
Relaxed Separation Logic:
A Program Logic for C11 Concurrency

Viktor Vafeiadis
Max Planck Institute for Software Systems

(MPI-SWS)
viktor@mpi-sws.org

Chinmay Narayan
Indian Institute of Technology, Delhi

chinmay@cse.iitd.ac.in

Abstract
We introduce relaxed separation logic (RSL), the first pro-
gram logic for reasoning about concurrent programs running
under the C11 relaxed memory model. From a user’s per-
spective, RSL is an extension of concurrent separation logic
(CSL) with proof rules for the various kinds of C11 atomic
accesses. As in CSL, individual threads are allowed to access
non-atomically only the memory that they own, thus pre-
venting data races. Ownership can, however, be transferred
via certain atomic accesses. For SC-atomic accesses, we per-
mit arbitrary ownership transfer; for acquire/release atomic
accesses, we allow ownership transfer only in one direction;
whereas for relaxed atomic accesses, we rule out ownership
transfer completely. We illustrate RSL with a few simple ex-
amples and prove its soundness directly over the axiomatic
C11 weak memory model.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs

Keywords Concurrency; Weak memory models; C/C++;
Proof system; Separation logic

1. Introduction
Wanting to enable many hardware and software optimiza-
tions, modern programming language definitions provide
rather weak guarantees on the semantics of concurrent mem-
ory accesses allowing, for example, different threads to ob-
serve shared operations happening in different orders. One
such case is the concurrency model adopted by the 2011 re-
visions of the C and C++ standards (ISO/IEC 9899:2011;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509532

ISO/IEC 14882:2011), which we will study in this paper and
refer to as the C11 model.

C11 provides several kinds of memory accesses—non-
atomic, relaxed atomic, acquire atomic, release atomic, and
sequentially consistent (SC) atomic—each providing differ-
ent consistency guarantees. On the one end of the spectrum,
races on non-atomic accesses result in completely undefined
behaviour (they are treated as programming errors); on the
other end, SC-atomic accesses are globally synchronized.
The guarantees provided by relaxed, acquire, and release ac-
cesses lie somewhere in between: different threads can ob-
serve them happening in different orders.

The reason for having all these kinds of accesses is that
they map differently to the various common architectures,
and have very different implementation costs. Non-atomic
and relaxed atomic accesses are generally rather cheap as
they correspond to vanilla machine loads and stores, and
may be reordered by the compiler and/or by an out-of-order
execution unit. At the other end of the spectrum, SC accesses
are very expensive because their implementation involves a
full memory barrier. The cost of acquire and release accesses
depends a lot on the architecture. On x86, they are compiled
down to plain reads and writes (Batty et al. 2011) and are
therefore cheap. On PowerPC and ARM, the cost is some-
what higher as they induce a memory barrier, but of a weaker
kind than full memory barriers (Sarkar et al. 2012).

Our goal is to help C11 programmers by providing them
with sound reasoning principles for concurrent programs.
We show that C11 concurrency supports resource reasoning
in the style of separation logic (O’Hearn 2007); in particular,
ownership can be transferred along acquire/release atomic
memory accesses and does not require SC-accesses.

We develop relaxed separation logic (RSL), a program
logic that follows the resourceful reading of separation logic
triples. When we assert the Hoare triple

{
P
}
Cmd

{
Q
}

, we
say that the command Cmd will not access any memory
other than that given by its precondition, P , or subsequently
acquired during its execution. We thus support the parallel
composition rule of separation logic,{

P1

}
Cmd1

{
Q1

} {
P2

}
Cmd2

{
Q2

}{
P1 ∗ P2

}
Cmd1‖Cmd2

{
Q1 ∗Q2

} (PAR)

http://dx.doi.org/10.1145/2509136.2509532

which ensures that the two threads do not have any races on
non-atomic memory accesses, a condition required by C11.

To handle acquire/release atomics, we introduce two new
assertion kinds, Rel(`,Q1) and Acq(`,Q2). These denote
respectively the permissions to perform a release-write of
some value v at location ` and give away ownership of
the resource described by Q1(v), or an acquire-read and
gain ownership of Q2(v). With these assertion forms we
provide simple proof rules for release writes and acquire
reads, similar to those for releasing and acquiring mutual
exclusion locks in concurrent separation logic.

Besides RSL itself, the main contribution of this work
was to define the meaning of Hoare triples in a relaxed
memory model setting, so as to prove the soundness of RSL.
This was rather challenging for three main reasons.

No global state/time: Traditionally,
{
P
}
Cmd

{
Q
}

asserts
that if we execute Cmd in an initial state satisfying P
and it terminates, then the final state will satisfy Q. In
C11 concurrency, however, the terms “initial state” and
“final state” are ill-defined, because there exist no global
notions of time or state.
To interpret triples, we thus resort to logical local notions
of time and state. We define a logical notion of local
state at each event of a program execution, and thread
the logical state through C11 “happens-before” edges.

Assertions in heaps: Our assertions for dealing with ac-
quire and release atomics require that the logical heaps
used to interpret them contain assertions. This results in
a circularity in the model of assertions, which for sim-
plicity we resolve by storing syntactic assertions.

No operational semantics: Concurrent program logics are
typically proved sound over an operational or a trace se-
mantics. In either case, the meaning of Hoare triples can
be defined in terms of an auxiliary predicate by induction
over the length of an execution trace. These definitions
cannot directly be extended to the C11 model as there is
no obvious total order for the induction. Our solution is
to order the C11 events according to the total number of
events that happen before them.

As a secondary contribution, we observed that the seman-
tics of relaxed atomic memory accesses in C11 is too weak to
permit even the most basic reasoning principles about them,
which in turn renders basic compiler optimizations unsound.
In order to allow such reasoning principles, we proposed a
crude fix to C11, which we discuss in Section 6.

In the remainder of this paper, we define a minimal con-
current programming language (§2), review the C11 concur-
rency model (§3), describe the assertions and proofs rules
of RSL (§4), verify a few examples using RSL (§5), explain
the problems caused by relaxed accesses and their resolution
(§6), present the semantics of assertions and Hoare triples
and sketch the main parts of the soundness proof (§7). We
conclude with a discussion of related and future work (§8).

A Coq formalization of the soundness proof of RSL can
be found at the following URL.

http://www.mpi-sws.org/~viktor/rsl/

2. Programming Language
In order to focus on the concurrency aspects of C11 and to
avoid the inherent complexity of a large language like C,
we introduce a minimal concurrent programming language
featuring the various kinds of memory accesses supported
by C11. Following Batty et al. (2012), we omit consume
reads from the model, because they are relevant only for
a few architectures (PowerPC and ARM) and substantially
complicate the model. For simplicity, we also omit memory
fences.

To make the local sequential execution order explicit, we
present the grammar of expressions in A-normal form (cf.
Flanagan et al. 1993). Atomic expressions, e ∈ AExp,
consist of variables and values (locations and numbers).
Program expressions, E ∈ Exp, consist of atomic expres-
sions, let-bound computations, conditionals, loops, parallel
composition, memory allocation, loads, stores, and atomic
compare-and-swap (CAS) instructions.

v ∈ Val ::= ` | n where ` ∈ Loc, n ∈ N
e ∈ AExp ::= x | v where x ∈ Var
E ∈ Exp ::= e | let x = E in E′ | if e then E else E′

| repeat E end | E1‖E2 | alloc()
| [e]X | [e]Y := e′ | CASZ,W (e, e′, e′′)

where X ∈ {sc, acq, rlx,na}, Y ∈ {sc, rel, rlx,na},
Z ∈ {sc, rel_acq, acq, rel, rlx},W ∈ {sc, acq, rlx}

As in C, in conditional expressions we treat zero as false
and non-zero values as true. The construct repeat E end
executes E repeatedly until it returns a non-zero value.

Memory accesses are annotated by their mode: sequen-
tially consistent (sc), acquire (acq), release (rel), combined
release-acquire (rel_acq), relaxed (rlx), or non-atomic (na).
According to the C standard, not all modes are available for
all accesses: reads cannot be releases, writes cannot be ac-
quires, CASs cannot be non-atomic. These restrictions are
to avoid redundancy in the language. For example, an ac-
quire write, if such a thing were allowed, would behave ex-
actly the same as a relaxed write.

CAS is an atomic operation used to heavily in lock-free
concurrent algorithms. It takes a location, `, and two values,
v′ and v′′, as arguments. It atomically checks if the value at
location is v′ or not. If the value is same as v′, then CAS
succeeds: it atomically writes v′′ to ` and returns the old
value. If the value is different, CAS fails: it returns that
value and does not modify the location. CAS is annotated
with two access modes: one to be used for the successful
case, and one for the unsuccessful case.

For conciseness in examples, we will often write expres-
sions such as [E]na instead of let x = E in [x]na. We also
writeE1;E2 instead of let x = E1 inE2 when x /∈ fv(E2).

http://www.mpi-sws.org/~viktor/rsl/

new_lock() = let x = alloc() in [x]rel := 1;x

spin(x) = repeat [x]rlx end

lock(x) = repeat spin(x);CASacq,rlx(x, 1, 0) end

unlock(x) = [x]rel := 1

Figure 1. Simple spinlock implementation.

Spinlock Example There are two important uses of ac-
quire/release accesses: in implementing locks, and in mes-
sage passing. Relaxed accesses are useful in cases of opti-
mistic reads, where the value read, if it is of interest to the
algorithm, will be read again by an acquire read, or an ac-
quire fence will be issued. For example, in the simple CAS-
based spinlock implementation shown in Figure 1, lock(x)
performs an acquire-on-success CAS and unlock(x) does
a release write. The optimistic spin(x) loop that waits for
the lock to become free, in contrast, does relaxed reads.
The combined release-acquire CAS is supposed to be used
for operations that atomically release one lock and acquire
another—this is possible, for example, if the locks are repre-
sented as different bits of the same word. Further examples
can be found in McKenney and Garst (2011).

3. The C11 Memory Model
The C11 memory model is defined axiomatically in terms of
program executions. A program execution consists of a set
of actions and several binary relations over them. Actions
describe the memory operations performed by the program,
and are labelled with information about the memory order
of the operation, the address accessed and the values read
and/or written.

Act ::= skip |W(sc|rel|rlx|na)(`, v) | R(sc|acq|rlx|na)(`, v)
| RMW(sc|rel_acq|acq|rel|rlx)(`, v, v

′) | A(`)

In summary, we have a no-op action; SC, release, relaxed
and non-atomic writes; SC, acquire, relaxed, and non-atomic
reads; atomic read-modify-write actions; and allocations.
The no-op (skip) action represents local computations,
thread forks and joins.

For the subset of C11 we consider, an execution contains
the following relations:1

• Sequenced-before (sb) relates actions of the same thread
that follow one another in control flow. We have sb(a, b)
if a and b belong to the same thread and a immediately
precedes b in the thread’s control flow, or a is a fork
action and b the first action of the forked thread, or b is a
join action and a the last action of the joined thread.
• The reads-from map (rf) maps every read action r to the

write action w that wrote the value read by r.

1 The full model includes two additional relations, dd (data dependency)
and dob (dependency ordered before), used to define the happens-before
relation for consume reads.

• The memory-order relation (mo) is a total order on the
store actions writing to the same atomic location.
• The sequential-consistency order (sc) is a total order over

all SC-atomic actions.

Formally, let AName be a countably infinite of action
names. Then, an execution, X , is represented as a tuple,
〈A, lab, sb, rf,mo, sc〉, where A ⊆fin AName is the set of
action names included in the execution, lab ∈ A → Act
maps every action identifier to its label, rf ∈ A ⇀ A
is the reads-from map, and sb,mo, sc ∈ P(A × A) are
the sequenced-before relation, the memory order, and the
sequential consistency order respectively.

From these relations, C11 defines a number of derived
relations, the most important of which are: the synchronizes-
with relation and the happens-before order.

• Synchronizes-with (sw) relates acquire reads with the re-
lease writes that precede in mo order the write whose
value was read by the acquire read provided that all
the writes between these two writes belong to the same
thread or are RMW operations.
• Happens-before (hb) is a partial order on actions formal-

izing the intuition that one action was completed before
the other. In the C11 subset we consider, hb = (sb∪sw)+.

The semantics of a program is given by the set of con-
sistent executions. An execution is said to be consistent if
it satisfies the axioms of the memory model, which will be
presented shortly. If, however, any of these consistent execu-
tions contains a data race on non-atomic actions, i.e. events
generated from two conflicting operations on the same non-
atomic location not ordered by hb in either direction, then
the program is deemed to have arbitrary semantics. Thus,
any sound program logic for C11 concurrency must ensure
its specifications imply race-freedom for non-atomic actions.

Expression Semantics Let CExp denote closed expres-
sions (i.e., ones with no free variables). The semantics of
such closed expressions, JEK, is given in Figure 2 as a set of
tuples 〈res,A, lab, sb, fst , lst〉. These tuples represent finite
complete executions as well as finite incomplete execution
prefixes (used to model infinite executions), where:
(1) res is the result of evaluating the expression or ⊥ if the

execution is incomplete;
(2) A is the set of all actions contained in the execution;
(3) lab labels the actions with the corresponding operations;
(4) sb represents the sequenced-before relation; and
(5) fst and lst are the first and last actions in the sb-order.
For uniformity, we record the last action even in incomplete
executions. In the parallel composition case, the auxiliary
function combine(res1, res2) returns res1 if res2 6= ⊥ and
⊥ otherwise. In the JEK semantics, allocations can return an
arbitrary new location, and reads can read an arbitrary value.
These will later be constrained by the consistency axioms.

J−K : CExp→ P(〈res : Val ∪ {⊥},A : P(AName), lab : A → Act, sb : P(A×A), fst : A, lst : A〉)
JvK def

= {〈v, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ lab(a) = skip}
Jalloc()K def

= {〈`, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ ` ∈ Loc ∧ lab(a) = A(`)}
J[v]Z := v′K def

= {〈v′, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ lab(a) = WZ(v, v
′)}

J[v]ZK
def
= {〈v′, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ v′ ∈ Val ∧ lab(a) = RZ(v, v

′)}
JCASX,Y (v, vo, vn)K

def
= {〈v′, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ v′ ∈ Val ∧ v′ 6= vo ∧ lab(a) = RY (v, v

′)}
∪ {〈vo, {a}, lab, ∅, a, a〉 | a ∈ AName ∧ lab(a) = RMWX(v, vo, vn)}

Jlet x = E1 in E2K
def
= {〈⊥,A1, lab1, sb1, fst1, lst1〉 | 〈⊥,A1, lab1, sb1, fst1, lst1〉 ∈ JE1K}
∪ {〈res2,A1] A2, lab1 ∪ lab2, sb1 ∪ sb2 ∪ {(lst1, fst2)}, fst1, lst2〉 |
〈v1,A1, lab1, sb1, fst1, lst1〉 ∈ JE1K ∧ 〈res2,A2, lab2, sb2, fst2, lst2〉 ∈ JE2[v1/x]K}

Jrepeat E endK def
= {〈resN ,

⊎
i∈[1..N]Ai,

⋃
i∈[1..N] labi,

⋃
i∈[1..N] sbi ∪ {(lst1, fst2), . . . , (lstN−1, fstN)}, fst1, lstN 〉 |

∀i. 〈resi,Ai, labi, sbi, fst i, lst i〉 ∈ JEK ∧ (i 6= N =⇒ resi = 0) ∧ resN 6= 0}
JE1‖E2K

def
= {〈combine(res1, res2),A1] A2] {afork, ajoin}, lab1 ∪ lab2 ∪ {afork 7→ skip, ajoin 7→ skip},

sb1 ∪ sb2 ∪ {(afork, fst1), (afork, fst2), (lst1, ajoin), (lst2, ajoin)}, afork, ajoin〉 |
〈res1,A1, sb1, fst1, lst1〉 ∈ JE1K ∧ 〈res2,A2, sb2, fst2, lst2〉 ∈ JE2K ∧ afork, ajoin ∈ AName}

Figure 2. Semantics of closed program expressions.
@x. hb(x, x) (IrreflexiveHB)

∀`. totalorder({a ∈ A | iswrite`(a)},mo) ∧ hb` ⊆ mo (ConsistentMO)

totalorder({a ∈ A | isSeqCst(a)}, sc) ∧ hbSeqCst ⊆ sc ∧moSeqCst ⊆ sc (ConsistentSC)

∀b. rf(b) 6= ⊥ ⇐⇒ ∃`, a. iswrite`(a) ∧ isread`(b) ∧ hb(a, b) (ConsistentRFdom)

∀a, b. rf(b) = a =⇒ ∃`, v. iswrite`,v(a) ∧ isread`,v(b) ∧ ¬hb(b, a) (ConsistentRF)

∀a, b. rf(b) = a ∧ (mode(a) = na ∨mode(b) = na) =⇒ hb(a, b) (ConsistentRFna)

∀a, b. rf(b) = a ∧ isSeqCst(b) =⇒ isc(a, b) ∨ ¬isSeqCst(a) ∧ (∀x. isc(x, b)⇒ ¬hb(a, x)) (RestrSCReads)

@a, b. hb(a, b) ∧mo(rf(b), rf(a)) ∧ locs(a) = locs(b) (CoherentRR)

@a, b. hb(a, b) ∧mo(rf(b), a) ∧ iswrite(a) ∧ locs(a) = locs(b) (CoherentWR)

@a, b. hb(a, b) ∧mo(b, rf(a)) ∧ iswrite(b) ∧ locs(a) = locs(b) (CoherentRW)

∀a. isrmw(a) ∧ rf(a) 6= ⊥ =⇒ mo(rf(a), a) ∧ @c. mo(rf(a), c) ∧mo(c, a) (AtomicRMW)

∀a, b, `. lab(a) = lab(b) = A(`) =⇒ a = b (ConsistentAlloc)

where iswrite`,v(a)
def
= ∃X, vold. lab(a) ∈ {WX(`, v),RMWX(`, vold, v)} iswrite`(a)

def
= ∃v. iswrite`,v(a)

isread`,v(a)
def
= ∃X, vnew. lab(a) ∈ {RX(`, v),RMWX(`, v, vnew)} etc.

rsElem(a, b)
def
= sameThread(a, b) ∨ isrmw(b)

rseq(a)
def
= {a} ∪ {b | rsElem(a, b) ∧mo(a, b) ∧ (∀c. mo(a, c) ∧mo(c, b)⇒ rsElem(a, c))}

sw
def
= {(a, b) | mode(a) ∈ {rel, rel_acq, sc} ∧mode(b) ∈ {acq, rel_acq, sc} ∧ rf(b) ∈ rseq(a)}

hb
def
= (sb ∪ sw)+

hb`
def
= {(a, b) ∈ hb | iswrite`(a) ∧ iswrite`(b)}

XSeqCst
def
= {(a, b) ∈ X | isSeqCst(a) ∧ isSeqCst(b)}

isc(a, b)
def
= iswritelocs(b)(a) ∧ sc(a, b) ∧ @c. sc(a, c) ∧ sc(c, b) ∧ iswritelocs(b)(c)

Figure 3. Axioms satisfied by consistent C11 executions, Consistent(A, lab, sb, rf,mo, sc).

c : W(`, 1)
rf
// a : R(`, 1)

hb ��
d : W(`, 2)

mo
OO

rf
// b : R(`, 2)

c : W(`, 2)

rf ((

mo
// a : W(`, 1)

hb ��
b : R(`, 2)

c : W(`, 1)
rf
// a : R(`, 1)

hb ��
b : W(`, 2)

mo

hh a
rf−→ b means a = rf(b)

a
mo−−→ b means mo(a, b)

a
hb−→ b means hb(a, b)violates CoherentRR violates CoherentWR violates CoherentRW

Figure 4. Sample executions violating coherency conditions (Batty et al. 2011).

Consistent Executions According to the C11 model, an
execution is consistent, Consistent(A, lab, sb, rf,mo, sc), if
all of the properties shown in Figure 3 hold.

(IrreflexiveHB) The happens-before order, hb, must be ir-
reflexive: an action cannot happen before itself.

(ConsistentMO) All write actions on an atomic location `
must be totally ordered by mo, and be consistently or-
dered by hb (restricted to the location `).

(ConsistentSC) The sc relation must be a total order and
include both hb and mo restricted to SC actions. This in
effect means that SC actions are globally synchronized.

(ConsistentRFdom) The reads-from map, rf, is defined for
those read (or RMW) actions for which the execution
contains an earlier write (or RMW) to the same location.

(ConsistentRF) Each entry in the reads-from map, rf, should
map a read to an earlier or concurrent write to the same
location and with the same value.

(ConsistentRFna) Further, if a read reads from a write and
either the read or write are non-atomic, then the write
must have happened before the read. Batty et al. (2011)
also require the write to be visible: i.e. not to have been
overwritten by another write that happened before the
read. This extra condition is unnecessary, as it follows
from CoherentWR.

(RestrSCReads) SC reads are further restricted to read only
from the immediately preceding SC write to the same
location in sc order or from a non-SC write that has not
happened before that immediately preceding SC write.

(CoherentRR,CoherentWR,CoherentRW) Next, we have
three per-location coherence properties relating mo, hb,
and rf. These properties require that mo never contra-
dicts hb or the observed read order, and that rf never
reads values that have been overwritten by more recent
actions that happened before the read. These coherence
properties are depicted in Figure 4.

(AtomicRMW) Each read-modify-write action should exe-
cute atomically: it should read from the immediately pre-
ceding write in mo.

(ConsistentAlloc) Finally, the same location cannot be allo-
cated twice by different allocation actions.2

Remark Our model differs in a few minor ways from that
of Batty et al. (2011, 2012). First, we have incorporated the
C standard’s “additional synchronized with” (asw) relation
in sb rather than in sw, because it describes synchronization
induced by control flow rather than by data flow.

Second, our sw-relation also relates acquire reads with
release writes (whenever the read returns a value written by
or after the release write), even if the two actions belong

2 This axiom suffices, because we do not support deallocation. Had we in-
cluded deallocation, we would instead require there to be a deallocation
actions between any two allocation actions of the same location. The for-
malized C11 model by Batty et al. (2011, 2012) does not model allocation.

let a = alloc() in
let c = alloc() in
[c]rlx := 0;(

[a]na := 7;
[c]rel := 1

repeat [c]acq end;
[a]na := [a]na + 1

)
Figure 5. Message passing example showing transfer of
ownership of the non-atomic location a.

to the same thread (and are thus sb-related), whereas Batty
et al. (2012) do not add any sb-related actions to the sw-
relation. Since relating such actions also by sw does not
affect execution consistency, we do so for uniformity, which
eases the definition of validity of Hoare triples in §7.

Finally, in the standard, the sb and sw relations are taken
to be strict partial orders, corresponding to the transitive
closure of our relations. Conversely, our sb relation can
be defined in terms of the sb order from the C and C++
standards as follows, sbour = {(a, b) ∈ sbstd ∪ aswstd |
@c. (a, c) ∈ sbstd ∪ aswstd ∧ (c, b) ∈ sbstd ∪ aswstd}.
Again, we found the non-transitive versions slightly more
convenient when defining the meaning of Hoare triples.

4. Relaxed Separation Logic
To motivate RSL, consider the message passing program
shown in Figure 5. The thread on the left updates some
data structure using non-atomic memory accesses (here, the
location a), and then signals to other threads that the data
structure has been updated by performing a release write to
c. The thread on the right repeatedly performs acquire reads
until it notices that [c] 6= 0. Then, it can conclude that the
thread on the left has finished its work, and so may safely
access the data structure without interfering with it.

This message passing idiom is correct (i.e., race-free)
because whenever an acquire read sees the value written by a
release write, the write “synchronizes with” the acquire read.
Thus, as hb is transitive, any event that happened before
the write (e.g., by being sequenced before it), also happens
before the read. This, in turn, justifies the ownership transfer
from the writing thread to the reading thread.

To model such ownership transfers, RSL extends the
grammar of separation logic assertions, P , with three new
assertion forms, Rel(e,Q), Acq(e,Q), and RMWAcq(e,Q),
where Q ranges over functions from values to assertions.
Formally, RSL assertions are given by following grammar:

P,Q ::= false | P ⇒ Q | ∀x. P | emp | e k7→ e′ | P ∗Q
| Rel(e,Q) | Acq(e,Q) | RMWAcq(e,Q)
| Init(e) | Uninit(e)

where k ranges over fractional permissions (Perm = (0, 1],
see Boyland 2003). We have the usual classical first order
logic constructs (the three primitive ones and the derived:
true, ∧, ∨, ¬, ∃), the three assertions forms pertinent to
separation logic (empty heap, a single memory cell with

{
P
}
e
{
y. P ∧ y = e

}{
P
}
E1

{
x.Q

}
∀x.
{
Q
}
E2

{
y.R

}{
P
}
let x = E1 in E2

{
y. R

}{
P ∧ b

}
E1

{
y. Q

}{
P ∧ ¬b

}
E2

{
y. Q

}{
P
}
if b then E1 else E2

{
y. Q

}{
P
}
E
{
y. Q

}
Q[0/y]⇒ P{

P
}
repeat E end

{
y. Q ∧ y 6=0

}{
P1

}
E1

{
y. Q1

} {
P2

}
E2

{
Q2

}{
P1 ∗ P2

}
E1‖E2

{
y. Q1 ∗Q2

}

{
P
}
E
{
y. Q

}{
P ∗R

}
E
{
y. Q ∗R

}{
P
}
E
{
y. Q

}
P ′ ⇒ P ∀y. Q⇒ Q′{

P ′}E {y. Q′}{
P
}
E
{
y. Q

}{
P ′}E {y. Q′}{

P ∨P ′}E {y. Q∨Q′}{
P
}
E
{
y. Q

}{
∃x. P

}
E
{
y. ∃x. Q

}
Figure 6. Standard proof rules supported by RSL.

fractional permission k, and separating conjunction), and
five new forms, which we will explain shortly.

RSL judgements are of the form
{
P
}
E
{
y. Q

}
, where P

and Q are assertions respectively denoting the precondition
and the postcondition of the expression E. The postcondi-
tion, Q, also describes the return value of the expression E,
which is bound by the variable y. In cases where the post-
condition does not describe the return value, we often omit
the y binder. With this setup, we support all the standard
rules from Hoare and separation logic (see Figure 6) includ-
ing the so-called ‘structural’ rules: the frame, consequence,
disjunction, and existential rules.

Another generic rule we support is the RELAX rule be-
low. Generally, when reasoning about a program E, we are
always allowed to reason about a relaxation of the program
E′ v E, which is identical to E except on the atomic access
annotations, which may be weaker than those of E accord-
ing to the partial order: rlx v rel v sc, rlx v acq v sc.{

P
}
E′
{
y. Q

}
E′ v E{

P
}
E
{
y. Q

} (RELAX)

Atomic Writes We return to the treatment of atomic mem-
ory accesses and the new assertion forms. The first one,
Rel(`,Q), represents a permission to write any value v to
location `, provided the assertionQ(v) holds separately. Per-
forming the write consumes theQ(v) assertion so that it can
be transferred to the reader(s).{

Q(v) ∗
Rel(`,Q)

}
[`]rel := v

{
Init(`) ∗
Rel(`,Q)

}
(W-REL)

In order for the ownership transfer to be valid, the writer
must synchronize with the reader(s), which means that the
write must be at least of release kind (or stronger, namely
SC). Besides the ownership transfer, the write also initializes
the location `. Keeping track of initialized locations is neces-
sary for subsequent proof rules. In the special case when no
ownership transfer occurs (i.e., when P = emp), intuitively
we can also use a relaxed write as in the following rule.{

Rel(`, v, emp)
}
[`]rlx := v

{
Init(`)

}
(W-RLX*)

In this rule, we used the following shorthand notation

Rel(`, v, P)
def
= Rel(`, λx. if x= v then P else false)

for representing the permission to write only the value v and
release ownership of P (in this case emp). Intuitive though
this rule is, it is unfortunately unsound in C11, as we will
explain in Section 6, where we also show that we can restore
its soundness by mildly strengthening the model.

In RSL, we allow multiple concurrent writes to the same
atomic location by making the permission to perform an
atomic write splittable as follows:

Rel(`,Q1) ∗ Rel(`,Q2)
⇐⇒ Rel(`, λv. Q1(v) ∨Q2(v))

(REL-SPLIT)

Of course, programs that perform multiple concurrent writes
to same location and transfer away ownership may leak
memory, as some of the writes may be overwritten and thus
never read. In this paper, however, we do not regard such
memory leaks as an error. If desired, the programmer may
explicitly count the number of allocations and deallocations
in order to prove that the program has no memory leaks.

Similar to write permissions, the fact that a location has
been initialized—captured by Init(`)—can be freely dupli-
cated. Once a location is initialized, it remains initialized: it
cannot be de-initialized.

Init(`) ⇐⇒ Init(`) ∗ Init(`) (INIT-SPLIT)

Atomic Reads The second assertion form, Acq(`,Q), de-
notes a permission to perform an acquire read of location `
and obtain ownership of Q(v), where v is the value read.

∀x. precise(Q(x)){
Init(`) ∗
Acq(`,Q)

}
[`]acq

{
v. Q(v) ∗
Acq(`,Q[v:=emp])

} (R-ACQ)

The premise of the rule (that Q should be precise) is a tech-
nical requirement that will be explained in Section 7 and
may be ignored for the time being. As a precondition, we
require not only the permission to perform an acquire read
from `, but also the knowledge that the location has been
initialized. The latter is needed because reading from unini-
tialized locations may return any arbitrary value and thus we
cannot ensure thatQ(v) was ever established. When reading
a value, we acquire Q(v) and give up the permission to read
the same value again with ownership transfer, because oth-
erwise it would have been possible to acquire the sameQ(v)
multiple times. Therefore, in the postcondition the assertion
attached to the acquire predicate becomes

Q[v:=emp]
def
= λy. if y=v then emp else Q(y) .

This allows further reads of the same value, but consequent
reads will simply not gain any ownership. At any point, it is
also possible to do a relaxed read and acquire no ownership.{

Init(`) ∗ Acq(`,Q)
}
[`]rlx

{
Acq(`,Q)

}
(R-RLX)

Note that this rule does not assert anything about the value
read. A more useful rule is the following, which asserts that
the value read must be one that may have been written.{

Init(`) ∗
Acq(`,Q)

}
[`]rlx

{
v. Acq(`,Q) ∧
(Q(v) 6= false)

}
(R-RLX*)

Similar to W-RLX*, this latter rule is not sound in C11, but
is so in the strengthened model of Section 6.

In RSL, we permit multiple readers to read the value writ-
ten by a single release write. Concretely, consider the sce-
nario where thread A initializes two data structures and sig-
nals by a release write that it has finished its work. Then
thread B can do an acquire read and notice that A has fin-
ished its initialization and then access the first data structure
non-atomically. Likewise, thread C can do an acquire read
and access the second data structure non-atomically. Such
an execution does not have data races and should therefore
be permitted. In terms of our program logic, this means that
acquire read permissions should be splittable and joinable as
follows:

Acq(`,Q1) ∗ Acq(`,Q2)
⇐⇒ Acq(`, λv. Q1(v) ∗ Q2(v))

(ACQ-SPLIT)

Read-Modify-Write Instructions The next new assertion
form, RMWAcq(`,Q), is used in the following proof rule
for atomic compare-and-swaps.

P ⇒ Init(`) ∗ RMWAcq(`,Q) ∗ true
P ∗ Q(v)⇒ Rel(`,Q′) ∗ Q′(v′) ∗R[v/y]

X ∈ {rel, rlx} ⇒ Q(v) = emp
X ∈ {acq, rlx} ⇒ Q′(v′) = emp{

P
}
[`]Y

{
y. y 6= v ⇒ R

}{
P
}
CASX,Y (`, v, v′)

{
y. R

} (CAS*)

The rule has five premises. First, the precondition must
ensure that we have permission to do a RMW-read from `
and acquire ownership of Q(v). Second, we require the up-
date performed by the successful CAS to be valid: that is,
to have the necessary release permission, to satisfy Q′(v′),
the assertion that is to be transferred away, and to separately
also satisfy the postcondition. As a precondition for this up-
date, we get to assume not only that the initial precondition
holds, but also that we have access to the state acquired by
ownership transfer, Q(v).

The next two premises take the access modes into ac-
count, suitably restricting the ownership that can be acquired
or released. If the successful CAS is of release or relaxed
kind, then it does not synchronize with the write whose value
it read, so it should not acquire any ownership. This is en-
sured by demanding that Q(v) = emp. Symmetrically, if
the successful CAS is of acquire or relaxed kind, it does
not synchronize with the reads seeing the value it produced,
so it should not release any ownership. This is ensured by
demanding that Q′(v′) = emp.

Finally, we require that failed CASs also satisfy the
postcondition,R, under the assumption that a value different
from the expected one was read.

In its general form, the CAS* rule is sound in the strength-
ened model of Section 6. In the standard model, it is sound
only when X ∈ {rel_acq, sc}.

Unlike multiple normal reads, multiple successful CAS
instructions cannot all read from (and therefore potentially
synchronize with) the same write. This follows from the
AtomicRMW axiom, which requires RMW actions to read
from the immediately preceding write in mo-order. There-
fore, it is sound to duplicate the RMW-acquire permission,

RMWAcq(`,Q)
⇐⇒ RMWAcq(`,Q) ∗ RMWAcq(`,Q) (RMW-SPLIT)

because the semantics ensures that at most one process will
effectively be able to use this permission at any given instant.

In order to be able to prove the last premise of the CAS*
rule, we also support the following rule, allowing us to carve
out a plain acquire permission from an RMW-acquire one.

∀v. Q′(v)= emp ∨Q(v)=Q′(v)= false

RMWAcq(`,Q) ⇐⇒ RMWAcq(`,Q) ∗ Acq(`,Q′)
(RMW-ACQ-SPLIT)

The premise of RMW-ACQ-SPLIT ensures that the assertion
that we have carved out for plain reads is empty, except
perhaps for the values where Q(v) is false, in which case
Q′(v) may also be false.

Allocation of Atomic Locations Whenever a new atomic
location is allocated, the verifier is free to choose a suitable
ownership assertion Q and attach it to the newly allocated
location, and moreover to choose whether the ownership of
Q will be acquired using plain reads or using successful
CASs. We thus have the following two rules.{

emp
}
alloc()

{
`. Rel(`,Q) ∗ Acq(`,Q)

}
(A-R){

emp
}
alloc()

{
`. Rel(`,Q) ∗ RMWAcq(`,Q)

}
(A-M)

Following the C standard, newly allocated locations are not
initialized, and thus do not generate the Init(`) permission
required for reading them. To enable reading from these lo-
cations, the programmer must first initialize them by per-
forming a plain write as we have already seen.

Non-Atomic Locations Finally, the rules for non-atomic
accesses are exactly as in concurrent separation logic. Al-
location returns an uninitialized new cell with full permis-
sion; writing requires full permission of a location (whether
initialized or not), whereas reading works also with partial
permission but requires the location to be initialized.{

emp
}
alloc()

{
x. Uninit(x)

}
(A-NA){

`
17→ _ ∨ Uninit(`)

}
[`]na := v

{
`

17→ v
}

(W-NA){
`

k7→ v

}
[`]na

{
x. x = v ∧ ` k7→ v

}
(R-NA)

Let QJ(v)
def
= (v = 0 ∧ emp) ∨ (v = 1 ∧ J)

Lock(x, J)
def
= Rel(x,QJ) ∗RMWAcq(x,QJ) ∗ Init(x)

new_lock() def
={

J
}

let x = alloc() in{
J ∗ Rel(x,QJ) ∗
RMWAcq(x,QJ)

}
[x]rel := 1{
Lock(x, J)

}
unlock(x)

def
={

J ∗ Lock(x, J)
}

[x]rel := 1{
Init(x) ∗ Lock(x, J)

}{
Lock(x, J)

}

lock(x)
def
={

Lock(x, J)
}

repeat{
Lock(x, J)

}
spin(x);{
Lock(x, J)

}
CASacq,rlx(x, 1, 0)y. Lock(x, J) ∗(

y = 1 ∧ J ∨
y = 0 ∧ emp

)
end{
J ∗ Lock(x, J)

}
Figure 7. Verification of the lock module.

Let Q(x) def
= if x = 0 then emp else a 7→ 7{

emp
}

let a = alloc() in{
Uninit(a)

}
let c = alloc() in{

Uninit(a) ∗ Rel(c,Q) ∗ Acq(c,Q)
}

[c]rlx := 0;{
Uninit(a) ∗ Rel(c,Q) ∗ Acq(c,Q) ∗ Init(c)

}{
Uninit(a) ∗ Rel(c,Q)

}
[a]na := 7{
a 7→ 7 ∗ Rel(c,Q)

}
[c]rel := 1{
Rel(c,Q)

}

{
Acq(c,Q) ∗ Init(c)

}
repeat [c]acq end{
true ∗ a 7→ 7

}
[a]na := [a]na + 1{
true ∗ a 7→ 8

}{
a 7→ 8 ∗ true

}
Figure 8. Verification of the message passing example.

These rules ensure that all accessed location have been al-
located and there are no races on non-atomic memory loca-
tions, and moreover that only initialized locations are read.

5. Examples
We now illustrate RSL by proving simple race-free programs
involving release-acquire synchronization patterns. Owner-
ship transfer along those release-acquire synchronizations is
necessary to prove them correct, that is, to show that they
are memory safe and do not contain data races. To make the
proof outlines more concise, we define the following short-
hand notations.

Emp
def
= λv. emp

IAcq(`, v, P)
def
= Init(`) ∗ Acq(`,Emp[v := P])

IRMWAcq(`, v, P)
def
= Init(`) ∗ RMWAcq(`,Emp[v := P])

Figure 7: Lock Module As our first example, we consider
the lock module introduced in Figure 1. Here we show that

any invariant J may be attached to a lock so that we get the
same specifications as in concurrent separation logic:{

J
}
new_lock()

{
x. Lock(x, J)

}{
Lock(x, J)

}
lock(x)

{
J ∗ Lock(x, J)

}{
J ∗ Lock(x, J)

}
unlock(x)

{
Lock(x, J)

}
Lock(x, J) ⇐⇒ Lock(x, J) ∗ Lock(x, J)

As expected, creating a lock requires the invariant J to hold
initially and returns a token confirming that the lock exists
and protects the invariant J . Acquiring the lock requires this
token and obtains ownership of the invariant. Conversely,
releasing the lock requires the invariant to hold and transfers
it away. Finally, the token saying that x is a lock protecting
resource J can be freely duplicated.

To derive this specification, we define the predicates:

QJ(v)
def
= (v = 0 ∧ emp) ∨ (v = 1 ∧ J)

Lock(x, J)
def
= Rel(x,QJ) ∗ RMWAcq(x,QJ) ∗ Init(x)

The QJ(v) predicate describes the invariant associated with
the location x implementing the lock. It assigns empty own-
ership when the lock is held (v=0 ∧ emp), and ownership
of the invariant, J , when the lock is free (v=1 ∧ J). The
Lock(x, J) predicate contains permissions to access the lock
by performing release-writes and acquire-RMWs. It also
contains the knowledge that the lock is initialized.

In new_lock(), we use the A-M and W-REL rules to ini-
tialize the location and transfer away the ownership of J .
Similarly, in unlock(x), we use the W-REL to transfer away
the ownership of J and then the INIT-SPLIT rule to remove
the duplicate Init(x) fact. In lock(x), we use the R-RLX rule
for the relaxed optimistic read in the spin(x) loop, and then
the CAS* and the R-RLX* rules to deal with the CAS. Fi-
nally, the fact that the Lock(x, J) predicate can be freely du-
plicated follows immediately from REL-SPLIT, RMW-SPLIT,
and INIT-SPLIT.

Figure 8: Message Passing As our second example, we
consider the message passing idiom of Figure 5. Here, by
constructing a proof, we conclude that the program has no
data races and moreover, when both threads terminate, we
have [a] = 8. The proof illustrates the use of the Acq(−,−)
predicate, and the rules A-NA, A-R, W-RLX*, W-NA, W-REL,
R-ACQ, and R-NA.

Figure 9: Partial Ownership Transfer Our next exam-
ple is a variant of the message passing program we have
just seen, where after the synchronization between the two
threads, both threads read from a. This is valid because two
concurrent read accesses do not count as a data race.

In order to verify this program, we use fractional permis-
sions and transfer the partial ownership of the non-atomic lo-
cation a from the first to the second thread. The first thread
writes to a, and then performs a release write to x, giving

{
a

17→ _ ∗ Rel(lock, 0, a 17→ 2 ∨ a 17→ 3) ∗ Rel(lock, 1, emp) ∗ IRMWAcq(lock, 0, a
17→ 2 ∨ a 17→ 3)

}

{
a

17→ _ ∗ Rel(lock, 0, a 17→ 2 ∨ a 17→ 3)
}

[a]na := 2;{
a

17→ 2 ∗ Rel(lock, 0, a 17→ 2 ∨ a 17→ 3)
}

[lock]rel := 0;{
emp

}

{
Rel(lock, 1, emp) ∗
IRMWAcq(lock, 0, a

17→ 2 ∨ a 17→ 3)

}
if (CASacq,rlx(lock, 0, 1) = 0) then{

(a
17→ 2 ∨ a 17→ 3) ∗ IRMWAcq(...)

∗ Rel(lock, 1, a 17→ 2 ∨ a 17→ 3)

}
[a]na := 3{
a

17→ 3 ∗ IRMWAcq(lock, 0, ...)

∗ Rel(lock, 1, a 17→ 2 ∨ a 17→ 3)

}
[lock]rel := 0;{
IRMWAcq(lock, 0, ...)

}
endif

{
Rel(lock, 1, emp) ∗
IRMWAcq(lock, 0, a

17→ 2 ∨ a 17→ 3)

}
if (CASacq,rlx(lock, 0, 1) = 0) then{

(a
17→ 2 ∨ a 17→ 3) ∗ IRMWAcq(...)

∗ Rel(lock, 1, a 17→ 2 ∨ a 17→ 3)

}
[a]na := 2{
a

17→ 2 ∗ IRMWAcq(lock, 0, ...)

∗ Rel(lock, 1, a 17→ 2 ∨ a 17→ 3)

}
[lock]rel := 0;{
IRMWAcq(lock, 0, ...)

}
endif

Figure 10. Example illustrating the use of CAS to implement a lock.

{
a

17→ _ ∗ Rel(x, 1, a 0.67→ 2) ∗ IAcq(x, 1, a 0.67→ 2)
}{

a
17→ _ ∗ Rel(x, 1, a 0.67→ 2)

}
[a]na := 2;{
a

17→ 2 ∗ Rel(x, 1, a 0.67→ 2)
}

[x]rel := 1;{
a

0.47→ 2
}

[a]na{
r. r = 2 ∧ a 0.47→ 2

}

{
IAcq(x, 1, a

0.67→ 2)
}

let y = [x]acq in{
(y=1) ? a

0.67→ 2 : emp
}

assume(y = 1);{
a

0.67→ 2
}

[a]na{
r. r = 2 ∧ a 0.67→ 2

}
Figure 9. Example illustrating fractional ownership and
transfer thereof.

away the partial permission a 0.67→ 2 (using the W-REL rule).
With its remaining a 0.47→ 2 permission, it then reads a us-
ing the R-NA rule. The second thread synchronizes with the
write to x and gets the a 0.67→ 2 permission (using the R-ACQ
rule), after which it reads a and also gets the value 2 (using
the R-NA rule).

Figure 10: Transfer of Permission in Both Directions
Our next example demonstrates the use of CAS directly
to implement a simple mutual exclusion lock. (We could of
course use the lock module verified previously, but we in-
clude this example in order to demonstrate the CAS* rule
again.) Here, for a change, we implement a non-blocking
“tryLock” command using a conditional, rather than a
blocking locking command using a loop.

The lock is implemented by a single location, lock, stor-
ing 0 if the lock is free and 1 if it is held. (This is oppo-
site to the covention of the earlier lock module.) The lock
protects a resource invariant describing the memory cell a.
Initially, the first thread starts with the lock acquired and
owning a: it establishes the resource invariant and releases
the lock. The other two threads start without knowing that
the lock was initially held; they both have the permission to
write the value 1 to the lock without releasing any owner-

let a = alloc() in [a]rlx := 0;
let b = alloc() in [b]rlx := 0;(

if 1 = [a]rlx then
[b]rlx := 1

) (
if 1 = [b]rlx then
[a]rlx := 1

)
Figure 11. Program with a possible dependency cycle.

[Initialization actions not shown]

Rrlx(a, 1)

sb��

Rrlx(b, 1)

sb��
Wrlx(b, 1)

rf 44

Wrlx(a, 1)
rf

jj

Figure 12. Execution exhibiting the dependency cycle.

ship, Rel(lock, 1, emp). By itself, this permission is pretty
useless: the threads can do a blind relaxed-atomic write to
lock setting its value to 1 (acquired) but without gaining any
information. What makes this permission useful, is its com-
bination with the other permission they have, namely to read
the state of an unacquired lock with a CAS and get owner-
ship of the resource invariant. Successfully performing the
CAS enables them to later release the lock with the same
resource invariant.

6. Dealing with Relaxed Memory Accesses
A serious deficiency of the C11 memory model is that it
allows “out of thin air” reads, as illustrated by the program
in Figure 11, adapted from Batty et al. (2013).

In this program, two locations are initialized with the
value 0, and then two threads are forked, each writing 1 to
the one location provided the other already has the value 1.
Intuitively, one would expect that the writes would never be
executed, but actually the C11 concurrency model permits
this outcome. The questionable execution, depicted in Fig-
ure 12, is consistent as the two reads can get the value 1 by
reading from the corresponding conditional stores.

This counterintuitive behaviour is extremely problematic
for formal reasoning as it inhibits even the simplest form

let a = alloc() in [a]rlx := 0;
let b = alloc() in [b]rlx := 1;(
[b]rlx := [a]rlx [a]rlx := [b]rlx

)
;

if [a]rlx < 20 then print [a]rlx

Figure 13. Program showing that range analysis is unsound
under C11.

of thread-local reasoning, that of non-relational conjunctive
invariants (i.e., invariants where each conjunct describes a
property of only one variable). Intuitively, in the previous
program, one would expect the invariant

[a]rlx = 0 ∧ [b]rlx = 0

to hold throughout the parallel composition since it holds ini-
tially and is preserved by every ‘reachable’ atomic statement
of the program, arguing that the conditional stores are not
reachable because the conditions are unsatisfiable accord-
ing to the invariant. This kind of reasoning is performed by
standard compiler optimizations such as “sparse conditional
constant propagation” (Wegman and Zadeck 1991).

Note that with the W-RLX* and R-RLX* rules, we can
easily prove that if we were to read [a] at the end of the
program, we would get 0. (To do so, pick Q := (λx. x = 0)
in the allocation rule for both locations.) This shows that
these two rules are unsound under C11.

Observe that the same problematic execution remains
consistent even if we strengthen either the relaxed reads
to acquire/SC reads or (exclusively) the relaxed writes to
release/SC writes. To make this execution inconsistent, we
have to strengthen both the reads and the writes except at
most one access. This means that even adding one of the W-
RLX* and R-RLX* rules is unsound.

Global Range Analysis A concrete optimization that is un-
sound under C11 is global range analysis. Consider the pro-
gram in Figure 13. An optimizing compiler may argue that
the test [a]rlx < 20 will always succeed because [a] and [b]
store either 0 or 1, and therefore replace the conditional ex-
pression by the then branch. Somewhat surprisingly, un-
der C11, this transformation introduces new behaviour and
is therefore unsound. Because of the causal dependency cy-
cle, the [a]rlx read can return any arbitrary value. Therefore,
the transformed program can print any arbitrary value, while
the original one could only print values less than 20.

A Crude Fix to the Model Since even this very basic
reasoning is unsound for relaxed accesses, we decided to
strengthen the C11 concurrency model with the following
axiom stating that hb ∪ rf must be acyclic (i.e., its transitive
closure must be irreflexive).

acyclic(hb ∪ {(rf(a), a) | a ∈ A}) (StrongAcyclicHB)

where acyclic(R)
def
= @x ∈ A. R+(x, x).

let a = alloc() in [a]rlx := 0;
let b = alloc() in [b]rlx := 0;(

let x = [a]rlx in
[b]rlx := 1

) (
let y = [b]rlx in
[a]rlx := 1

)
Figure 14. Program without a dependency cycle.

With this additional axiom, we can also show the sound-
ness of the “starred” rules for relaxed memory accesses pre-
sented in the previous section. In contrast, the soundness of
the other rules does not depend on this axiom.

Notice that when adding this strong acyclicity condition,
we can drop the strictly weaker IrreflexiveHB axiom, as well
as the ¬hb(b, a) conjunct from the ConsistentRF axiom. We
can further drop the slightly awkward ConsistentRFna ax-
iom, and still have the soundness proof go through, because
all the proof really needs to know is that the write precedes
the read in some well-founded order. In the absence of causal
cycles, this order need not be hb: we can instead take it to be
hb ∪ rf.

Simple though our proposed fix might seem, it is not
perfect. Alas, the StrongAcyclicHB consistency axiom pre-
cludes the reordering of independent instructions, a trans-
formation that compilers and processors with out-of-order
execution units frequently perform. To illustrate the prob-
lem, consider the program in Figure 14, a slight variant of
the program in Figure 11, where the writes to [b] and [a]
are now independent of the earlier reads from [a] and [b] re-
spectively. The problem is that when operating at the level of
single executions, one cannot distinguish whether the hb∪ rf
cycle in the execution shown in Figure 12 constitutes a de-
pendency cycle or not. If the execution comes from the pro-
gram in Figure 11, the cycle should clearly be outlawed, but
if it comes from the program of Figure 14, the cycle is harm-
less and should be allowed. Distinguishing these two cases
is not easy and seems to require a radical change to the C11
model. Clearly, this lies beyond the scope of this paper.

7. Semantics and Soundness
In this section, we define the semantics of assertions and
Hoare triples, and prove that our logic is sound with respect
to the C11 memory model.

7.1 Semantics of Assertions
To define the meaning of separation logic assertions, we
need an underlying separation algebra, i.e. a commutative
partial monoid. To interpret the Acq and Rel assertions, our
model of heaps will have to store assertions, which in turn
represent sets of heaps. If we naively write down the domain
equation, we will get an equation of the form,

Heapspec

?∼= Loc⇀ (...+ (...× P(Heapspec))) ,

which does not have a solution in Set. Therefore, we either
have to move to a more advanced category such as bounded

Q1 ⊕b1,b2
acq Q2

def
=

Q1 if b1 ∧ b2 andQ1 = Q2

λv.Q1(v) ∗ Q2(v) if (¬b1 ∨ ¬b2) and adef(b1,Q1, b2,Q2)

undef if ¬adef(b1,Q1, b2,Q2)

∣∣∣∣∣∣∣∣∣
rval(b,Q) def

= if b thenQ else λv. emp

adef(b1,Q1, b2,Q2)
def
=

∀v. rval(b2,Q1)(v) = rval(b1,Q2)(v)
∨Q1(v) = Q2(v) = false

h1 ⊕′ h2
def
= λ`.

h1(`) if ` ∈ dom(h1) \ dom(h2)

h2(`) if ` ∈ dom(h2) \ dom(h1)

NA[v, k1 + k2] if hi(`) = NA[v, ki] for i = 1, 2 and k1 + k2 ≤ 1

Atom[λv.R1(v) ∨R2(v),Q1 ⊕b1,b2
acq Q2, b1 ∨ b2, b′1 ∨ b′2] if hi(`) = Atom[Ri,Qi, bi, b

′
i] for i = 1, 2

undef otherwise

h1 ⊕ h2
def
=

{
h1 ⊕′ h2 if dom(h1 ⊕′ h2) = dom(h1) ∪ dom(h2)

undef otherwise

Figure 15. Definition of heap composition, h1 ⊕ h2.

ultrametric spaces (Birkedal et al. 2010), or change the equa-
tion to avoid the problematic recursion.

Here, for simplicity, we do the latter and cut the cycle
by storing syntactic assertions, Assn, instead of semantic
assertions, P(Heapspec), within heaps. Simply storing syn-
tactic assertions is, however, insufficient because we want
the heap model to form a separation algebra and to support
the conversions rules REL-SPLIT and ACQ-SPLIT. To allow
these conversions, we therefore have to store syntactic as-
sertions up to associativity and commutativity of ∗ and ∨
and their units. Furthermore, to support RMW-ACQ-SPLIT,
we also need to equate false ∗ false and false. Formally, we
define ∼ to be the smallest equivalence relation on syntactic
assertions, equating the following assertions:

(S1) ∀P,Q ∈ Assn. P ∗Q ∼ Q ∗ P ,
(S2) ∀P,Q,R ∈ Assn. P ∗ (Q ∗R) ∼ (P ∗Q) ∗R,
(S3) ∀P ∈ Assn. P ∗ emp ∼ P ,
(S4) false ∗ false ∼ false,
(S5) ∀P,Q ∈ Assn. P ∨Q ∼ Q ∨ P ,
(S6) ∀P,Q,R ∈ Assn. P ∨ (Q ∨R) ∼ (P ∨Q) ∨R, and
(S7) ∀P ∈ Assn. (P ∨ false) ∼ (P ∨ P) ∼ P .

where, for convenience, we have also included idempotence
for disjunction. The model of heaps, Heapspec, therefore is:

Perm
def
= (0, 1] B def

= {true, false}
M def

= Val→ Assn/∼

Heapspec
def
= Loc⇀

(
NA[U+ (Val× Perm)]
+Atom[M×M× B× B]

)
Each allocated location is either non-atomic or atomic. Non-
atomic locations can either be uninitialized (represented by
special symbol U) or contain a value and a permission.
Atomic locations contain two maps from values to syntac-
tic assertions modulo ∼ and two Boolean flags. The two
maps represent the release and the acquire maps used to in-
terpret the three assertion forms pertinent to RSL: Rel(`,Q),
Acq(`,Q), and RMWAcq(`,Q), with the first Boolean flag
indicating whether the second map acts as a plain acquire

map or as an RMW-acquire map. The second Boolean flag
records whether the location has been initialized or not.

Figure 15 defines the composition of two logically dis-
joint heaps, h1 ⊕ h2. Note that two logically disjoint heaps
can share some locations, provided that they store com-
patible information about them. For non-atomic locations,
they should be initialized and have compatible permis-
sions (i.e., whose sum does not exceed the full permis-
sion, 1). For atomic locations, the two heaps must con-
tain compatible acquire maps, represented by the predicate
adef(b1,Q1, b2,Q2). This predicate is somewhat complex
because acquire maps represent plain acquire or RMW-
acquire permissions depending on the relevant Boolean flag.
The cases are:

(Case b1 ∧ b2) we must have Q1 = Q2;
(Case b1 ∧ ¬b2) we require that for all v, either Q2(v) =

emp or Q1(v) = Q2(v) = false;
(Case ¬b1 ∧ b2) symmetrically to the previous case; and
(Case ¬b1 ∧ ¬b2) no conditions.

Given these definitions, we can show that (Heapspec,⊕, ∅)
forms a separation algebra, which in turn means that it is a
good model for separation logic assertions.

Lemma 1. (Heapspec,⊕, ∅) forms a separation algebra.
That is, ⊕ is associative, commutative, and has ∅ as its
identity element.

In the proof of this lemma, property S4 is required to
show associativity; replacing S4 with the more general prop-
erty ∀P ∈ Assn. P ∗ false ∼ false breaks associativity.

We remark that in contrast to most models for separation
logic, our ⊕ is not cancellative. For example, consider the
heap hI = {` 7→ Atom[False,Emp, false, true]}. Clearly,
hI 6= ∅ and yet hI ⊕ hI = hI = hI ⊕ ∅. In practice,
the lack of cancellativity does not affect reasoning about
RSL assertions. It also does not mean that the heap model
contains ‘junk’ information. Indeed, the heap hI is used to
model the assertion Init(`), and we want hI ⊕ hI = hI to
validate INIT-SPLIT.

Definition 1 (Assertion Semantics).
Let J−K : Assn→ P(Heapspec) be:

JfalseK def
= ∅

JP ⇒ QK def
= {h | h ∈ JP K =⇒ h ∈ JQK}

J∀x. P K def
= {h | ∀v. h ∈ JP [v/x]K}

JempK def
= {∅}

JP ∗QK def
= {h1 ⊕ h2 | h1 ∈ JP K ∧ h2 ∈ JQK}

JUninit(`)K def
= {{` 7→ NA[U]}}

J` k7→ vK def
= {{` 7→ NA[v, k]}}

JInit(`)K def
= {{` 7→ Atom[False,Emp, false, true]}}

JRel(`,Q)K def
= {{` 7→ Atom[Q,Emp, false, false]}}

JAcq(`,Q)K def
= {{` 7→ Atom[False,Q, false, false]}}

JRMWAcq(`,Q)K def
= {{` 7→ Atom[False,Q, true, false]}}

where False
def
= λv. false and Emp

def
= λv. emp.

Figure 16. Definition of the semantics of assertions.

Equipped with specification heaps, Heapspec, we proceed
to the semantics of assertions. These are given as a function
J−K : Assn→ P(Heapspec) in Figure 16.

A basic property of the assertion semantics, that justifies
treating stored assertions up to∼, is that∼-related assertions
have the same semantics.

Lemma 2. If P ∼ Q, then JP K = JQK.

Moreover, we can easily show that our model validates
the logical entailments of Section 4.

Lemma 3. The properties REL-SPLIT, ACQ-SPLIT, RMW-
SPLIT, RMW-ACQ-SPLIT, and INIT-SPLIT hold universally.

Finally, we say that an assertion is precise if and only if it
uniquely determines a subheap where it holds. The definition
is standard (O’Hearn 2007), but due of the lack of cancella-
tivity of ⊕ we require both the heaps satisfying the assertion
to be equal (h1 = h′1) as well as their remainders (h2 = h′2).
If ⊕ were cancellative, then either of the equalities would
suffice as it would imply the other.

Definition 2 (Precision). An assertion is precise, denoted
precise(P), if and only if for all h1, h′1, h2, h′2, if h1 ∈ JP K
and h2 ∈ JP K and h1 ⊕ h′1 = h2 ⊕ h′2 6= undef , then
h1 = h′1 and h2 = h′2.

7.2 Semantics of Hoare triples
We move on to the meaning of RSL triples,

{
P
}
E
{
y. Q

}
.

To handle both models—the C11 standard one and the
strengthened one of Section 6—we parametrize the defini-
tions of the semantics of triples and all auxiliary definitions
with respect to the model. For notational simplicity, how-
ever, we will present the definitions only for the strength-
ened model and we will note in text any differences for the
standard C11 model.

Given an execution X = 〈A, lab, sb, rf,mo, sc〉, we de-
fine the helper functions: SBinX (a), SBoutX (a), SWinX (a),

and SWoutX (a), to get the set of sb/sw incoming/outgoing
edges of an action a ∈ A. Given also a set of actions,
V ⊆ A, we denote the set of its hb and rf predecessors
as PreX (V).

PreX (V)
def
= {a | ∃b ∈ V. hb(a, b) ∨ a = rf(b)}

This definition is very useful because we will generally be
considering sets of actions V that are prefix-closed, namely
PreX (V) ⊆ V , and we will be growing such sets by adding
one action at a time while maintaining prefix-closure. Doing
so is always possible for consistent executions because of
the StrongAcyclicHB axiom. In the standard C11 model,
we have to resort to a stronger definition of PreX (V) that
includes only the hb edges, not arbitrary rf edges as well.

Prestandard_C11
X (V)

def
= {a | ∃b ∈ V. hb(a, b)}

To define the meaning of RSL triples, we will generally
be annotating hb-edges with appropriate heaps. When do-
ing so, however, it will be important to distinguish between
happens-before edges that occur because of an sb-edge and
those that occur because of an sw-edge. We therefore intro-
duce the following definition that tags them accordingly.

Definition 3 (Tagged Happens Before). Given an execution
X , let thbX be a tagged union of sbX and swX , constructed
as follows

thbX
def
= {(“sb”, a, b) | (a, b) ∈ sbX }
∪ {(“sw”, a, b) | (a, b) ∈ swX }

For a program expression, E, we denote CJEK as the
set of its consistent contextual executions. These executions
are obtained by plugging in an execution of E in some
arbitrary execution context, such that the whole execution
is consistent, as follows.

CJEK def
= { 〈res,Actx,Aprg,X , fst , lst〉 | ∃labctx, labprg.
∃sb. ∃sbprg = sb∩ (Aprg×Aprg).
X = 〈Actx] Aprg, labctx ∪ labprg, sb, _, _, _〉
∧ 〈res,Aprg, labprg, sbprg, fst , lst〉 ∈ JEK
∧ (∃!a. sb(a, fst)) ∧ (∃!b. sb(lst , b))
∧ Consistent(X) }

In the definition of CJEK, we require that (1) the part of the
execution corresponding to the expression matches its se-
mantics, (2) fst has a unique sb-predecessor, (3) lst has a
unique sb-successor, and (4) the entire execution is consis-
tent. The requirements about the unique predecessor of fst
and the unique successor of lst will be used for selecting
unique edges responsible for carrying the expression’s pre-
condition and postcondition.

To define the meaning of RSL triples, we will annotate the
thb-edges of consistent contextual executions with heaps.
We will call such functions, hmap : thbX ⇀ Heapspec,

Definition 4 (Local annotation validity). Given an execution, X = 〈A, lab, sb, rf,mo, sc〉, a heap map, hmap : thbX ⇀
Heapspec, and a set of actions V ⊆ A, the predicate Valid(hmap, V) holds if and only if for all actions a ∈ V , there exist
`, v,Q,Q′,Q′′, Z, h1, h

′
1, h2, hF, hsink such that(

lab(a) = skip
∧ hmap(SBinX (a)) = hmap(SBoutX (a))⊕ hsink

)

∨

lab(a) = WZ(`, v) ∧ Z ∈ {rlx, rel, sc}
∧ h1 = {` 7→ Atom[Q,Emp, false, _])}
∧ h′

1 = {` 7→ Atom[Q,Emp, false, true])}
∧ h2 = hmap(SWoutX (a))⊕ hsink ∧ h2 ∈ JQ(v)K
∧ hmap(SBinX (a)) = h1 ⊕ h2 ⊕ hF

∧ hmap(SBoutX (a)) = h′
1 ⊕ hF

∧ (Z = rlx =⇒ Q(v) = emp)

∨

lab(a) = RMWZ(`, v, v
′) ∧ Z 6= na

∧ hmap(SBinX (a))(`) = Atom[_,Q, true, true]
∧ hmap(SBinX (a))⊕ hmap(SWinX (a))

= {` 7→ Atom[Q′,Emp, false, false]} ⊕
hmap(SBoutX (a))⊕ hmap(SWoutX (a))⊕ hsink

∧ hmap(SWinX (a)) ∈ JQ(v)K
∧ (hmap(SWoutX (a))⊕ hsink) ∈ JQ′(v′)K
∧ (Z ∈ {rlx, rel} =⇒ Q(v) = emp)
∧ (Z ∈ {rlx, acq} =⇒ Q′(v′) = emp)

∨

lab(a) = A(`)
∧ hmap(SBoutX (a)) = hmap(SBinX (a)) ⊕

{` 7→ Atom[Q,Q, _, false]}

∨
(
lab(a) = A(`)
∧ hmap(SBoutX (a)) = hmap(SBinX (a))⊕ {` 7→ NA[U]}

)

∨

lab(a) = Wna(`, v)
∧ hmap(SBinX (a))(`) ∈ {NA[U],NA[_, 1]}
∧ hmap(SBoutX (a)) = hmap(SBinX (a))[7̀→NA[v, 1]]

∨

lab(a) = Rna(`, v)
∧ hmap(SBinX (a))(`) = NA[v, _]
∧ hmap(SBinX (a)) = hmap(SBoutX (a))

∨

lab(a) ∈ {Rrlx(`, v),Racq(`, v),Rsc(`, v)}
∧ hmap(SWinX (a)) ∈ JQ(v)K ∧ precise(Q(v))
∧ hmap(SBinX (a)) = {` 7→ Atom[False,Q, false, true]} ⊕ hF

∧ hmap(SBoutX (a)) = hmap(SWinX (a))⊕ hF ⊕
{` 7→ Atom[False,Q[v := emp], false, true]}

Definition 5 (Configuration safety). Given sets of actions, Actx and Aprg, an execution X = 〈Aprg] Actx, lab, sb, rf, sc〉,
a natural number, n ∈ N, a set of actions, V , a heap map, hmap : RespX (V) → Heapspec, a distinguished final action,
lst ∈ Aprg, and a set of heaps, Q, we define safenX (V, hmap,Actx,Aprg, lst , Q) by structural recursion on n as follows:
safe0

X (V, hmap,Actx,Aprg, lst , Q) holds always.
safen+1

X (V, hmap,Actx,Aprg, lst , Q) holds if and only if the following conditions all hold:

• If lst ∈ V , then hmap(SBoutX (lst)) ∈ Q; and
• For all a ∈ Aprg \ V such that PreX ({a}) ⊆ V , there exists hmap′ : RespX ({a})→ Heapspec such that
Valid(hmap ∪ hmap′, V ∪ {a}) and safenX (V ∪ {a}, hmap ∪ hmap′,Actx,Aprg, lst , Q); and
• For all a ∈ Actx \ V such that PreX ({a}) ⊆ V , and all hmap′ : RespX ({a})→ Heapspec,

if Valid(hmap ∪ hmap′, V ∪ {a}), then safenX (V ∪ {a}, hmap ∪ hmap′,Actx,Aprg, lst , Q).

Figure 17. Definitions of annotation validity and configuration safety.

heap annotations or heap maps. For each thb-edge, it is
important to decide who is responsible for choosing a heap
to annotate that edge with: is it the program itself or is it its
environment? Therefore, given a set of program actionsA ⊆
A, we define the set, RespX (A) of edges whose annotation
is the responsibility of the program.

RespX (A)
def
=
⋃
a∈A

(SBoutX (a) ∪ SWinX (a))

This definition deserves some explanation.
First, as expected, the program is responsible for cor-

rectly annotating its outgoing sequenced-before edges. Con-
versely, it can assume that incoming sb-edges are correctly
annotated. This part is consistent with the usual semantics
of Hoare triples: the program may assume the precondition
holds when starting its execution, and must establish the
postcondition when returning.

What is perhaps a bit unusual is that the program is also
responsible for the annotations on the incoming synchro-

nization edges, and not the outgoing ones. This is because
when an acquire read synchronizes with a release write, it is
the reader that ‘knows’ how much state ownership is to be
transferred along the sw-edge. The writer simply knows how
much total ownership is to be transferred away from itself,
but not how this is to be distributed to the various readers
that synchronize with the write.

In a slight abuse of notation, given a heap annotation,
hmap, and a set of context edges, S ⊆ thbX , we will let
hmap(S)

def
=
⊕

x∈S∩dom(hmap) hmap(x).

Annotation Validity and Configuration Safety Figure 17
contains two important auxiliary definitions. First, we have
annotation validity (Definition 4). A heap map, hmap is
valid up to a set of actions V , if and only if for every action
a ∈ V , the annotation is locally valid around that action:
basically the sum of the annotated heaps on the incoming
edges should equal the sum of the annotated heaps on the
outgoing edges, modulo the effect of action a.

Second, we have configuration safety (Definition 5), de-
fined in the style of Vafeiadis (2011). Here, a configuration is
a set of visited actions, V ⊆ (Actx∪Aprg), and heap annota-
tion, hmap, annotating precisely the thb-edges for which V
is responsible. safenX (V, hmap, . . .) asserts that such a con-
figuration is safe for at least n further actions. Unless n = 0,
a safe configuration must:

• Annotate the (unique) sb-outgoing edge from the com-
mand with a heap satisfying the postcondition in case the
last action of the command is in V ;
• For any “ready-to-execute” action a of the command, it

must be possible to extend the heap map so that it is safe
also up to a for n− 1 actions; and
• For any “ready-to-execute” action of the context, any

valid extension of the heap map should be safe for n− 1
actions.

The informal notion of action a being “ready-to-execute” is
captured by the constraint that a has not yet been visited
whereas all its predecessors have: a /∈ V ∧ Pre({a}) ⊆ V .

With these auxiliary definitions, we define the meaning
of RSL triples as follows:

Definition 6 (Meaning of RSL triples).
The Hoare triple,

{
P
}
E
{
y. Q

}
, holds if and only if

for all 〈res,Actx,Aprg,X , fst , lst〉 ∈ CJEK,
for all V ⊆ Actx such that PreX (V) ⊆ V ,
for all hmap ∈ RespX (V)→ Heapspec, for all R ∈ Assn,
if hmap(SBinX (fst)) ∈ JP ∗RK and Valid(hmap, V), then
for all n ∈ N, safenX (V, hmap,Actx,Aprg, lst ,Post),

where Post =

{
JQ[v/y] ∗RK if res = v

Heapspec if res = ⊥ .

The definition says that for any consistent contextual execu-
tion ofE, all valid configurations annotating only the context
edges and satisfying the precondition on the (unique) incom-
ing sb-edge to the program, are safe for any number of steps.
As is common in the definitions of the meaning of separation
logic triples, the definition bakes in the frame rule—that is,
it quantifies over all assertions R and star-conjoins R to the
precondition and the postcondition.

7.3 Memory Safety and Race Freedom
The soundness proof of RSL consists of two parts. First, we
have to show that every proof rule of §4 is a valid entailment
according to the semantics of Hoare triples in Definition 6.
Second, we have to show that RSL triples denote something
useful for program executions, for example that they do not
contain any data races nor any dangling reads.

We start with the second task as it is somewhat simpler.
More specifically, we shall show that any consistent execu-
tion of a verified program under the true precondition is (a)
memory safe, (b) has no uninitialized reads, (c) has no data
races, and (d) if the program terminates, its postcondition is
satisfiable. By memory safety, we mean that allocation of a

location must happen before any action reading or writing
that location.

Definition 7. An execution is memory safe if and only if
∀a ∈ A. isaccess`(a) =⇒ ∃b. hb(b, a) ∧ lab(b) = A(`).

Given a validly annotated execution by the heap map
hmap, observe the following: (1) any action, a, accessing
the location ` must have ` ∈ dom(hmap(SBin(a))); and
(2) whenever a location is in the domain of the annota-
tion of an edge leading to some action b, (i.e., when ` ∈
dom(hmap(_, _, b))), then there must be an hb-earlier allo-
cation action for that location. Putting these two together, we
get memory safety for validly annotated executions.

Absence of reads from uninitialized locations follows
by a similar argument. First, we say that a read action, a,
reads from an uninitialized location if rf(a) = ⊥, which
from (ConsistentRFdom) means that there must be no pre-
vious write to that location. We can, however, observe that
the annotation validity for read actions, a, requires that
hmap(SBin(a))(`) = Atom[_, _, _, true] (for atomic loca-
tions) or hmap(SBin(a))(`) = NA[v, _] (for non-atomic
locations). But, in order to get one of these heaps in a valid
annotation, it must be the case that there was an hb-earlier
write to the same location.

Proving race-freedom is slightly more involved. First, let
us formalize exactly what race-freedom is. We say that two
actions are conflicting if both access the same location, at
least one of them is a write, and at least one of the accesses
is non-atomic (i.e., atomic accesses do not conflict with one
another). An execution is race-free is all conflicting actions
are ordered by hb.

Definition 8. Two actions a6=b are conflicting if there exists
a location ` such that isaccess`(a) and isaccess`(b) and
iswrite(a) ∨ iswrite(b), and mode(a)=na ∨mode(b)=na.

Definition 9. An execution is race-free if and only if for all
conflicting actions a, b ∈ A, we have hb(a, b) ∨ hb(b, a).

To prove race-freedom, we need the notion of a set of
transitions, T , being pairwise independent. We say that T is
pairwise independent, if there exists no pair of transitions in
T such that one happens before the other.

Definition 10 (Independent Edges). In an execution, X ,
a set of transitions T ⊆ thbX is pairwise independent, de-
noted PairIndep(T), if and only if for all (_, a, a′), (_, b, b′) ∈
T , we have ¬hbX (a′, b).

The crux of the race freedom proof is the following in-
dependent heap compatibility lemma, which states that in
every validly annotated execution, the heaps annotated at in-
dependent edges are ⊕-compatible.

Lemma 4 (Independent Heap Compatibility). For every
consistent execution, X , heap map, hmap : RespX (AX) →
Heapspec, and pairwise independent set of transitions, T , if
Valid(hmap,AX) holds, then

⊕
x∈T hmap(x) is defined.

To prove this lemma, we need the notion of the depth of a
set of actions, which we take to be the number of its elements
and its predecessors.

Definition 11 (Action Depth). Given an execution, X , the
depth of a set of actions, A ⊆ AX , which we denote as
DX (A), is the number of actions in the set or that have
happened before it, |

⋃
n≥0 PreX (· · ·PreX (A) · · ·)︸ ︷︷ ︸

n

|.

The depth of actions satisfies this important property:

Lemma 5. If hbX (a, b), then DX ({a}) < DX ({b}).
Lemma 4 is then proved by induction using the metric

DX ({a | (_, a, _) ∈ T }), followed by case analysis on the
action in T with largest DX ({−}) value.

Putting everything together, our main soundness theorem
is stated in terms of complete consistent executions:

CCJEK def
= { 〈res,X〉 | ∃a, b.

a 6= b ∧ labX (a) = labX (b) = skip
∧ 〈res, {a, b}, _,X , _, _〉 ∈ CJEK }

where the program expression is put inside the trivial context
providing it with an incoming sb-edge from a skip action and
an outgoing sb-edge to a skip action. Here it is:

Theorem 1 (Adequacy). Let
{
true

}
E
{
y. Q

}
. For every

execution 〈res,X〉 ∈ CCJEK, X is memory safe, has no
reads from uninitialized locations and no races. Moreover,
if the execution is terminating, then Q holds of the result.

7.4 Soundness of the Proof Rules
We move on to the proofs of soundness of the individual
rules. For each rule, we have to prove that it is a valid
entailment given the meaning of RSL triples (Definition 6).
With the exception of R-ACQ and CAS*, these proofs are
relatively straightforward because the conditions imposed by
local validity are almost directly enforced by the proof rules.

The proofs of R-ACQ and CAS* are more complex be-
cause we also have to annotate the incoming sw-edges cor-
rectly and show that the annotation is valid not only for the
program action under consideration, but also for the context
actions at the other end—that is, for the write or RMW ac-
tion with which the read or CAS synchronizes.

We start with the R-ACQ rule. Consider a consistent con-
textual execution whereAprg = {a} and lab(a)=Racq(`, v).
We proceed with a case split. IfQ(v)= emp, we can simply
annotate any incoming sw-edges with the empty heap and
set hmap′(SBoutX (a))= hmap(SBinX (a)), which trivially
preserves validity. When, however, Q(v) 6= emp, the situ-
ation is much more difficult, because it is not immediately
obvious that there is an incoming sw-edge that can be anno-
tated in a way that satisfies the local validity conditions of
both the acquire-read and the release-write (or RMW) at the
other end. For this case, our proof works as follows.

First, as the precondition includes Init(`), we know that
there exists a write to ` that happens before the acquire read.

Lemma 6 (Init). If Valid(V, hmap) and PreX (V) ⊆ V
and hmap(_, _, a)(`) = Atom[_, _, _, true], then there exists
c ∈ V such that labX (c) = W_(`, _) and (c, a) ∈ hbX .

Therefore, from the consistency axiom ConsistentRF, we
get that ∃w. rf(a) = w. As PreX ({a}) ⊆ V , we also know
w ∈ V .

Next, we will show that w must be a plain atomic write
that synchronizes with a. To see why this holds, observe that
` ∈ dom(hmap(SBinX (w))) holds as hmap is locally valid
at w ∈ V . Now, informally, we can trace back through the
thbX edges to the point where for some node c ∈ V such
that hbX (c, w), we have ` /∈ dom(hmap(SBinX (c))) and
yet ` ∈ dom(hmap(SBoutX (c))). Since hmap is locally
valid, the only way for this to happen is if labX (c) = A(`).
Similarly, we can follow thbX edges backwards from a
and find a node d ∈ V such that hbX (d, a) and ` /∈
dom(hmap(SBinX (d))) and ` ∈ dom(hmap(SBoutX (d))).
Again, since hmap is locally valid, labX (d) = A(`), and
so from the consistency axiom ConsistentAlloc, we obtain
that c = d. When tracing back from a, at each step we can
show that there exist Q′ and b such that hmap(tn+1)(`) =
Atom[_,Q′, b, _] and either b = false ∧ Q′(v) 6= emp or
Q′(v) = false. So, in total, we get hmap(SBoutX (c))(`) =
Atom[Q′,Q′, b, _] and either b = false ∧ Q′(v) 6= emp
or Q′(v) = false. Similarly, when tracing back from b, at
each step we can show that whenever hmap(tn+1)(`) =
Atom[Q′, _, b, _], then there exist Q′′ and b′ such that
hmap(tn)(`) = Atom[Q′′, _, b′, _] and Q′′(v) ⇒ Q(v)
and b′ ⇒ b. So, in total we get that there exist Q′′ and b′

such that hmap(SBinX (w))(`) = Atom[Q′′, _, b′, _], and
Q′′(v) ⇒ Q′(v) and b′ ⇒ b. Since hmap is locally valid at
w, ∃h ∈ JQ′′(v)K; thus, b′ = b = false and Q′′(v) 6= emp,
which means that w is a write that synchronizes with a.

We have the following picture: w synchronizes with a,
but possibly also with some other reads r1, . . . , rn ∈ V and
perhaps even some reads not in V .

w : W(`, v)
sw //

**
((

��
����		

��

a : Racq(`, v)

r1 . . . rn . . .

V

From the local validity of hmap at w ∈ V , we know that
(h1⊕· · ·⊕hn⊕hsink) ∈ JQ′′(v)K, where each hi is the heap
annotated on the sw-edge from w to ri. What remains to be
shown is that we can split hsink further; that is, we can find
h′, h′sink such that hsink = h′⊕h′sink and h′ ∈ JQ(v)K. Then,
we annotate the (“sw”, w, a) edge with h′ and SBoutX (a)
with h′⊕SBinX (a), thereby ensuring local validity at both a
and w. To find such a split, we rely on the following lemma.

Lemma 7 (Well-formedness). Given a consistent execution
X , a prefix-closed set of actions, V ⊆ AX with PreX (V) ⊆
V , a heap map, hmap ∈ RespX (V) → Heapspec, that is
locally valid with respect to V , Valid(hmap, V), a pairwise

independent set of transitions T , such that {a | (_, a, _) ∈
T } ⊆ V and hmap(T)(`) = Atom[_,Q, _, _], an action,
w, such that lab(w) = W(`, v) and hmap(SBinX (w))(`) =
Atom[Q′′, _, _, _], and a partial map R : V ⇀ Assn, such
that for all a ∈ dom(R), a is a read action that synchro-
nizes with w and acquires ownership of R(a), if moreover,
{a | ∃(_, _, b) ∈ T ∧ (a = b ∨ hb(a, b))} ∩ dom(R) = ∅,
then, Q′′(v)⇒ Q(v) ∗�r∈dom(R)R(r) ∗ true.

The proof of this lemma is rather technical and can be
found in the Coq formalization. At a high level, however, it
is similar to the proofs already described, using the depth
metric to trace back the T ∪ {(“sw”, w, r) | r ∈ dom(R)}
edges until we reach c, the action that allocated `.

Applying this lemma, we get that (h1⊕· · ·⊕hn⊕hsink) ∈
JQ(v) ∗ R(r1) ∗ . . . ∗ R(rn) ∗ trueK, and since for all i, we
also know that precise(R(ri)) and hi ∈ JR(ri)K, we obtain
hsink ∈ JQ(v) ∗ trueK, as required.

The proof of CAS is actually much simpler because
there cannot be any resource-acquiring reads that synchro-
nize with the write/RMW whence the CAS reads from. De-
tails of this proof can be found in the Coq formalization.

7.5 The Coq Formalization
Our Coq development covers the entire soundness proof out-
lined in this section and follows the LATEX presentation very
closely. To avoid excessive proof duplication, the definitions
of configuration safety and triple validity are parametrized
with respect to the memory model; that is, either the stan-
dard model or the one with the StrongAcyclicHB condition.

One notable difference is that in Coq we represent finite
sets of actions,A, as lists, and domain-restricted functions as
functions over the full domain. For example, instead of lab ∈
A → Act, in Coq we have lab : AName → Act, and add a
consistency axiom stating that ∀x /∈ A. lab(x) = skip. Sim-
ilarly, we define hmap : thb(AName × AName,AName ×
AName)→ Heapspec, and in the definition of configuration
safety, instead of saying that there exists a hmap′ such that
the configuration with hmap] hmap′ is safe, we say that
there exists hmap′′ such that ∀e ∈ RespX (V). hmap′′(e) =
hmap(e) holds and the configuration with hmap′′ is safe.

Another difference is that in Coq the treatment of as-
sertions up to ∼ is achieved by defining a syntactic asser-
tion normalization function, norm , with the property that
P ∼ Q ⇐⇒ norm(P) = norm(Q). Then, we represent
Assn/∼ as {P ∈ Assn | norm(P) = P}.

Finally, following Nanevski et al. (2010), we represent
heaps as the option type Heapspec ∪ {⊥}, with ⊥ represent-
ing undefined heaps. This removes the ‘definedness’ side-
conditions from the statements of commutativity and asso-
ciativity of heap composition. In effect, we move the de-
finedness checks to the semantics of assertions, where we
ensure that ⊥ /∈ JP K for any assertion P .

The formal development excluding standard libraries
consists of about 3000 lines of definitions and statements

of lemmas and theorems, 5500 lines of proof, 500 lines of
comments, and took the first author about two months to
complete. It is worth pointing out that the formal proof re-
vealed that a bug that we had missed in our earlier paper
proofs: namely, the requirement that the ownership transfer
governed by the R-ACQ rule to be precise. While we do not
think that this side condition is strictly necessary for sound-
ness in the absence of the conjunction rule, the current proof
style fundamentally requires it.

8. Related Work and Conclusion
This paper introduced relaxed separation logic, a moder-
ate extension of concurrent separation logic (O’Hearn 2007)
with special primitives for handling C11’s acquire and re-
lease atomic accesses.

8.1 Related Work
About the C11 Model The C11 concurrency model is part
of the C and C++ 2011 standards (ISO/IEC 9899:2011;
ISO/IEC 14882:2011), and has been formalized by Batty
et al. (2011). In a subsequent paper, Batty et al. (2012)
simplified the C11 model in the absence of consume reads.
It is this simplified model that we used in this paper.

In a recent paper, Batty et al. (2013) considered the no-
tion of library atomicity in the context of the C11 memory
model. While this work is largely orthogonal to our defining
a program logic about C11, we expect that combining the
two approaches will be fruitful as program logics are often
the means for proving atomicity, at least in the SC setting.

Logics for Other Weak Memory Models We are aware of
only three lines of work that define program logics over
a relaxed memory model, none of which handles the C11
memory model.

• Ferreira et al. (2010) proved the soundness of concur-
rent separation logic (CSL) over a class of relaxed mem-
ory models, all satisfying the DRF-guarantee. In hind-
sight, their result is not surprising as the soundness of
CSL over SC (sequential consistency) ensures that CSL-
verified programs do not contain any data races, and
hence whether the soundness proof is done over SC or
over the relaxed memory model is irrelevant.
• Ridge (2010) developed a rely-guarantee proof system

over x86-TSO and used it to verify a x86-TSO version
of Simpson’s four slot algorithm, with all the results
mechanized in the HOL theorem prover.
• Wehrman and Berdine (2011) proposed a variant of sep-

aration logic for x86-TSO featuring primitive assertions
for modelling the state of the TSO buffers and both tem-
poral and spatial separating conjunctions.

Besides obviously handling different memory models and
being quite different program logics, there is a fundamen-
tal difference between the current work and these earlier pa-

pers on program logics for relaxed memory models. In this
work, we define the meaning of Hoare triples directly over an
axiomatic partial order semantics for concurrent programs,
whereas the earlier works used an operational or an opera-
tionally flavoured trace semantics, very much like the tradi-
tional soundness proofs over SC. As a result, our soundness
proof is completely different from the soundness proofs of
the aforementioned papers.

8.2 Possible Future Research Directions
Being the first program logic for C11 concurrency, there are
numerous opportunities for extending RSL, for example to
deal with more advanced features of the C11 memory model,
such as consume reads and memory fences. Similarly, one
can also try to adapt to C11 setting more advanced program
logics, such as RGSep (Vafeiadis and Parkinson 2007), con-
current abstract predicates (Dinsdale-Young et al. 2010), or
CaReSL (Turon et al. 2013).

Initialization of Atomics For simplicity, RSL tags loca-
tions as atomic or non-atomic and permits atomic accesses
only on atomic locations and non-atomic accesses only on
non-atomic locations. As a result of this choice, initializa-
tion writes to atomic accesses in our model also have to be
atomic, whereas the C11 standard also allows non-atomic
initialization writes to atomic location. To enable the ver-
ification of such programs, we should somehow allow the
following ‘conversion’ rule

Q(v) = emp{
` 7→ v

}
0
{
Rel(`,Q) ∗ Acq(`,Q) ∗ Init(`)

}
Automation Another important research direction would
be to develop techniques and tools for automating RSL
proofs by adapting some of the work that has been done in
automating standard separation logic (Distefano et al. 2006;
Calcagno et al. 2009; Dudka et al. 2011).

Acknowledgments
We would like to thank Lars Birkedal, Arthur Charguéraud,
Mike Dodds, Alexey Gotsman, Matthew Parkinson, Aaron
Turon, John Wickerson, and the anonymous OOPSLA 2013
reviewers for their very useful comments that improved the
content of this paper. The research was supported by the EC
FP7 FET Young Explorers scheme via the project ADVENT.

References
M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathe-

matizing C++ concurrency. In POPL 2011, pages 55–66. ACM,
2011.

M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell.
Clarifying and compiling C/C++ concurrency: From C++11 to
POWER. In POPL 2012, pages 509–520. ACM, 2012.

M. Batty, M. Dodds, and A. Gotsman. Library abstraction for
C/C++ concurrency. In POPL 2013, pages 235–248. ACM,
2013.

L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic
solution of recursive metric-space equations. Theoretical Com-
puter Science, 411(47):4102–4122, 2010.

J. Boyland. Checking interference with fractional permissions. In
SAS 2003, volume 2694 of LNCS, pages 55–72. Springer, 2003.

C. Calcagno, D. Distefano, and V. Vafeiadis. Bi-abductive resource
invariant synthesis. In APLAS, volume 5904 of LNCS, pages
259–274. Springer, 2009.

T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In ECOOP 2010,
volume 6183 of LNCS, pages 504–528. Springer, 2010.

D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In TACAS, volume 3920 of LNCS,
pages 287–302. Springer, 2006.

K. Dudka, P. Peringer, and T. Vojnar. Predator: A practical tool
for checking manipulation of dynamic data structures using sep-
aration logic. In CAV, volume 6806 of LNCS, pages 372–378.
Springer, 2011.

R. Ferreira, X. Feng, and Z. Shao. Parameterized memory models
and concurrent separation logic. In ESOP 2010, volume 6012 of
LNCS, pages 267–286. Springer, 2010.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence
of compiling with continuations. In PLDI 1993, pages 237–247.
ACM, 1993.

ISO/IEC 14882:2011. Programming language C++, 2011.

ISO/IEC 9899:2011. Programming language C, 2011.

P. E. McKenney and B. Garst. N1525: Memory-order rationale,
2011. Available at http://www.open-std.org/jtc1/sc22/
wg14/www/docs/n1525.htm.

A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verifica-
tion of heap-manipulating programs. In POPL, pages 261–274.
ACM, 2010.

P. O’Hearn. Resources, concurrency, and local reasoning. Theoret-
ical Computer Science, 375(1):271–307, 2007.

T. Ridge. A rely-guarantee proof system for x86-TSO. In VSTTE
2010, volume 6217 of LNCS, pages 55–70. Springer, 2010.

S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell,
L. Maranget, J. Alglave, and D. Williams. Synchronising C/C++
and POWER. In PLDI 2012, pages 311–322. ACM, 2012.

A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and
Hoare-style reasoning in a logic for higher-order concurrency.
In ICFP 2013. ACM, 2013.

V. Vafeiadis. Concurrent separation logic and operational seman-
tics. In MFPS 2011, volume 276 of ENTCS, pages 335–351.
Elsevier, 2011.

V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR 2007, volume 4703 of LNCS,
pages 256–271. Springer, 2007.

M. N. Wegman and F. K. Zadeck. Constant propagation with
conditional branches. ACM Trans. Program. Lang. Syst., 13(2):
181–210, Apr. 1991.

I. Wehrman and J. Berdine. A proposal for weak-memory local
reasoning. In LOLA 2011, 2011.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1525.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1525.htm

	Introduction
	Programming Language
	The C11 Memory Model
	Relaxed Separation Logic
	Examples
	Dealing with Relaxed Memory Accesses
	Semantics and Soundness
	Semantics of Assertions
	Semantics of Hoare triples
	Memory Safety and Race Freedom
	Soundness of the Proof Rules
	The Coq Formalization

	Related Work and Conclusion
	Related Work
	Possible Future Research Directions

