
Bi-Abductive Resource Invariant Synthesis

Cristiano Calcagno1, Dino Distefano2, and Viktor Vafeiadis3

1 Imperial College
2 Queen Mary University of London

3 Microsoft Research, Cambridge

Abstract. We describe an algorithm for synthesizing resource invariants
that are used in the verification of concurrent programs. This synthesis
employs bi-abductive inference to identify the footprints of different parts
of the program and decide what invariant each lock protects. We demon-
strate our algorithm on several small (yet intricate) examples which are
out of the reach of other automatic analyses in the literature.

1 Introduction

Resource invariants are a popular thread-modular verification technique for con-
current lock-based programs. The idea is to associate with each lock an assertion,
called the resource invariant, that is true whenever no thread has acquired the
lock. When a lock is initialized, we must prove that the associated resource
invariant holds. When a thread acquires a lock, it can assume that the corre-
sponding resource invariant holds. When it releases the lock, it must ensure that
the resource invariant is still true.

In concurrent separation logic (CSL), O’Hearn [8] has adapted the notion of
resource invariants by making them record exactly the part of the memory that
a given lock protects. His elegant examples show how the ownership of memory
cells can be transferred from one thread to another via a resource invariant. CSL
provides simple proofs of programs such as the one in Fig. 1, where a memory
cell is allocated in one thread and deallocated in another.

The central problem facing any attempt to construct CSL proofs automati-
cally is the synthesis of suitable resource invariants. For instance, consider the
two programs in Fig. 2 (taken from [8]) implementing a one place pointer-

transferring buffer. In the first program, the memory cell x is transferred from
the first thread to the second one, and can be easily verified once we have guessed
the resource invariant (full∧c �→−)∨(¬full∧emp). In the second program, there
is no transfer of ownership and the resource invariant is simply emp. To establish
a proof for these programs the choice of the resource invariant must mirror the
ownership property. O’Hearn does not address the issue of how to come up with
the correct resource invariant and states that “ownership is in the eye of the
asserter.” This is also the approach taken by Smallfoot [2], which required the
user to specify the resource invariants.

More recently, Gotsman et al. [6] proposed a very practical, heuristic method
for calculating resource invariants. Their method is based on a thread-modular



put(x)
def
= with buf when (!full) do { c := x; full := true; }

get(y)
def
= with buf when (full) do { y := c; full := false; }

Fig. 1. Definitions of put(x) and get(y) operations.

resource buf(c)
x = new();
put(x);

get(y);
dispose(y);

resource buf(c)
x = new();
put(x); dispose(x);

get(y);

Fig. 2. Single element buffers with ownership transfer (left) and without (right).

program analysis to compute resource invariants by a global fixpoint calculation.
In order to decide which part of the memory is owned by a thread and which
part belongs to a given lock, they use a predetermined reachability heuristic. The
problem with this approach is that it relies heavily on an ad hoc local heuristic.
For instance, in both programs of Fig. 2, at the end of the put(x) critical region,
we have the state full ∧ c = x ∧ c �→−. To verify the left program, we need to
associate the memory cell c �→− to the resource. To verify the right program,
the same memory cell must remain owned by the first thread. So, in general, the
splitting cannot be decided by a purely local heuristic. Instead, the contexts of
all conditional critical regions protecting the same resource need to be considered
and therefore global methods are required.

In general, designing a method able to synthesize resource invariants in a
thread-modular and automatic manner and susceptible to the ownership policy
of the program is very tricky since ownership is a global property of the system.
In this paper, we present an algorithm aiming at achieving this goal. Our method
is not based on reachability but rather on the idea of footprint — i.e., the region
of memory that a command requires in order to run safely. By employing the
footprint concept, we obtain a more systematic way for computing resource
invariants. We describe an algorithm that uses bi-abduction [3] to calculate what
state is actually protected by the resource. We show the effectiveness of our
algorithm by applying it to all the involved examples given by O’Hearn [8].

2 Informal Description of the Synthesis Algorithm

Intuitively, our algorithm works by guessing an initial set of resource invariants
and by iteratively refining the guess until either this is strong enough to prove
the program or the algorithm gives up because it cannot find a better refinement
of the current guess. More precisely, our algorithm can be described as follows:

1. For each Conditional Critical Region (CCR) in the system we take the empty
heap as the initial approximation of the state protected by the resource.

2. The current guess of the Resource Invariants (RI) is used to compute speci-
fications for all the CCRs. This step might refine the current RIs.

3. An attempt is made to prove each thread (separately) using the current
guess of RIs and current specifications of CCRs. If a proof can be built,

2



the algorithm exits successfully: the current RIs are strong enough to prove
memory safety. Otherwise, the current RIs are refined, as described below.

4. The refinement is done by applying bi-abduction [3] on the continuation of
the CCR where the previous proof attempt failed. This is done to check
whether the program involves ownership transfer.

Note that in step 3, in constructing a proof for the threads, we assume that
the user annotates the program with both the association of variable names to
resources and preconditions for the threads, but not the resource invariants (or
loop invariants). We remark that the association of variables to resources can
sometimes be discovered by a tool like Locksmith [9], and it seems likely that
bi-abduction might be employed to discover these thread preconditions, just as it
was used in [3] to discover procedure preconditions. So in applying our algorithm
it is likely that an even greater degree of automation is possible. However, in this
paper, we make these assumptions to focus our study on the core algorithmic
difficulty of discovering the resource invariants.

3 Basics

3.1 Programming Language

We describe a simple parallel programming language following [8]. Let Res be a
countable set of resource names. A concurrent program Prg in this language con-
sists of an initialization phase where variables may be assigned a value, a single
resource declaration, and a single parallel composition of sequential commands

Prg ::= init ;
resource r1(variable list), . . . , rm(variable list)
C1 � · · · � Cn

Sequential commands are defined by the grammar:

C ::= x := E | x := [y] | [x] := E | x := new() | dispose(x)
| skip | C;C | if B then C else C | while B do C endwhile
| with r when B do C endwith

where E ∈ PVar ∪ {nil} and PVar is a countable set of program variables
ranged over by x, y, z, . . . . Sequential commands include standard constructs
(assignment, sequential composition, conditional, and iteration), dynamic al-
location (x := new()), explicit deallocation (dispose(x)), and operations for
accessing the heap: look-up (x := [y]) and mutation ([x] := E). Resources are
accessed using CCR commands with r when B do C endwith, where B is a
(heap-independent) boolean condition and C is a command. A CCR is a unit of
mutual exclusion; therefore two with commands for the same resource cannot
be executed simultaneously. In detail, with r when B do C endwith can be ex-
ecuted if the condition B is true and no other CCR for r is currently executing.
Otherwise its execution is delayed until both conditions are satisfied.

3



Notation We introduce some notation used throughout the paper. Given a
concurrent program Prg , let CCR(Prg) denote the set of all its conditional
critical regions. Let Res(Prg) be the set of resources defined in Prg and let
CCR(r,Prg), with r ∈ Res(Prg), be the subset of CCR(Prg) acting on resource
r. For C = with r when B do C

� endwith, we define guard(C) def= B, body(C) def= C
�

and res(C) def= r the guard, the body and the resource of the CCR C, respectively.

3.2 Storage Model and Symbolic Heaps

We describe the storage model and symbolic heaps: a fragment of separation
logic formulae suitable for symbolic execution [1, 5]. Let LVar (ranged over by
x
�
, y

�
, z

�
, . . . ) be a set of logical variables, disjoint from program variables PVar ,

to be used in the assertion language. Let Locs be a countably infinite set of
locations, and let Vals be a set of values that includes Locs. The storage model
is given by:

Heaps
def= Locs �fin Vals Stacks

def= (PVar ∪ LVar) → Vals

States
def= Stacks ×Heaps

Program states are symbolically represented by special separation logic for-
mulae called symbolic heaps. They are defined as follows:

E ::= x | x
� | nil Expressions

Π ::= E=E | E �=E | true | Π ∧Π Pure formulae

S ::= E �→E | ls(E,E) Basic spatial predicates

Σ ::= S | true | emp | Σ ∗Σ Spatial formulae

D ::= ∃x�
. (Π ∧Σ) Disjuncts

H ::= D | H ∨H Symbolic heaps

Expressions are program or logical variables x, x
� or nil. Pure formulae are con-

junctions of equalities and disequalities between expressions, and describe prop-
erties of variables. Spatial formulae specify properties of the heap. The predicate
emp holds only in the empty heap where nothing is allocated. The formula Σ1∗Σ2

uses the separating conjunction of separation logic and holds in a heap h which
can be split into two disjoint parts h1 and h2 such that Σ1 holds in h1 and Σ2 in
h2. In symbolic heaps some (not necessarily all) logical variables are existentially
quantified. The set of all symbolic heaps is denoted by SH. S is a set of basic
spatial predicates. In this paper we consider a simple instance of S. However,
our algorithm works equally well for other more sophisticated choices of spatial
predicates such those described in [4, 7]. The points-to predicate x �→ y denotes a
heap with a single allocated cell at address x with content y, and ls(x, y) denotes
a non-empty list segment from x to y (not including y).

3.3 Bi-Abduction

The notion of bi-abduction was recently introduced in [3]. It is the combination
of two dual notions that extend the entailment problem: frame inference and

4



abduction. Frame inference [1] is the problem of determining a formula F (called
the frame) which we need to add to the conclusions of an entailment H � H

� ∗F
in order to make it valid. In other words, solving a frame inference problem
means to find a description of the extra parts of heap described by H and not
by H

�. Abduction is dual to frame inference. It consists in determining a formula
A (called the anti-frame) describing the pieces of heap missing in the hypothesis
and needed to make an entailment H ∗ A � H

� valid.
Bi-abduction is the combination of frame inference and abduction. It consists

in deriving at the same time interdependent frames and anti-frames.

Definition 1 (Bi-Abduction). Given two heaps H and H
�
find a frame F and

an anti-frame A such that H ∗ A � H
� ∗ F

Many solutions are possible for A and F. A criterion to judge the quality of
solutions as well as a bi-abductive prover were defined in [3]. A modified version
of bi-abduction was proposed in [7].

Bi-abduction was introduced as a useful mechanism to construct composi-
tional shape analyses. Such analyses can be seen as the attempt to build proofs
for Hoare triples of a program. More precisely, given a program composed by
procedures p1(x1), . . . , pn(xn) the proof search automatically synthesizes pre-
conditions P1, . . . , Pn and postcondition Q1, . . . , Qn such that the following are
valid Hoare triples:

{P1} p1(x1) {Q1}, . . . , {Pn} pn(xn) {Qn}

The triples are constructed by symbolically executing the program and by com-
posing existing triples. The composition (and therefore the construction of the
proof) is done in a bottom-up fashion starting from the leaves of the call-graph
and then using their triples to build other proofs for procedures which are on
a higher-level in the call-graph. To achieve that, the following derived rule for
sequential composition [3] is used:

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∗ A}C1;C2 {Q2 ∗ F}

Q1 ∗ A � P2 ∗ F
(BA-seq)

In this paper we show that bi-abduction can be useful to achieve compositional
proofs of concurrent programs.

Throughout this paper we will write the frame and anti-frame to be deter-
mined in the bi-abduction problem in “frak” fonts (e.g., A,F,B . . . ) in order to
distinguish them from the known parts of the entailment.

4 Comparing Resource Invariants

In this section we study the structure of the solutions to the resource invariant
inference problem from a theoretical perspective. We define an order used to
compare those solutions, and show that an optimal invariant with respect to
that order always exists.

5



Definition 2 (Safe Resource Invariant). Given a precondition P which holds

before entering a CCR with guard B and body C, we say that I is a safe resource
invariant starting from P if and only if the triple {P ∗ I ∧B}C {I ∗ true} holds.

In other words, I describes resource large enough for C to execute safely, yet
I is weak enough that C can re-establish it. For example, x�→ 3 is too strong
if C is [x] := 4 (cannot be re-established), and emp does not describe enough
resource for C to execute safely. Perhaps surprisingly, these two requirements
are compatible with an order relation that admits an optimal solution, which we
describe below.

Definition 3. If I and I
�
are resource invariants, we define the preorder I ≤ I

�
,

meaning that I is better (or smaller) than I
�
, to hold if and only if I

� |= I ∗ true.

When I ≤ I
� we sometimes say that I

�
extends I. Note that ≤ is not antisym-

metric as I ≤ I
� and I

� ≤ I does not imply I = I
�. However, it implies min(I) =

min(I �), where min is an operation that removes non-minimal states, defined as
follows: (s, h) |= min(X) ⇐⇒ (s, h) |= X and ∀h�

. s, h
� |= X implies h ≤ h

�.
Therefore, ≤ is antisymmetric modulo the equivalence relation I ∼ I

� ⇐⇒
min(I) = min(I �). For example, emp ≤ true and true ≤ emp, but min(emp) =
min(true) = emp.

Notice that if I1 and I2 are safe resource invariants starting from P , then so is
I1∨I2, by direct application of Hoare’s disjunction rule. Since I

� ⇒ I implies I ≤
I
�, it can be readily seen that a (unique modulo ∼) minimal resource invariant

Ibest exists, and can be described directly as Ibest =
�
{I | I r.i. for all CCRs}.

Hence the best invariant is logically weakest and spatially smallest.
The presentation of Ibest given above involves an infinite disjunction. This is

an ideal that any algorithm for invariant inference should try to approximate,
just as one usually does with loop invariants. One such algorithm is given in the
next section.

5 The Invariant Synthesis Algorithm

Algorithm 1 computes the set I of resource invariants for the program Prg or
returns failure. I is a function I : Res → SH associating to each resource r a
resource invariant I(r). The basic idea is to start with the minimal invariant emp
and then repeatedly refine it to a bigger one w.r.t. ≤ during symbolic execution.
The role of (perfect) abduction is to refine it by the minimum amount necessary
for the symbolic execution to go through. So the informal argument for each
refinement from I to I

� is of the form “if there exists a safe invariant, it must
be ≥ I

�”. The initial approximation emp models a situation where resources are
neither protected nor transferred; only if the program requires it, is the invariant
refined into one which does so. More precisely, the basic idea is implemented as
follows. Initially the resource invariant of every resource r is initialized to be

6



Algorithm 1 InvariantSynthesis(Prg)
1: I := {(r,

W
Cr∈CCR(r,Prg)(emp ∧ guard(Cr))) | r ∈ Res(Prg)};

2: Failed := ∅;
3: while I /∈ Failed do
4: (I,Specs) := CompSpecs(I);
5: if ProofSearch(Prg , I,Specs) fails then
6: Failed := Failed ∪ {I}
7: C1; · · · ; Cj := FailingPath(Prg , I,Specs);
8: I := RefineOwnership(C1; · · · ; Cj , I);
9: else

10: return I
11: end if
12: end while
13: return failure

a disjunction of emp and the guard of its CCRs (Step 1).1 This gives the first
approximation for I. Specs is the set of Hoare triples {P}C {Q} defining a spec-
ification for all CCRs in the program. Specs is computed by using the function
CompSpecs which is applied the current guess of the invariants. CompSpecs is
explained in detail in Sec. 5.1, and while it generates specifications it may mod-
ify I giving a first refinement. CompSpecs returns a set of pairs (I �

,Specs) or
fails. ProofSearch(Prg , I,Specs) (see Sec. 5.2) is a procedure that tries to build
a separation logic proof of Prg using the specifications Specs and the resource
invariants I. The set Failed contains those invariants for which the algorithm
failed to build a proof. The loop starting at step 3 attempts to build a proof with
the result of CompSpecs. If the proof succeeds, the algorithm terminates with
success and returns the computed resource invariants. Otherwise, the algorithm
tries to refine the current guess. In that case, the invariant of the failing CCR
is refined using the procedure RefineOwnership (see Sec. 5.3). After I is refined
the set of CCR specifications is updated accordingly before attempting a new
proof of the program. The algorithm fails in case the refinement process returns
an invariant which was tried before with no success. Notice that CompSpecs is a
partial function, therefore, the algorithm fails also in case CompSpecs does not
return a value.

5.1 Computing Specifications for CCRs

The computation of CCRs’ specifications requires an abstraction function for
symbolic heaps α : SH −→ SH. Given the kind of symbolic heaps used in this
paper, it is enough to have α defined as in [5], although our algorithm is not
1 The rationale for adding CCRs’ guards to the initial invariant is that, when the

algorithm refines I(r) by examining a CCR Cr, the missing part will be added
only to the disjunct corresponding to Cr. This disjunct is determined by guard(Cr).
Adding ∗-conjuncts only to one disjunct (rather than to all of them) provides us
with a better invariant w.r.t. the defined order ≤.

7



dependent on a specific choice. Moreover, let [P ]locQ be a function that replaces
shared variables (i.e., those listed in the resource declaration) in P using equal-
ities in Q. [·]loc : SH×SH−→ SH is defined as:

[P ]locQ = P [x1/c1, · · · , xn/cn]

where xi are local variables, ci are shared variables, and Q ≡ x1 = c1∧ · · ·∧xn =
cn ∧Q

� and in Q
� there are no further equality terms between local and shared

variables.2 Similarly, define [·]sha as the dual function which tries to replace local
variables with shared variables.

Computing the Specification of a Single CCR. The computation of a
specification for the CCR with r when B do C endwith is done by performing a
compositional bottom-up analysis ([3] and Sec. 3.3) on the body C. The analysis
starts from the following precondition: B ∧ emp ∗ I(r).

This is different from [3], where the analysis started with precondition emp.
The bottom-up analysis will construct a proof of C by synthesizing P and Q

such that the triple {B ∧ P ∗ I(r)}C {Q} holds.3 Once this triple is computed,
a specification for the with command is obtained by applying the following new
rule (called BA-with):

{B ∧ (P ∗ I(r))}C {Q}
{P ∗ [A]locQ } with r when B do C endwith {α(∃c.F)}

Q ∗ A � I(r) ∗ F

with additional side conditions:

1. no variable occurring free in [A]locQ is modified by C,
2. no other process modifies variables free in P ∗ [A]locQ or α(∃c.F).

Starting from a proof of the CCR’s body, this rule uses bi-abduction to derive two
symbolic heaps A and F. The anti-frame A needs to be added to the precondition
P to re-establish r’s resource invariant I(r). The frame F corresponds to the
postcondition of the with statement. Both frame and anti-frame are massaged
before using them in the specification to remove terms related to shared variables
(which should not appear in pre/postcodintions). In particular in the anti-frame
A, terms containing shared variables are rewritten (when possible) in terms of
local variables using known equalities in Q. This is the purpose of the function
[·]loc. The frame F is simplified by replacing uses of shared variables by local
variables whenever possible using the existing equalities, and by dropping pure
formulae involving shared variables. This is achieved by existentially quantifying
shared variables in F and by applying the abstraction α.
2 [·]loc is a well defined function if a fixed order among local variables is chosen.
3 The reason for not using a simple forward symbolic execution starting from emp ∗
I(r)∧B to build a proof of C is that, in general, this precondition is not enough for
proving C. Hence a precondition P �= emp needs to be derived, and this is done by
the bottom-up analysis.

8



Lemma 1. The BA-with rule is sound.

Example 1. Assume the resource invariant I ≡ (¬full ∧ emp) ∨ (full ∧ emp). We
show the induced specifications for the CCRs in Fig. 1. Using emp as precondi-
tion, for put(x) we have the triple

{¬full ∧ emp ∗ I} c := x; full := true {full ∧ c=x ∧ emp}

From this, the bi-abduction engine is queried to derive F and A for the entailment
full ∧ c=x ∧ emp ∗A � I ∗ F. The solution is A ≡ emp and F ≡ c=x ∧ emp. This
is further simplified to remove terms with shared variables: [emp]locc=x∧I = emp
and α(∃c. c=x ∧ emp) = true ∧ emp. Therefore, by applying the rule BA-with we
obtain the specification {emp} put(x) {emp}.

Similarly for the CCR get(y), using emp as precondition of BA-with we have:

{full ∧ emp ∗ I} y := c; full := false {¬full ∧ y = c ∧ emp}

Now we appeal to bi-abduction for the query ¬full ∧y = c∧ emp∗A � I ∗F. The
solution is A ≡ emp and F ≡ y=c∧emp and hence after the simplification of [·]loc
and α and applying BA-with we obtain the specification {emp} get(y) {emp}.

Example 2. Consider now a different resource invariant I ≡ (¬full∧emp)∨(full∧
c �→−). As in the previous example, we show the induced specifications for the
CCRs in Fig. 1, using this invariant instead. For put(x) we can derive the triple:

{¬full ∧ emp ∗ I} c := x; full := true {c=x ∧ full ∧ emp}.

Then, asking bi-abduction the question c=x ∧ full ∧ emp ∗ A � I ∗ F yields the
solution A ≡ c �→− and F ≡ c=x∧emp. By simplifying the anti-frame we obtain
[c �→−]locc=x∧full = x �→−, whereas for the frame we have α(∃c. c=x ∧ emp) =
true ∧ emp. Therefore, applying BA-with gives {x �→−} put(x) {emp}.

Similarly for get(y) we have:

{full ∧ emp ∗ I} y := c; full := false {¬full ∧ y=c ∧ c �→−}

When posed the query ¬full ∧ y=c ∧ c �→ − ∗A � I ∗ F the bi-abduction engine
finds the solutions A ≡ emp and F ≡ y=c ∧ c �→−. A is already simplified,
whereas F is simplified to α(∃c. y=c ∧ c �→−) = y �→−. Hence BA-with returns
the specification {emp} get(y) {y �→−}.

The Function CompSpecs. The computation of specifications for all the CCRs
in the program is performed by CompSpecs. Given a set of resource invariants
I, this function is defined as:

CompSpecs : (Res → SH) −→ (Res → SH)× P(SH× C × SH)
CompSpecs(I) def= (I �

, {Spec(I �
, Cr) | Cr ∈ CCR(Prg)})

when (CCR(Prg), I) −→∗
1−→∗

2−→∗
3 (∅, I �)

9



Spec(I, Cr) = Fail P

L, I −→1 L, I[r ← Ir]

I(r) ≤ Ir and Cr ∈ L
Ir = α(I(r) ∗ PShared)

L, I −→2 L, I[r ←
W

i∈X Di]

I(r) = D1 ∨ . . . ∨Dn

X ⊆ {i | 1 ≤ i ≤ n}

Spec(I, Cr) = {P} Cr {Q}
L, I −→3 L \ {Cr}, I

Cr ∈ L

Table 1. Transition rules for computing Specs and possibly refining I.

This definition uses the transition rules in Table 1 in three distinct phases:
invariant refinement (−→∗

1), pruning of disjuncts (−→∗
2), and checking of the

result (−→∗
3). Let Shared(P ) be the set of shared variables occurring in P , and

let PShared be the sub-formula of P containing only shared variables. L contains
the CCRs for which specifications have not yet been successfully computed. The
rules are applied to L and I until a specification has been computed for all
CCRs. The function Spec(I, Cr) tries to compute the specification for the CCR
Cr w.r.t. I as described above, i.e., using bottom-up analysis and BA-with. If
this succeeds, it returns the inferred triple {P} Cr {Q}; if, however, the side
conditions of the BA-with rule are violated, then it returns Fail P , where P is
the inferred precondition of the block, had the side conditions been satisfied.
The rule −→1 refines the current resource invariant when an attempt to find a
spec for the CCR’s body using the current invariant fails. The rationale is that
if shared state is needed by the critical region this should be provided by the
resource invariant and not by the precondition.4 The rule therefore tries to refine
I(r) by adding the terms with shared variables in P . If the resulting invariant
Ir extends the current guess for r, then this extension is used to replace I(r).
Rule −→2 can be applied when −→1 cannot refine I(r) any further. The task
of −→2 is to remove from I(r) those disjuncts that cannot be re-established by
the CCR’s body. Finally, rule −→3 records the fact that a spec for Cr has been
found by removing it from L.

Lemma 2. If the number of program variables in Prg is finite, then the transi-

tion system defined in Table 1 is finite.

The immediate consequence of this lemma is that CompSpecs can be effec-
tively computed by a fixpoint computation which applies systematically the rules
avoiding to re-apply them to previously visited states. Hence we have:

Corollary 1. The computation of CompSpecs terminates.

Example 3. We now consider a more involved example that shows the compu-
tation of the function CompSpecs. Here we use the memory manager described
4 Recall that precondition computed by bi-abduction corresponds to the footprint of

C, therefore it expresses the state needed to run the command.

10



alloc(x)
def
= with mm when (true) do {

if (f=nil) then x := new();
else x := f; f:=[x];

}

dealloc(y)
def
=

with mm when (true) do {
[y] := f; f:= y;

}

Fig. 3. Definitions of alloc(x) and dealloc(y).

in [8] and reported in Fig. 3. We start by computing the specification of alloc(x)
using I0 ≡ true ∧ emp. We can prove the triple {P0} alloc(x) {x �→−} where

P0 ≡ (f=nil ∧ emp) ∨ (f �→−).

However, the precondition specifies properties of the shared variable f , so we
need to apply rule −→1 of Table 1. The invariant is refined by adding P0 to the
current I0 and then abstraction α:

I1 = α(I0 ∗ P0) = (f=nil ∧ emp) ∨ (f �→ f
�)

where we have explicitly named the existential variable f
� because it will be used

in the next iteration. When recomputing the specification of alloc(x) using I1

we obtain the triple {P1} alloc(x) {x �→−} where

P1 ≡ (f=nil ∧ emp) ∨ (f �=nil ∧ f
�=nil ∧ emp) ∨ (f �=nil ∧ f

� �→−).

Again by rule −→1 we obtain

I2 = α(I1 ∗ P1) = α((f=nil ∧ emp) ∨ (f �→ nil) ∨ (f �→ f
� ∗ f

� �→−))
= (f=nil ∧ emp) ∨ (f �→ nil) ∨ ls(f, f

�)

A further iteration of −→1 produces the same P1 and

I3 = (f=nil ∧ emp) ∨ (f �→ nil) ∨ ls(f, f
�) ∨ ls(f, nil)

The candidate I3 is a fixpoint w.r.t. −→1 but it still produces the same P1,
therefore rule −→3 cannot be applied yet. This is caused by the disjunct ls(f, f

�),
which is too weak: starting from ls(f, f

�) the candidate invariant I3 cannot be
re-established. But now, rule −→2 can fire to remove disjunct ls(f, f

�) and obtain

I3 −→2 I4 = (f=nil ∧ emp) ∨ (f �→ nil) ∨ ls(f, nil)

Now rule −→3 can be applied, so I4 is a resource invariant for alloc(x). The
final specification of alloc(x) using I4 is {emp} alloc(x) {x �→−}.

Finally, I4 directly allows us to obtain {y �→−} dealloc(y) {emp} as speci-
fication for dealloc(y).

5.2 Proof Search

This phase attempts to build a compositional proof of the program by trying to
prove each thread in isolation. The building process is done using the bottom-up

11



Algorithm 2 RefineOwnership(C1; . . . ;Cj ;C, I)
1: ρ = {i ∈ [1, j] | Ci is a CCR};
2: do
3: k := max ρ;
4: ρ := ρ \ {k}
5: I � := RefOwn((C1; · · · ; Ck), (Ck+1; · · · ; Cj ; C))
6: while I(res(Ck)) = I � ∧ ρ �= ∅;
7: return I[res(Ck) ← I �]

analysis which starts from the beginning of the thread and tries to construct a
valid Hoare triple by symbolically executing the program as described in Sec. 3.3.
Let the concurrent program be

Prg = init ; resource r1(x1), . . . , rm(xm); C1 � · · · � Cn

Given PCi , a precondition for the thread Ci we can execute a proof search for
Ci by ProofSearch. This procedure uses the BA-seq rule to build the proof but
requires that at every application of this rule we have A ≡ emp. This condition
ensures that a proof for the thread Ci can actually be built from the precondition
PCi . In fact, it provides us with a notion of failure for a proof attempt. We say
that the proof search for Ci = C

�
i;C ��

i (from PCi) fails if by an application of
BA-seq we obtain the triple {PCi ∗A}C

�
i {Q} for some Q ∈ SH and ¬(A ≡ emp).

We are usually interested in the shortest prefix C
�
i which makes the proof fail.

The synthesis algorithm uses this notion of failure to detect when and where the
invariant needs to be refined because of possible ownership transfer.5

5.3 Refining Resource Invariants for Ownership Transfer

Algorithm 2 defines the procedure RefineOwnership, called by InvariantSynthesis
when the proof search fails. This typically happens because some ownership
transfer is needed for the program to be safe, but it is not enabled by the cur-
rent invariants I. RefineOwnership takes as parameter a sequence of commands
containing a CCR for which a proof attempt has failed. Consider the sequence
C1; · · · ;Cj ;C where the failure of the proof occurred in C. Let ρ ⊆ [1, j] be
the indexes of all the CCRs in the sequence. The algorithm starts from the last
CCR, i.e. Ck where k = max ρ, and tries to refine its invariant using function
RefOwn. If no refinement is possible (i.e. the invariant remains unchanged), then
the algorithm tries to refine the invariant of the previous CCR in the sequence,
and so on until no further CCR exists.

We now describe how the function RefOwn((Ĉ;Cr), Ĉ �) operates, where Cr ≡
with r when B do C

�� endwith is the CCR whose invariant will be refined, and
the Ĉ notation is used for sub-sequences of the failing sequence. Let P be the
precondition of the current thread, and let {P} Ĉ {Q} the result of the forward
5 Clearly the proof can fail for other reasons than the resource invariant. Other issues

for failure can be manifested in the fact that ¬(A ≡ emp).

12



analysis just before Cr and {B∧(Q∗I(r))}C
�� {Q�� ∗I(r)} the results of forward

analysis until before exiting the CCR Cr. Let also {P �} Ĉ
� {Q�} be the result of

spec inference for the continuation Ĉ
�. We can then define

RefOwn((Ĉ;Cr), Ĉ �) def= ((B ∧ [A]sha(Q��∗I(r))) ∨ (¬B ∧ emp)) ∗ I(r)
if (Q�� ∗ I(r)) ∗ A � (P � ∗ I(r)) ∗ F

where recall that [·]sha, defined in Sec. 5.1, tries to replace local variables with
shared variables.

Intuitively RefOwn takes a trace ending in a CCR Cr and its continuation
Ĉ

�, and returns a refined resource invariant for r which is updated only for
the part related to Cr and which takes into account the heap needed by Ĉ

�.
The refinement is computed by solving a bi-abduction question involving the
symbolic state inside Cr before releasing the invariant, and the precondition of
the continuation suitably augmented with the invariant. In addition, only the
part of the anti-frame A involving shared variables is taken to refine the invariant.
In this context notice that a resource invariant should define properties of shared
variables of a resource. Therefore, since bi-abduction may express the anti-frame
in terms of local variables, in the newly computed invariant we use [·]sha for
replacing these local variables by equivalent shared ones.

Soundness and Termination. We now give some results about our invariant
generation method.

Theorem 1. The InvariantSynthesis algorithm is sound.

Corollary 2. If InvariantSynthesis(Prg) returns a set I then Prg is race-free.

Theorem 2. The InvariantSynthesis algorithm terminates provided that the un-

derlying forward analysis does.

5.4 Full Examples

Example 4. We describe the execution of the synthesis algorithm on the pro-
gram on the left side of Fig. 2 which performs transfer of ownership. The first
approximation of the resource invariant for resource buf is I0 = Iput∨Iget where

Iput = ¬full ∧ emp Iget = full ∧ emp (1)

Using I0 we obtain the first approximation of put(x) and get(y) specifications
(see Example 1 for the detailed derivation of these specs):

{emp} put(x) {emp} {emp} get(y) {emp} (2)

We then execute the ProofSearch procedure of both threads using I0 and emp as
preconditions. By BA-seq for the LHS thread we have:

{emp}x = new() {x �→−} {emp} put(x) {emp}
{emp}x = new(); put(x) {x �→−}

13



by taking A ≡ emp and F ≡ x �→−. Since A is emp, no refinement of I is required
and this completes the proof of the LHS thread. For the RHS we have:

{emp} get(y) {emp} {y �→−} dispose(y) {emp}
{y �→−} get(y); dispose(y) {emp} (3)

However, we obtain this derivation by the anti-frame A ≡ y �→−, and by our
notion of failure of the proof search introduced in Sec. 5.2 this means that we
cannot actually prove the RHS thread. The algorithm starts the refinement of
the invariant by inspecting the RHS and using the body of the CCR get(y):6

{(c = c
�∧y = y

�∧emp)∗(full∧I0)} y=c;full=false {c = c
�∧y = c

�∧¬full∧emp}

According to the definition of RefOwn we have to solve

(c = c
� ∧ y = c

� ∧ ¬full ∧ emp) ∗ A � (I0 ∗ y �→−) ∗ F

Here we have A ≡ y �→− and [A]sha(c=c�∧y=c�∧¬full∧emp) ≡ c �→−. Following the
algorithm, we extend the full disjunct of I0 to obtain a new candidate invariant:

I1 = (¬full ∧ emp) ∨ (full ∧ c �→−) (4)

CompSpecs then updates the specifications for put(x) and get(y) using the new
invariant and the rule BA-with. As shown in Ex. 2 we obtain:

{x �→ } put(x) {emp} {emp} get(y) {y �→−} (5)

The algorithm then uses the new specs in an attempt to prove LHS and RHS.

{emp}x = new() {x �→−} {x �→−} put(x) {emp}
{emp}x = new(); put(x) {emp}

{emp} get(y) {y �→−} {y �→−} dispose(y) {emp}
{emp} get(y); dispose(y) {emp}

This time the proof succeeds, and the algorithm returns I1 as resource invariant.

Example 5. Here we discuss the execution of the synthesis algorithm on the
program on the right of Fig. 2, which does not involve ownership transfer. As in
Ex. 3 the algorithm initializes the resource invariant for buf to I0 = Iput ∨ Iget,
where Iput an Iget are defined as in (1). Moreover, the initial specs for put(x)
and get(y) are again as in (2). The forward analysis then easily proves the
following triples (at each step BA-seq rule gets A ≡ emp) :

{emp}x = new(); put(x); dispose(x) {emp} {emp} get(y) {emp}

Hence the algorithm returns I0 as a suitable resource invariant for this program.
6 As in [3], we use auxiliary variables to record the initial value of program variables.

14



Example 6. We now discuss a complex program which combines the one-place
pointer transferring buffer and the memory manager [8]:

alloc(x);
put(x);

get(y);
dealloc(y);

Step 1 of Algorithm 1 initializes the resource invariants to

I
0
buf = (¬full ∧ emp) ∨ (full ∧ emp) I

0
mm = true ∧ emp

CompSpecs derives specifications for the CCRs, and, as seen in Ex. 3, it refines
I
0
mm to obtain a resource invariant I

1
mm for the CCRs of resource mm. We have

{emp} put(x) {emp} {emp} get(y) {emp}
{emp} alloc(x) {x �→−} {y �→−} dealloc(y) {emp}

I
1
mm = (f=nil ∧ emp) ∨ (f �→ nil) ∨ ls(f, nil)

As in Ex. 1, using such specifications we can derive a proof for the LHS:

{emp} alloc(x) {x �→−} {emp} put(x) {emp}
{emp} alloc(x); put(x) {x �→−}

However, we cannot derive a proof for RHS since we get a non-empty anti-frame:

{emp} get(y) {emp} {y �→−} dealloc(y) {emp}
{y �→−} get(y); dealloc(y) {emp}

Therefore, refinement is required. This is done as in Ex. 4 where we get Ibuf ≡
(¬full ∧ emp) ∨ (full ∧ c �→−) and specifications {x �→−} put(x) {emp} and
{emp} get(y) {y �→−}. Using them, both LHS and RHS are then proved.

6 Related Work

Our method for computing resource invariants uses bi-abduction [3], a technique
that was introduced for discovering specifications of sequential programs. For
simplicity, we have assumed that each resource declarations is annotated with
the set of global variables it protects. Such annotations need not be given always
by the user, as they can often be inferred by tools such as Locksmith [9].

The only shape analysis based on concurrent separation logic that attempts
to calculate resource invariants is the thread-modular shape analysis by Gotsman
et al. [6]. This analysis uses a heuristic to decide how to partition the state into
local and shared after every critical region. As a result, it cannot use the same
heuristic to verify both programs in Fig. 2.

Note that these small programs can be verified with analyses that are not
thread-modular: e.g. by considering all thread interleavings as in Yahav [11],
or by keeping track of the correlations between the local states of each pair of
threads as in Segalov et al. [10]. The drawback of such analyses is that they do
not scale very well to large programs. In contrast, as our algorithm computes
resource invariants in a bottom-up fashion, we are hopeful that it will scale to
larger programs.

15



7 Conclusion

In this paper, we have proposed a sound method for automating concurrent
separation logic proofs by synthesizing suitable resource invariants. Our method
is thread-modular in that it requires isolated inspection of sequential threads
instead of the global parallel composition. Its strength relies on the ability to
address one of the main open issues in the automation of proofs for concurrent
separation logic. This is the ability to discern, in a thread-local way, the cases
where the resource invariant needs to describe the transfer of ownership (among
threads) from those cases where no transfer should be involved. This inherent
complication has been described by O’Hearn by the expression “ownership is in
the eye of the asserter”. The technique proposed in this paper pushes the state
of the art in automatic generation of proofs towards the more ideal situation
where “ownership is in the eye of the mechanical method”. We believe that
this will open up interesting possibilities for achieving more scalable automatic
techniques for concurrent programs.
Acknowledgements. We thank P. O’Hearn, N. Rinetzky, and M. Raza for invalu-
able comments. Calcagno was supported by an EPSRC Advanced Fellowship
and Distefano by a Royal Academy of Engineering research fellowship.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.: Symbolic execution with separation logic.
In: Yi, K. (ed.) APLAS 2005. LNCS 3780, Springer, Heidelberg (2005)

2. Berdine, J., Calcagno, C., O’Hearn, P.: Smallfoot: Automatic modular assertion
checking with separation logic. In: de Boer, F.S., et al. (eds.) FMCO 2005. LNCS
4111, Springer, Heidelberg (2006)

3. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: POPL. ACM, New York (2009)

4. Chang, B., Rival, X., Necula, G.: Shape analysis with str. invariant checkers. In:
Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS 4634, Springer, Heidelberg (2007)

5. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS 3920, Springer,
Heidelberg (2006)

6. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis.
In: PLDI 2007. ACM, New York (2007)

7. Gulavani, B., Chakraborty, S., Ramalingam, G., Nori, A.: Bottom-up shape anal-
ysis. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS 5679, Springer, Heidelberg
(2009)

8. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1-3):271–307. Elsevier (2007)

9. Pratikakis, P., Foster, J.S., Hicks, M.: Context-sensitive correlation analysis for
detecting races. In: PLDI 2006. ACM, New York (2006)

10. Segalov, M., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Abstract
transformers for thread correlation analysis. In: APLAS 2009. Springer, Heidelberg
(2009)

11. Yahav, E. Verifying safety properties of concurrent Java programs using 3-valued
logic. In: POPL 2001. ACM, New York (2001)

16


