ∅) ∧
(∀τ1, τ2.∀(f1, f2)∈L(sP)(s)(G)(τ1→τ2). f1, f2∈FunVal) ∧
(∀α, τ.∀(v1, v2)∈L(sP)(s)(G)(∀α. τ). v1, v2∈TyFunVal) }

where
FunVal := { f ∈ CVal | ∀v. beta(f v) defined }
TyFunVal := { v ∈ CVal | beta(v[]) defined }

beta(e) :=

{
e′ if ∀h. h, e ↪→ h, e′

undef otherwise

World := {W ∈ DepWorld({∗}, {(∗, ∗)}) }
LWorld := {w ∈ DepWorld(Wref .S,Wref .v) |

∀sref , s, G, τ. w.L(sref)(s)(G)(ref τ) = ∅ }

Figure 9. Definition of worlds (relation transition systems) and
auxiliary RTS definitions.

we proved two terms equivalent by exhibiting a consistent local
knowledge L, we now do so by exhibiting a consistent world W .

Worlds Worlds are state transition systems (equipped with “pub-
lic” and “private” transitions, just as described in Section 5) that
control how the local knowledge of a module and the properties of
its local state may evolve over time. Formally (Figure 9), a world
consists of: the transition system’s (possibly infinite) state space
(S); the private (or full) transition relation (v) and a smaller pub-
lic transition relation (vpub), both preorders; a set of type names
that are used to represent abstract types (N); a mapping from states
to local knowledges (L); and a mapping from states to heap rela-
tions (H). For now, ignore the distinction between different kinds
of worlds as well as the SP , sP , and vP objects in that figure.

As before, the local knowledge (at each state) is parameterized
by—and must be monotone in—the global knowledgeG. The same
applies to the heap relation, which describes pairs of subheaps that
are “owned” by the RTS. The parameter G here provides a way
of referring to the global equivalence on values when establishing
invariants on the contents of local heaps; this is especially critical
in dealing with higher-order state. While the local knowledge map-
ping must be monotone in its state index (w.r.t.v), the heap relation
mapping need not be. Indeed, since a module’s local state is hidden
from the environment, there is no reason to require that heaps re-
lated in one state will continue to be related in future states (e.g., in
the example in Section 5, x 7→ 0 or x 7→ 1 but not both).

We have seen in the previous section section how a local knowl-
edge and its closure relate values at λµ types. This carries over to
the full setting. But how do we deal with the additional types of
Fµ!, i.e., with universal, existential, and reference types?
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Wref .S := { sref ∈ Pfin(CType× Loc× Loc) |
∀(τ, `1, `2) ∈ sref . ∀(τ ′, `′1, `′2) ∈ sref .

(`1 = `′1 =⇒ τ = τ ′ ∧ `2 = `′2) ∧
(`2 = `′2 =⇒ τ = τ ′ ∧ `1 = `′1) }

Wref .v := ⊆
Wref .vpub := ⊆
Wref .N := ∅
Wref .L(sref)(G)(ref τ) := { (`1, `2) | (τ, `1, `2) ∈ sref }
Wref .H(sref)(G) := { (h1, h2) |

dom(h1) = { `1 | ∃τ, `2. (τ, `1, `2) ∈ sref }
∧ dom(h2) = { `2 | ∃τ, `1. (τ, `1, `2) ∈ sref }
∧ ∀(τ, `1, `2) ∈ sref . (h1(`1), h2(`2)) ∈ G(τ) }

Figure 10. Wref provides the meaning of reference types.

Treatment of Universal and Existential Types Universal types,
like function types, are considered flexible. That is, the local knowl-
edge can relate any values at any closed type ∀α. τ , as long as,
when instantiated, those values can run for at least one step.

Existential types, like product types, are considered rigid, and
thus their interpretation is given by the value closure (Figure 8).
Note that the witness of related packages must be the same type τ ′.
How, then, do we support reasoning about parametricity?

The key is that the witness type τ ′ may be an abstract type name.
We extend the syntax of types in our RTS model with type names n
(Figure 7), and the local knowledge of a world can pick a subset of
these names and interpret them however it wants. To avoid conflicts
with other worlds, the choice of names must be recorded in the N
component of the world (no other names may be interpreted).

Treatment of Reference Types Reference types are considered
flexible, but they really are a special case. Intuitively, the collec-
tion of all reference types can be seen as a separate module that is
used by all other modules. Consequently, we construct a designated
worldWref (explained below) that interprets ref τ , and bar ordinary
worlds from relating anything at such types. We therefore distin-
guish between two kinds of worlds: local worlds and full worlds.
For conciseness, both are defined in terms of the same underlying
structure of dependent worlds.

A dependent world is a world as described above, except that it
is parameterized by a preorder P = (SP ,vP ) that its local knowl-
edge and heap relation may depend on (via the sP ∈ SP argument
of L and H in Figure 9). Intuitively, P is the state transition system
of some other world and sP is that world’s current state. Thus, a
full world W ∈World is simply a world depending on nothing (a
singleton set). In contrast, a local world w ∈ LWorld is a world
that depends on—will later be “linked” with—Wref and does not
itself relate any values at reference types.

As a matter of notational convenience: if W ∈ World and
s ∈ W.S, then we will often just write W.L(s) for W.L(∗)(s), and
similarly for the H component. (We use the dot notation to project
components out of a world.)

The World for Reference Types Figure 10 definesWref ∈World,
the world that provides the meaning of reference types. Its states are
finite ternary relations (between a type τ and two locations `1, `2)
that are functional in the location arguments. They associate each
allocated location on the left with the corresponding one on the
right and the type of values stored. The relations are finite because
only a finite number of locations can ever be allocated. And, as
dictated by the language, they can only grow over time.

Its local knowledge Wref .L(sref) relates precisely the locations
related by the current state sref , at the corresponding reference
types. The heap relation Wref .H(sref) relates heaps that contain
exactly the locations related by the current state sref and that store
(globally) related values at those locations. Note the critical use of
the global knowledge parameter G in defining Wref .H.

H1⊗H2 := {(h1]h′1, h2]h′2) | (h1, h2) ∈ H1∧ (h′1, h
′
2) ∈ H2}

w↑.S := Wref .S× w.S
w↑.v := { (p, p′) | p.1 v p′.1 ∧ p.2 v p′.2 }
w↑.vpub := { (p, p′) | p.1 vpub p

′.1 ∧ p.2 vpub p
′.2 }

w↑.N := w.N
w↑.L(sref , s)(G) := Wref .L(sref)(G) ∪ w.L(sref)(s)(G)
w↑.H(sref , s)(G) := Wref .H(sref)(G)⊗ w.H(sref)(s)(G)

(w1 ⊗ w2).S := w1.S× w2.S
(w1 ⊗ w2).v := { (p, p′) | p.1 v p′.1 ∧ p.2 v p′.2 }
(w1 ⊗ w2).vpub := { (p, p′) | p.1 vpub p

′.1 ∧ p.2 vpub p
′.2 }

(w1 ⊗ w2).N := w1.N ] w2.N
(w1 ⊗ w2).L(sref)(s1, s2)(G) := w1.L(sref)(s1)(G)

∪ w2.L(sref)(s2)(G)
(w1 ⊗ w2).H(sref)(s1, s2)(G) := w1.H(sref)(s1)(G)

⊗ w2.H(sref)(s2)(G)

Figure 11. Lifting (↑ ∈ LWorld → World) and separating
conjunction (⊗ ∈ LWorld× LWorld→ LWorld) of worlds.

Lifting and Separating Conjunction of Local Worlds Now, if
we have a local world w ∈ LWorld, then we can link it with
Wref , thereby lifting it to a full world w↑ ∈World. This operation
is defined in Figure 11. The full world’s transition system is the
synchronous product ofWref ’s and w’s. Its local knowledge relates
values iff they are related by either component’s local knowledge,
and its heap relation relates heaps iff they can be split into disjoint
parts that are related by Wref .H and w.H, respectively. Note how
the state sref of the reference world Wref is passed to w.L and w.H
along with the state of w itself.

Similarly, given two local worlds w1, w2 ∈ LWorld that own
disjoint sets of abstract types (i.e., w1.N ∩ w2.N = ∅), we can
construct their separating conjunction w1 ⊗ w2 ∈ LWorld. The
definition is given in Figure 11. Note how the same shared state sref

is passed to the L and H components of bothw1 andw2. Separating
conjunction of worlds is a generalization of the union operation on
local knowledges, which we have seen in Section 4 to be critical
for composing proofs (cf. Lemma 1).

Program Equivalence With these constructions in hand, we can
now describe the definition of program equivalence in Figure 12.

We say that two expressions are equivalent (∼) iff there exists
a local world w that (1) does not depend on a particular choice
of names to represent its abstract types; (2) is stable; and (3) when
lifted, relates the expressions. Stability means that the local world’s
heap relation in some sense tolerates “environmental” changes:
whenever the shared world Wref is advanced to a future state, s′ref ,
then w should be able to respond to that change by moving to a
public future state, s′, such that any local heaps that were related
previously by w.H are still related at s′. This is a very technical
condition that is required for soundness but is satisfied trivially in
the common case that w.H does not actually depend on its sref

parameter. See the end of this section for further discussion.
A world W (such as w↑) relates two expressions (∼W ) iff (3a)

it is inhabited; (3b) it is consistent; and (3c) the expressions, when
closed using related substitutions, are related by the expression re-
lation (see below). Inhabitance says there exists a state at which
W.H relates the empty heaps. Consistency is essentially the same
as for λµ, but extended straightforwardly to universal types. In all
these definitions, the global knowledge G is drawn from GK(W ).
As before, this enforces that G must contain the local knowledge.
At reference types, and at abstract type names owned by W , how-
ever, GK(W ) also enforces thatGmust not extend the local knowl-
edge. Intuitively, this is because W should completely control the
meaning of those types. Furthermore, since G is state-indexed, it
must, like the local knowledge of W , be monotone w.r.t. v.
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R′ ≥Nref R := R′ ⊇ R ∧ ∀τ. R′(ref τ) = R(ref τ) ∧ ∀n ∈ N . R′(n) = R(n)

GK(W ) := {G ∈W.S→ VRelF | G is monotone w.r.t. v ∧ ∀s. G(s) ≥W.Nref W.L(s)(G(s)) }

EW (G)(s0, s)(τ) := { (e1, e2) | ∀(h1, h2) ∈W.H(s)(G(s)). ∀hF
1 , h

F
2 . h1 ] hF

1 defined ∧ h2 ] hF
2 defined =⇒

((h1 ] hF
1 , e1)↑ ∧ (h2 ] hF

2 , e2)↑)
∨ (∃h′1, h′2, v1, v2. (h1 ] hF

1 , e1) ↪→∗ (h′1 ] hF
1 , v1) ∧ (h2 ] hF

2 , e2) ↪→∗ (h′2 ] hF
2 , v2) ∧

∃s′. s′ w s ∧ s′ wpub s0. (h′1, h
′
2) ∈W.H(s′)(G(s′)) ∧ (v1, v2) ∈ G(s′)(τ))

∨ (∃h′1, h′2, τ ′,K1,K2, e
′
1, e
′
2.

(h1 ] hF
1 , e1) ↪→∗ (h′1 ] hF

1 ,K1[e′1]) ∧ (h2 ] hF
2 , e2) ↪→∗ (h′2 ] hF

2 ,K2[e′2]) ∧
∃s′ w s. (h′1, h

′
2) ∈W.H(s′)(G(s′)) ∧ (e′1, e

′
2) ∈ S(G(s′), G(s′))(τ ′) ∧

∀s′′ wpub s
′. ∀G′ ⊇ G. (K1,K2) ∈ KW (G′)(s0, s

′′)(τ ′, τ)) }
KW (G)(s0, s)(τ1, τ2) := { (K1,K2) | ∀(v1, v2) ∈ G(s)(τ1). (K1[v1],K2[v2]) ∈ EW (G)(s0, s)(τ2) }
S(Rf , Rv)(τ) := { (f1 v1, f2 v2) | ∃τ ′. (f1, f2) ∈ Rf (τ ′ → τ) ∧ (v1, v2) ∈ Rv(τ ′) }

∪ { (f1[], f2[]) | ∃τ1, τ2. τ = τ1[τ2/α] ∧ (f1, f2) ∈ Rf (∀α. τ1) }

inhabited(W ) := ∀G ∈ GK(W ). ∃s0. (∅, ∅) ∈W.H(s0)(G(s0))

consistent(W ) := ∀G ∈ GK(W ). ∀s. ∀τ. ∀(e1, e2) ∈ S(W.L(s)(G(s)), G(s))(τ). (beta(e1), beta(e2)) ∈ EW (G)(s, s)(τ)

stable(w) := ∀G ∈ GK(w↑). ∀sref , s. ∀(h1, h2) ∈ w.H(sref)(s)(G(sref , s)).
∀s′ref w sref . ∀(h1

ref , h
2
ref) ∈Wref .H(s′ref)(G(s′ref , s)). h

1
ref ] h1 defined ∧ h2

ref ] h2 defined =⇒
∃s′ wpub s. (h1, h2) ∈ w.H(s′ref)(s

′)(G(s′ref , s
′))

∆; Γ ` e1 ∼W e2 : τ := inhabited(W ) ∧ consistent(W ) ∧ ∀G ∈ GK(W ). ∀s. ∀δ ∈ ∆→ CType. ∀γ1, γ2 ∈ dom(Γ)→ CVal.

(∀x:τ ′ ∈ Γ. (γ1(x), γ2(x)) ∈ G(s)(δτ ′)) =⇒ (δτ, γ1e1, γ2e2) ∈ EW (G)(s, s)

∆; Γ ` e1 ∼ e2 : τ := ∀N ∈ P(TypeName).N countably infinite =⇒ ∃w. w.N ⊆ N ∧ stable(w) ∧∆; Γ ` e1 ∼w↑ e2 : τ

Figure 12. Mutually coinductive definitions of expression equivalence, EW ∈ GK(W ) → W.S × W.S → ERel, and continuation
equivalence, KW ∈ GK(W )→W.S×W.S→ KRel, and definitions of world consistency and program equivalence for Fµ!.

Expression and Continuation Equivalence The new definitions
of E and K are also given in Figure 12. Notice that they are now
defined relative to a world W (as EW and KW ) and that their
types have changed to GK(W ) → W.S × W.S → ERel and
GK(W ) → W.S × W.S → KRel, respectively: they take both
an “initial” state, s0, and a “current” state, s, as arguments.

Given a world W , a global knowledge G ∈ GK(W ), states
s0, s ∈ W.S, and a type τ , we say that two expressions are
“locally” equivalent, written (e1, e2) ∈ EW (G)(s0, s)(τ), iff,
when executed starting in heaps that satisfy the heap relation of
W at the current state s, then (as before) one of three cases holds:

1. Both expressions diverge (run forever).

2. Both expressions run successfully to completion, producing
related values. In this case, the values need not be related in
the current state s, but rather in some future state, s′ w s,
which, however, must also be a public future state of the initial
state of the expression: s′ wpub s0. Moreover, this future
state must be consistent with the resulting heaps: (h′1, h

′
2) ∈

W.H(s′)(G(s′)).

3. Both expressions reduce after some number of steps to some
expressions of the form Ki[e

′
i], where e′i are either both ap-

plications or both instantiations that are related at some future
state s′ w s. This state must be consistent with the correspond-
ing heaps. Finally, the continuations,K1 andK2, are equivalent
under any public future state, s′′ wpub s

′, and any (pointwise)
larger global knowledge, G′ ⊇ G.
We restrict s′′ to be a public future state of s′ rather than
an arbitrary future state because the end-to-end effect of a
function call (or universal instantiation) is assumed to always be
a public transition. For this assumption to be sound, in return we
will have to ensure that the end-to-end behaviors of equivalent
function bodies indeed change the state only into public future
states. This is why we thread the s0 argument through the
coinduction and check that the final RTS state in the previous
case (2) is a public future state of s0.

The intuitive reason for quantifying over a larger global knowl-
edgeG′ is this: At the point when the continuations are run, not
only might W ’s state s′ have changed to a future state s′′, but
also the states of all other “modules”, which is reflected by the
growth of the global knowledge.

In all three cases, the definition quantifies over frame heaps,
hF

1 and hF
2 : the execution of e1 and e2 should not update any

disjoint part of the heap that they do not own according to the heap
relation of the current state. This framing aspect of our definition is
a semantic version of the frame rule of separation logic and allows
us to concentrate the reasoning about the heaps only on the parts of
the heaps accessed by the program. (Baking the frame rule into
the semantic model is quite common in more recent models of
separation logic [9, 39], essentially because it allows one to avoid
proving any “safety monotonicity” or “frame” properties of the
operational semantics itself.)

Properties of Program Equivalence and Soundness The prop-
erties presented in Section 4 for λµ, as well as the corresponding
soundness proofs, extend naturally to the full model, but we omit
further details here due to space considerations. We plan to present
them in an expanded version of this paper. Meanwhile, we refer the
reader to our online appendix (see the link at the end of the paper).

A Word on Dependency In the examples in the next section, we
will not actually rely on the ability of local knowledges and heap
relations to depend on the state of the reference world Wref . Con-
sequently, the stability property in the definition of program equiv-
alence will be trivially satisfied (by choosing s′ := s). However,
dependent worlds are of critical importance in the RTS transitivity
proof for full Fµ!. We will report on this issue in a future paper.

7. Examples
In this section, we present several example RTS equivalence proofs.
For convenience, we drop the sref argument from the L and H
components of local worlds since we do not use it in our examples.
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7.1 Well-Bracketed State Change
Recall the example from Section 5 and its high-level proof-sketch
using an STS. We will now show in some formal detail how this
proof is done using our method. Concretely, we prove ` v1 ∼ e2 :
τ , where:

τ := (unit→ unit)→ int
v1 := λf. (f 〈〉; f 〈〉; 1)
v2 := λf. (x := 0; f 〈〉;x := 1; f 〈〉; !x)
e2 := let x = ref 0 in v2

Constructing a Suitable RTS We construct an RTS w that we
will then show to be consistent and to relate v1 and e2.

Since the programs don’t involve abstract types, we can define
w.N to be empty. The STS that we build into w is essentially
the one from Section 5. A state s ∈ w.S is to be understood as
follows: for each running instance of e2, identified by the location
` that that instance initially allocated, s(`) says whether it is in the
(pictorially) left state (` points to 0) or in the right one (` points to
1). Accordingly, the heap relation w.H at state s is just {(∅, s)}.
Finally, the local knowledge w.L at state s relates v1 with v2[`/x]
for any location ` belonging to an instance.

w.S := Loc
fin
⇀ {0, 1} ⊆ Heap

w.v := {(s, s′) | dom(s) ⊆ dom(s′)}
w.vpub := {(s, s′) ∈ w.v | ∀(`, 1) ∈ s. (`, 1) ∈ s′}
w.N := ∅
w.L(s)(G)(τ) := {(v1, v2[`/x]) | ` ∈ dom(s)}
w.H(s)(G) := {(∅, s)}

It is easy to see that w ∈ LWorld. In particular, w.L and w.H
are monotone as required. Note that stable(w) (the dependency
is vacuous) and that inhabited(w↑) for s0 = (∅, ∅). To show
` v1 ∼w↑ e2 : τ , two parts remain.

Proving Its Consistency Establishing consistent(w↑) is the real
meat of the proof. Consider two functions related by w↑.L at a
state (s1

ref , s1). Clearly, one is v1 and the other is v2[`/x] for
some ` ∈ dom(s1). Now suppose we are given related arguments
(v′1, v

′
2) ∈ G1(s1

ref , s1)(unit→ unit). We need to show:

((v′1 〈〉; v′1 〈〉; 1), (` := 0; v′2 〈〉; ` := 1; v′2 〈〉; !`))
∈ Ew↑(G1)((s1

ref , s1), (s1
ref , s1))(int)

Note that for (h1, h2) ∈ w.H(s1)(G(s1
ref , s1)) we know by con-

struction that h1 = ∅ and h2 = s1. Consequently, for any frame
heaps hF

1 , h
F
2 , we have

h2 ] hF
2 , (` := 0; v′2 〈〉; ` := 1; v′2 〈〉; !`) ↪→∗

(s1\`) ] [ 7̀→0] ] hF
2 , (v

′
2 〈〉; ` := 1; v′2 〈〉; !`)

where s1\` denotes the restriction of s1 to domain dom(s1) \ {`}.
Since h1 ] hF

1 , (v
′
1 〈〉; v′1 〈〉; 1) ↪→∗ h1 ] hF

1 , (v
′
1 〈〉; v′1 〈〉; 1),

it suffices, by the third disjunct in the definition of Ew↑, to find
s′1 w s1 such that:

1. (∅, (s1\`) ] [ 7̀→0]) ∈ w.H(s′1)(G1(s1
ref , s

′
1))

2. ∀(s2
ref , s2) wpub (s1

ref , s
′
1).∀G2 ⊇ G1.

((•; v′1 〈〉; 1), (•; ` := 1; v′2 〈〉; !`)) ∈
Kw↑(G2)((s1

ref , s1), (s2
ref , s2))(unit, int)

Naturally, we pick s′1 = (s1\`) ] [ 7̀→0] w s1. Then (1) holds by
construction of w and it remains to show (2).

After repeating the whole procedure one more time, we arrive
at the goal of finding s′2 w s2 such that:

3. (∅, (s2\`) ] [ 7̀→1]) ∈ w.H(s′2)(G2(s2
ref , s

′
2))

4. ∀(s3
ref , s3) wpub (s2

ref , s
′
2).∀G3 ⊇ G2.

((•; 1), (•; !`)) ∈
Kw↑(G3)((s1

ref , s1), (s3
ref , s3))(unit, int)

Naturally, we pick s′2 = (s2\`) ] [ 7̀→1] w s2. Then (3) holds by
construction of w and it remains to show (4).

We observe that, for any s3 wpub s
′
2, it must be that s3(`) = 1

since s′2(`) = 1. Hence for (h′1, h
′
2) ∈ w.H(s3)(G(s3

ref , s3)) we
know by construction h′2(`) = 1. Consequently, for any frame
heaps hF

1
′
, hF

2
′
, we have:

h′2 ] hF
2

′
, (〈〉; !`) ↪→∗ h′2 ] hF

2

′
, 1

Since of course h′1 ] hF
1
′
, (〈〉; 1) ↪→∗ h′1 ] hF

1
′
, 1 and (1, 1) ∈

G3(s3
ref , s3)(int) by definition, we are done if we can show

(s3
ref , s3) wpub (s1

ref , s1). Indeed, this is easy to verify.

Showing the Programs Related By It Given how we constructed
our RTS, this final goal is fairly easy to accomplish. Formally, we
must show

(v1, e2) ∈ Ew↑(G)((sref , s), (sref , s))(τ)

for anyG, sref , s. Note that if (h1, h2) ∈ w.H(s)(G(sref , s)), then
for some fresh ` we have h2, e2 ↪→ h2 ] [` 7→0], v2[`/x] and, of
course, h1, v1 ↪→∗ h1, v1. It therefore suffices to find s′ wpub s
such that the following hold:

5. (h1, h2 ] [ 7̀→0]) ∈ w.H(s′)(G(sref , s
′))

6. (v1, v2[`/x]) ∈ G(sref , s′)(τ)

We pick s′ = s ] [ 7̀→0]. Note that s′ is well-defined because
` is fresh (so ` /∈ dom(s)), and that s′ wpub s as required. To
show (6), it suffices by definition of GK to show (v1, v2[`/x]) ∈
w.L(s′)(G(sref , s

′))(τ). This holds by construction of w and s′,
and so does (5).

7.2 A Free Theorem
The next example demonstrates the treatment of universal types,
and the fact that our method may be used to prove at least some
simple so-called “free theorems” [40]. Suppose ` p : ∀α. α and
|p| = v. We want to prove that h, v[]↑ for any h.

We start by applying REFL to obtain ` v ∼ v : ∀α. α. This
gives usw with ` v ∼w↑ v : ∀α. α andw.N ⊆ TypeName\{n}
for some arbitrary n of our choosing. We now instantiate G ∈
GK(w↑) to be the least solution of ∀s. G(s) = w↑.L(s)(G(s)).
From ` v ∼w↑ v : ∀α. α we then get

(v, v) ∈ Ew↑(G)(s0, s0)(∀α. α)

where s0 is the state witnessing inhabited(w↑). Consequently, we
get s wpub s0 such that:

1. (v, v) ∈ G(s)(∀α. α) = G(s)(∀α. α)

2. (∅, ∅) ∈ (w↑).H(s)(G(s))

From (1), the construction ofG, and consistent(w↑), we derive

(beta(v[]), beta(v[])) ∈ Ew↑(G)(s, s)(τ)

for any τ . So, in particular, we have

(beta(v[]), beta(v[])) ∈ Ew↑(G)(s, s)(n).

In fact, due to the construction of G, Lemma 3 tells us

(beta(v[]), beta(v[])) ∈ ER
w↑(G)(s, s)(n)

for R = λs.∅. Together with (2), this allows only two cases for
any heap h: either h, beta(v[]) diverges (then we are done), or it
terminates and the resulting values are related by G(s′)(n) for
some s′ wpub s. However, because Wref .N = ∅ and w.N ⊆
TypeName\{n}, we knowG(s′)(n) = w↑.L(s′)(G(s′))(n) = ∅,
which rules out that second case.
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7.3 Twin Abstraction
This final example (originally due to Ahmed et al. [5]) demon-
strates the interaction of local state with abstract types.

τ := ∃α.∃β. (unit→ α)× (unit→ β)× (α× β → bool)
e1 := let x = ref 0 in

pack 〈int, pack 〈int, λ . x := !x+ 1; !x,
λ . x := !x+ 1; !x,
λp. p.1 = p.2〉〉

e2 := let x = ref 0 in
pack 〈int, pack 〈int, λ . x := !x+ 1; !x,

λ . x := !x+ 1; !x,
λp.ff〉〉

Both e1 and e2 return a name generator ADT consisting of two
abstract types α and β, together with a function for generating a
fresh name of type α, a function for generating a fresh name of
type β, and a function for comparing an α name and a β name for
equality. Both implementations represent names as integers, and
in e1, the comparison operation really tests the names for equality.
In e2, however, the comparison just always returns false right away.
Nevertheless, the two programs are contextually equivalent because
the α names and the β names are generated by the same underlying
integer counter, and thus no value can be both an α name and a β
name at the same time.

We now show the construction of an RTS w that can be used to
prove ` e1 ∼ e2 : τ . Let a countably infiniteN ∈ P(TypeName)
be given. Since Loc is also countably infinite, we can think of N
as being split into {nα` | ` ∈ Loc} ] {nβ` | ` ∈ Loc}. We define w
as follows:

w.S := {s ∈ Loc× Loc
fin
⇀ P(N>0)× P(N>0) |

dom(s) partial bijection ∧
∀(`1, `2, S1, S2) ∈ s. S1 ∩ S2 = ∅}

w.v := w.vpub

w.vpub := {(s, s′) ∈ w.S× w.S | ∀(`1, `2, S1, S2) ∈ s.
∃S′1 ⊇ S1, S

′
2 ⊇ S2. (`1, `2, S

′
1, S
′
2) ∈ s′}

w.N := N
w.L(s)(G) :=

{(nα`1 , n, n) | ∃`2, S1, S2. (`1, `2, S1, S2) ∈ s ∧ n ∈ S1}
] {(nβ`1 , n, n) | ∃`2, S1, S2. (`1, `2, S1, S2) ∈ s ∧ n ∈ S2}
] {((unit→ nα`1),++`1,++`2) | (`1, `2) ∈ dom(s)}
] {((unit→ nβ`1),++`1,++`2) | (`1, `2) ∈ dom(s)}
] {((nα`1 × nβ`1 → bool), (λp. p.1 = p.2), (λp.ff)) |
∃`2. (`1, `2) ∈ dom(s)}

w.H(s)(G) := {(h1, h2) | dom(h1) = Π1(dom(s)) ∧
dom(h2) = Π2(dom(s)) ∧
∀(`1, `2, S1, S2) ∈ s.

h1(`1) = h2(`2) = max({0} ] S1 ] S2)}
Here, ++` is short for λ . ` := !`+1; !`; and Πi : P(Loc×Loc)→
P(Loc) for the appropriate projection function.

Similar to the world construction in Section 7.1, states s ∈ w.S
are functions defined for those locations (`1, `2) that, intuitively,
were allocated in an instance of e1 and e2, respectively. They are
mapped to sets S1 and S2 of positive integers, representing6 the
current inhabitants of the abstract types α and β, respectively,
for that instance. The crucial invariant here is that S1 and S2 are
always disjoint. The local knowledge w.L declares e1’s functions
equivalent to those of e2; it also defines the meaning of type nα`1
as the identity relation restricted to those numbers that inhabit α in
the instance pair identified by `1 (and similarly for nβ`1 and β).

6 To keep the definitions as simple as possible, the state space includes some
states that actual program behaviour cannot result in (but that nevertheless
are consistent with the property we want to prove).

According to this interpretation, the transition relation only
allows S1 and S2 to grow (the distinction between public and
private transitions is not needed for this example). Finally, w.H
says that the related heaps at state s are any (h1, h2) where hi
contains exactly those locations allocated in instances of ei, and
each such location stores the largest value handed out so far (no
matter if at α or β). This latter condition is critical to ensure that
S1 and S2 stay disjoint in each instance.

Using this world, it is straightforward to finish the proof. Details
can be found in the online appendix.

7.4 World Generators
As one may observe from the examples in Sections 7.1 and 7.3,
worlds must often describe “n-ary” state spaces, where each state
consists of n copies of states drawn from some simpler state space,
one copy for each dynamic instance of the object or ADT. Thus,
it would be convenient if one were able to reason about program
equivalence under the degenerate case of a single copy (i.e., n = 1).
Fortunately, it is not hard to (i) define a world generator that, given
a single-instance world, automatically performs the multiplexing;
and (ii) show that program equivalence in a single-instance world
implies equivalence in the automatically multiplexed world. For
space reasons, we do not present the details here but refer the
interested reader to our online appendix, where the proofs of the
examples from Sections 7.1 and 7.3 are simplified greatly with the
help of such a world generator.

8. Transitivity
In this section, we briefly sketch our proof of transitivity of RTS
equivalence in the pure, simplified setting of λµ (as defined in
Section 4). Transitivity also holds for the full RTS model described
in Section 6, but the proof of that result is much more complex
(involving a notion of weak isomorphism between worlds), so we
leave its presentation to a future paper.

The main lemma we would like to prove is the following:

Lemma 6. If Γ ` e1 ∼L1 e2 : τ and Γ ` e2 ∼L2 e3 : τ , then
there exists L such that Γ ` e1 ∼L e3 : τ .

Naturally, we can expect L to be some sort of composition of the
given local knowledges L1 and L2. Defining this composition is,
however, quite subtle. The problem is that the local knowledge
takes the global knowledge G as a parameter, but then what global
knowledges GL1 and GL2 should be passed on to L1 and L2

in constructing L? Assuming we somehow pick GL1 and GL2

appropriately, L can be defined as follows:

L(G)(τ) := L1(GL1)(τ) ◦ L2(GL2)(τ)

where ◦ stands for ordinary relation composition.
The key part of the proof is showing transitivity of E:

∀G ∈ GK(L). (e′1, e
′
2) ∈ E(GL1)(τ) ∧

(e′2, e
′
3) ∈ E(GL2)(τ) =⇒ (e′1, e

′
3) ∈ E(G)(τ)

In order to prove this, we want the disjunct of E by which e′1 and e′2
are related to match the disjunct of E by which e′2 and e′3 are related
(recall the three disjuncts in the definition of E). To illustrate, say
e′1 and e′2 are related because they reduce to related values (second
disjunct). Now consider the three cases regarding e′2 and e′3:

(1) They both diverge. Fortunately, this contradicts our assumption
about e′2, so this case cannot arise.

(2) They are related for the same reason as e′1 and e′2 are—i.e.,
e′2 and e′3 reduce to related values. This is the “good” case.
Relying on determinacy of reduction, we are done if we can
show transitivity of the value relation. Formally, we need to
show that GL1(τ) ◦GL2(τ) ⊆ G(τ).
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(3) They reduce to related function calls with related continuations.
It is unclear how to make sense of this situation, so we want to
rule it out!

In order to make case (2) straightforward to show, while simultane-
ously ruling out case (3) from consideration, we will need to define
GL1 and GL2 carefully.

The key idea is as follows: for each pair of function values
(f1, f3) ∈ G, come up with a value, v2, that (1) uniquely identifies
f1 and f3, and that (2) is not a normal function, but rather a
“bad” value that gets stuck when applied to an argument. The first
requirement allows us to ensure GL1(τ) ◦ GL2(τ) = G(τ), as
needed in proving transitivity of the value relation, by relating
(f1, v2) ∈ GL1 and (v2, f3) ∈ GL2 . The second requirement,
together with Lemma 3, rules out the “bad” case (3) above.

Formally, since Type and CVal are countable sets, there exists
an injective function I ∈ Type × Type × CVal × CVal → N.
Using this function, one can decompose G ∈ VRelF as follows:

G(1)(τ1→τ2) := { (f1, I(τ1, τ2, f1, f3)) | (f1, f3) ∈ G(τ1→τ2) }
G(2)(τ1→τ2) := { (I(τ1, τ2, f1, f3), f3) | (f1, f3) ∈ G(τ1→τ2) }
Taking GL1 to be G(1) is, however, incorrect because if L1 relates
any values at function type, then the global knowledge will not be
closed w.r.t. it (i.e., G(1) /∈ GK(L1)). To address this problem,
we simply close G(1) accordingly, i.e., we take GL1 to be the least
solution to the fixed-point equation GL1 = L1(GL1) ∪ G(1) (and
similarly for GL2 ).

With these definitions, we can show GL1(τ) ◦GL2(τ) = G(τ)
(if G ∈ GK(L)). Moreover, if we are in case (3) above, then
Lemma 3 tells us that the functions being called—say, (f1, f2)—
are really external, meaning that they are related by G(2). But by
construction, this means that f2 is an integer and thus e′2 gets stuck,
contradicting the prior assumption that e′1 and e′2 reduce to values.

For further details, we refer the interested reader to our online
appendix.

9. Related Work and Discussion
Our method of relation transition systems builds closely on ideas
from several prior techniques. We compare here only to the most
immediately related work.

Kripke Logical Relations The method of logical relations is an
old and fundamentally important technique for proving a variety of
deep properties in higher-typed languages, such as strong normal-
ization [14] and parametricity [31]. Although they were originally
geared toward reasoning about pure λ-calculi, logical relations
have been successfully generalized to reason about state. In Pitts
and Stark’s seminal work on Kripke logical relations (KLRs) [29],
logical relations are indexed by possible worlds, which characterize
the runtime environment (e.g., the assumptions about heaps) under
which two programs are considered to be equivalent.

In the most recent work on KLRs, Dreyer et al. [5, 12] showed
how to generalize Pitts and Stark’s technique to reason about (1)
modules whose correctness proofs require fine-grained control over
how local state evolves over time, and (2) ML-like languages with
higher-order state. W.r.t. point (1), they model possible worlds as
state transition systems (STSs), as we have described in Section 5.
RTSs adopt Dreyer et al.’s STS technique directly, and thus it is
relatively straightforward to port all the Fµ! equivalence proofs
given in their papers from using KLRs to using RTSs.

W.r.t. point (2), the challenge of supporting higher-order state in
Kripke logical relations is that a naive attempt to construct a model
of general reference types leads to a circularity. Intuitively, `1 and
`2 are related at ref τ under a possible world W iff W encodes
the invariant that the heaps of the two programs map `1 and `2 to
values v1 and v2 that are logically related at type τ . But how can

the logical relation be indexed by a possible world W , which itself
is defined in terms of the logical relation? If τ is restricted to base
type (e.g., int), there’s no issue because the logical relation at int is
simply the identity relation, but at higher type we have a problem.

Dreyer et al. handle higher-order state by means of Appel,
McAllester, and Ahmed’s technique of step-indexed logical rela-
tions (SILRs) [6, 2]. That is, they cut the aforementioned semantic
circularity by indexing the model by a natural number (“step in-
dex”) k, which represents the number of steps left on “the clock”
and which gets decremented every time around the cycle between
logical relations and possible worlds.

While step-indexing is a powerful weapon, it can be somewhat
annoying to work with, due to the tedious threading of step count-
ing throughout proofs [11]. More importantly, it seems fundamen-
tally difficult to compose SILR proofs transitively. Ahmed stud-
ied the transitivity problem in her first paper on binary SILRs [3].
There, she observed a serious problem in naively proving that Ap-
pel and McAllester’s original binary SILRs formed a PER. She pro-
posed a way of regaining transitivity of SILRs for a pure language
with recursive types [3], but her approach relies on baking syntactic
typing assumptions into the model. Such an approach is unlikely to
scale to reasoning about the intermediate and low-level languages
of a certified compiler (one of our ultimate goals), which in gen-
eral may be untyped. Moreover, we are not aware of any successful
attempts to generalize her technique to SILRs for richer languages.

RTSs employ the idea of global knowledge in order to avoid
the need for step-indexing in modeling higher-order state. Specif-
ically, by parameterizing the heap relations in our worlds over the
global knowledge G, we give heap invariants a way of referring
to the global value equivalence, which is essentially what the step-
indexed stratification of Kripke worlds is trying to achieve as well.
In contrast to SILRs, we already have a proof that RTS equivalence
for Fµ! is transitive, and our method does not bake in any syntac-
tic typing assumptions. In fact, our transitivity proof depends on
instantiating global knowledge parameters with “trashy” (syntacti-
cally ill-typed) relations.

Bisimulations Aside from their general coinductive flavor, RTSs
are closely related to two different bisimulation techniques.

From normal form (or open) bisimulations [32, 21, 34, 22, 23],
we take the idea of treating unknown equivalent functions as black
boxes. In particular, our expression equivalence relation E, which
deals explicitly with the possibility (in its third disjunct) that re-
lated terms may get stuck by calling unknown functions, is highly
reminiscent of the formulation of normal form bisimulations. The
main difference is that we express the notion of “stuckness” se-
mantically, via the global knowledge parameter G, whereas nor-
mal form bisimulations express it syntactically by requiring related
stuck terms to share a common head variable.

Normal form bisimulations draw much inspiration from game-
semantics models [25], and our distinction between global and
local knowledge has a seemingly gamey flavor as well. We leave
a deeper study of the connection to game semantics to future work.

Sumii et al.’s environmental bisimulations (aka “relation-sets
bisimulations”) are perhaps the most powerful form of bisimula-
tion yet developed for ML-like languages [27, 36, 19, 33, 35]. As
the latter name suggests, these bisimulations are not term relations,
but sets X whose elements are themselves term relations R (possi-
bly paired with some additional environmental information, such as
knowledge about the state of the heap). In essence, eachR ∈ X de-
fines some piece of “local knowledge” (following our terminology)
about program equivalence. In order to show X to be a bisimula-
tion, one must check that for all R ∈ X , uses of terms related by R
will never result in observably different outcomes and will always
produce values that are related by some R′ ∈ X s.t. R′ ⊇ R.

12



Viewed in terms of RTSs, one can understand an environmental
bisimulation X as effectively defining an abstract state space, with
each R ∈ X as a distinct state. However, the accessibility (transi-
tion) relation between these states is essentially baked in: roughly
speaking, a term relation R′ is (publicly) accessible from another
term relation R if R′ ⊇ R. Thus, environmental bisimulations pro-
vide less control over the structure of the transition system than
RTSs do, and they do not support anything directly analogous to
the distinction between public and private transitions.

As a consequence, environmental bisimulations are most effec-
tive at proving equivalences that require transition systems with
only public transitions (e.g., the twin abstraction example), and
their proofs for examples where private transitions are required
(e.g., the well-bracketed state change example) are comparatively
“brute-force”. It is an open question whether environmental bisim-
ulations can be generalized to support the full power of RTSs with
both public and private transitions.

Our approach to reasoning about parametricity of ADTs, by
populating the local knowledge of a world with relations at abstract
type names, is inspired directly by Sumii and Pierce [36].

Large vs. Small Worlds While RTSs build very closely on the
state transition systems in Dreyer et al.’s KLRs [5, 12], there is a
big difference between them, which we like to think of in terms of
large vs. small worlds.

Under Dreyer et al.’s approach, in order to demonstrate the
equivalence of functions f1 and f2 under a “possible world” W ,
one proves that they behave the same when passed arguments that
are related under any “future world” W ′ of W , which may contain
arbitrary new invariants concerning the local state of other modules
in the program. One can really think of the “future world” relation
(i.e., the Kripke structure) as defining its own transition system (or
large world), with the possible worlds W as its states.

In contrast, our RTSs rely only on small worlds. For us, worlds
W are static entities that contain only the local invariants relevant
to the module we are reasoning about, and nothing about any
invariants for other parts of the program. In proving equivalence
of functions f1 and f2 under W , we never quantify over any future
worlds that extendW . Of course, in order to support compositional
reasoning—i.e., in order to show that consistency of worlds is
preserved under separating conjunction—we must show that f1 and
f2 behave the same when applied to arguments drawn from some
larger relation than just W ’s local knowledge; but for that purpose
we quantify over the global knowledgeG, which is not a world, but
rather an arbitrary extension of W ’s local knowledge.

These different accounts of worlds are strongly reminiscent of
the different techniques that have been proposed for modeling re-
source invariants in logics of storable locks. Gotsman et al. [15]
and Hobor et al. [16] presented, roughly contemporaneously, two
different models of a concurrent separation logic for local reason-
ing about programs that dynamically allocate locks and store them
in the heap. The central challenge in developing such a model is in
dealing with the semantic circularity that arises when accounting
for locks whose resource invariants are essentially recursive.

Gotsman et al. deal with this circularity syntactically, by as-
suming a static set of named “sorts” of resource invariants, which
includes not all possible invariants, but only those needed for rea-
soning about a particular program. In contrast, Hobor et al. (and
more recently, Buisse et al. [10]) deal with the circularity head-on,
defining once and for all what recursive resource invariants mean
using step-indexing. The latter is analogous to Dreyer et al.’s “large
worlds” approach, which defines the space of all possible heap in-
variants, while the former is analogous to our “small world” ap-
proach of defining only the heap invariants needed within the mod-
ule we are reasoning about.

Which is better? It is hard to say. Our small-world relations
seem easier to compose transitively, precisely because we make
no assumption whatsoever about the relatedness of functions de-
fined outside of whatever module we are reasoning about. That is,
the global knowledge G that we quantify over (e.g., when proving
world consistency) could include complete garbage, and the tran-
sitivity proof sketched in Section 8 relies in a fundamental way on
the surgical insertion of contentful garbage into the global knowl-
edge. On the other hand, it is also possible that this approach is
what leads our model not to validate η-equivalence.

The Trouble with η-Equivalence One limitation of RTSs is that
they do not validate the η-equivalence rules for function and uni-
versal types. To see why, suppose the η rule for functions were true
(a similar argument applies to universals):

f : τ1 → τ2 ` f ∼ λx. f x : τ1 → τ2

Then, by definition, there would exist a consistent world W s.t. for
all G ∈ GK(W ), and for all functions f1 and f2 related by G, we
would have f1 and λx. f2 x related by G as well. (We’re glossing
over the role of states and transitions here because they’re orthogo-
nal.) The problem is that it is easy to construct an “uncivilized” G
that contains (f1, f2) but not (f1, λx. f2 x). Ironically, the same
uncivilized G’s that make our proof of transitivity (Section 8) pos-
sible also cause η to fail.

As a result, there are certain examples that have appeared in
the literature on relational reasoning for ML-like languages [36,
22, 11], which our method cannot handle, precisely because they
depend fundamentally on η-equivalence. The best-known one is
the syntactic minimal invariance example [30], which demonstrates
that the “infinite η-expansion” at a general recursive type (e.g.,
µα.unit + (α→ α)) is equivalent to the identity function.

The lack of η in our model makes a lot of sense because our
proofs make no assumptions about whether unknown functions
are even λ-expressions, let alone whether they obey η. In this re-
spect, RTSs are again similar to normal form bisimulations [21, 34],
which are sometimes easier to prove congruent in their non-η-
supporting formulations. There are known ways to close normal
form bisimulations over η-equivalence by complicating the defi-
nition of consistency, and it is possible that we could adapt such
techniques to work for RTSs.

However, our concern, based at this point solely on intuition, is
that there may be a fundamental tradeoff between supporting η and
supporting transitive composition of RTS equivalence proofs. In
that case, we would consider transitivity a more important desider-
atum, at least in the context of reasoning about multi-phase com-
piler correctness. Moreover, our lack of support for η may in fact
render our method applicable to reasoning about higher-order lan-
guages with more restricted equational theories (e.g., OCaml with
its equality tests on function pointers). We leave this matter to be
explored further in future work.

10. Conclusion and Future Work
We have developed a novel method—relation transition systems—
for proving equivalence of ML-like programs, combining some of
the best aspects of Kripke logical relations, environmental bisimu-
lations, and normal form bisimulations. In addition to providing a
useful synthesis of the complementary advantages of its ancestors,
our method shows promise as a way of reasoning about equiva-
lences between different languages, thanks to (1) our avoidance of
“syntactic” devices that would preclude inter-language reasoning,
and (2) the transitive composability of RTS equivalence proofs. We
have briefly sketched the proof of transitivity here in a simplified
setting, and we intend to report on the full transitivity result in a
forthcoming paper. We have mechanized the metatheory of RTSs
in Coq and made the proofs available at the link below.
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There are several exciting directions for future work. First and
foremost, we aim to concretely demonstrate the suitability of RTSs
for inter-language reasoning. For example, we would like to take
Hur and Dreyer’s recent work on Kripke logical relations between
ML and assembly [17], replace the logical relations with RTSs,
and then apply the technique to reasoning about compositional
correctness of multi-phase compilation.

Second, following Dreyer et al.’s work on Kripke logical rela-
tions [12], we would like to explore how well our account of RTSs
can be adapted to handle the introduction of control effects (call/cc,
exceptions) into the language and/or the restriction of the language
to first-order state. In principle, we believe it should be possible to
employ techniques similar to theirs, but we have not yet tried.

Lastly, we have recently discovered what appears to be a deep
connection between our technique of global vs. local knowledge
and Mendler-style recursion [24, 38], in particular the notion of
a robustly postfixed-point (rpofp). L is defined to be a rpofp of
an endofunctor F if ∀G ≥ L. L ≤ F (G). This bears a striking
resemblance to our definition of consistency for local knowledges
L, at least in the pure setting of Section 4. One interesting feature
of rpofps is that they enjoy a “robust” version of Tarski’s fixed-
point theorem, which applies even when the endofunctor F is not
monotone. Indeed, in our scenario, F is not monotone, due to the
quantification over related function arguments, and this is precisely
what motivated our parameterization over G. We intend to explore
this connection further in future work.

Online Appendix
Details of the RTS metatheory (in PDF and Coq) are available at:

http://www.mpi-sws.org/~dreyer/papers/marriage
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