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A B S T R A C T

Module systems like that of Haskell permit only a weak form of modularity in which module
implementations depend directly on other implementations and must be processed in depen-
dency order. Module systems like that of ML, on the other hand, permit a stronger form of
modularity in which explicit interfaces express assumptions about dependencies and each
module can be typechecked and reasoned about independently.

In this thesis, I present Backpack, a new language for building separately-typecheckable
packages on top of a weak module system like Haskell’s. The design of Backpack is the first to
bring the rich world of type systems to the practical world of packages via mixin modules. It’s
inspired by the MixML module calculus of Rossberg and Dreyer but by choosing practicality
over expressivity Backpack both simplifies that semantics and supports a flexible notion of
applicative instantiation. Moreover, this design is motivated less by foundational concerns
and more by the practical concern of integration into Haskell. The result is a new approach
to writing modular software at the scale of packages.

The semantics of Backpack is defined via elaboration into sets of Haskell modules and
binary interface files, thus showing how Backpack maintains interoperability with Haskell
while retrofitting it with interfaces. In my formalization of Backpack I present a novel type
system for Haskell modules and I prove a key soundness theorem to validate Backpack’s
semantics.

Z U S A M M E N FA S S U N G

Modulsysteme wie die in Haskell erlauben nur eine weiche Art der Modularität, in dem
Modulimplementierungen direkt von anderen Implementierungen abhängen und in dieser
Abhängigkeitsreihenfolge verarbeitet werden müssen. Modulsysteme wie die in ML anderer-
seits erlauben eine kräftige Art der Modularität, in dem explizite Schnittstellen Vermutungen
über Abhängigkeiten ausdrücken und jeder Modultyp überprüft und unabhängig ergründet
werden kann.

In dieser Dissertation präsentiere ich Backpack, eine neue Sprache zur Entwicklung separat-
typenüberprüfbarer Pakete über einem weichen Modulsystem wie Haskells. Das Design von
Backpack überführt erstmalig die reichhaltige Welt der Typsysteme in die praktische Welt
der Pakete durch Mixin-Module. Es wird von der MixML-Kalkulation von Rossberg und
Dreyer angeregt. Backpack vereinfacht allerdings diese Semantik durch die Auswahl von
Anwendbarkeit statt Expressivität und fördert eine flexible Art von geeigneter Applicative-
Instantiierung. Zudem wird dieses Design weniger von grundlegenden Anliegen als von dem
praktischen Anliegen der Eingliederung in Haskell begründet.

Die Semantik von Backpack wird durch die Ausarbeitung in Mengen von Haskell-Modulen
und „binary interface files“ definiert, und zeigt so, wie Backpack Interoperabilität mit Has-
kell erhält, während Backpack es mit Schnittstellen nachrüstet. In meiner Formalisierung
Backpacks präsentiere ich ein neuartiges Typsystem für Haskellmodule und überprüfe einen
entscheidenen Korrektheitssatz, um die Semantik von Backpack zu validieren.
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The philosophers have only interpreted the [modularity]
in various ways; the point, however, is to change it.

— Karl Marx, in the spirit of this work

A C K N O W L E D G M E N T S

What’s a dissertation, anyway? A professional certification? An assemblage of published and
unpublished scientific ideas? An extraordinarily labor-intensive memento of frustration, ela-
tion, collaboration, and pride?

On the occasion of finishing this dissertation, perhaps a few years too late, the richness of
my doctoral experience is palpable. With these acknowledgments I hope not only to recognize
all those who contributed to it, but also to express that richness for posterity—for friends,
family, and prospective PhD students alike.

Altogether I’m enormously grateful for the wealth of experience I gained in the Max Planck
Society (MPG). Most immediately, that experience comes from my advisor, mentors, collabo-
rators, and friends as a PhD student at the Max Planck Institute for Software Systems (MPI-
SWS) in Saarbrücken, Germany. Every junior scientist would benefit, as I did, from the expe-
rience of living and working abroad in such a respected institution as the MPG. Moreover,
I learned a great deal—and hopefully helped change some things for the better—by partic-
ipating in the democratic representation of the interests of junior scientists in the scientific
workplace, first at MPI-SWS and then as part of the Max Planck PhDnet. We shouldn’t forget
that the boundaries of science extend past technical and mathematical matters; it’s also a self-
organized profession, with all the material and social concerns that come with the territory
of the workplace.

As for the people who played notable roles in my scientific development, allow me to
enumerate them chronologically.

First and foremost, my parents—Nancy and Charlie—always loved and supported me,
and encouraged me to pursue math and engineering, even though they had no idea what
that meant past 10th grade or so. As an undergraduate at the University of Texas at Austin
(UT), my teacher and then mentor Greg Lavender introduced me to functional programming,
to the lambda calculus, and to independent study.

For introducing me to programming languages research, I’d like to acknowledge Eric Allen,
my mentor and supervisor at UT and at Oracle Labs (then Sun Labs). After a rejection from
all six PhD programs I had initially applied to, Eric’s tutelage and support helped me turn
things around throughout my masters. My colleagues at the Oracle Labs Programming Lan-
guages Research Group provided an encouraging and responsive atmosphere where I got
my feet wet with research: Eric, Steve Heller, Guy Steele, Sukyoung Ryu, Victor Luchangco,
David Chase, and, in particular, my friend and fellow intern (and now mathematician) Justin
Hilburn.

For introducing me to MPI-SWS, I have my Dumbledore from UT to thank—Lorenzo
Alvisi, who told me about the institute and the whole MPG. Working as his TA for grad-
uate distributed computing, as a mere masters student, was one of the most challenging and
intimidating experiences of my career. His belief in me to take on that challenge, like Greg
Lavender’s, had an immense impact on the beginning of my career. As an immigrant scientist
himself, Lorenzo also encouraged me to pursue a PhD overseas. (Good advice!) As a periodic
visitor to MPI-SWS he continued his Dumbledore role in my life for years.

The most critical figure to acknowledge is my PhD advisor at MPI-SWS and friend, Derek
Dreyer. His attention to detail, pursuit of simplification, and affable demeanor have certainly
left a lasting impression on me. Although my academic career will likely not continue, I have
benefited tremendously from the writing and presentation skills I learned from Derek and
from his partner Rose Hoberman, the “soft skills” (more generally useful skills!) instructor
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at MPI-SWS. Derek also supported me anytime I ruffled feathers in my role as student repre-
sentative to the faculty, even when he disagreed; I hope he recognizes the emotional weight
of that. He also introduced me to many great films and very often, along with Rose, gave me
a good meal.

Among the many PhD students, postdocs, and other colleagues at MPI-SWS I enjoyed
knowing and working with, I’d like to acknowledge a few in particular, people who left
some mark on my scientific career. Beta Ziliani was my “older brother” in Derek’s group, a
wonderful friend, a fun colleague to brainstorm with, a Coq expert, and a peerless Grillmeister.
Georg Neis, another student of Derek’s, helped with a few proofs but also taught me some
Saarlandish culture. Derek’s postdoc Neel Krishnaswami was a constant source of PL wisdom
and stimulating conversation. External scientific member—and my academic grandparent—
Bob Harper was always a joy to talk to and learn from while visting the institute. From MPI-
SWS I’d also like to acknowledge conversations with and other valuable input from Ezgi
Çiçek, Allen Clement, Natacha Crooks, Nancy Estrada, Pedro Fonseca, Deepak Garg, Roly
Perera, and Aaron Turon. Plenty of others, many friends among them, helped to make the
institute a stimulating place to work and study for years. Staff members Mary-Lou Albrecht,
Brigitta Hansen, Chris Klein, Claudia Richter, and Carina Schmitt all provided key support
during my time there as well. Outside the institute, my friend and would-be PhD sibling
Michael Greenberg gave me encouragement, technical feedback, and a personal goalpost for
years.

The early days of the Backpack project involved multiple visits to Microsoft Research Cam-
bridge to work with my collaborators Simon Peyton Jones and Simon Marlow. From Simon
PJ I learned a valuable life skill: the confidence to say “I have no idea what’s going on,” a
rare skill that has been crucial to my career inside and outside academia. I’m very lucky to
have written a paper with him. Also at MSR Cambridge, whiteboard discussions and other
chit-chats with fellow module systems expert Claudio Russo were a memorable part of my
visits, as was his gift of a pilfered copy of The Commentary on Standard ML. Later on, Edward
Yang made perhaps the most significant contribution to the Backpack research project: taking
it and running with it in a big way! His enthusiasm and continued shepherding of Backpack
helped keep me interested in the work.

One additional person deserves acknowledgment for technical contributions to my re-
search: Andreas Rossberg. Although his postdoc work with Derek predated my time at
MPI-SWS, he spent years as a remote mentor of sorts, someone to whom I could always
send hyper-specific module systems ideas and expect a detailed and thoughtful response.
His careful and thorough review of this dissertation undoubtedly improved it; I am very
grateful for and humbled by that contribution.

Outside of technical collaboration, my involvement in the Max Planck PhDnet added to
the richness of my academic experience. Martin Grund and Adrin Jalali were both friends
and key collaborators in that aspect of my scientific career. Also non-technical but still impor-
tant was the logistical help submitting this dissertation remotely from my friend Mohamed
Omran. And Birgit Adam touched up my (surely indelicate) German translation of the dis-
sertation’s abstract, the Zusammenfassung.

Finishing this dissertation and my PhD overall, three years after leaving MPI-SWS to start
my software engineering career, was an emotionally complicated prospect. Three people are
primarily owed thanks for helping me with that. First, my therapist, Chris Bandini. Every
graduate student needs one! Second, my erstwhile colleague two times over, Steve Heller.
After helping me make a plan for splitting my time between work work and dissertation
work, he spent a couple years casually prodding me about it. Finally, my wonderful wife,
Alanna Schubach, who wasn’t in the picture when I started this dissertation but is now the
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1I N T R O D U C T I O N

Haskell’s module system emerged with
surprisingly little debate. At the time,
the sophisticated ML module system
was becoming well established, and one
might have anticipated a vigorous
debate about whether to adopt it for
Haskell. In fact, this debate never really
happened.

Paul Hudak et al. (2007), “A History of
Haskell: Being Lazy With Class”

A spectre is haunting Haskell—the spectre of modularity.
Specifically, that spectre is Backpack, a new extension to the Glasgow Haskell Compiler

(GHC) and the Cabal package management system.1 Backpack addresses a longtime defi-
ciency of the Haskell programming language and package ecosystem: Haskell’s lack of strong
modularity, particularly at the level of separately-developed packages. With Backpack, strong
modularity is finally available in Haskell, and the entire Haskell ecosystem of packages stands
to benefit from it. There now exist new ways of expressing modular Haskell programs and
libraries, with new potential for modular static checking, new modular programming idioms,
and hints at new avenues of development. Overall, Backpack is a leap forward for Haskell,
but it’s also a leap into the unknown.

Backpack exists today as an engineered artifact. That exciting fact is a testament to the
work of my eventual collaborator Edward Yang, whose Ph.D. thesis presented a concrete
implementation of Backpack in GHC, along with partially revised semantics to comport with
that implementation.2 As a precursor to the concrete implementation and to Yang’s work,
this thesis presents the original design and formalization of Backpack that was the subject of
the POPL’14 paper,3 along with a new formalization of Haskell type classes.

The title of the POPL’14 paper, “Backpack: Retrofitting Haskell with Interfaces,” conveyed
the essential idea in Backpack of retrofitting the existing Haskell language with a new form
of modularity. Retrofitting refers both to building modularity on top of the existing Haskell
language, rather than replacing it, and to the research challenge of formalizing a module
system for a real programming language that’s actually in use—Haskell—instead of inventing
yet another ML-like system that only exists on paper.

In contrast to the original paper’s title, “Non-Reformist Reform for Haskell Modularity” is
the title of this thesis. The political concept of non-reformist reform encompasses not only the
idea of retrofitting something existing but also the idea of building toward a more definitive
break with the existing world. It captures an additional goal of Backpack: to import, techni-
cally and conceptually, the more idealized world of strong modularity in the ML family of
languages into the more ubiquitous world of weak modularity in Haskell and many other
languages. This non-reformist reform sits somewhere between a revolutionary approach—
e.g., designing a new Haskell from scratch, this time starting with strong modularity—and
a reformist reform approach—e.g., adding a new GHC language extension or a new Cabal
directive in order to obtain a more expressive weak modularity.

1 https://ghc.haskell.org/trac/ghc/wiki/Backpack
2 Yang (2017), “Backpack: Toward Practical Mix-in Linking in Haskell”.
3 Kilpatrick et al. (2014), “Backpack: Retrofitting Haskell with Interfaces”.

1

https://ghc.haskell.org/trac/ghc/wiki/Backpack
https://github.com/ezyang/thesis/releases
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1.1 modularity

Modularity is one of those concepts in programming languages that has countless definitions
and connotations. An uncontroversial definition would be that it’s a property of a program-
ming system in which programs can be broken up into different components that define and
maintain their own abstractions. That latter part of the property is where the importance of
type systems comes in. As per John Reynolds’s classic definition, “type structure is a syntactic
discipline for enforcing levels of abstraction.”4

In this thesis I don’t try to pin down a more precise definition of modularity. I do, however,
cast some light on different considerations of modularity in order to motivate the general
approach of Backpack: the strength and the scale of modularity.

The idea behind these two attributes of modularity is not to categorize whole programming
languages but to understand and characterize the modularity offered by their constituent
language features. What kind of modularity is offered by Haskell modules? Or by Haskell
packages? How does that modularity differ from that of ML modules? My characterization
of modularity in these terms helps distill the essential differences and pin down what’s novel
about Backpack.

1.1.1 Strength of Modularity

What makes a programming language have strong as opposed to weak modularity? I’ve hinted
that the ML family of languages, like Standard ML (SML)5 and OCaml6, offers the former
while Haskell7 and most other languages offer the latter. Boiled down to its essence, the
difference is best captured by whether there’s any facility for abstraction over program com-
ponents, typically expressed through signatures. The presence of such abstraction indicates
strong modularity. In weak modularity, on the other hand, concrete program components
may only depend on other concrete program components without any abstraction over their
implementations.

strong modularity The Definition of Standard ML8 perfectly summarizes strong modu-
larity in the module system of SML:

The principle of inferring useful structural information about programs is also
represented, at the level of program modules, by the inference of signatures. Signa-
tures describe the interfaces between modules, and are vital for robust large-scale
programs. When the user combines modules, the signature discipline prevents
him from mismatching their interfaces. By programming with interfaces and para-
metric modules, it becomes possible to focus on the structure of a large system,
and to compile parts of it in isolation from one another—even when the system is
incomplete.

This software philosophy has served the ML family of languages for decades. Signatures,
along with the matching of implementations against them, constitute a principal language
feature in the module systems of the ML family, in particular SML and OCaml. They enableClient-side data

abstraction through
parameterization;

implementor-side data
abstraction through

sealing.

both “client-side data abstraction,” in which a parameterized module—also called a functor—
uses a signature to abstract over the implementation of some other module it depends on, and
“implementor-side data abstraction,” in which an implementation—also called a structure—
hides away or “seals” its particular details so that only the given signature is visible to clients.

For the purposes of this thesis, it’s the first use case of signatures—client-side data abstrac-
tion—that illustrates strong modularity. In particular, in the ML family, strong modularity

4 Reynolds (1983), “Types, Abstraction and Parametric Polymorphism”.
5 Milner et al. (1997), “The Definition of Standard ML (Revised)”.
6 Leroy et al. (2017), “The OCaml System release 4.06: Documentation and user’s manual”.
7 Hudak et al. (2007), “A history of Haskell: Being lazy with class”.
8 Milner et al. (1997), “The Definition of Standard ML (Revised)”.

http://sml-family.org/sml97-defn.pdf
http://caml.inria.fr/distrib/ocaml-4.06/ocaml-4.06-refman.pdf
http://sml-family.org/sml97-defn.pdf
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comes in the form of functors. As an example, consider the following list-based implement-
ation of a finite set of elements in SML. It’s a functor, Set, that abstracts over the type and
structure of elements via the interface ORDERED_TYPE:

functor Set (E: ORDERED_TYPE) :> SET =

struct

type element = E.t

type set = element list

let empty = []

let rec add x s = ... E.leq ...

let rec member x s = ... E.leq ...

end

But not all ML variants support functors. For example, the popular Microsoft .NET-based
F]9 and the nascent CakeML10 both eschew the strong modularity of functors as part of
their own technical tradeoffs, resulting in weak modularity. Though considered weak, these
languages nonetheless offer signatures and therefore implementor-side data abstraction; their
modularity isn’t quite strong, but it’s not fully weak either.

weak modularity In the world of weak modularity, modules cannot abstract away their
dependencies; implementations may only depend on other implementations. This is a pretty
conventional view of modules. Each module defines some stuff, partly by using stuff that
it “imports” from other modules. For example, consider a Haskell module called Server that
imports a socket data structure from another module called Socket.

With weak modularity, processing a module, e.g., type-checking it, requires first process-
ing the imported modules in order to understand the specifications of what was imported.
Because the imported modules must already exist in order to be so processed, there exists
a rigid order in which modules may be processed.11 And not just the order of processing,
but even the order of development: the downstream modules must be developed after the
upstream ones. In the example, developing and reasoning about the Server module can only
occur after the Socket module has been fully fleshed out and implemented.12

In a strong modular system, there would be a facility for expressing the expected interface
of the imported modules, with implementations of those modules linked into the program
later, so that this module can be processed independently of the modules eventually linked.
Server would instead depend on some socket interface that specifies the socket data structure,
and only when Server’s import is linked with Socket is the program considered complete.

Another drawback to weak modularity is that a module cannot be reused, within the same
program, by depending on related but different modules. How can the Server module be
reused with different implementations of sockets? For example, to test it against a mock imp-
lementation of sockets. Since the dependency goes from implementation to implementation,
there’s no way to break it and move it to a different one.

Aside from this standard notion of modules, weak modularity regularly occurs in another
form—as packages in package management systems. In such systems, a package represents a bun- Packages are a form of

weak modularity, despite
indefinite dependencies.

dle of source files, with build-time dependencies on other, externally defined packages, that
bears a unique name and version number. This system of structuring (open-source) programs
spans various software ecosystems, from language-agnostic systems like Debian’s APT13 to
systems specific to a particular programming language like Haskell’s Cabal/Hackage.14

9 Syme (2012), “The F] 3.0 Language Specification”.
10 Myreen and Owens (2014), “Proof-producing translation of higher-order logic into pure and stateful ML”.
11 Some systems of weak modularity allow for module import dependency to be cyclic, thereby defining recursive mod-

ules. In some systems with cyclic dependency there still exists a rigid order imposed—for example, (GHC) Haskell,
whose recursive modules will be the subject of much discussion in §1.2.4. In other systems, like mutually recursive
classes in Java, there is no rigid order imposed. In all cases, however, implementations depend on implementations.

12 If one really wishes to develop Server first, one would likely write “stub implementations” for Socket’s definitions.
13 https://wiki.debian.org/Apt
14 https://hackage.haskell.org/

https://www.microsoft.com/en-us/research/publication/f-3-0-language-specification/
https://wiki.debian.org/Apt
https://hackage.haskell.org/
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In package management systems, packages are implementations that depend on other
implementations—weak modularity. Generally this dependency is expressed as a package
name and a range of version numbers; e.g., socketlib >= 2.1 is a dependency on the pack-
age (rather, series of package definitions) named socketlib, but only those implementations
marked version 2.1 or later. A package with this dependency must be built and linked against
any such implementation version of socketlib, for the internal entities defined in the pack-
age depend on entities defined in socketlib.

While such version ranges appear to abstract over multiple implementations, thereby tran-
scending weak modularity, they do not enable the independent development of the client
package. If package myserver version 1.2.3 depends on socketlib >= 2.1, because myserver’s
Server entity uses socketlib’s Socket entity, then myserver cannot be processed or built in-
dependently of a particular implementation of socketlib, be it 2,1, 2.5, or 4.0, with particular
implementations of its own dependencies in turn.

My language of strong vs. weak modularity15 is intended to connote the conventional dis-
tinction between strong vs. weak typing in programming languages. With strong typing, one
has stronger guarantees about the runtime behavior of a program, e.g., the absence of calling
a function with the wrong type of argument; with strong modularity, one has stronger guar-
antees about the runtime or even link-time behavior of a module, e.g., the absence of linking a
dependent component with the wrong type of implementation. On the other hand, with weak
typing and with weak modularity, one has weaker guarantees—or even no guarantees—about
such behavior.

1.1.2 Scale of Modularity

The concepts of “programming in the large” vs. “programming in the small” come from
decades of folklore and vague generalities, a lot like “modularity.” In the types literature,
MacQueen described the former as “concerned with using [modularity constructs for infor-
mation hiding] to impose structure on large programs,” in contrast to the latter, which “deals
with the detailed implementation of algorithms in terms of data structures and control con-
structs.”16 In this thesis I adapt these concepts as the scale of modularity: small vs. large.

small modularity Small modularity describes language constructs which capture fine-
grained data abstraction, typically regarding the implementation of data structures and the
enforcement of their invariants across abstraction boundaries. These constructs are referred
to in the course of programming and execution at the core level of a language, and, in strong
cases, are reused/instantiated multiple times in multiple distinct ways within a (top-level,
fully-closed) program. Such constructs are sometimes considered the “unit of development,”
“typechecking,” and “reasoning.” In languages with only weak modularity, the “unit of devel-
opment” is taken to be the “unit of compilation” as well, a unification of the two granularities
that confers small rather than large modularity.

Examples of small modularity include ML modules like the ones above, Haskell modules,
Java classes and interfaces, and C++ classes. All of these forms of modularity define and
enforce data abstraction to varying degrees. In particular, in the case of Haskell modules, even
though they have the dual role of both reasoning and compilation, they are fundamentally
part of data abstraction and the type system of the core language.

large modularity Large modularity, on the other hand, describes language constructs
which aggregate the smaller modular constructs into a coherent whole that will exist in a
fixed form, as source code, to be distributed across systems. At this scale, modularity is

15 Conventionally, the terms definite vs. indefinite references are used to make this distinction. The problem with these
terms is that they refer not to a characteristic of a language’s modularity but to particular expression forms of depen-
dency. This isn’t the correct distinction to make; for example, virtually any language supporting strong modularity
nonetheless allows for both definite and indefinite dependencies on other components.

16 MacQueen (1986), “Using Dependent Types to Express Modular Structure”.
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more concerned with the organization of code dependencies and less concerned with execu-
tion; consequently, it’s primarily the domain of static semantics and not dynamic semantics.
Reuse/instantiation within a single (top-level, fully-closed) program is limited. Such con-
structs might be considered the “unit of distribution,” “authorship,” or “versioning” of a
language. Examples of large modularity include Haskell packages, OCaml’s interpretation of
source files into modules (via ocamlc), SMLSC’s units,17 and generally any package manage-
ment system, like OCaml’s OPAM18 and Haskell’s Hackage/Cabal.19

The dominant form of large modularity comes in the form of packages, as described earlier.
Such systems have arisen out of the increasing need for distributed respositories of (open-
source) modular, interdependent components as software systems evolve in that direction.

Large modularity cannot be described as merely a particular mode of use of small modular-
ity. Essentially, the way small modularity is expressed and abstracted does not conveniently
match the use cases of large modularity. The following discussion of abstraction barriers, in-
stantiation, and, in the case of strong modularity, “fully-functorized style” (§1.2.2), provides
weight to that claim.

abstraction barriers Since modularity is about organizing, defining, and maintaining
abstractions, the abstraction barriers that circumscribe them help illustrate the differences in
scale.

In small modularity, an abstraction barrier delineates tight specifications about abstract
types and the invariants that operations enforce about them—in other words, data abstrac-
tion. Think of the example of the SET functor in ML. The set structure (the body of the functor) Abstraction barriers in

small modularity
delineate tight
specifications about data.

depends on an unknown ordering structure (the parameter of the functor). There’s an abs-
traction barrier isolating the set structure. From inside it, the set structure knows only the
interface of the ordering structure (the ORDERED_TYPE signature): the abstract type t and the
invariant that the leq function is a total order on t.20 And from outside the abstraction barrier,
clients of the functor know only the interface of the set structure (the SET signature), not its
internal implementation (the representation and operations in terms of list). To clients, the
abstraction barrier enforces certain invariants about the abstract set type: for example, any
value of type set only contains values of type elt and moreover must have been constructed
using the structure’s empty and insert operations.

In contrast to imposing data abstraction, abstraction barriers in large modularity serve pri-
marily to delineate known vs. unknown components—mine vs. yours—in an open program. Abstraction barriers in

large modularity delineate
known vs. unknown
components.

An open program is typically one which has free, unbound variables to be substituted, i.e.,
stuff to be filled in. In the context of modularity, an open program is one which has a depen-
dency on unknown components to be linked in (cf. Cardelli (1997)). Consider the previous
example of the myserver package. On one side of the abstraction barrier are the package
requirements (the Socket module) and on the other side the package’s provisions (the Server
module) for clients of the package to import and use. The separation between requirements
and provisions is exactly the separation between “yours” and “my” components.

instantiation Another way to illustrate the distinction between small and large mod-
ularity is to look at how modular components are instantiated. This analysis only concerns
those indefinite modular components which are abstractly defined with respect to some kind
of unknown parameter—functors and packages, not Haskell modules, for instance.

Small modularity is geared toward easy reuse through multiple instantiation. In the ex-
ample of small modularity, the Set functor might be instantiated multiple times in the same
program, for different element types or even different orderings on the same element type.
The syntax of functors makes such reuse straightforward, as intended: two different uses of
Set can be expressed as Set(IntOrd) and Set(StringOrd), which in turn define two distinct
abstract set types.

17 Swasey et al. (2006), “A separate compilation extension to Standard ML”.
18 Gazagnaire et al. (2018), “The OCaml Package Manager 2.0: The opam manual”.
19 Coutts et al. (2008), “Haskell: Batteries Included”.
20 The total order invariant is not expressible in the type system of ML, but the functor body still presumes it’s true.

https://dl.acm.org/citation.cfm?id=1159876.1159883
https://opam.ocaml.org/doc/Manual.html
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Large modularity, on the other hand, does not make it easy to instantiate the same indef-
inite component multiple times in different ways. That’s because the unknown “parameter”
in large modularity is not really a parameter to be substituted but an open dependencyInstantiation in small

modularity is like
substitution. Instantiation
in large modularity is like

linking.

to be linked. The body of the Set functor is meant to be substituted with any and every
implementation of ORDERED_TYPE thrown at it, whereas the server package just needs some
implementation of socketlib to be linked in. One can squint at that distinction and see uni-
versal vs. existential quantification, respectively, but it’s more of a conceptual guide than a
formal observation.

* * *

With the nebulous concept of modularity fleshed out into these attributes of strength and
scale, we can now better appreciate what Backpack brings to the world of modular pro-
gramming: strong, large modularity. Backpack has strong modularity because it allows for
implementations to depend on interfaces (as well as multiple instantiation of these abstract
implementations). Backpack has large modularity because its components, packages, organize
constituent modules into domains of “mine vs. yours,” allowing for the (typed) abstraction
over the unknown “yours” via interfaces.

1.2 survey of modularity

In the remainder of this chapter, I provide some deeper background on modularity in real
programming. This survey of modularity “in the wild” is intended to give the reader an
even firmer footing in what constitutes modularity, along with a sense for what language
features, ideas, and research directions I have drawn from in the design and formalization of
Backpack.

1.2.1 Modularity in Haskell

The first form of modularity in this survey is that of Haskell. Its relevance is clear.
As already described in §1.1, Haskell modules are a form of weak, small modularity.21

Weak because implementations depend on implementations, and small because modules are
more about units of compilation and reasoning than about units of distribution. Haskell
modules are simply not intended to play as large a role in the static semantics of the language
as were ML modules. Instead, the module system in Haskell plays two roles.

• First, modules carve up large programs into units of compilation and reasoning. Each
Haskell source file defines a module, and modules are “processed”—type-checked, rea-
soned about, and compiled—in order of their dependency on one another. That makes
them a form of incremental modular development and weak modularity.

• Second, modules organize core-level entities and give them unique identities. Those
core level entities are comprised of types, values, datatypes, data constructors, type
classes, type class instances. Each module imports some entities from other modules,
defines new entities, and exports some of those combined entities for use by other
modules. Each core entity is uniquely identified by its entity name (a syntactic name
except for type class instances) and the name of the module that originally defined it.

As some of the Haskell designers have explained, “we eventually converged on a very
simple design: the module system is a namespace control mechanism, nothing more and
nothing less. This had the great merit of simplicity and clarity—for example, the module
system is specified completely separately from the type system—but, even so, some tricky
corners remained unexplored for several years.”22

21 This characterization should be interpreted not as pejorative but as indicative of the ways in which Backpack im-
proves on Haskell modularity.

22 Hudak et al. (2007), “A history of Haskell: Being lazy with class,” §8.2.
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data abstraction in haskell Haskell modules do offer a limited form of implementor-
side data abstraction: the implementor chooses to expose only certain entities from a module
implementation. For example, the analogue in Haskell of ML’s Set functor that creates an ab-
stract type for sets is a Set datatype whose term constructors aren’t exported; clients can use
the type but have to use the provided Set operations rather than constructing or destructing
values of that type. See Figure 1.1 for the code for this example, albeit specialized to sets of
integers, an abstract type IntSetT.

A noteworthy difference between abstract types in Haskell and in ML is that in Haskell
they can only be created as fresh, named datatypes. In ML, on the other hand, abstract types
can be introduced without creating new core-level data types; for example, the abstract type
set in the Set functor example was defined simply as an application of the list type.

Haskell type classes offer client-side data abstraction. More on that below.

programs in haskell A “program” in Haskell is a collection of module definitions,
one of which is considered the “main” module and exports a value main of type IO a. A
program could be a single module or ten or a thousand; the modules could be defined in a
local directory and written by the user, or they could be defined in a package and stored in
some repository cache (§1.2.6), or a mixture of both.

A program exists to be executed, by executing the main method, but first must be statically
processed. Such processing occurs in dependency order: if module B imports module A, then
the latter must be processed first. This chain of imports might yield a cycle, in which case the
modules are said to be recursive; that will be explained in §1.2.4.

In the case of the de-facto standard compiler, GHC, the compilation of a module source file
yields a “binary interface file” describing, in binary representation, all of the static contents
of the module, i.e., the names and specifications of all entities imported into, defined by, and
exported out of the module. When compiling module B, it processes the import of module A
by reading in A’s binary interface file, which it must already have synthesized.

type system for modules Is there a type system for Haskell modules? Not really, at
least not one defined in the Haskell Language Report,23 which does describe, to a limited
extent, a type system for Haskell’s core language, however.

In the case of GHC, there are those binary interface files. Each one acts a little like the “type”
of a module. A model of GHC might involve a typing judgment whose hypothetical context
contains mappings from (already-processed) module names to their types and whose main
“term : type” classification comprises a module’s definition and its resulting type. (Indeed,
this is the essence of the module type system defined by Backpack.) But this is merely a
conceptual model, not something formally described.

What might a module type look like? As mentioned above, GHC’s binary interface files
indicate the structure of a module type: static specifications of all the entities the module
concerns. That means a module type would be composed, at some level, of constituent core-
level types. For example, regarding the modules defined in Figure 1.1, the type of the IntSetM
module would necessarily involve the type of the empty value.

And how might that value’s type be expressed? Syntactically, it’s IntSetT, but there could
be plenty of other types in the program with that same syntactic name. The answer is
to identify the type with its “original name,”24 i.e., the syntactic name of the type paired
with the unique name of the module that defined it; in this case that’d be something like
“IntSetM.IntSetT”. As we will soon see, Backpack generalizes original names into “physi-
cal names” and module names into structured “module identities,” the latter being one of
Backpack’s technical contributions.

23 Marlow (2010) and Peyton Jones (2003).
24 Rather frustratingly, the concept of original names of entities is not defined anywhere in the Haskell Language

Report, nor does the Report explain equality on entities, though it refers to such a notion. In stray documentation
from older specifications of the language, in the documentation and implementation of GHC, and in the semantics
of Faxén (2002, §2.3) the term “original name” is used as defined here.
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-- IntSetM.hs
module IntSetM

( IntSetT(), -- Expose IntSetT and the ’public’
empty, -- operations, but not the OfList
add, -- constructor or private function split.
member ) where

-- sets as lists, to be kept in order by the operations
data IntSetT = OfList [Int]

empty :: IntSetT
empty = OfList []

-- operation that maintains the order
add :: Int -> IntSetT -> IntSetT
add n (OfList ns) = OfList $ case split n ns [] of

(nsLess, []) -> nsLess ++ [n]
(nsLess, m:ms)

| n == m -> ns -- n is already present
| otherwise -> nsLess ++ [n, m] ++ ms

member :: Int -> IntSetT -> Bool
member n (OfList ns) = (not $ null nsGeq) && n == head nsGeq

where (nsLess, nsGeq) = split n ns []

-- private function to split list into (< n), (>= n)
split :: Int -> [Int] -> [Int] -> ([Int], [Int])
split _ [] accumLess = (accumLess, [])
split n (m:ms) accumLess

| n <= m = (accumLess, m:ms)
| otherwise = split n ms (accumLess ++ [m])

-- Client.hs
module Client where
import IntSetM -- imports IntSetT, empty, add, member

-- Client must build IntSetT using add and empty, not Tip and Bin,
-- so we are guaranteed to maintain the abstract type’s invariant
-- that the IntSetT is a balanced binary tree.
s :: IntSetT
s = add 5 (add 10 empty)

Figure 1.1: Simple example of defining an abstract data type in Haskell: the IntSetT type.
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static semantics only Unlike modules in ML, modules in Haskell are purely static
things: there is no notion of evaluation or reduction for Haskell modules. This shouldn’t be
surprising since, unlike in ML, there is nothing resembling functions or function applications,
the elemental beta conversion, at the level of modules. Although the Haskell Language Re-
port describes modules and how they interact with the core-level of the language, it doesn’t
provide a succinct, formal definition. A formal static semantics of Haskell modules has been
defined, to varying degrees, by Faxén (2002) and by Diatchki et al. (2002), although only the
former establishes a type system, of sorts, for modules.

type classes Some might consider Haskell’s type classes as a form of modularity. After
all, type classes provide a way for program components to “define and maintain their own
abstractions” about data types. That makes them a form of small modularity—perhaps even
“micro” modularity, since they are not able to structure or organize the Haskell core language;
for instance, type classes cannot organize other type classes.

Type classes are moreover a form of strong modularity since they offer a way to define
implementations with respect to abstract interfaces. These are all values of qualified type, i.e.,
generic values with type class constraints. Moreover, this abstraction is not merely at the
value level: with associated data types25 even data types, using a GHC Haskell extension, can
be parameterized by type class instances. Modules, however, cannot be.

Although I consider type classes to be a form of strong modularity, the “programmer’s con-
tract” is different between ML modules and Haskell type classes. In the strong modularity of
ML modules, a client program abstracted over a module M : S is agnostic to the particular
implementation of M because the contract of ML data abstraction concerns the modular notion
of representation independence: “it doesn’t matter which implementation of S is linked in.”26 In
the more limited strong modularity of Haskell type classes, on the other hand, a client pro-
gram abstracted over a type class constraint C a is agnostic to the particular implementation
(instance) of C a because the contract of type classes concerns the antimodular notion of global
uniqueness of instances: “there can be only one implementation of C a anyway.”27 Both of these
contracts are an improvement on that of weak modularity, which only expresses “I need that
implementation, that one, there.”

More tellingly, type classes do not offer any kind of implementor-side data abstraction (e.g.,
sealing in ML) since the implementations (instances) are not expressible or identifiable any-
way. So although I consider type classes to be a form of strong modularity for the purposes
of this thesis—because they support client-side data abstraction, the focus of Backpack—the
modularity they offer is nonetheless weaker than that of ML modules.

Type classes were not considered in the original Backpack work.28 This thesis corrects
that conspicuous omission by incorporating type classes and instances into the Backpack
formalization. This is the subject of Chapter 4.

1.2.2 Modularity in ML

Next in the survey is modularity in ML. Again, the relevance to this thesis should be clear: one
of the primarily goals of Backpack is to bring the strong modularity (and research tradition)
of ML into Haskell.

a true module language Across all languages in the ML family, modules structure
and organize programs in fundamentally different ways in ML than they do in Haskell.
Rather than extra-linguistic constructs tied to source files, ML modules have their own ex-

25 https://downloads.haskell.org/~ghc/7.8.4/docs/html/users_guide/type-families.html#assoc-decl
26 See Mitchell (1986) for an early formulation of representation independence with respect to System F; Mitchell and

Harper (1988) for a discussion of the property in ML; and Crary (2017) for a contemporary formulation of such
abstraction properties in an ML-like module language.

27 Much more will be said about global uniqueness in §4.1 and in the Backpack formalization.
28 Kilpatrick et al. (2014), “Backpack: Retrofitting Haskell with Interfaces”.

https://downloads.haskell.org/~ghc/7.8.4/docs/html/users_guide/type-families.html#assoc-decl
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module SetExtension
(S : (functor E : ORDERED_TYPE -> SET))
(E : ORDERED_TYPE) : SET

= struct
module Set = S(E)
open Set
let closure f s = ...

end

Figure 1.2: Example of a higher-order functor, adapted from Biswas (1995). SetExtension returns a new
SET implementation that extends the given SET functor (like the earlier example) with an
additional value component: the closure function that computes the closure of a given set
value under the given f.

pression language. As such, there is syntax for introducing module expressions (structures
and functors) and for binding variables to them with lexical scope.

Structures are modules that contain named type and value components, a bit like Haskell
modules. But unlike Haskell modules, they are hierarchical: a structure can have named
components that are themselves modules.

Functors abstract structures over other structures, creating a parameterized module that
can be instantiated with other modules.

Signatures describe module types and can be used for encapsulation and for parameteriza-
tion.

In this thesis, ML modules are divided into the two categories of structures and functors,
both of which are closed under this union in the following sense:29

Module ::= Structure | Functor

Structure ::= { Label 7→Module }

Functor ::= λ (X : Signature) . Module

Structures and functors don’t have nested structure components; they more generally have
nested modules. Structures can contain nested functors, and functors can be parameterized by
functors. The latter are known as higher-order functors, as opposed to first-order functors that
only abstract over structures. Figure 1.2 contains an example higher-order functor in OCaml.
Higher-order functors are not universal among ML dialects. In particular, SML as formally
defined lacks them though OCaml supports them.30

data abstraction in ml The module language sits atop the core language of ML. Un-
like in Haskell where it was merely there to provide “original names,” the module language
plays a large role in the type system of the core language. In particular, ML’s module language
offers rich forms of data abstraction for its core language.

ML modules support “implementor-side data abstraction”: a structure can be sealed against
a signature to encapsulate or hide some of its components. Moreover, the presence of type
components can be exposed while hiding their definitions, effectively producing an abstract
type whose actual representation is unknown outside the seal. This creation of abstract types
is the essence of data abstraction in ML. We saw this in §1.1 in the body of the Set functor,
which created the abstract type set.

29 To better elucidate the point about the module language here, the core-level type and term components are omitted
from the structures in this pseuo-grammar.

30 The reason an ML dialect would omit them is because capturing them in the type system properly is quite tricky.
In particular, that complexity stems from the possibility of parameterized functors producing abstract types when
applied in the body, making the applicative semantics of functors ideal for the higher-order case. The module systems
research literature saw many attempts at semantics for higher-order functors over the years; see Rossberg et al. (2014,
p. 600) for a summary.
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Functors inherently offer “client-side data abstraction”: the body of the functor, considered
the client module, abstractly depends on the parameter of the functor, knowing only the
designated signature of that parameter. The functor can then be applied to any argument
module that matches the signature, inducing a dependency of the client module on that
argument module—a dependency which is abstracted to only the signature, not the full
implementation of the argument module. Again, the Set functor from §1.1 exemplified client-
side data abstraction, as does any functor.

standard ml and ocaml The ML family includes multiple languages, most notably
Standard ML and OCaml. The module systems of both languages exhibit all the features
described in this section, albeit with a key difference in how abstract types are created as the
result of functor application.

In SML, functor application has “generative semantics,” which means that each functor
application yields a fresh abstract type for each opaque type component in its body. Each
instantiation of a functor, even to the same argument module, yields a distinct abstract type.
With the Set functor, this means that every application Set(M) will produce a fresh set type
in the result, even when applied to the same argument twice:

structure S1 = Set(IntOrd)

structure S2 = Set(IntOrd)

let s = S1.add 5 (S2.empty) (* ill-typed! *)

Until more recent versions, in OCaml, functor application had only “applicative semantics,”
which means that each application of a functor to the same module argument produces the
same abstract types for the functor body’s opaque type components. This semantics better
models functions: the results of two equivalent function applications are equivalent. How-
ever, different implementations (and formal models) of applicative semantics have different
interpretations of how to judge functor arguments to be “the same.” For example, OCaml
determines functor arguments to be equivalent, for the purposes of abstract types produced
by the functor, if they’re both the same path reference to the same module variable.

More recently, however, OCaml offers generative semantics of functors with a slightly alter-
native syntax.31 Indeed, both functor semantics have their uses. Applicative semantics may
better model the behavior of functions, but for some functors, a side effect32 of creating fresh
abstract types on every application—even to the same module argument—is actually desired.
For example, a module representing a symbol table can be written as a generative functor, tak-
ing no arguments, which creates a fresh abstract symbol type on every application, thereby
preventing two different instantiations of symbol tables from interacting with each other’s
symbols.33

The two dialects have countless other differences ranging from surface-level to more exten-
sive. As an example of the latter, OCaml defines an entire object system, as in object-oriented
programming, but as with most studies of ML module systems this thesis is not at all con-
cerned with that.

For reasons that will become clearer later on, this thesis is concerned with applicative
semantics, not generative semantics.

type system for modules As a major departure from Haskell, the ML module system
has a type system with a formal definition—or rather, the module system of the Standard
ML dialect has a type system with a formal definition, and various dialects with various
extensions have various formal definitions of their type systems.

Indeed, there have been decades worth of type systems formalized for ML modules in the
research literature, beginning with the original Definition of Standard ML.34 Some of the major

31 Generative functors were first introduced in OCaml 4.02 in 2014: https://ocaml.org/releases/4.02.html
32 For a system that straightforwardly supports both semantics as a distinction of side effects—the creation of abstract

types—see the F-ing system of Rossberg et al. (2014).
33 Dreyer (2005), “Understanding and Evolving the ML Module System,” Fig. 1.8.
34 Milner et al. (1990), “The Definition of Standard ML”.

https://ocaml.org/releases/4.02.html
https://people.mpi-sws.org/~dreyer/thesis/main.pdf
http://sml-family.org/sml90-defn.pdf
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developments in type systems for ML modules thereafter were the introduction of “manifest
types”/“translucent signatures”35 (i.e., type components of a signature that would not yield
fresh abstract types when sealing a structure), applicative functor application36 (explained
shortly below), and recursive modules (explained in §1.2.4). Of particular note is the “F-ing”
semantics of Rossberg et al. (2010) introduced a full 20 years after the original Definition.37

Having a type system means that ML modules exhibit a static semantics with a modular
and compositional process for reasoning about them. For example, the type of a module expres-
sion is synthesized from the types of its constituent module subexpressions, without regard
for the manner in which those subexpressions were typed, and all such types represent the
specifications of module expressions without regard for the values to which those expressions
evaluate.

fully functorized style If every modular component just directly depended on every
other component, without using functors to make those dependencies abstract, then compo-
nents cannot be developed, checked, and reasoned about independently of each other; they
must then be processed in (dependency) order. This is how a modular development in a
weak-modular language like Haskell would necessarily be organized. In ML, however, there’s
another alternative: using the “fully functorized” style of modular development.

The central idea behind fully functorized modular development is that every direct module
dependency is rewritten as a functor that must be applied to its dependency as an argument.
For example, if module M2 depends on another module M1, then it’s rewritten as a functor
F2 that is parameterized by (a signature for) M1, with the dependency on the particular
M2 now expressed as the linking application F2(M1). To carry this out “fully,” one also
performs the same rewriting on M1, and thus the process continues to cover the entire chain
of dependencies.

The result of this rewriting is that the components now exhibit strong modularity: imple-
mentations are abstracted from their dependencies via signatures. But there’s a major cost.
Writing the components as functors necessitates tedious, manual sharing constraints on func-
tor parameters, in order to establish, in the type system, coherence among each component’s
dependencies.

For example, Figure 1.3 presents a basic modular development, adapting MacQueen’s ex-
ample program from (MacQueen, 1984, §2.3) to SML ’90 syntax. At the bottom of the hierar-
chy, the functorized Geometry module needs to impose a sharing constraint asserting that the
parameterized RECT and CIRCLE implementations contain the same POINT implementation—
and therefore the same point abstract type. The typechecking of Geometry requires that co-
herence of the point type when comparing R’s center result with C’s. Moreover, the sharing
constraint in the example allows the two intended (i.e., coherent) linkages of all components
and rejects the unintended (i.e., incoherent) one.

MacQueen described a fully-functorized modular development (without using that phrase)
in his early presentation of an ML module system38 and, later, in a more formal development
of type theory of modules.39 The authors of the ML Kit, a Standard ML implementation itself
implemented in Standard ML, employed the fully-functorized style in order to link together
the key components of their system.40 The verbosity and rigor of the sharing constraints in
the ML Kit implementation is really something to behold! For example, the Environments

functor is parameterized by 17 structures with 18 type sharing constraints. Similarly, the
STATIC_OBJECTS signature declares only five constituent structures but 66 sharing constraints
between them.41

35 Leroy (1994) and Harper and Lillibridge (1994), which were presented at the exact same POPL conference in 1994,
surely a sign of the former research interest in the subject.

36 Leroy (1995), “Applicative Functors and Fully Transparent Higher-Order Modules”.
37 Milner et al. (1990), “The Definition of Standard ML”.
38 MacQueen (1984), “Modules for Standard ML”.
39 MacQueen (1986), “Using Dependent Types to Express Modular Structure”.
40 Birkedal et al. (1993), “The ML Kit, Version 1,” §7.3.
41 The ML Kit source code and documentation currently can be found at http://www.cs.cmu.edu/afs/cs/user/

birkedal/pub/kit.tar.gz

http://sml-family.org/sml90-defn.pdf
http://www.cs.cmu.edu/afs/cs/user/birkedal/pub/kit.tar.gz
http://www.cs.cmu.edu/afs/cs/user/birkedal/pub/kit.tar.gz
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That meticulous effort was cited in the module systems literature for years as a negative
example for the fully-functorized style, e.g., in Leroy (1994). As Harper and Pierce summa-
rized it in their chapter of Advanced Topics in Types and Programming Languages on modularity
in ML:

Experience has shown this to be a bad idea: all this parameterization—most of it unnecessary—
gives rise to spurious coherence issues, which must be dealt with by explicitly (and te-
diously) decorating module code with numerous sharing declarations, resulting in a net
decrease in clarity and readability for most programs.42

Another potential drawback to the fully-functorized style is that it requires higher-order
functors if one wishes to rewrite dependencies not on structures but on functors.43 For ex-
ample, if M2 depends on a functor F1, then the functorization of M2 would look like the
following:

functor F2 (F1 : (functor (X : S11) : S12))

= struct (* ... use F1 internally ... *) end

Indeed, since SML ’90 lacks higher-order functors, the ML Kit implementation could not
make use of such dependencies.

1.2.3 Forms of Modularity: Compilation Units

Outside the world of module systems on paper, there are module systems in real program-
ming languages with real tools for checking, compiling, and executing modular programs.
Each such language implementation includes some way to define modules in source files
that can then be checked and compiled by the language’s toolchain. These tools often live
above the modular programming language, as they are mostly informal tools for processing
modular programs. Indeed, this is the case for packages.

It is these compilation units that generally constitute modules for most languages and pro-
grammers, rather than a more formally described system like that of ML. When compilation
units are the atomic structuring mechanism in a language, as in Haskell, they are considered
small modularity. When they constitute a level above a more atomic structuring mechanism,
in order to link large modular programs against unknown dependencies, as in ML’s notions
of units, they are considered large modularity.

For example, in Haskell, there’s a one-to-one correspondence between module definitions
and source files. The module is the compilation unit; the unit of development and reasoning
is the unit of compilation. Since Haskell modules support only weak modularity, the mod-
ules must be compiled in dependency order. The GHC compiler, for instance, can then link
together the resulting object files to produce executable code.44

separate compilation If a language exhibits strong modularity then it has some facil-
ity for writing module implementations with respect to the interfaces of their dependencies.
Since the original Backpack work45 I’ve been careful to call this “separate modular develop-
ment” rather than the more conventional term “separate compilation.” That’s because the Separate modular

development, not separate
compilation.

extralinguistic compilation units determine whether the language supports separate compila-
tion. Moreover, another reason to use the more general term “separate modular development”
is that the act of compiling components in a modular system is losing its centrality as the way
we interact with programs expands beyond merely compiling, linking, and executing them.
Interactive theorem proving (e.g., Coq46), type-driven development (e.g., Idris47), and IDE tool-

42 Harper and Pierce (2005), “Design Considerations for ML-Style Module Systems,” pp. 335–336.
43 Appel and MacQueen (1994), “Separate Compilation for Standard ML”.
44 This implementation of processing Haskell modules differs from the semantics given in the more formalized treat-

ment of Diatchki et al. (2002). A key difference lies in the two approaches to recursive modules, which will be
explained shortly.

45 Kilpatrick et al. (2014), “Backpack: Retrofitting Haskell with Interfaces,” §1.
46 The Coq Development Team (2017), “The Coq Proof Assistant, version 8.7.0”.
47 Brady (2013), “Idris, a General Purpose Dependently Typed Programming Language: Design and Implementation”.

http://doi.acm.org/10.1145/178243.178245
https://doi.org/10.5281/zenodo.1028037
https://eb.host.cs.st-andrews.ac.uk/drafts/impldtp.pdf
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signature POINT =
sig
type point
val equal : point -> point -> bool
...

end

(* a couple distinct POINT implementations *)
structure Point1 : POINT = (* some representation of points *)
structure Point2 : POINT = (* a different representation of points *)

signature RECT =
sig
structure P: POINT
type rect
val center : rect -> P.point

end

functor Rect(
structure P: POINT

) : RECT =
struct
structure P = P
type rect = ... P.point ...
fun center r = ...

end

signature CIRCLE =
sig
structure P: POINT
type circle
val center : circle -> P.point

end

functor Circle(
structure P: POINT

) : CIRCLE =
struct
structure P = P
type circle = ... P.point ...
fun center c = ...

end

functor Geometry(
structure R: RECT
structure C: CIRCLE
sharing C.P = R.P (* key sharing constraint! *)

) =
struct
structure P = C.P (* same as R.P *)
structure R = R
structure C = C

(* requires that R.P.point = C.P.point *)
fun sameCenter r c = P.equals (R.center r) (C.center c)

end

(* well-typed *)
structure G1 = Geometry(Rect(Point1), Circle(Point1))
structure G2 = Geometry(Rect(Point2), Circle(Point2))

(* XXX ill-typed! Point1 =/= Point2 *)
structure G12 = Geometry(Rect(Point1), Circle(Point2))

Figure 1.3: Example of a fully functorized modular development, adapted from MacQueen (1984, §2.3).
Note the sharing constraint in the functor parameters of Geometry.
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ing (e.g., type-checking expressions in the editor) all present new considerations for modular
programming, and therefore all their processes should be folded into the idea of separately
developing modules.

compilation units in the ml family The ML module system, as formally defined
in the Definition of Standard ML, does not describe compilation units even though it contains
functors, which are the canonical example of strong modularity and separate modular devel-
opment. From the Definition:

In practice, ML implementations may provide a directive as a form of top-level declaration
for including programs from files rather than directly from the terminal. [. . .] Rather than
introducing a distinction between, say, batch programs and interactive programs, we shall
tacitly regard all programs as interactive, and leave to implementers to clarify how the
inclusion of files, if provided, affects the updating of the [top-level environment].48

Addressing that conspicuous gap in Standard ML, Swasey et al. (2006) designed an exten-
sion to ML, called SMLSC, that supports units on top of the module system. SMLSC units
offer strong modularity and are intended to better model compilation units than do func-
tors. Additionally, they provide some form of mixins for convenient sharing of dependencies
according to their names. As a language for describing both open and closed modular pro-
grams, sitting on top of the module system that provides facilities for data abstraction in the
core language, SMLSC units are considered large modularity.

OCaml specifies compilation units on top of the module system as a way to “bridge the
module system and the separate compilation system.”49 Each unit comprises an implement-
ation and an interface and is interpreted as a module sealed with the corresponding signature.
The OCaml compiler, ocamlc, allows users to write a unit’s implementation as a file Foo.ml

and its interface as Foo.mli, thereby creating a unit, Foo, that can be referred to as a module
from within other units.50

At first glance this relationship between file system and module system might resemble
Haskell’s. However, OCaml’s compilation units provide separate compilation while Haskell’s
do not. The key ingredient present in OCaml/ocamlc and missing in Haskell/GHC is the in-
terface file, Foo.mli, which allows units that depend on Foo to be type-checked and even com-
piled before writing—let alone type-checking and compiling—the implementation of Foo.

So are OCaml’s compilation units small or large modularity? Like SMLSC units, they are
an abstraction designed on top of the unit of reasoning—modules, which provide the data
abstraction for the core language—in order to facilitate the development of large modular
programs; that fundamentally makes them a form of large modularity. Notably, however, their
primary use case is to break a single author’s modular program into units of compilation, so
they don’t exactly play the role of units of authorship and distribution.

instantiation What compilation units tend to lack is the ability to instantiate them mul-
tiple times to be reused in other contexts. For this reason, as described in §1.1.2, compilation
units are a form of large modularity, not small modularity.

Again taking the Haskell program in Figure 1.1 as an example, there’s no way to link the
Client module (read: compilation unit) against some other implementation of integer sets
precisely because it directly depends on the IntSetM module (compilation unit). Indeed, this
limitation is the principal one that is overcome by Backpack.

The situation is the same in compilation units for ML, both with SMLSC’s unit language
and with OCaml’s extralinguistic unit compilation system. That’s because units provide a
means to link indefinite or abstract dependencies against definite implementations, but they
do not provide a means to substitute multiple such implementations for their abstract depen-
dencies. (Recall the distinction between linking and substitution from §1.1.2.) The linking

48 Milner et al. (1997), “The Definition of Standard ML (Revised),” p. 64.
49 Leroy et al. (2017), “The OCaml System release 4.06: Documentation and user’s manual,” §7.12.
50 Ibid., §9.3.

http://sml-family.org/sml97-defn.pdf
http://caml.inria.fr/distrib/ocaml-4.06/ocaml-4.06-refman.pdf
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form of instantiation is another telling sign that compilation units—for strong modular lan-
guages at least—are a form of large modularity.

1.2.4 Forms of Modularity: Recursive Modules

When multiple modules refer to each other in their definitions they are said to be recursive
modules. The same goes for a module whose definition refers to itself.

In some settings, like in Haskell, recursive modules are quite natural to employ and to
reason about. In other settings, particularly in ML, they are seemingly straightforward but
extraordinarily complicated—both for the designer, who wishes to give them a precise formal
definition and then to implement them, and for the user, who needs to reason about them in
real programs.

Backpack continues Haskell’s support for recursive modules and further, as one of its tech-
nical contributions, supports recursive linking of packages. Though they might seem straight-
forward at first glance, recursive modules are notoriously challenging to (precisely) define,
implement, and even reason about as a user. Here I sketch some of their manifestations in
Haskell and ML and give a sense for their complexity.

recursive modules in haskell Among compilation units, recursive modules arise
naturally in the form of cyclical imports, i.e., dependency cycles. All the modules in some
strongly connected component, according to the import links, constitute a mutually recursive
knot. Each module implementation in the knot must be checked, in dependency order, with
some mechanism to break the cycle so that they may be processed linearly.

The Haskell language specification allows recursive modules but doesn’t explain how any
particular Haskell compiler should support them qua compilation units. The GHC compiler,
for example, introduces the mechanism of “boot files” to break module import cycles. (As we
shall see shortly, this mechanism plays a central role in the design of Backpack.) If modules
A and B import each other, then one must create a boot file, A.hs-sig, which contains specifi-
cations of all the entities from A that are imported in B, and change B to import that instead.
Then the import sequence, now finite, goes A → B → (A.hs-sig) → �, which GHC ties into
a recursive knot.

GHC boot files resemble modules but contain only type-level information; there are no
values to type-check in them. Actually they resemble OCaml’s unit interface files.

Another semantics for Haskell modules, that of Diatchki et al. (2002), handles recursion by
taking the least fixed-point of the function that processes a module’s imported and exported
entities.

recursive modules in ml In extensions to the ML module systems, recursive modules
generally require a “forward reference,” a module variable that acts as the recursive refer-
ence within the body, along with a signature for that forward reference that specifies all the
recursively-referenced entities within the body. Crary et al. introduced this key syntactic form
in their original work, “What is a Recursive Module?”51 In OCaml, mutually recursive mod-
ules are necessarily defined together as one syntactic knot of definitions, each one designating
a name and a signature acting as its forward reference. See Figure 1.4 for an example.

First, however, we consider a simple case of a single recursive module that refers only to
itself. The following module, RNat, is a variant of a conventional natural number module but
written as a recursive module in OCaml. The type and value entities of RNat use recursion
through the module system rather than through the core type system: the recursive references
within the type t and the function to_int both go through the forward module reference RNat.
The resulting module has the same type and behavior as the more conventional definition
without recursive modules (but with a recursive core data type and a recursive core function).

module rec RNat : sig

51 Crary et al. (1999), “What is a Recursive Module?”
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signature TREE =
sig
type t
type f
val leaf : int -> t
val fork : f -> t
val push : t -> t -> t
val has : int -> t -> bool

end

signature FOREST =
sig
type f
type t
val empty : f
val add : t -> f -> f
val contains : int -> f -> bool

end

(* a recursively dependent signature *)
signature TREE_FOREST =
rec (X) sig
structure Tree : TREE where type f = X.Forest.f
structure Forest : FOREST where type t = X.Tree.t

end

(* a recursive module with two subcomponents *)
structure TreeForest =
rec (X : TREE_FOREST) struct
structure Tree =
struct
type t = Leaf of int | Fork of X.Forest.f
type f = X.Forest.f
val leaf = Leaf
val fork = Fork
val push x y = case y of
| Leaf i -> Fork (X.Forest.add x (X.Forest.add y X.Forest.empty))
| Fork f -> Fork (X.Forest.add x f)

val has n = function
| Leaf i -> i = n
| Fork f -> X.Forest.contains n f

end
structure Forest =
struct
type f = list t
type t = T.t
val empty = List.nil
val add = List.cons
val contains n xs = List.exists (Tree.has n) xs

end
end

Figure 1.4: Example of mutually recursive modules in a hypothetical ML module system that resembles
RMC (Dreyer, 2007a).
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type t

val zero : t

val succ : t -> t

val to_int : t -> int

end

= struct

type t = Zero | Succ of RNat.t

let zero = Zero

let succ = Succ

let to_int = function

| Zero -> 0

| Succ m -> RNat.to_int m + 1

end

they’re hard to get right The reasonable-looking definition of RNat above belies
the deep technical challenges behind designing, formalizing, and implementing support for
recursive modules in ML. Addressing this unanticipated challenge, Dreyer writes:

Certainly, for simple examples of recursive modules, it is difficult to convincingly argue
why ML could not be extended in some ad hoc way to allow them. However, when one
considers the semantics of a general recursive module mechanism, one runs into several
interesting problems for which the “right” solutions are far from obvious.52

Recursive modules were completely absent from the Definition of Standard ML, and even
OCaml only added them in version 3.07,53 over a decade after its precursor Caml Light intro-
duced the module system.54 In a years-long attempt to “get it right,” there have been various
designs for and implementations of recursive modules in ML. Most notable is Dreyer’s line
of research, which sought to develop a type-theoretic formulation of recursive modules.55

A key technical problem that arises with recursive modules in ML is what Dreyer called
the “double vision” problem,56 whereby the type system does not equate abstract types cre-
ated within the recursive module with their corresponding type components in the forward
reference; as a result, the type system “sees double”—two types instead of one. In the RNat

example, the problem manifests when the type system sees t and RNat.t as distinct types
within the module definition.

Solving the double vision problem has generally required two key ingredients: “forward-
declaring” abstract types in the forward reference for the module, and defining a “static
pass” over a recursive module definition that, prior to the full typing pass over the definition,
identifies any abstract types defined in the body and equates them with those in their forward
declarations. Both are key ingredients in Backpack as well.

recursion and separate modular development The ML module system is the
standard-bearer for strong modularity and separate modular development; one would hope
not to lose those benefits when defining recursive modules. Mutually recursive modules, both
in OCaml and in the research literature, must be fully defined together syntactically, thereby
breaking a claim to support separate modular development when it comes to recursion.57 The
TreeForest recursive module from Figure 1.4 is an example; it must be defined syntactically
together with its constituent recursive modules, Tree and Forest.

What one might then do is define each module in the recursive knot as a functor parame-
terized by the forward reference for the whole knot. See Figure 1.5 for a purported example
of this technique in the RMC system58 and Figure 1.6 for an analogous purported example in

52 Dreyer (2007b), “Recursive Type Generativity,” p. 433.
53 Leroy (2003), “A proposal for recursive modules in Objective Caml”.
54 See (Milner et al., 1997, p. 95) for the historical note about Caml Light. Moreover, Dreyer’s thesis (2005, §5.3) provides

a full accounting of the various ML dialects’ and implementations’ support for recursive modules.
55 Dreyer (2005, 2007a,b).
56 Dreyer (2005), “Understanding and Evolving the ML Module System”.
57 Ibid., §5.2.4.
58 Dreyer (2007a), “A Type System for Recursive Modules”.

https://people.mpi-sws.org/~dreyer/papers/dps/jfp.pdf
http://caml.inria.fr/pub/papers/xleroy-recursive_modules-03.pdf
https://people.mpi-sws.org/~dreyer/thesis/main.pdf


1.2 survey of modularity 19

OCaml. The MkTree and MkForest functors are developed separately with no connection to
each other, each with an interface standing in for the other. The intention of these purported
examples is that these functors are then instantiated and recursively linked together within a
recursive module, SepTreeForest.

These two SepTreeForest examples seem to exhibit recursive linking of separately-developed
modular components, i.e., functors, but are they well-typed in their respective systems? The
answer is extraordinarily difficult to reason about for the programmer! In both cases the an-
swer is no—SepTreeForest is ill-typed in both examples. Why are they ill-typed? Because
in both cases the type system cannot equate the abstract type produced in its body, e.g., t
in MkTree, with the corresponding type appearing in its functor parameter, e.g., X.Tree.t.
Concretely, the occurrence of y in the Leaf branch of the push definition in MkTree’s body has
the (locally produced) type t, but the type system sees the first parameter of X.Forest.add
as having a different type, X.Tree.t. The type system knows that X.Forest.t is equal to
X.Tree.t, due to the recursively dependent signature,59 but that’s not enough.

At first glance this seems like the double vision problem. OCaml doesn’t solve that problem,
but doesn’t RMC? Wasn’t that the whole point of it? Actually, it’s not the double vision
problem! The forward declaration of the abstract type is not actually a forward declaration at
all; it’s merely a type in a functor parameter, which may or may not have anything to do with
the abstract type produced in the body, as far as the type system is concerned. The functor
parameter is only treated ex post facto as a forward reference downstream in the body of the
SepTreeForest recursive module, but by then the functor has already proven to be ill-typed.

As we’ll see in the next subsection, on mixins, this example of separately developed recur-
sive modules can indeed be expressed in the MixML system. In fact, it was designed in part
for that purpose, and this example was drawn from that work.

Finally, one more observation about the SepTreeForest example in OCaml: it cannot be
written such that Tree and Forest are OCaml compilation units instead of functors. In ad-
dition to the problem already identified, these compilation units’ interfaces depend on each
other, via their cross-defined type components, but OCaml units cannot express such recur-
sively dependent signatures. OCaml modules, on the other hand, can express them; that’s
TREE_FOREST.

recursion and dynamic semantics OCaml’s rejection of the last example demon-
strates an additional concern about dynamic semantics for recursive modules. If modules A

and B are defined as a mutually recursive knot, and if some of the val components in those
modules introduce side effects when evaluated—say, printing to the screen, or mutating the
heap—then the evaluation order of those two modules becomes quite important, as does
the requirement that they’re each evaluated only once. Because Haskell’s purity means there
are no such side effects in the core level when processing the module level, Backpack is not
concerned with dynamic semantics; see Chapter 5 for more discussion of the goals of the
Backpack formalization.

1.2.5 Forms of Modularity: Mixins

Backpack borrows heavily from the idea of mixin modules. Essentially, it uses them as a basis
for packages, thereby bestowing the package level with a proper type system. Here I provide
a high-level overview of mixins, focusing on the particular systems from which Backpack
draws heavily.

In the literature, a mixin module typically refers to a namespace of entities (e.g., types,
values, or other modules), each of which has a name and a specification (e.g., a kind, type, or
interface) but which may or may not be defined. Linking two mixin modules causes their con-
stituent entities to link together by name, with undefined entities of the same name merging
together, and defined entities from one module instantiating undefined entities of the same

59 Crary et al. (1999), “What is a Recursive Module?”
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(* TREE, FOREST, and TREE_FOREST same as before *)

functor MkTree (X : TREE_FOREST) :> TREE where type f = X.Forest.f =
struct
type t = Leaf of int | Fork of X.Forest.f
type f = X.Forest.f
val leaf = Leaf
val fork = Fork
fun push x y =
case y of
Leaf i -> Fork (X.Forest.add x (X.Forest.add y X.Forest.empty))

| Fork f -> Fork (X.Forest.add x f)
fun has n xs =
case xs of
Leaf i => i = n

| Fork f => X.Forest.contains n f
end

functor MkForest (X : TREE_FOREST) :> FOREST where type t = X.Tree.t =
struct
type f = list t
type t = X.Tree.t
val empty = List.nil
val add = List.cons
val contains n xs = List.exists (X.Tree.has n) xs

end

(* ill-typed! *)
structure SepTreeForest =
rec (X : TREE_FOREST) struct
structure Tree = MkTree(X)
structure Forest = MkForest(X)

end

Figure 1.5: Ill-typed rewrite, in RMC, of the implementations in Figure 1.4 to exhibit separate mod-
ular development. Each of the Tree and Forest implementations can be defined and type-
checked separately from each other, as functors, but their recursive linking as SepTreeForest
is ill-typed.

(* rewrite of the previous TREE_FOREST in OCaml syntax *)
module type TREE_FOREST =
sig
module rec Tree : (TREE with type f = Forest.f)

and Forest : (FOREST with type t = Tree.t)
end

(* ill-typed! *)
module rec SepTreeForest : TREE_FOREST =
struct
(* MkTree and MkForest as defined above *)
module Tree = MkTree(TreeForest)
module Forest = MkForest(TreeForest)

end

Figure 1.6: The recursively dependent signature and recursive module from the example in Figure 1.5,
but with the recursive SepTreeForest module written in modern OCaml. As in the RMC
example, this is an ill-typed module.
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name in the other module, so long as their specifications in both modules are in some sense
compatible.

Mixin modules originated primarily in an object-oriented form, as “abstract subclasses,”
proposed by Bracha and Cook (1990) for Modula-3 and showing up in modern object-oriented
languages like Ruby and Scala. The conceptual presentation of mixins in this thesis more
closely matches that of the Jigsaw system,60 which developed mixin modules into a broader
concept outside of object-oriented programming.

The true basis for mixins in this thesis, however, is MixML,61 a core calculus of mixin
modules that subsumes the entire ML module system.

In the following example based on MixML, two mixin modules, each containing a mix-
ture of type and value entities, abstract declarations and concrete definitions, are linked
together, via the with expression, into a larger mixin module M. The entities link together
by name, creating type substitutions to apply on the result. For example, the r.h.s. mixin’s t

and x definitions will match up against the l.h.s. mixin by applying a substitution t = int;
the l.h.s. specification of x, with substituted type int, therefore matches the corresponding
r.h.s. definition.

let M =



t : type

x : t

f : t -> t

u = bool

v = true

g = fun b ->

if b then x else (f x)


with



u : type

v : u

g : u -> t

t = int

x = 5

f = fun n -> n + (g u)


units for mixins Another major idea behind mixin modules is that of the unit,62 i.e., a
suspended or unevaluated mixin module. (This should not be confused with the compilation
units of §1.2.3.) As made clear by Owens and Flatt (2006) units act like functors in ML: they
allow a mixin module to be instantiated and reused—re-linked—in different contexts. Owens
and Flatt were also the first to suggest that units offer an alternative to the “fully-functorized”
style of development in ML (§1.2.2).63

The mixin modules in the earlier example can be rewritten as units, allowing two different
linked results. In the syntax of MixML, in which units are introduced with square brakets
and instantiated with new, that would look like the following:

let U1 =





t : type

x : t

f : t -> t

u = bool

v = true

g = fun b ->

if b then x else (f x)





let U2 =





u : type

v : u

g : u -> t

t = int

x = 5

f = fun n -> n + (g u)




let M = (new U1) with (new U2)

let U3 =




t = bool

u = bool

x = false

f = not




let M’ = (new U1) with (new U3)

60 Bracha and Lindstrom (1992), “Modularity Meets Inheritance”.
61 Dreyer and Rossberg (2008) and Rossberg and Dreyer (2013).
62 Flatt and Felleisen (1998) and Owens and Flatt (2006).
63 Owens and Flatt (2006), “From Structures and Functors to Modules and Units,” §9.
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MkTree =

[
(X = new TREE_FOREST) with

{Tree = new TREE(X.Forest.f) seals { . . . }}

]

MkForest =

[
(X = new TREE_FOREST) with

{Forest = new FOREST(X.Tree.t) seals { . . . }}

]

SepTreeForest = new MkTree with new MkForest

Figure 1.7: Adaptation of the TreeForest example in the MixML system, from Rossberg and Dreyer
(2013, Fig. 3). The elided parts of the unit definitions refer to the actual core-level definitions
of MkTree and MkForest, just like in the original presentation in Figure 1.4. Unlike the RMC
(Figure 1.5) and OCaml (Figure 1.6) examples, this one is indeed well-typed.

The M module is exactly the same as before. The additional M’ module shows a reuse of the
unit U1 linked against a different module, the instantiation of U3.

recursive linking Mixin module linking does not impose a syntactic restriction on
which of the two linked modules may contain undefined specifications and which may con-
tain defined implementations. In the examples above, both sides of the mixin linking contain
defined and undefined entities, which link together to form a completely defined module.
This is known as recursive linking. Moreover, in the example with units, separately developed
units were recursively linked together, thereby combining two strong features of modularity:
separate modular development and recursive modules.

With ML functors, on the other hand, there’s a strict syntactic abstraction barrier between
linked modules. The body of a functor provides implementations that may refer to entities
declared in the parameter of the functor. Functor application “links” the functor body with
the functor argument. The original example couldn’t be written as functor application since
the argument cannot contain undefined parts to be satisfied by the functor.

mixml and strong modularity with recursion MixML was designed in part to
remedy the conspicuous gap in earlier proposals for recursive modules in ML: separate mod-
ular development. MixML accomplishes this with its own formulation of the two key ingredi-
ents for recursive modules: forward declaration of abstract types, which is folded into the key
linking operation (with), and a “static pass” before typing in order to solve double vision.

Indeed, unlike RMC and OCaml, MixML can express the motivating example of separately
developed recursive modules from the last subsection, SepTreeForest; see Figure 1.7.64 The
key point to make is that MixML’s expression of MkTree and MkForest are now as units instead
of functors, and in particular, the general recursive linking operation will equate the forward-
declared type X.Tree.t and the locally defined type Tree.t within the body/r.h.s. of MkTree.
That’s because the X is no longer a disconnected functor parameter—that just so happens to
be used downstream like a forward reference—but instead actually a recursive reference to
the definition in the r.h.s.

With this example of strong modularity with recursion now properly expressed and well-
typed, it’s more clear why MixML was chosen as the technical basis for Backpack’s type
system. This choice satisfies Backpack’s goal of strong modularity and the constraint that
Haskell modules are often written recursively.

64 The reader should refer to the original MixML presentation of this example, in Rossberg and Dreyer (2013, Fig. 3),
for the complete details.
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1.2.6 Forms of Modularity: Packages

Package management systems, as described in §1.1, are the canonical example of weak, large
modularity: package implementations depend on other implementations—a key point made
here—and they constitute a unit of authorship, versioning, and distribution in large reposito-
ries of open-source modular programming.

In this section, I lay out what challenges packages pose for modularity and how Back-
pack addresses them. I spell out packages in more detail here than I did with other forms
of modularity above, for two reasons. First, there are, to my knowledge, no standard formal
treatments of packages in the research literature on types or modularity, making their ex-
panded inclusion in this survey of modularity all the more necessary. Second, being the level
at which Backpack is defined in Haskell, packages have a certain centrality in the broader
mission of Backpack, and the practical problems with them that Backpack addresses require
some careful motivation.

packages in haskell Packages come in many different forms, but they generally do
not come in formalism. Instead, there are various bespoke systems, for general open-source
programming and sometimes for particular programming languages, that implement their
own custom tools and file formats.

Because of its singular relevance to Backpack, the most salient package management sys-
tem is that of Haskell, the Hackage/Cabal framework,65 consisting of Hackage, the repository,
and Cabal, the specification and suite of tools. The intentionally limited presentation of pack-
ages in this thesis is therefore tailored to Hackage/Cabal, but it’s nonetheless a presentation
that includes enough unifying concepts to cover a myriad of systems.

Like most package management systems, it concerns itself primarily with tools for orga-
nizing, distributing, and building packages as Haskell code. Also like virtually every package
management system, Cabal packages are not defined as an expression language with a type
system and with module expressions as constituent phrases. In lieu of a type system, the
accompanying tools check some properties (like uniqueness of package identifiers in the
repository) and leave others for users to govern via socially enforced policy (like the Haskell
Package Versioning Policy66, or PVP).

Hackage67 constitutes the central repository of Haskell packages. Cabal,68 short for “Com-
mon Architecture for Building Applications and Libraries,”69 constitutes the package spec-
ification and build tools, as well as the dependency resolution tool, called cabal-install.
Moreover, Haskell implementations (like GHC) provide the tools for installation and local
installation caches.

package systems as formal languages In this thesis, rather than an informal suite
of tools, packages constitute a language level above that of modules, which itself sits above
the level of the core language of types and terms. One of the key insights in this thesis is that,
like the module and core levels beneath it, that package level should be a formally defined
language with a type system. Given the “non-reformist reform” orientation of this thesis, con-
sider it part of my ideological goal to bring the research program of formal type systems for
modularity, as a language, to the largely informal domain of package management.

Backpack does exactly that: it defines an expression language for packages, with a type
system, on top of Haskell’s module system. Backpack turns the weak modularity of package
management systems into strong modularity by “retrofitting [the module level] with inter-
faces.”70 In so doing, Backpack addresses two fundamental limitations of package systems:

65 Coutts et al. (2008), “Haskell: Batteries Included”.
66 https://pvp.haskell.org/
67 http://hackage.haskell.org/
68 https://www.haskell.org/cabal/
69 Ibid.
70 To be more precise, Backpack’s packages are still weak in the sense that packages depend directly on other packages,

which, as mixins, have no tangible interface-vs.-implementation trade-off. Practically speaking, however, they still
allow implementations to depend on interfaces, albeit at the level of modules.

https://pvp.haskell.org/
http://hackage.haskell.org/
https://www.haskell.org/cabal/
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the inability to define implementations abstractly, in a typed manner, in terms of their depen-
dencies (a problem with authorship) and the ubiquity of “dependency hell” configurations
of packages (a problem with versioning). It does not, however, formally describe either au-
thorship or versioning; these crucial roles of package systems are left to the informal world
of implementation—and, hopefully, future work on type systems for packages.

a conventional definition of packages What are the key concepts for package
management systems? A package P defines a modular component that depends on other
modular components in some central repository (e.g., Hackage). Each package has four key
constituent parts.

• First, each package has a package name p, like twitterlib, that designates not merely
a single package but a package lineage within the repository. That lineage includes all
known versions of the package.

• Second, each package has a version v, like 1.0.2 or just 5, that is unique within the
package’s lineage. Together, a name and a version constitute a package identifier which
uniquely identifies a package (within some repository) as p-v, like twitterlib-1.0.2.
It’s important to note that the package name alone does not identify a package; it
instead identifies a package lineage.

• Third, each package contains a bundle of source files that constitute the modular com-
ponent it provides. The modular component exists at the level of some underlying
programming language (or languages). Typically the component defines a library for
others to use in their own programs, or it could define an executable “main” program,
or both. For example, twitterlib-1.0.2 would provide a Twitter module, in some un-
derlying language, which provides functionality for interacting with Twitter’s services.

• Fourth, each package has a set of dependencies on other packages. A dependency spec-
ifies a package name q, thereby designating a package lineage, and a version range V .
The interpretation is that the defining package depends on any version v of q such that
v ∈ V . The broader the range V , the more versions of q that can satisfy the depen-
dency. Our twitterlib-1.0.2 example might have a dependency httplib >= 2.0: the
httplib package lineage constrained to any version number at or after 2.0.

To be precise, it’s not quite correct to say that “package P depends on package Q”
since the dependency is on some version range V within the lineage of q rather than on a
particular package q-v.

package dependencies as interfaces Why does package P depend on package (lin-
eage) q? Generally, it means there’s a dependency in the underlying program entities of the
two packages: P provides a module Mp that imports another module Mq that is provided
by package (lineage) q. Because of the underlying program dependency, one cannot build (a
concrete instantiation of) P without first building some (concrete instantiation of) package Q
whose version satisfies the dependency. The Twitter module inside twitterlib-1.0.2 needs
to import the Http module provided by httplib >= 2.0, for example.

And why does package P depend on a particular version range of (lineage) q? Because in
the absence of a type system at the level of packages, the version range approximates an inter-
face for the depended-upon package. The httplib >= 2.0 dependency perhaps designates a
particular function (signature) in the provided Http module, a function that was not present
before version 2.0, and a function that is presumed to continue existing (with the same sig-
nature) in later versions; as an example of such a function, consider getNumLikes which has
type TweetID -> Int.

An upper bound, like httplib < 5.0, designates a “known unknown”: the interface of
the dependency is known at least up to the 4.* versions of httplib, but after that it might
change in a way that’s incompatible. For example, version 5.0 might remove getNumLikes,
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or it might change its signature to Auth -> TweetID -> Int; then again, it might leave the
function alone.

As one can imagine, this approximation of interfaces by version ranges of package lineages
is prone to all sorts of errors. Instead of mechanical checks about interfaces, it relies on social
enforcement of the aforementioned Package Versioning Policy, which essentially acts to tie
interfaces to version numbering.

instantiation A package identifier determines the four pieces above—in particular, the
source files for a modular component in an underlying language. But it does not yet deter-
mine a complete component that can be checked, reasoned about, or built in that underlying
language. That’s because the dependencies specify subsets of package lineages rather than
particular versions of those lineages.71

A concrete instantiation or instance of a package is the pairing of the package itself with the
instantiations of its dependencies. As a complete component, a package instance can finally
be checked, reasoned about, and built. For example, although twitterlib-1.0.2 contains a
bundle of source files, namely the file defining the Twitter module, the Http module gotten
from httplib >= 2.0 has not been chosen yet. Once instantiated with a particular instance
of, say, httplib-2.5, then twitterlib-1.0.2 can finally be built against that instance.

Because of their incompleteness and their ability to be instantiated, we’ll see shortly that a
package is, in the parlance of ML, more like a functor than a structure—with a key caveat.

building and dependency resolution A package management system also prin-
cipally includes two tools: a build tool for building a package’s provided source files (read:
modular components) with respect to particular instantiations of its dependencies, and a de-
pendency resolution tool to locate appropriate packages that satisfy given dependencies, i.e.,
version range constraints.

The build tool encapsulates one of the two main limitations of packages that Backpack
addresses: a package’s source files can only be compiled once particular instantiations of its
dependencies have been chosen. In other words, as the author of a package, there’s no way
to build the source files of its provided components abstractly against arbitrary dependencies.
That’s because there’s no notion of interface for those dependencies, apart from the name
and version range which collectively don’t describe any actual code to consider.

Dependency resolution is intricately related to the idea of an installation cache of packages:
a local repository of “installed” packages at particular instantiations. When a user wants to
build and install a package, like twitterlib-1.0.2, the dependency resolution tool must pick
particular instantiations of all transitive dependencies.

diamond dependencies In order to minimize the number of different instantiations of
packages, the tool will attempt to reuse packages from the installation cache. For example,
if a particular instantiation of httplib-2.5 lives in the cache, then the dependency resolu-
tion tool will try to satisfy constraints like httplib >= 2.0 with that particular instance of
httplib-2.5, which in turn determines the particular instance of base that httplib-2.5 was
built against, base-4.1. Then when it needs to satisfy twitterlib’s other dependency con-
straint, textlib >= 1.2 && < 5.0, it will attempt to reuse that same instance of base for
textlib’s transitive dependency on it. This setup results in the “diamond dependency” be-
low, in which the two “sides” depend on the same instance at the top.

71 Even in the case that P depends on a single version of q—i.e., because the version range is a singleton, {v}—that
q− v might itself have open dependencies on other packages.
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twitterlib-1.0.2

httplib-2.5 textlib-4.3.1

base-4.1

httplib >= 2.0
textlib >= 1.2

&& < 5.0

base >= 3.0 base >= 4.1

But this process can easily go wrong. What happens if the installation cache contained
httplib-2.5 built against baselib-3.8 and then dependency resolution needed to find an in-
stance of textlib for twitterlib’s dependency? Since textlib depends on baselib >= 4.1,
the version in the cache won’t work. Then dependency resolution will choose some other
instance of baselib to satisfy textlib’s dependency, say, baselib-4.1.

twitterlib-1.0.2

httplib-2.5 textlib-4.3.1

base-3.8 base-4.1

httplib >= 2.0
textlib >= 1.2

&& < 5.0

base >= 3.0 base >= 4.1

The result is what is commonly called “dependency hell.” The diamond is broken, and now
the left and right packages see different versions of the top while the bottom sees inconsistent
versions of it.

dependency hell in the type system Though the dependency hell situation certainly
looks bad, it’s not clear what’s fundamentally wrong with it. One pragmatic answer is that
there are now two sets of build artifacts for the two instances of baselib in the installation
cache, when ideally there would have just been one. But there’s a deeper problem with
dependency hell, one that concerns the type system of the underlying core language in the
modular components provided by the packages: the bottom package sees two inconsistent
versions of the data types defined in (the modular components provided by) the top package.

Let’s presume the dependency hell example were defined in Haskell’s package system.
Now consider the String data type defined in the base package. It’s quite likely that within
twitterlib, there’s some function that tries to pass a String value gotten from the left pack-
age, httplib, into a String function gotten from the right package, textlib.

But that function in twitterlib would be ill-typed in Haskell. That’s because the original
name of String (recall §1.2.1) in the left package would differ from that in the right package,
due to their originating in two different modules from two different instances of base.

Dependency hell therefore poses a problem in the type system below the package level that
cannot be detected at the package level. As a result, such package configurations must be
conservatively ruled out, even if there was no such intermingling of data types to cause the
underlying type error. After all, if there was no such intermingling of String between the left
and right packages, then there’d be no type problem in allowing the two instances of the top
package.
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Indeed, there are common configurations of packages for which this broken diamond
should by no means be considered “hell.” Consider the case that the top package is some
package providing unit testing functionality, like QuickCheck, that the left and right pack-
ages use internally, without exposing it in their own interfaces. Left and right could depend
on totally incompatible version ranges—QuickCheck-2.* introduced API-breaking changes—
without any problems for left, right, or bottom packages.

To address the dependency hell problem, Backpack introduces a type system at the package
level. Since the types of packages are composed of the types of modules, the package level is
aware of exactly those configurations of dependencies which would lead to type errors. Put
simply, dependency hell ceases to be an inherent problem for the type system.

a stronger view of packages Packages are a form of weak modularity since imple-
mentations depend directly on implementations. To get a better comparative frame to under-
stand what strong modularity for packages might look like, let’s consider a hypothetic model
of packages in terms of the gold standard of modularity—ML modules. The result is a strong-
modular language of packages that looks more like the various examples of ML modularity
I’ve presented so far.

Because a package is an open modular component whose dependencies do not identify
direct instantiations, i.e., implementations, a package acts like a parameterized module—a
functor—that abstracts over particular instantations of its dependencies. A package instance
is therefore like a functor application: the pairing of the provided component with the con-
crete implementations it depends on.

With this analogy established, we can view a package as a fully functorized module (§1.2.2).
Each package depends on other packages through an abstract reference. The installation
tool’s policy to keep consistent instantiations of upstream packages resembles the use of
sharing constraints among functor parameters: in both cases it’s a way to ensure that diamond
dependencies “share” the same implementation of the top, upstream corner of the diamond.
That sharing is the way to avoid “dependency hell.”

module TwitterLib102 =

functor (DH : HTTPLIB_2, DT : TEXTLIB_4) with DH.DB = DT.DB ->

struct . . . end

,TwitterLib102( )

HttpLib25( ) TextLib431( )

Base41()

DH DT

DB DB

But there’s a key problem with this example that demonstrates the weakness of the “pack-
ages as functors” model. The TwitterLib102 functor’s parameters abstract over signatures
HTTPLIB_2 and TEXTLIB_4, but in the world of packages, there are no such signatures. Instead
of typed interfaces, package dependency abstracts over version ranges of package lineages.
This deficiency means that a package cannot be checked, reasoned about, or built, abstractly,
without first picking an instantiation of each of its dependencies to process it with. An im-
portant consequence of this deficiency is that packages must be processed in order, only after
all implementations, i.e., all instantiations of dependencies, have been fully resolved. Pack-
ages therefore cannot be said to provide “client-side abstraction” as in ML; they’re inherently
restricted to weak modularity.
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1.3 contributions

So far I’ve taken a stab at describing modularity, partly through my own definitions and
partly through a survey of all the related forms and features of modularity that concern this
thesis. My hope was to plant the reader in a broader research tradition—multiple traditions,
in fact—so that she might better understand the novelty of Backpack. Here I summarize
more definitively what that novelty is, i.e., what this thesis contributes, first in hazier terms
of modularity and design and then in more precise terms of formal, technical content.

1.3.1 Modularity and Design Contributions

strong , large modularity Backpack is an extension to Haskell that supports strong
modularity and separate modular development on top of Haskell’s weak modularity and
incremental modular development. Like in the ML module system, Backpack relies on the
notion of interfaces to establish that strong modularity, thereby allowing implementations to
abstract over their dependencies.

As a language and type system of modular packages, Backpack exhibits large modularity
similar to—but more expressively than—other systems of compilation units. That means that
modularity in Backpack is concerned with the static organization of modules according to
their dependencies on abstract, coarse-grained components, rather than the dynamic execu-
tion of code—or even the creation and enforcement of data abstraction in the core level’s type
system.

contribution to packages Packages in Backpack are expressed with a mixin-based
language and a type system that characterizes their well-formedness with respect to the un-
derlying type system of modules and core entities. Backpack brings the principled and formal
approach of type systems to the mostly unprincipled and informal world of package man-
agement systems.

This approach addresses two practical problems with Haskell packages today. First, a pack-
age author can develop her package implementation with respect to abstract dependencies on
other packages, i.e., with respect to typed interfaces for those dependencies. Second, “de-
pendency hell” can be mitigated through ordinary appeals to the package type system. In
Backpack, dependency hell is ruled out by the package type system exactly when it’s ruled
out by the underlying language’s type system.

contribution to mixins Backpack brings a fresh perspective on mixins, an area of
programming languages that has seen some familiar usage in object-oriented languages but
not much attention in the types and modules research literature. A key idea in this thesis is
that mixins offer a perfect model for packages. To my knowledge this is the first research effort to
formally model packages, as they’re conventionally defined, as mixins.

By twisting existing ideas and notation, mixins allow packages with deeply-nested depen-
dencies to seamlessly link and share those dependencies without the syntactic overhead of
sharing constraints that the “fully functorized” idiom of ML functors would require in order
to model packages. Moreover, the recursive linking of mixins could enable entirely new forms
of modular package development that aren’t expressible in conventional package systems.

genericity of the approach The design of Backpack needn’t be fixed to Haskell;
the same approach could be applied to any language with only weak, small modularity, of
which there are many. Essentially, Backpack “hijacks” the module import mechanism of the
underlying language in order to allow abstract dependency. It also hijacks the representation
of core entities by embodying “original names” with structured module identities rather than
static module names.
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package , not module level Rather than supplanting the existing module system of
Haskell, Backpack is designed at the level of packages, for three key reasons.

• First, unlike Haskell’s module level, which is part of the Haskell language definition72

and has seen further formalization,73 the package level is largely comprised of (well-
designed) tools without formal specification. Put simply, it’s no where near as set in
stone as Haskell’s module level, so it makes for an easier target for the non-reformist
reform project of Backpack.74 Not only that, by leaving the module system largely as-is,
Backpack can reuse the existing tools for the module level, e.g., the mechanism for type-
checking a module implementation with respect to a binary representation of another
module’s interface.

• Second, the large modularity of packages, in Haskell and elsewhere, has remained
largely unexplored by the types research community. It’s therefore an interesting direc-
tion to take in its own right. Backpack expands the principled reach of type systems into
the quite unprincipled—and increasingly critical for modern software development—
domain of distributed, open-source packages.

Moreover, with that expanded reach of types, a couple practical problems with packages
in Haskell today can be addressed in a more principled manner: a package author
can develop her package implementation with respect to abstract dependencies on other
packages, i.e., with respect to interfaces for those dependencies, and “dependency hell”
can be mitigated through ordinary appeals to the package type system.

• Third, although some might wish to define and use ML functors within the Haskell
module system, it’s unclear how they would integrate with the other language features.
Type classes in Haskell can be used to parameterize code over bundles of types and
accompanying operations, as a functor does, although not nearly as expansively: only
individual values can be so parameterized, not whole modules. And similarly the data
abstraction offered by ML functors and opaque sealing can be approximated within
Haskell by carefully exposing data types without their term constructors and by em-
ploying the newtype feature.

1.3.2 Technical Contributions

This thesis is first and foremost a design—or even ideological—contribution. As a familiar
saying in the field goes, with Backpack I’ve staked out a new corner of the design space
for modular programming. With that caveat aside, this thesis also presents some technical
contributions:

• The principal technical concept of module identity. Some prior type systems for modules
included a notion of module identity, usually called structure stamps.75 But this thesis
is the first to expand the notion to the theory of recursive first-order terms in order to
model both applicative instantiation and recursive module identity. The modeling of core-
level abstract types and all all other core entities indirectly via module identities—as
recursive first-order terms—is also a contribution.

• The formalization of Haskell modules on top of an abstract, axiomatized formalization
of the Haskell core language. It’s the first such formalization to offer a conventional
typing judgment complete with a deterministic algorithmization and accompanying
metatheory about the judgment. Moreover, it’s the first type system for the Haskell
module system that supports recursive modules.

72 Marlow (2010) and Peyton Jones (2003).
73 Diatchki et al. (2002) and Faxén (2002).
74 Even at the package level, implementing Backpack requires considerable changes not just to the Cabal/Hackage pack-

age management tools but also to the GHC compiler itself. See the discussion of Yang’s Backpack’17 implementation
in §10.8.

75 More discussion on structure stamps and sharing in prior type systems can be found in §10.4.
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• The formalization of the (new) package level of Backpack. Though rooted in MixML,
this formalization adopts multiple simplifications for the setting of Backpack, resulting
in a smaller mixin module system that could be applied elsewhere. In particular it relies
on the recursion inherent to its module identities to formalize the concept of recursive
mixin linking.

• Metatheoretic evidence of the antimodular nature of Haskell type classes. My formal-
ization of Backpack involved the development of metatheory about type classes’ inter-
action with the module system. In some places that metatheory required complicated
side conditions on otherwise conventional theorems about the type system, like Weaken-
ing. One contribution of this thesis is new, technical evidence for the folklore claim that
type classes are antimodular.

• An elaboration semantics from Backpack packages to plain Haskell modules. This elab-
oration offers a formal “implementation” of Backpack that illustrates the essence of the
idea: the package level is an abstraction that is “compiled away” into (a straightforward
model of) plain Haskell modules.

A main soundness theorem formally specifies that the source and target of elaboration
have related modules, i.e., that the Haskell core level sees the exact same modular com-
ponents before and after elaboration. This theorem, complete with its hefty proof, acts
as technical validation of the Backpack design.
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Now that modularity in the ML tradition and in Haskell have been mapped out, it’s time to
dive into Backpack. The language supports strong, large modularity, as described in the intro-
duction but in the context of other languages. What does that actually look like in Backpack?

In this chapter I attempt to answer that question with a high-level overview of Backpack
and its features, focusing on its package level and its interaction with the module level. Fol-
lowing this one, Chapters 3 and 4 round out Part 1 of this thesis. My aim with this organi-
zation is that most readers can absorb the main design ideas of Backpack by reading Part I,
while a subset of those readers can peruse Part II for the formalization of Backpack.1

* * *

Figure 2.1 gives the syntax of Backpack. A package definition D gives a package name P to
a a sequence of bindings B. The simplest form of binding is a concrete module binding, of the
form p = [M], which binds the module name p to the implementation [M]. For example:

package ab-1 where
A = [x = True]

B = [import A; y = not x]

The code in square brackets represents module implementations, whose syntax is just that of
a Haskell module (details in Chapter 7). Indeed, in a practical implementation of Backpack,
the term [M] might be realized as the name of a file containing the module’s code. However,
note that the module lacks a header “module M where ...” because the module’s name is given
by the Backpack description.2

Package ab-1 binds two modules named A and B. The first module, bound to A, imports
nothing and defines a core value x, and the second module, bound to B, imports the first
module and makes use of that x in its definition of y. The type of this package expresses that
it contains a module A which defines x :: Bool and a module B which defines y :: Bool.
(We will more precisely discuss types, at the package and module levels, in Chapter 3.)

1 This chapter is an adaptation of §2 in the original Backpack paper. The substantial addition of type classes to Backpack,
an addition since the original presentation of Backpack that this chapter is based on, will be introduced in Chapter 4.

2 We still provide syntax for optional “export lists” of core language entities; only the module name disappears.

Package Names P ∈ PkgNames
Module Path Names p ∈ ModPaths
Package Respositories R ::= D

Package Definitions D ::= package P t where B
Bindings B ::= p = [M] | p :: [S] | p = p | include P t r
Thinning Specs t ::= (p)

Renaming Specs r ::= 〈p 7→ p〉
Module Expressions M ::= . . .

Signature Expressions S ::= . . .

Figure 2.1: Backpack syntax.
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The module bindings in a package are explicitly sequenced: each module can refer only
to the modules bound earlier in the sequence. In fact the bindings should be interpreted as
iteratively building up a local module context that tracks the name and type of each module
encountered. For example, if the order of the two bindings were reversed, then this package
would cease to be well-typed, as the module reference A would no longer make sense.

Module bindings do not shadow. Rather, if the same module name is bound twice, the two
bindings are linked; see Section 2.3.

2.1 top level and dependencies

A package repository consists of an ordered list of package definitions. Each package in a
repository sees only those packages whose definitions occur earlier in the sequence. To make
use of those earlier packages — i.e., to depend on them — a package includes them using the
include binding form, thus:

package abcd-1 where
C = [x = False]

include ab-1

D =

 import qualified A
import qualified C
z = A.x && C.x


One should think of an include construct as picking up a package and dumping all of its
contents into the current namespace. In this case, the modules A and B are inserted into the
package abcd-1 as if they were bound between C and D. Consequently the module bound to
D can import both A and C. The type of abcd-1 says that it provides four modules: C (which
provides x :: Bool), D (which provides z :: Bool), and the two modules A and B from
package ab-1, even though they were defined there and merely included here. (The modules
exposed by a package can be controlled with syntax that resembles that of the module level;
this feature is discussed as a special case of thinning in §2.4.)

Throughout this thesis I treat the example package definitions as the bindings in a single
package repository. At this point, that top level includes the definition for ab-1 followed by
abcd-1.

2.2 abstraction via interfaces

Up to this point, the package system appears only to support weak modularity since each
module can only be checked after those that it depends on. For example, abcd-1 could only
be developed and checked after the package ab-1 had already been developed and checked;
otherwise we would not be able to make sense of the import declaration import qualified A
and the subsequent usage of A.x as a Bool.

To support strong modularity as well, Backpack packages may additionally contain abstract
module bindings, or holes. To specify a hole, a developer provides a set of core-language decla-
rations, called a signature S, and binds a module name p to it by writing p :: [S]. One should
think of holes as obligations to eventually provide implementing modules; a package is not
complete until all such obligations are met. Concrete modules, on the other hand, are simply
those bound to actual implementations (as in all previous examples). This combination of
abstract and concrete components reflects the mixin-module basis of our package system.

As our first example, we simulate how the abcd-1 package might have been developed
modularly by specifying holes for the “other” components, A and B:
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package abcd-holes-1 where
A :: [x :: Bool]

B :: [y :: Bool]

C = [... as before ...]

D = [... as before ...]

By “stubbing out” the other components, the developer of abcd-holes-1 can typecheck her
code (in C and D) entirely separately from the developer who provides A and B. In contrast, in
the existing Cabal package system, developers cannot typecheck their package code without
first choosing particular version instances of their dependencies. Effectively, they test the well-
typedness of their code with respect to individual configurations of dependencies which may
or may not be the ones their users have installed.

Manually writing the holes for depended-upon components, as above, involves too much
duplication. Instead a developer can define a package full of holes that designates the in-
terface of an entire component. A client developer includes that package of holes and thus
brings them into her own package without writing all those signatures by hand. The follow-
ing two packages achieve the same net result (and have the same type) as abcd-holes-1, but
without signatures in the client package:

package ab-sigs where
A :: [x :: Bool]

B :: [y :: Bool]

package abcd-holes-2 where
include ab-sigs

C = [... as before ...]

D = [... as before ...]

Holes are included in exactly the same manner as concrete modules, and they retain their
status as holes after inclusion. Under the interpretation of holes as obligations, inclusion
propagates the obligations into the including package.

In these two examples we have named the packages abcd-holes-1 and abcd-holes-2, which
might suggest multiple versions of a single package abcd-holes (e.g., in Cabal). However, while
they may convey that informal intuition, in the present work we focus on modularity of
packages, leaving a semantic account of versioning for future work.

2.3 linking and signature matching

So far, all package examples have contained bindings with distinct names. What has appeared
to be mere sequencing of bindings is actually a special case of a more general by-name link-
ing mechanism: linking two mixin modules with strictly distinct names merely concatenates
them. Whenever two bindings share the same name, however, the modules to which they are
bound must themselves link together. This gives rise to three cases: hole-hole, mod-mod, and
mod-hole.

First, when linking two holes together, we merge their two interfaces into one. This effec-
tively joins together all the core language declarations from their respective signatures. The
resulting hole provides exactly the entities that both original holes provided.

package yourlib where
Prelude :: [data List a = ...]

Yours = [import Prelude; ...]

package mylib where
Prelude :: [data Bool = ...]

include yourlib

Mine = [import Prelude; import Yours; ...]
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The mylib package above declares its own hole for Prelude and also includes the hole for
Prelude from yourlib. Before the binding for Mine is checked, the previous bindings of Prelude
must have linked together. This module can see both List and Bool since they are both in
the interface of the linked hole, whereas the Yours module could only see the List datatype
in Prelude. (Swapping the order of the first two bindings of mylib has no effect here.)

This example highlights another aspect of programming with mixin-based packages: each
package has the option of writing precise interfaces for the other packages (i.e., modules) it
depends on. Specifically, yourlib only needs the List datatype from the standard library’s Pre-
lude module, rather than the entire module’s myriad other entities. This results in a stronger
type for yourlib since the assumptions it makes about the Prelude module are more precise
and focused.

Not all interface merges are valid. For example, if mylib had also declared a List datatype,
but of a different kind from that in yourlib (e.g., data List a b = ...), then the merge would
be invalid and the package would be ill-typed. The merging judgment that rules out such
definitions will be presented in §3.2.

Second, when linking two module implementations together, it intuitively makes no sense
to link together two different implementations since they define different code and different
types. Backpack therefore requires that mod-mod linking only succeed if the two implemen-
tations are the same, in which case the linkage is a no-op.To test this, we require equivalence
of their module identities (about which see Sections 2.4 and 3.1).

Consider the following classic diamond dependency:

package top where
Top = [...]

package right where
include top

Right = [...]

package left where
include top

Left = [...]

package bottom where
include left; include right

Bottom = [...]

The bottom package of the diamond links together the packages left and right, each of which
provides a module named Top that it got from the top package. The linking resulting from
the inclusions in bottom is well-typed because left and right provide the same module Top
from package top.

Third, when linking a module with a hole, the module’s type must be a subtype of the
hole’s, and we say that the module “fills,” “matches,” or “implements” that hole. This form
of linking most closely resembles the traditional concept of linking, or of functor application;
it also corresponds to how structures match signatures in ML. Roughly, a module implements
a hole if it defines all the entities declared in that hole and with the exact same specifications.

The mylib package above has a hole for the Prelude module. As this package is not yet
complete, it can be typechecked, but not yet compiled and executed. (Supporting separate
compilation would require sweeping changes to GHC’s existing infrastructure.) We therefore
link mylib with a particular implementation of its Prelude hole so that it may now be compiled
and used:

package mylib-complete-1 where
include mylib

Prelude =

 data List a = ...

data Bool = ...

null xs = ...


The implementation of Prelude provides the two entities declared in the hole (included from
mylib) and an additional third entity, the value null. This implementation matches the inter-
face of the hole, so the linkage is well-typed.
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For simplicity, our definition of when a module matches a hole is based on width rather
than depth subtyping. In other words, a module may provide more entities than specified by
the hole it is filling, but the types of any values it provides must be the same as the types
declared for those values in the hole’s signature. In particular, the match will be invalid if the
implemented types are more general than the declared types. For example, a polymorphic
identity function of type forall a :: *. a -> a will not match a hole that declares it as having
type Int -> Int.

2.4 instantiation and reuse

Developers can reuse a package’s concrete modules in different ways by including the pack-
age multiple times and linking it with distinct implementations for its holes; we call each
such linkage an instantiation of the package. Furthermore, in Backpack, packages can be in-
stantiated multiple times, and those distinct instantiations can even coexist in the same linked
result. (In contrast, both Cabal and GHC currently prevent users from ever having two instan-
tiations of a single package in the same program.)

Figure 2.2 provides an example of multiple instantiations in the multinst package, but this
example employs a couple features of Backpack we must first introduce—thinning and renam-
ing.3

The two packages arrays-a and arrays-b provide two distinct implementations of the Array
module described by the hole specification in the earlier arrays-sig package. The next two pack-
ages grab the Graph implementation from structures and implement its Array hole with the
respective array implementations. Since structures also defines Set and Tree, these (unwanted)
modules would naively be included along with Prelude and Array and would thus pollute
the namespaces of graph-a and graph-b. Instead, these packages thin the structures package
upon inclusion so that only the desired modules, Prelude and Array, are added to graph-a
and graph-b. (This closely resembles the import lists of Haskell modules, which may select
specific entities to be imported.) Similarly, implementation details of a package definition can
be hidden—rather than provided to clients—by thinning the definition to expose only certain
module names. (This closely resembles the export lists of Haskell modules.) By thinning their
definitions to expose only Prelude and Graph, both packages graph-a and graph-b hide the
internal Array modules used to implement their Graph modules.

At this point, graph-a and graph-b provide distinct instantiations of the Graph module from
structures, distinct in the sense that they do not have the same module identity. The identity of
a module—a crucial notion in Backpack’s semantics (see §3.1)—essentially encodes a depen-
dency graph of the module’s source code. Since the Graph modules in graph-a and graph-b
import two different module sources for the Array hole—one from arrays-a and the other from
arrays-b—they do not share the same dependency graph and hence have distinct identities.

Thus, if the final package multinst were to naively include both graph-a and graph-b, Back-
pack would complain that multinst was trying to merge two distinct implementations with
the same name. To avoid this error, the inclusions of graph-a and graph-b employ renaming
clauses that rename Graph to GA and GB, respectively, so that the two Graph implementations
do not clash.

One may wonder whether it is necessary to track dependency information in module iden-
tities: why not just generate fresh module identities to represent each instantiation of a pack-
age? To see the motivation for tracking more precise dependency information, consider the
example in Figure 2.3. Both the applic-left and applic-right packages separately instantiate the
Graph module from structures with the same Array implementation from arrays-a—i.e., both in-
stantiations refer to the same identity for Array. Backpack thus treats the two resulting Graph
modules (and their G types) as one and the same, which means the code in applic-bot is well-

3 In our examples so far, we have omitted thinning specs entirely. But actually, according to Figure 2.1, all package
definitions and inclusions should contain a thinning spec. Thinning and renaming can be inferred from context; see
§8.1.1 for more details.
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package prelude-sig where
Prelude ::

[
data List a = Nil | Cons a (List a)

]

package arrays-sig where
include prelude-sig

Array ::

 import Prelude
data Arr (i::*) (e::*)
something :: List (Arr i e)



package structures where
include prelude-sig

include arrays-sig

Set = [import Prelude; data S ...]

Graph = [import Prelude; import Array; data G ...]

Tree = [import Prelude; import Graph; data T ...]

package arrays-a where
include prelude-sig

Array =

 import qualified Prelude as P
data Arr i e = MkArr ...
something = P.Nil



package arrays-b where
include prelude-sig

Array =

 import Prelude
data Arr i e = ANil | ...
something = Cons ANil Nil



package graph-a (Graph, Prelude) where
include arrays-a

include structures (Graph,Prelude,Array)

package graph-b (Graph, Prelude) where
include arrays-b

include structures (Graph,Prelude,Array)

package multinst where
include graph-a 〈Graph 7→ GA〉
include graph-b 〈Graph 7→ GB〉

Client =


import qualified GA

import qualified GB
export (main, GA.G)
main = ... GA.G ... GB.G ...



Figure 2.2: Running example: Data structures library and client.
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package applic-left (Prelude,Left) where
include structures

include arrays-a

Left =
[

import Graph; x :: G = ...
]

package applic-right (Prelude,Right) where
include arrays-a

include structures

Right =
[

import Graph; f :: G -> G = ...
]

package applic-bot where
include applic-left

include applic-right

Bot =
[

import Left; import Right; ... f x ...
]

Figure 2.3: Example of applicativity.

typed. In other words, the identity of Graph inside applic-left is equivalent to that of Graph
inside applic-right, and thus the G types mentioned in both packages are compatible.

As this example indicates, our treatment of identity instantiation exhibits sharing behav-
ior. We call this an applicative semantics of identity instantiation, as opposed to a potential
generative semantics in which the two instantiations—even when instantiated with the same
identity—would produce distinct identities.

As is well known in the ML modules literature4, applicativity enables significantly more
flexibility regarding when module instantiation must occur in the hierarchy of dependencies.
In the previous example, the authors of applic-left and applic-right were free to instantiate
Graph inside their own packages. Under a generative semantics, on the other hand, in order
to get the same Graph instantiation in both packages, it would need to be instantiated in an
earlier package (like graph-a from Figure 2.2) and then included in both applic-left and applic-
right; hence, the code as written in Figure 2.3 would under a generative semantics produce
two distinct Graph identities and G types. As Rossberg et al. have noted5, applicative semantics
is generally safe only when used in conjunction with purely functional modules. It is thus
ideally suited to Haskell, which isolates computational effects monadically.

2.5 aliases

Occasionally one wants to link two holes whose names differ. The binding form p = p in
Figure 2.1 allows the programmer to add such aliases, which may be viewed as sharing
constraints. For example:

package share where
include foo1 (A,X)

include foo2 (B,Y)

X = Y

Here, A (from foo1) depends on hole X, and B (from foo2) on hole Y, and we want to require
the two holes to be ultimately instantiated by the same module. The binding X = Y expresses
this constraint.

4 Leroy (1995) and Rossberg et al. (2014).
5 Rossberg et al. (2014), “F-ing modules”.

http://journals.cambridge.org/article_S0956796814000264
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2.6 recursive modules

By using holes as “forward declarations” of implementations, packages can define recursive
modules, i.e., modules that transitively import themselves. The Haskell Language Report
ostensibly allows recursive modules, but it leaves them almost entirely unspecified, letting
Haskell implementations decide how to handle them. Our approach to handling recursive
modules follows that of MixML.

The example below defines two modules, A and B, which import each other. By forward-
declaring the parts of B that A depends on, the first implementation makes sense—i.e., it
knows the names and types of entities it imports from B—and, naturally, the second imp-
lementation makes sense after that. This definition is analogous to how these modules would
be defined in GHC today.6

package ab-rec where
B :: [SB]

A =
[ import B; ...

]
B =

[ import A; ...
]

Normal mixin linking ties the recursive knot, ensuring that the import B actually resolves to
the B implementation in the end.

GHC allows recursive modules only within a single (Cabal) package. Backpack, on the
other hand, allows more flexible recursion. Although packages themselves are not defined
recursively, they may be recursively linked. Consider the following:

package ab-sigs where
A :: [SA]

B :: [SB]

package b-from-a where
include ab-sigs

B =
[ import A; ...

]
package a-from-b where

include ab-sigs

A =
[ import B; ...

]
package ab-rec-sep where

include a-from-b

include b-from-a

At the level of packages, these definitions do not involve any recursive inclusion, which is
good, because that would be illegal! Rather, they form a diamond dependency, like the earlier
packages top, left, right, and bottom. There is no recursion within the definitions of ab-sigs, a-
from-b, and b-from-a either. The recursion instead occurs implicitly, as a result of the mixin
linking of modules A and B in the package ab-rec-sep. (Separately typechecked, recursive
units may be defined in MixML in roughly the same way.)

Finally, note that Backpack’s semantics (presented in the next chapter) explicitly addresses
one of the key stumbling blocks in supporting recursive linking in the presence of abstract
data types, namely the so-called double vision problem7. In the context of the above example,
the problem is that, in ab-sigs, the specification SA of the hole A may specify an abstract type
T, which SB then depends on in the types of its core-level entities. Subsequently, in a-from-b,
when the implementation of A imports B, it will want to know that the type T that it defines
is the same as the one mentioned in SB, or else it will suffer from “double vision”, seeing
two distinct names for the same underlying type. Avoiding double vision is known to be
challenging8, but crucial for enabling common patterns of recursive module programming.
Backpack’s semantics avoids double vision completely.

6 In GHC, instead of explicit bindings to a signature and two modules, there would be the two module source files
and an additional “boot file” for B that looks exactly like SB. Moreover, the import B within the A module would
include a “source pragma” that tells the compiler to import the boot file instead of the full module.

7 Crary et al. (1999) and Dreyer (2007a).
8 Dreyer (2007a,b) and Rossberg and Dreyer (2013).
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The previous chapter introduced Backpack’s syntax and design at a high level, along with
key features of the language like abstraction via holes and instantiation via package inclusion.
What is the semantics of Backpack that gives meaning to those features? How does Backpack
make sense of them in combination with each other? In this chapter I aim to answer these
questions with enough technical detail to convey the main ideas, leaving the full details to
the formalization in Part II.1

* * *

The main top-level judgment defining the semantics of Backpack is

∆ ` D : ∀α.Ξ  λα.dexp

Given a package definition D, along with a package environment ∆ describing the types and
elaborations of other packages on which D depends, this judgment ascribes D a package
type ∀α.Ξ, and also elaborates D into a parameterized directory expression λα.dexp, which is
essentially a set of well-typed Haskell module files.

The above judgment is implemented by a two-pass algorithm. The first pass, called shaping,
synthesizes a package shape Ξ̂ for D, which effectively explains the macro-level structure of
the package, i.e., the modules contained in D, the names of all the entities defined in those
modules, and how they all depend on one another. The second pass, called typing, augments
the structural information in Ξ̂ with additional information about the micro-level structure of
D. In particular, it fills in the types of core-language entities, forming a package type Ξ and
checking that D is well-formed at Ξ. As discussed in §1.2.4, the proper handling of recursive
modules requires the “static pass” as a key ingredient in order to handle double vision; the
shaping pass is exactly that.

Central to both passes of Backpack typechecking is a notion of module identity. Using the
multinst package (and its dependencies) from Figure 2.2 as a running example, we will moti-
vate the role and structure of module identities.

3.1 module identities

Figure 3.2 shows the shapes and types of multinst and its dependencies. We proceed by explain-
ing Figure 3.2 in a left-to-right fashion.

The first column of Figure 3.2 contains the first key component of package types: a mapping
from modules’ logical names ` (i.e., their names at the level of Backpack) to their physical
identities ν (i.e., the names of the Haskell modules to which they elaborate). The reason for
distinguishing between logical names and physical identities is simple: due to aliasing (§2.5),
there may be multiple logical names for the same physical module.

In order to motivate the particular logical mappings in Figure 3.2, let us first explore what
physical identities are, which means reviewing how module names work in Haskell.

module names in haskell Modules in Haskell have fixed names, which we call “physi-
cal” because they are globally unique in a program, and module definitions may then depend

1 This chapter is adapted from §3 in the original Backpack paper, accounting for changes in the formalization of
Backpack. It presents the semantics of Backpack’s package level, which will be more definitively covered, albeit with
fewer examples, in Chapter 8. The substantial addition of worlds to Backpack’s semantics, an addition since the
original presentation of Backpack that this chapter is based on, will be introduced in Chapter 4.

41
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Identity Variables α,β ∈ IdentVars
Identity Constructors K ∈ IdentCtors
Identities ν ::= α | µα.K ν

Identity Substitutions θ ::= {α := ν}

Figure 3.1: Module identities.

on one another by importing these physical names. Modules serve two related roles: (1) as
points of origin for core-level entities, and (2) as syntactic namespaces. Concerning (1), a mod-
ule may define new entities, such as values or abstract data types. Concerning (2), a module
may export a set of entities, some of which it has defined itself and others of which it has
imported from other modules. For example, a module Foo may define a data type named
T. A subsequent module Bar may then import Foo.T and re-export it as Bar.T. To ensure
that type identity is tracked properly, the Haskell type system models each core-level entity
semantically as a pair [ν]T of its core-level name T and its provenance ν, i.e., the module that
originally defined it (in this example, Foo). Thus, Foo.T and Bar.T will be viewed as equal by
Haskell since they are both just different names for the same semantic entity [Foo]T.

To ensure compatibility with Haskell, our semantics for Backpack inherits Haskell’s use of
physical names to identify abstract types. However, Haskell’s flat physical module namespace
is not expressive enough to support Backpack’s holes, applicative module instantiation, and
recursive linking. To account for these features, we enrich the language of physical names
with a bit more interesting structure. Figure 3.1 displays this enriched language of—as we
call them—physical module identities.2

variable and applicative identities Physical module identities ν are either (1) vari-
ables α, which are used to represent holes; (2) applications of identity constructors K, which are
used to model dependency of modules on one another, as needed to implement applica-
tive instantiation; or (3) recursive module identities, defined via µ-constructors. We start by
explaining the first two.

Each explicit module expression [M] that occurs in a package definition corresponds (stat-
ically) to a globally unique identity constructor K that encodes it. For example, if a single
module source M appears on the right-hand side of three distinct module bindings in a pack-
age P, then the three distinct identity constructors of those modules are, roughly, 〈P.M.1〉,
〈P.M.2〉, and 〈P.M.3〉.3

In the absence of recursive modules, each module identity ν is then a finite tree term—
either a variable α, or a constructor K applied to zero or more subterms, ν. The identity of a
module is the constructor K that encodes its source M, applied to the n identities to which
M’s n import statements resolved (in order). For instance, in the very first example from
Chapter 2, ab-1, the identities of A and B are Ka and Kb Ka, respectively, where Ka encodes
the first module expression and Kb the second. In a package with holes, each hole gets a
fresh variable (within the package definition) as its identity; in abcd-holes-1 the identities of
the four modules are, in order, αa, αb, Kc, and Kd αa Kc.

Consider now the module identities in the Graph instantiations in multinst, as shown in
Figure 3.2. In the definition of structures, assume that the variables for Prelude and Array are
αP and αA respectively, and that MG is the module source that Graph is bound to. Then the
identity of Graph is νG = 〈structures.MG〉 αP αA. Similarly, the identities of the two array
implementations in Figure 2.2 are νAA = 〈arrays-a.MA〉 αP and νAB = 〈arrays-b.MB〉 αP.

2 To make use of these enriched physical names in our elaboration, we embed them into the space of Haskell’s physical
names; see §3.4.

3 We write simply 〈P.M〉, eliding the integer part of the identity constructor, when only one instance of [M] exists
in the definition of package P.
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The package graph-a is more interesting because it links the packages arrays-a and structures
together, with the implementation of Array from arrays-a instantiating the hole Array from
structures. This linking is reflected in the identity of the Graph module in graph-a: whereas in
structures it was

νG = 〈structures.MG〉 αP αA,

in graph-a it is

νGA = νG[νAA/αA] = 〈structures.MG〉 αP νAA.

Similarly, the identity of Graph in graph-b is

νGB = νG[νAB/αA] = 〈structures.MG〉 αP νAB.

Thus, linking consists of substituting the variable identity of a hole by the concrete identity
of the module filling that hole.

Lastly, multinst makes use of both of these Graph modules, under the aliases GA and GB,
respectively. Consequently, in the Client module, GA.G and GB.G will be correctly viewed as
distinct types since they originate in modules with distinct identities.

As multinst illustrates, module identities effectively encode dependency graphs. The pri-
mary motivation for encoding this information in identities is our desire for an applicative
semantics of instantiation, as needed for instance in the example of Figure 2.3. In that exam-
ple, both the packages applic-left and applic-right individually link arrays-a with structures. The
client package applic-bot subsequently wishes to use both the Left module from applic-left and
the Right module from applic-right, and depends on the fact that both modules operate over
the same Graph.G type. This fact will be checked when the packages applic-left and applic-right
are both included in the same namespace of applic-bot, and the semantics of mixin linking will
insist that their Graph modules have the same identity. Thanks to the dependency tracking in
our module identities, we know that the Graph module has identity νGA in both packages.

recursive module identities In the presence of recursive modules, module identities
are no longer simple finite trees.

Consider again the ab-rec-sep example from §2.6. (Although this example does not concern
our current focus, multinst, the careful treatment of recursive module identities deserves ex-
planation.) Suppose that νA and νB are the identities of A and B, and that MA and MB are
those modules’ defining module expressions, respectively. Because MA imports B and MB
imports A, the two identities should satisfy the recursive equations

νA = 〈a-from-b.MA〉 νB
νB = 〈b-from-a.MB〉 νA

These identity equations have no solution in the domain of finite trees, but they do in the
domain of regular, infinite trees, which we denote (finitely) as

νA = µαA.〈a-from-b.MA〉 (〈b-from-a.MB〉 αA)
νB = µαB.〈b-from-a.MB〉 (〈a-from-b.MA〉 αB)

The semantics of Backpack relies on the ability to perform both unification and equivalence
testing on identities. In the presence of recursive identities, however, simple unification and
syntactic equivalence of identities no longer suffices since, e.g., the identity 〈a-from-b.MA〉 νB
represents the exact same module as νA, albeit in a syntactically distinct way. Fortunately, we
can use Huet’s well-known unification algorithm for regular trees instead.4 More details can
be found in Appendix §A.1.1.

4 Gauthier and Pottier (2004) and Huet (1976).
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alpha renaming and freshness In the examples so far, care has been taken to create
fresh module identity variables for each new hole, e.g., αA distinct from αP. Indeed, as we’ll
see in the next section, freshness of module identity variables is actually part of the definition
of the shaping pass. But what does this mean exactly?

As indicated by the µ notion for recursive module identities, we presume conventional
alpha conversion5 on module identities with respect to the µ binder—and, later, ∀ and λ

binders. For example, the recursive module identity ν below can be alpha-converted in its
bound variable, α1, resulting in an identical module identity:

ν = µα1.K2 (K1 α1) α2 = µα ′1.K2 (K1 α
′
1) α2

The free variable in ν, α2, cannot be so converted.
With alpha conversion in mind, the assignment of fresh variables for holes becomes clearer.

Consider a package double-prelude-sig that simply splits the Prelude hole from prelude-sig into
two distinct holes P1 and P2 by including the package twice:

package double-prelude-sig where
include prelude-sig 〈Prelude 7→ P1〉
include prelude-sig 〈Prelude 7→ P2〉

As we’ll see in the next section, the type of the prelude-sig package is ∀αP.ΞP, where ΞP =

(. . . αP . . .). When designating a module identity variable for its hole P1 in the first inclusion,
we might choose α1, a variable that doesn’t exist yet, i.e., the variables of the implicit ambient
context of module identities do not already include α1. Then when designating a variable
for the hole P2 in the second inclusion, we must choose some distinct variable that’s not
equal to α1, which now does exist in the implicit ambient context; let’s choose α2. By alpha-
converting the type of prelude-sig to match each fresh variable, we instantiate its package type
to be ΞP[α1/αP] for the first include binding and ΞP[α2/αP] for the second.6 The point is that
we must choose two distinct variables for the αP, not the same variable twice! And shaping
enforces that requirement.

3.2 shaping

Constructing the mapping from logical names to physical identities is but one part of a larger
task we call shaping, which constitutes the most unusual and interesting part of Backpack’s
type system.

The goal of shaping is to compute the shape (i.e., the macro-level structure) of the package.
Formally, a package shape Ξ̂ = (Φ̂;L) has two parts.7 The first is a physical shape context
Φ̂ = ν:τ̂m , which, for each module in the package, maps its physical identity ν to a polarity
m and a module shape τ̂. The polarity m specifies whether the module ν is implemented (+)

or a hole (−). The module shape τ̂ = 〈 ˆdspc ; espc 〉 enumerates ν’s defined entities ˆdspc—i.e.,
the entities that the module ν itself defines—as well as export specs espc, which list the names
and provenances of the entities that ν exports.8 Note that these are not the same thing: a
module ν may import and re-export entities that originated in (i.e., whose provenances are)
some other modules ν ′, and it may also choose not to export all of the entities that it defines

5 I write "alpha conversion" instead of "α conversion" to distinguish it from the metavariable for module identities.
6 This technical point is realized in the shaping rule for include bindings, (ShInc), which abuses notation by assuming

that the package type ∀α.Ξ is α-converted so that the α are exactly the freshly chosen variables.
7 We write a hat (·̂) on the metavariables of certain shape objects (e.g., τ̂) not to denote a meta-level operation, but to

highlight these objects’ similarity to their corresponding type objects (e.g., τ).
8 In the full definitions of the formalization, in Part II, module shapes/types also include the vector of imported

module identities, written N. They’re omitted in this chapter and its examples for brevity. See the full semantic
objects of the module level in §7.3.
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Logical Mapping Physical Shapes Physical Types

prelude-sig Prelude 7→ αP Φ̂P ΦP

arrays-sig
Prelude 7→ αP
Array 7→ αA

Φ̂P , Φ̂A ΦP ,ΦA

structures

Prelude 7→ αP
Array 7→ αA
Set 7→ νS
Graph 7→ νG
Tree 7→ νT

Φ̂P , Φ̂A,

νS:〈 S(. . . ) ; [νS]S(. . . ) 〉+

νG:〈 G(. . . ) ; [νG]G(. . . ) 〉+

νT :〈 T(. . . ) ; [νT ]T(. . . ) 〉+

ΦP ,ΦA,

νS:〈| data S . . . ; [νS]S(. . . ) |〉+

νG:〈| data G . . . ; [νG]G(. . . ) |〉+

νT :〈| data T . . . ; [νT ]T(. . . ) |〉+

arrays-a
Prelude 7→ αP
Array 7→ νAA

Φ̂P , Φ̂AA ΦP ,ΦAA

arrays-b
Prelude 7→ αP
Array 7→ νAB

Φ̂P , Φ̂AB ΦP ,ΦAB

graph-a
Prelude 7→ αP
Graph 7→ νGA

Φ̂P , Φ̂AA,

νGA:〈 G(. . . ) ; [νGA]G(. . . ) 〉+
ΦP ,ΦAA,

νGA:〈| data G . . . ; [νGA]G(. . . ) |〉+

graph-b
Prelude 7→ αP
Graph 7→ νGB

Φ̂P , Φ̂AB,

νGB:〈 G(. . . ) ; [νGB]G(. . . ) 〉+
ΦP ,ΦAB,

νGB:〈| data G . . . ; [νGB]G(. . . ) |〉+

multinst

Prelude 7→ αP
GA 7→ νGA

GB 7→ νGB

Client 7→ νC

Φ̂P , Φ̂AA, Φ̂AB,

νGA:〈 G(. . . ) ; [νGA]G(. . . ) 〉+

νGB:〈 G(. . . ) ; [νGB]G(. . . ) 〉+

νC:〈 main ; [νC]main, [νGA]G() 〉+

ΦP ,ΦAA,ΦAB,

νGA:〈| data G . . . ; [νGA]G(. . . ) |〉+

νGB:〈| data G . . . ; [νGA]G(. . . ) |〉+

νC:〈| main :: . . . ; [νC]main, [νGA]G() |〉+

νAA , 〈arrays-a.MA〉 αP
νAB , 〈arrays-b.MB〉 αP

νS , 〈structures.MS〉 αP
νG , 〈structures.MG〉 αP αA

νT , 〈structures.MT 〉 αP νG

νGA , 〈structures.MG〉 αP νAA

νGB , 〈structures.MG〉 αP νAB
νC , 〈multinst.MC〉 νGA νGB

Φ̂P ,

(
αP :〈 · ; [βPL]List(Nil, Cons) 〉−

βPL:〈 List(Nil, Cons) ; [βPL]List(Nil, Cons) 〉−

)

ΦP ,

 αP : 〈| · ; [βPL]List(Nil, Cons) |〉−

βPL:

〈
data List(a :: *) =

Nil | Cons a ([βPL]List a)
; [βPL]List(Nil, Cons)

〉−



Φ̂A ,

 αA :〈 · ; [βAA]Arr(), [βAS]something 〉−

βAA:〈 Arr ; [βAA]Arr() 〉−

βAS :〈 something ; [βAS]something 〉−


ΦA ,

 αA :〈| · ; [βAA]Arr(), [βAS]something |〉−

βAA:〈| data Arr (i :: *) (e :: *) ; [βAA]Arr() |〉−

βAS :〈| something :: [βPL]List ([βAA]Arr i e) ; [βAS]something |〉−


Φ̂AA , νAA: 〈 Arr(MkArr), something ; [νAA]Arr(MkArr), [νAA]something 〉+

ΦAA , νAA:

〈
data Arr (i :: *) (e :: *) = MkArr . . .

something :: [βPL]List ([νAA]Arr i e)
; [νAA]Arr(MkArr)

[νAA]something

〉+

Φ̂AB , νAB: 〈 Arr(ANil, . . . ), something ; [νAB]Arr(ANil, . . . ), [νAB]something 〉+

ΦAB , νAB:

〈
data Arr (i :: *) (e :: *) = ANil| . . .

something :: [βPL]List ([νAB]Arr i e)
; [νAB]Arr(ANil, . . . )

[νAB]something

〉+

Figure 3.2: Example package types and shapes for the multinst package and its dependencies. In each
module shape/type the imported module identities (N) have been omitted for brevity.
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Core Level:

Value Names x ∈ ValNames
Type Names T ∈ TypeNames
Constructor Names K ∈ CtorNames
Entity Names χ ::= x | T | K

Kind Environments kenv ::= . . .

Semantic Types typ ::= [ν]T typ | . . .

Defined Entity Specs dspc ::= data T kenv = K typ
| data T kenv | x :: typ

Export Specs espc ::= [ν]χ | [ν]χ(χ)

Module Level:

Module Polarities m ::= + | −

Module Types τ,σ ::= 〈| dspc ; espc |〉
Physical Module Ctxts Φ ::= ν:τm

Logical Module Ctxts L ::= ` 7→ ν

Package Level:

Package Types Ξ, Γ ::= (Φ;L)

Package Environments ∆ ::= · | ∆, P = λα.dexp : ∀α.Ξ

Shaping Objects:

Defined Entity Shape Specs ˆdspc ::= x | T | T(K)

Module Shapes τ̂ ::= 〈 ˆdspc ; espc 〉
Physical Shape Ctxts Φ̂ ::= ν:τ̂m

Package Shapes Ξ̂, Γ̂ ::= (Φ̂;L)

Figure 3.3: Semantic objects for shaping and typing, abridged. In particular, type classes and worlds
(Chapter 4) are completely absent. More complete semantic objects will be presented later,
in the chapters on the formalization of Backpack (Part II).

internally.9 In our running example in Figure 3.2, the physical shape contexts Φ̂ computed
for each package are shown in the second column.

The second part of the package shape is a logical shape context L = ` 7→ ν, which, for each
module in the package, maps its logical name ` to its physical identity ν. (This is the mapping
shown in the first column of Figure 3.2, which we have already discussed in detail in §3.1).

Figure 3.3 defines the semantic objects for shaping and typing, and Figure 3.4 gives some
of the key rules implementing shaping.

shaping rules The main shaping judgment, ∆ 
 B ⇒ Ξ̂, takes as input the body of a
package definition, which is just a sequence of bindings B. Rule ShSeq synthesizes the shape
of B by proceeding, in left-to-right order, to synthesize the shape of each individual binding B
(via the judgment ∆; Γ̂ 
 B⇒ Ξ̂) and then merge it with the shapes of the previous bindings
(via the judgment 
 Ξ̂1 + Ξ̂2 ⇒ Ξ̂).

Let us begin with the judgment that shapes an individual binding. The rule ShAlias

should be self-explanatory.
The rule ShInc is simple as well, choosing fresh identity variables α to represent the holes

in package P and applying the renaming r to P’s shape. Note that it uses some simple aux-

9 The reader might find the distinction between dspcs and espcs in module types confusing. MixML and other systems
rooted in ML have no such separation of exposed core names in the types of modules because modules in those
systems are not “namespace control mechanisms.” In Haskell, however, this distinction aides the typechecking of
core entities: simply lookup the module type τ for the defining module ν of an imported entity [ν]χ, knowing that
a dspc for χ exists in τ. For more justification, see the discussion in Part II on typechecking the core level (§6.4) and
on unification via the provenances of espcs (§8.5).
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iliary definitions: rename, for applying a renaming to the L part of a shape, and shape, for
erasing a package type Ξ to a shape by removing typing information. Moreover, by alpha-
converting the type of P we rename its variables to match the freshly chosen α, as mentioned
with the double-prelude-sig example in the discussion on module identities.

The rule ShMod generates the appropriate globally unique identity ν0 to represent [M],
and then calls out to a shaping judgment for Haskell modules, Γ̂ ;ν0 
 cM : τ̂, which
generates the shape τ̂ of M assuming that ν0 is the module’s identity. As an example of this,
observe the shape generated for the Client module νC in multinst in Figure 3.2. The shape
ascribes provenance νC to the main entity, since it is freshly defined in Client, while ascribing
provenance νGA to the G type, since it was imported from GA and is only being re-exported
by Client.

The rule ShSig, for shaping hole declarations, is a bit subtler than the other rules. Perhaps
surprisingly, the generated shape declares not only a fresh identity variable α for the hole
itself, but also a set of fresh identity variables β, one for each entity specified in the hole sig-
nature S. (The intermediate τ̂0 merely encodes these fresh identities as input to the signature
shaping judgment.) The reason for this is simply to maximize flexibility: there is no reason
to demand a priori that the module that fills in the hole (i.e., the module whose identity ν
will end up getting substituted for α) must itself be responsible for defining all the entities
specified in the hole signature—it need only be responsible for exporting those entities, which
may very well have been defined in other modules.

The shape Φ̂A in Figure 3.2 illustrates the output of ShSig on the Array hole in package
arrays-sig. This shape specifies that βAA is a module defining an entity called Arr, that βAS
is a module defining an entity called something, and that αA is a module bringing [βAA]Arr

and [βAS]something together in its export spec. Of course, when the hole is eventually filled
(e.g., in the graph-a package, whose shaping is discussed below), it may indeed be the case
that the same module identity ν is substituted for αA, βAA, and βAS—i.e., that ν both defines
and exports Arr and something—but ShSig does not require this.

Returning now to the merging judgment 
 Ξ̂1+ Ξ̂2 ⇒ Ξ̂ that is invoked in the last premise
of (ShSeq): This merging judgment is where the real “meat” of shaping occurs—in particular,
this is where mixin linking is performed by unification of module identities. If a module with
logical name ` is mapped by Ξ̂1 and Ξ̂2 to physical identities ν1 and ν2, respectively, the
merging judgment will unify ν1 and ν2 together. Moreover, if ν1 and ν2 are specified by
Ξ̂1 and Ξ̂2 as having different module shapes τ̂1 and τ̂2, respectively, those shapes will be
merged as well, with the resulting shape containing all of the components specified in either
τ̂1 and τ̂2. For any entities appearing in both τ̂1 and τ̂2, their provenances will be unified.

To see a concrete instance of this, consider the merging that occurs during the shaping
of the graph-a package in our running example in Figure 3.2. The graph-a package includes
two packages defined earlier: arrays-a and structures. As per rule (ShInc), each inclusion
will generate fresh identity variables for the packages’ holes (say, αP, βPL, αA, βAA, βAS for
structures, and α ′P, β ′PL for arrays-a). Since both packages export Prelude, the merging judgment
will unify αP and α ′P, the physical identities associated with Prelude in the shapes of the two
packages; consequently, the shape of αP, namely 〈 · ; [βPL]List(Nil, Cons) 〉, will be unified
with the shape of α ′P, namely 〈 · ; [β ′PL]List(Nil, Cons) 〉, resulting in the unification of βPL
and β ′PL as well.

Similarly, since both packages export Array, the merging judgment will link the implement-
ation of Array in arrays-a with the hole for Array in structures by unifying αA, βAA, and βAS
with νAA. As a result, the occurrences of αA, βAA, and βAS in νG (and its shape) get substi-
tuted with νAA, which explains why the shape of graph-a maps Graph to νGA = νG[νAA/αA].
Lastly, merging will check that the implementation of Array in arrays-a actually provides all
the entities required by the hole specification in structures, i.e., that Φ̂AA subsumes Φ̂A, which
indeed it does.
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∆; Γ̂ 
 B⇒ Ξ̂
` ′ 7→ ν ∈ Γ̂

∆; Γ̂ 
 ` = ` ′ ⇒ (·; ` 7→ ν)
(ShAlias)

ν0 = mkident(M; Γ̂ .L) Γ̂ ; ν0 
 M⇒ τ̂

∆; Γ̂ 
 ` = [M]⇒ (ν0:τ̂+ ; ` 7→ ν0)
(ShMod)

α,β fresh Γ̂ ; β 
 S ⇒ σ̂ | Φ̂sig

∆; Γ̂ 
 ` :: [S]⇒ ((α:σ̂− , Φ̂sig); ` 7→ α)
(ShSig)

α fresh (P : ∀α.Ξ) ∈ ∆ Ξ ′ = rename(r;Ξ)

∆; Γ̂ 
 include P r⇒ shape(Ξ ′)
(ShInc)

∆ 
 B⇒ Ξ̂
∆ 
 · ⇒ (·; ·)

(ShNil)

∆ 
 B1 ⇒ Ξ̂1 ∆; Ξ̂1 
 B2 ⇒ Ξ̂2 
 Ξ̂1 + Ξ̂2 ⇒ Ξ̂

∆ 
 B1,B2 ⇒ Ξ̂
(ShSeq)

Figure 3.4: Shaping rules, abridged. A more complete definition will be presented in the formalization
(Chapter 8), including package thinning and world semantics.

3.3 typing

In our running example thus far, we have not yet performed any typechecking of core-level
code, such as the code inside multinst’s Client module. There is a good reason for this: before
shaping, we don’t know whether core-level types such as GA.G and GB.G (imported by Client)
are equal, because we don’t know what the identities of GA and GB are. But after shaping,
we have all the identity information we need to perform typechecking proper.

Thus, as seen in the top-level package rule TyPkg in Figure 3.5, the output of the shaping
judgment—namely, Ξ̂pkg—is passed as input to the typing judgment, ∆; Ξ̂pkg ` B : Ξ  dexp .

Typing, in turn, produces a package type Ξ, which enriches the package shape Ξ̂pkg with core-
level (i.e., Haskell-level) typing information. The final type returned for the package, ∀α.Ξ,
then just quantifies over the variable identities α of the holes in Ξ, so that they may be
instantiated in different ways by subsequent package definitions.

The package types Ξ generated for the packages in our running example appear in the
third column of Figure 3.2. Formally, the only difference between these package types and
the package shapes in the second column of Figure 3.2 lies in the difference between their

constituent module types τ = 〈| dspc ; espc |〉 and module shapes τ̂ = 〈 ˆdspc ; espc 〉. Whereas the

“defined entities” component ( ˆdspc) of τ̂ only names the entities defined by a module, the “de-
fined entity specs” component (dspc) of τ additionally specifies their core-level kinds/types.
For example, observe the module type ascribed to arrays-a’s module νAA in ΦAA. This type
enriches the pre-computed shape (in Φ̂AA) with additional information about the kind of
Arr and the type of something.

Let us now explain the typing rules in Figure 3.5. For the moment, we will ignore the
shaded parts of the rules concerning elaboration into Haskell; we will return to them in §3.4.

The rules TyNil and TySeq implement typing of a sequence of bindings B. The procedure
is structurally very similar to the one used in the shaping of B: we process (in left-to-right
order) each constituent binding B, producing a type that we merge into the types of the pre-
vious bindings. The key difference is that the partial merge operator ⊕ does not perform
any unification on module identities—it merely performs a mixin merge, which checks that
all specifications (kinds or types) assigned to any particular core-level entity are equal. For
instance, when typing graph-a, the mixin merge will check that the type of something in the
Array implementation from arrays-a is equal to the type of something in the Array hole from
structures, and thus that the implementation satisfies the requirements of the hole.
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∆; Γ ; Ξ̂pkg ` B : Ξ  dexp

` ′ 7→ ν ∈ Γ

∆; Γ ; Ξ̂pkg ` ` = ` ′ : (| · ; ` 7→ ν |)  {}
(TyAlias)

` 7→ ν0 ∈ Ξ̂pkg Γ ; ν0 ` M : τ  hsmod

∆; Γ ; Ξ̂pkg ` ` = [M] : (|ν0:τ
+ ; ` 7→ ν0 |)

 {ν0
? 7→ hsmod : τ?}

(TyMod)

` 7→ ν0 ∈ Ξ̂pkg (ν0:τ̂
m
0 ) ∈ Ξ̂pkg

Γ ; τ̂0 ` S : σ | Φsig Φ ′ = ν0:σ
− ⊕ Φsig defined

∆; Γ ; Ξ̂pkg ` ` :: [S] : (|Φ ′ ; ` 7→ ν0 |)

 {ν? 7→ − : τ? | ν:τ− ∈ Φ ′}

(TySig)

α fresh (P=λα.dexp : ∀α.Ξ) ∈ ∆ Ξ ′= rename(r;Ξ)

` Ξ̂pkg 6α Ξ
′  θ

∆; Γ ; Ξ̂pkg ` include P r : apply(θ;Ξ ′)  apply(θ?; dexp)
(TyInc)

∆; Ξ̂pkg ` B : Ξ  dexp
∆; Ξ̂pkg ` · : (| · ; · |)  {}

(TyNil)

∆; Ξ̂pkg ` B1 : Ξ1  dexp1 Ξ = Ξ1 ⊕ Ξ2 defined

∆;Ξ1; Ξ̂pkg ` B2 : Ξ2  dexp2

∆; Ξ̂pkg ` B1,B2 : Ξ  dexp1 ⊕ dexp2
(TySeq)

∆ ` D : ∀α.Ξ  λα.dexp

∆ 
 B⇒ Ξ̂pkg ∆; Ξ̂pkg ` B : Ξ  dexp α= fv(Ξ)

∆ ` package P where B : ∀α.Ξ  λα.dexp
(TyPkg)

Figure 3.5: Typing and elaboration rules (ignoring thinning).
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(Module Names) f ∈ IlModNames
(Module Sources) hsmod ::= . . .

(File Expressions) fexp ::= hsmod | −

(File Types) ftyp ::= 〈| dspc? ; espc? |〉
(Typed File Expressions) tfexp ::= fexp : ftyp
(Directory Expressions) dexp ::= {f 7→ tfexp}

(Identity Translation) (−)? ∈ Identities/≡µ � IlModNames

Figure 3.6: IL syntax, abridged. dspc? and espc? mention f instead of ν. A more complete definition will
be presented in the formalization (Chapter 9).

The remaining rules concern the typing of individual bindings, ∆; Γ ; Ξ̂pkg ` B : Ξ  dexp .
The typing rules TyMod and TySig are structurally very similar to the corresponding shaping
rules given in Figure 3.4. The key difference is that, whereas ShMod and ShSig generate appro-
priate identities for their module/hole, TyMod and TySig instead look up the pre-computed
identities in the package shape Ξ̂pkg. As an example of this, observe what happens when
we type the Array module in arrays-a using rule TyMod. The package shape Ξ̂pkg we pre-
computed in the shaping pass tells us that the physical module identity associated with the
logical module name Array is νAA, so we can go ahead and assume νAA is the identity of Array
when typing its implementation. Note that TyMod and TySig call out to typing judgments for
Haskell modules and signatures. Like the analogous shaping judgments, these are defined
formally in Chapter 7.

Like TyMod and TySig, the rule TyInc also inspects Ξ̂pkg to determine the pre-computed
identities of the modules/holes in the package P being included. The only difference is that
an included package contains a whole bunch of subcomponents (rather than only one), so
looking up their identities is a bit more involved. It is performed by appealing to a “match-
ing” judgment ` Ξ̂pkg 6α Ξ

′  θ, similar to the one needed for signature matching in ML
module systems.10 This judgment looks up the instantiations of all the included holes α by
matching Ξ ′ (the type of the included package P after applying the renaming r) against Ξ̂pkg.
This produces a substitution θ with domain α, which then gets applied to Ξ ′ to produce the
type of the include binding. For example, when typing the package graph-a, we know after
shaping that the identity of the Array module is νAA. When we include structures, the match-
ing judgment will glean this information from Ξ̂pkg, and produce a substitution θ mapping
structures’ αA parameter to the actual Array implementation νAA.

3.4 elaborating backpack to haskell

We substantiate our claim to retrofit Haskell with SMD through an elaboration of Backpack,
our external language (EL), into a model of GHC Haskell, our internal language (IL). The EL,
as we have demonstrated so far, extends across the package, module, and core levels, while
the IL defines only module and core levels; effectively the outer, package level gets “compiled
away” into mere modules in the IL. Figure 3.6 gives the syntax of the IL11; for its semantics,
including the typing judgment, see Chapter 9.

Elaboration translates a Backpack package into a parameterized directory expression λα.dexp,
which is a mapping from a set of module names f to typed file expressions tfexp, param-
eterized over the identities α of the package’s holes. We assume an embedding (−)? from
module identities into IL module names, which respects the equi-recursive equivalence on
module identities that the Backpack type system relies on. However, for readability, we will

10 Rossberg et al. (2010), “F-ing Modules”.
11 This presentation of the IL lacks the worlds introduced in Chapter 4. For the full syntax, see the formalization in

Chapter 9.

http://www.mpi-sws.org/~rossberg/f-ing


3.4 elaborating backpack to haskell 51

λαP βPL .



αP 7→

βPL 7→

νAA 7→


module νAA (Arr(MkArr)) where
import qualified αP as P (List(Nil,Cons))
data Arr i e = MkArr ...
something = P.Nil :: P.List (Arr i e)



νAB 7→


module νAB (Arr(ANil, ...)) where
import αP as Prelude (List(Nil, Cons))
data Arr i e = ANil | ...
something = Cons ANil Nil



νGA 7→


module νGA (G(...)) where
import αP as Prelude (List(Nil, Cons))
import νAA as Array (Arr(), something)
data G ...



νGB 7→


module νGB (G(...)) where
import αP as Prelude (List(Nil, Cons))
import νAB as Array (Arr(), something)
data G ...



νC 7→


module νC (main, GA.G()) where
import qualified νGA as GA (G())
import qualified νGB as GB (G())
main = ... GA.G ... GB.G ...




Figure 3.7: Elaboration of multinst. (For readability, the translation from identities to module names,

(−)?, and the file type annotation on each module file have been omitted. See Figure 3.2 for
the latter.)

leave the embedding implicit in the remainder of this subsection. As for the typed file ex-
pressions tfexp, they can either be defined file expressions (hsmod : ftyp), which provide both
an implementation of a module along with its type, or undefined file expressions (− : ftyp),
which describe a hole with type ftyp. Thus, all components of a dexp are explicitly-typed. This
has the benefit that the modules in a dexp can be typechecked in any order, since all static
information about them is specified in their explicit file types.

As a continuation of our running example, Figure 3.7 displays the elaboration of the multi-
nst package, except with the file types stripped off for brevity. First, note that each module
identity ν in the physical type ΦM of multinst (lower-right hand corner of the table in Fig-
ure 3.2) corresponds to one of the Haskell modules in the elaboration of the package, and
for each ν, its type in ΦM is (modulo the embedding (−)?) precisely the file type of ν that
we have omitted from Figure 3.7. The concrete module identities in ΦM map to defined file
expressions, while the identity variables αP and βPL (representing holes) map to undefined
file expressions.

The elaboration of packages (marked with shaded text ) is almost entirely straightforward,
following the typing rules. More interesting is the elaboration of Haskell modules, which is
appealed to in the second premise of rule TyMod (and formalized in Chapter 7). Offhand,
one might expect module elaboration to be the identity translation, but in fact it is a bit more
subtle than that.

Consider the νC entry in the directory, corresponding to the Client module, as a concrete
example.

• The module header: Unlike the original EL implementation of Client, which was anony-
mous, its elaborated IL version has a module header specifying νC as its fixed physical
name, and main and GA.G() as its exported entities. More generally, the exported enti-
ties should reflect those listed in the module’s type τ.
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• The import statements: Our elaboration rewrites imports of logical names like GA into im-
ports of physical module identities like νGA, since the physical identities are the actual
names of Haskell modules in the elaborated directory expression. We must therefore
take care to preserve the logical module names that the definitions in the module’s
body expect to be able to refer to. For example, the reference GA.G is seen to have prove-
nance [νGA]G during Backpack typechecking of Client, so in the elaborated IL version
of Client we want GA.G to mean the same thing. We achieve this by means of Haskell’s
“import aliases”, which support renaming of imported module names; e.g., the first im-
port statement in νC imports the physical name νGA but gives it the logical name GA
in the body, thus ensuring that the reference GA.G still has (the same) meaning as it did
during Backpack typechecking. 12

• The body: Thanks to the import aliasing we just described, the entity definitions in the
body of νC can remain syntactically identical to those in the original Client module.

• Explicitness of imports and exports: All imported and exported entities are given as explic-
itly as the Haskell module syntax allows, even when the original EL modules neglect to
make them explicit; e.g., the original code for Graph lists neither its imports nor its ex-
ports, but its elaboration (as νGA and νGB) does. The primary reason for this explicitness
is that it enables us to prove a “weakening” property on IL modules, which is critical
for the proof of soundness of elaboration. If modules are not explicit about which core-
level entities they are importing and exporting, their module types will not be stable
under weakening.

12 The preservation of a module’s local “entity environment” under elaboration has been proven as part of the larger
proof of soundness of elaboration Chapter 7.



4C L A S S S T R U G G L E : T Y P E C L A S S E S I N
B A C K PA C K

Aside from laziness, Haskell’s “most distinctive feature” is type classes.1 Although originally
intended to solve “the narrow problem of overloading of numeric operators and equality,”2

type classes have proven to be a crucial part of the language, expanding into the realm of
constraint solving and type-level computation. To give a sense for how pervasive they are
in Haskell programs, in GHC version 7.8.4 (released in December 2014), the implicitly im-
ported module providing the essentials from the standard library, Prelude, exposes a whop-
ping 1,375 different type class instances to virtually every Haskell program.3

Type classes were a glaring hole in the original presentation of Backpack. For that work,
“[we had] left them out of the system deliberately in order to focus attention on the essential
features of Backpack that we hope will be broadly applicable, not just to Haskell.”4 (Indeed,
Backpack can be seen as a framework to build strong modularity on top of any language
that only offers weak modularity.) Adding them into the Backpack semantics required new
approaches to the module type system and to the proof of soundness. One key result from
that effort is a class of side conditions in the metatheory that hint at the antimodularity of
type classes (§9.3).

In this chapter, I integrate type classes into the formalization of Backpack. That amounts not
to any deviation from Haskell’s surface syntax, but to a new specification of their semantics
in the (also-new) type system for modules. As we’ll see shortly, their integration revolves
around a central and straightforward concept of what I call worlds, a concept that effectively
brings the type class instances known to a module into that module’s type.

But first, before introducing type classes into Backpack, I diagnose and analyze an existing
problem with Haskell type classes, which I call misabstraction, that manifests in the GHC
implementation. The worlds semantics for type classes puts the language in firmer, more
modular ground for addressing misabstraction. Indeed, one might consider it a modular
semantics for a non-modular language feature, i.e., type classes.

4.1 type classes in haskell

The Haskell language spec demands that type classes satisfy a global uniqueness restriction: “A
type may not be declared as an instance of a particular class more than once in the program.”5

Since this restriction pertains to the whole program, it is inherently non-modular: Alice and Bob
may independently develop modules A and B, which typecheck fine in isolation, but which
nevertheless cannot be both imported by a common client C because they define overlapping
instances and thus do not compose.

On the one hand, the non-modular nature of Haskell type classes is unfortunate, and as
a result, several proposals—such as named instances6 and modular type classes7—have been
put forth in an effort to relax the global uniqueness restriction and support local (scoped)
instance declarations. On the other hand, adapting Haskell to incorporate such proposals

1 Hudak et al. (2007), “A history of Haskell: Being lazy with class,” p.17.
2 Ibid., p.8.
3 For the full results of this analysis, presented in §4.3.3, see: https://gitlab.mpi-sws.org/backpack/
class-struggle/blob/v3/data/worlds/prelude-readme.md

4 Kilpatrick et al. (2014), “Backpack: Retrofitting Haskell with Interfaces”.
5 Marlow (2010), “Haskell 2010 Language Report,” §4.3.2.
6 Kahl and Scheffczyk (2001), “Named Instances for Haskell Type Classes”.
7 Dreyer et al. (2007), “Modular Type Classes”.
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would constitute a serious breaking change to the language and its ecosystem because the
global uniqueness restriction is deeply baked into them.

As an example, to be explored in more detail in §4.2, the abstract data type Set a (defined
in GHC’s Data.Set module) only behaves correctly under the assumption of global unique-
ness. In particular, if A and B were permitted to locally define distinct instances of Ord T (for
some T) but hide those instances from their common client C, local invariants maintained in
Data.Set could be unwittingly violated by C, resulting in anomalous behavior. Consequently,
it seems fair to assume that the global uniqueness restriction is not going away anytime soon.

The question remains: how should global uniqueness be implemented? Even though it is a
non-modular property, we still need a way to implement it in a modular fashion if we wish to
typecheck a program one module at a time. However, the Haskell language spec provides no
guidance here, and the answer to this question is controversial. For instance, GHC attempts
to enforce global uniqueness modularly by checking that each instance declaration does not
overlap with any existing instances in scope at that point, and by checking for instance am-
biguity at use sites. But, as I explain in §4.2, these checks do not in fact guarantee global
uniqueness. Some in the Haskell community have identified so-called orphan instances as the
culprit and argued for a prohibition on them (implemented by GHC as an optional compiler
flag). But prohibiting orphan instances also rules out perfectly valid Haskell programs, and
what’s more, it still fails to ensure global uniqueness.

Developing a satisfactory answer to this question is important for Haskell, but even more
crucial in the context of Backpack, a system in which (formally modeling) modularity is
essential.

In this chapter, I propose a new answer to this question, based on the simple (but previously
unarticulated) idea of worlds. A world describes the set of instances that are in scope when
typechecking a given module. A world is consistent if these instances are non-overlapping.
When multiple modules (say, A and B) are imported into the scope of a client module C, their
respective worlds are joined together via a partial merge operation, which succeeds if and
only if the union of their worlds is consistent. In effect, merging checks for global uniqueness
eagerly rather than lazily (as GHC currently does), and I argue this is both necessary and
desirable.

4.2 what’s wrong with type classes today

Figure 4.1 presents our first example of a Haskell program that witnesses the modular am-
biguity of type classes. This program is perfectly valid, compilable, and executable in the
Glasgow Haskell Compiler (GHC), the de facto implementation of Haskell. It demonstrates
the potential for bad behavior when mixing modularity and type classes; how the Haskell
spec ostensibly rules out this bad behavior; how the GHC implementation (attempts to) fol-
low the spec; and how GHC nonetheless allows (some of) the bad behavior.

4.2.1 Bad behavior through modularity

The very first module of the program, Data.Set, defines an abstract data type (ADT) for
ordered sets, represented as binary trees.8 The remaining modules form a classic diamond
dependency. FunnyTop defines a type I, a straightforward wrapper around Int. FunnyLeft
and FunnyRight define opposite orderings on I in their respective Ord I instances, along with
instantiations of Set’s (generic) insert operation that bake in the respective orderings. Finally,
FunnyBottom defines a set value funnySet by using both instantiations to insert values into
an empty set, and then (purportedly) prints out the unique elements of that set, as a list, in
ascending order. Perversely, however, the elements of the printed list are neither unique nor
ordered. Something is wrong with this program.

8 Defined in the containers package: http://hackage.haskell.org/package/containers-0.5.6.3/docs/Data-Set.
html

http://hackage.haskell.org/package/containers-0.5.6.3/docs/Data-Set.html
http://hackage.haskell.org/package/containers-0.5.6.3/docs/Data-Set.html
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-- The standard Set module in Hackage, summarized here for illustration
module Data.Set(Set(), . . .) where
data Set a = . . .

empty :: Set a = . . .
insert :: Ord a => a -> Set a -> Set a = . . .
toAscList :: Set a -> [a] = . . .

-- Top of the diamond, defining the type I for which we define orphan instances
module FunnyTop where

-- simple wrapper around Int
data I = I Int

instance Eq I where . . .
instance Show I where . . .

-- Left side of the diamond, defining Ord I one way
module FunnyLeft where
import Data.Set
import FunnyTop

-- 6 ordering on wrapped Int; orphan instance
instance Ord I where . . .

insL :: I -> Set I -> Set I
insL = insert -- applies and "bakes in" this 6 instance

-- Right side of the diamond, defining Ord I the other way
module FunnyRight where
import Data.Set
import FunnyTop

-- > ordering on wrapped Int; orphan instance
instance Ord I where . . .

insR :: I -> Set I -> Set I
insR = insert -- applies and "bakes in" this > instance

-- Bottom of the diamond
module FunnyBottom where
import Data.Set
import FunnyTop
import FunnyLeft
import FunnyRight

funnySet :: Set I
funnySet = insR (I 1) (insL (I 1) (insL (I 2) empty))
-- ^ ^ ^-- uses 6
-- ^ ^-- uses 6
-- ^-- uses >

-- prints "[I 1, I 2, I 1]" instead of "[I 1, I 2]"
main = print (toAscList funnySet)

Figure 4.1: Example of constructing an abstraction-unsafe Set.
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The programed defined by the Funny modules exhibits a particular kind of bad behavior
that we’d like to rule out—specifically, that the implementor of Data.Set would like to rule
out in any potential client programs. Since funnySet was created with two opposite orderings,
its internal representation as a binary tree (according to a single ordering) has been munged,
as evidenced by the non-unique, non-ascending list that is printed out. In other words, this
program breaks abstraction safety, i.e., “the ability to locally establish representation invariants
for [ADTs],”9 like Set, which clients cannot possibly break when using the ADT operations,
like insert.

Although never stated as a desired property for Haskell, abstraction safety should nonethe-
less hold for any type system that supports ADTs and modularity, arguably as much an im-
perative as traditional (syntactic) type safety, as has been argued by Dreyer (2014). But the
lack of abstraction safety demonstrated here can be recast in terms specific to Haskell (or any
language with type classes): the lax enforcement of global uniqueness of type class instances.
Developers often rely on an assumption that any ground type class constraint C typ can be
satisfied by at most one particular instance across the whole program. Since FunnyLeft and
FunnyRight define distinct instances for Ord I, this program breaks the global uniqueness
property. Unfortunately, however, GHC still allows it.

If such programs without global uniqueness of instances should be rejected, then on what
grounds? Most literally, on the grounds that they violate the Haskell spec’s global uniqueness
property:10

Global Uniqueness Property. A type may not be declared as an instance of a particular class more
than once in the program.

Clearly, the Funny program should not be a valid Haskell program, according to this defini-
tion, since it defines two instances for Ord I.

Despite what the spec says, this program is accepted by GHC, which therefore does not
fully implement the Haskell spec when it comes to the intersection of modularity and type
classes. (But we shall see shortly how GHC can be tuned to partially implement the spec.)
The reason for this deviation is that no code in the program actually witnesses any type class
incoherence:11 in every module, whenever the typechecker requires a particular type class
instance, like Ord I, there is (at most) a single choice of instance.

In contrast, if the program included the FunnyClient module below,

-- (X) rejected module

module FunnyClient where

import Data.Set

import FunnyTop

import FunnyBottom

funnySet2 = insert (I 5) funnySet -- ill-typed!

then GHC would reject it since the call to insert demands a single Ord I instance but the
module knows of two—the one from FunnyLeft and the one from FunnyRight, which were both
transitively imported into this module via FunnyBottom. Put simply, this module witnesses
incoherence of type class instances. Typechecking it fails with an error reporting these two
overlapping instances.

To the author of FunnyClient, it might seem strange to encounter an error that concerns
the composition of FunnyLeft and FunnyRight. After all, these two modules were composed—
i.e., imported into the same module—upstream in FunnyBottom. (If the code that witnesses
the two overlapping Ord I instances were defined not in a direct client of FunnyBottom but
in a client of a client, then the reported error would be even more abstruse than before.)
GHC therefore assigns blame not eagerly, to the (potentially upstream) module that composes
two modules with overlapping instances, but lazily, to the (potentially downstream) module
whose code witnesses the overlap.

9 Rossberg et al. (2014), “F-ing modules”.
10 Marlow (2010), “Haskell 2010 Language Report,” §4.3.2.
11 Jones (1993) and Peyton Jones et al. (1997a).

http://journals.cambridge.org/article_S0956796814000264
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4.2.2 Misdiagnosing the problem

Although GHC accepts the erroneous Funny program by default, it does offer command-line
options that, when combined in the right way, reject the program. On which grounds? Not
because of adherence to the Haskell spec, but for the sake of compilation performance! By fail-
ing at the definition sites of so-called orphan instances,12 GHC can avoid some superfluous file
accesses when loading interfaces for depended-upon modules.13 And it just so happens that
by (optionally) rejecting orphan instances, GHC would consequently reject some programs
that break the global uniqueness property—but not all of them, as we shall see shortly.

But why should ruling out orphan instances also ensure (in some cases) the global unique-
ness of instances? If instance orphanhood is a mere implementation concern, what does it
have to do with the Haskell spec? Surprisingly, it seems to be a coincidence—a coincidence
that has led many in the Haskell community to misdiagnose the problem with programs that
lack global uniqueness.

Roughly speaking, an orphan instance is a type class instance defined in a module that
defines neither the type class nor any of the type constructors in the instance head. For
example, the two instances defined in FunnyTop are non-orphans because they’re defined in
the same module as the type I, but the two instances defined in FunnyLeft and FunnyRight
are indeed orphans. Non-orphanhood constitutes a further syntactic restriction on top of
the Haskell spec’s existing14 syntactic restriction on instance declarations: each instance must
have the form C (T a1 · · · an) (i.e., a single type parameter, which must be a type constructor
T applied to zero or more distinct type variables), and either C or T (or both) must be defined
in the same module as this instance. With such an onerous restriction on instance declarations,
the only way to break global uniqueness is to define two such instances in the exact same
module—a localized problem that is already prevented by GHC. As a result, by rejecting all
orphan instances and only accepting spec-approved instance declarations, GHC preserves
the global uniqueness property.

Rejecting orphan instances is not the default mode of compilation in GHC, but avoiding
them is quite conventional in practice. Indeed, the real-world analysis presented in §4.3 re-
veals that only 3% of all instances defined in common Haskell pckages are orphans.

4.2.3 Failure of the diagnosis

Hitching the assurance of global uniqueness to non-orphanhood might seem feasible for in-
stances allowed by the Haskell spec, but in real-world Haskell programming this strategy
does not suffice: some programs lack orphans yet break global uniqueness, and some pro-
grams contain orphans yet preserve global uniqueness.

First, a bad program without orphans. Figure 4.2 presents a program that, like the Funny
program, defines conflicting instances in the left and right sides which are then imported
together in the bottom, breaking global uniqueness of instances. The type class Coercible,
defined at the top, is modeled after the somewhat magic type class for GHC described in (Bre-
itner et al., 2014) and more recently implemented as part of the Haskell standard library pack-
age, base.15 The two conflicting instances, in NonorphanLeft and in NonorphanRight, are not or-
phans since each mentions a locally defined type, BL and BR, respectively. Taken together, the
program defines two applicable instances for the class constraint Coercible (BL Int) (BR Int)

but is accepted by GHC nonetheless.

12 The documentation of a command-line option to generate warnings (and thus, potentially, errors) at orphan instance
declarations dates back to GHC 6.4, released in March 2005: https://downloads.haskell.org/~ghc/6.4/docs/html/
users_guide/options-sanity.html

13 The documentation of orphans as a compiler performance concern dates back to GHC 5.00, released in April 2001:
https://downloads.haskell.org/~ghc/5.00/docs/set/separate-compilation.html

14 The restrictive syntax of class and instance declarations laid out in the 2010 Haskell spec (Marlow, 2010) remains
essentially unchanged from the original “Haskell 98” report from 2002.

15 http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Coerce.html

https://downloads.haskell.org/~ghc/6.4/docs/html/users_guide/options-sanity.html
https://downloads.haskell.org/~ghc/6.4/docs/html/users_guide/options-sanity.html
https://downloads.haskell.org/~ghc/5.00/docs/set/separate-compilation.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Coerce.html
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{-# LANGUAGE MultiParamTypeClasses #-}
module NonorphanTop where
-- a is coercible to b
class Coercible a b where
coerce :: a -> b

instance Coercible Int Int where
coerce = id

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}
module NonorphanLeft where
import NonorphanTop

-- a box type
data BL a = BL a

-- lift coercibility of a type *out of* its box type
instance Coercible a b => Coercible (BL a) b where
coerce :: BL a -> b
coerce (BL xa) = coerce xa

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}
module NonorphanRight where
import NonorphanTop

-- another box type
data BR b = BR b

-- lift coercibility of a type *into* its box type
instance Coercible a b => Coercible a (BR b) where
coerce :: a -> BR b
coerce xa = BR (coerce xa)

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances #-}
module NonorphanBottom(bl, n, BL, BR) where
import NonorphanTop
import NonorphanLeft
import NonorphanRight

bl :: BL Int
bl = BL 5

n :: Int
n = coerce bl

-- this would be ill-typed because there are two possible
-- instances for Coercible (BL Int) (BR Int):
-- br :: BR Int
-- br = coerce bl

Figure 4.2: Example of an orphan-free program that breaks global uniqueness of instances. Global
uniqueness is broken because in NonorphanBottom (and its clients) there are two applica-
ble instances for Coercible (BL Int) (BR Int). Note that FlexibleInstances is required
since the instance definitions each contain a naked type variable.
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module FooData where
data FooData = . . .

module Fooable where
import FooData
class Fooable a where
toFoo :: a -> FooData

name: foolib
build-depends:
base,
containers,
transformers

exposed-modules:
FooData, Fooable

module Fancy where
data FancyT = . . .

name: fancylib
build-depends:
base, text

exposed-modules:
Fancy

module FooFancy where
import FooData
import Fooable
import Fancy

instance Fooable FancyT where
toFoo fancy = . . .

name: foofancy
build-depends:
base,
foolib,
fancylib

exposed-modules:
FooFancy

Figure 4.3: Example of a program, consisting of three packages, that has an orphan instance but main-
tains global uniqueness of instances. To write this instance as a non-orphan, one of the first
two packages would need a superfluous dependency on the other.

GHC’s acceptance of the Nonorphan program requires a couple common, real-world lan-
guage extensions, as the program’s type class and instances do not adhere to the strin-
gent syntax of the Haskell spec. Because Coercible has two type parameters, it requires
MultiParamTypeClasses; and because the conflicting instance declarations have naked type
variables as class parameters (i.e., a in the left instance and b in the right instance), they
require FlexibleInstances.

With these ubiquitous extensions to the Haskell spec’s aging type classes, non-orphanhood
no longer ensures global uniqueness of instances.

Second, a good program with orphans. Figure 4.3 describes a program split across three
packages: foolib defines a class Fooable for serialization into its FooData type; fancylib de-
fines some fancy new type FancyT; and foofancy merely defines the instance Fooable FancyT,
an orphan instance, for serializing fancy types into FooData. Though seemingly contrived, this
configuration arises often in practice.

Each of the first two packages adds its own utility to the Haskell ecosystem, but neither
actually depends on the other—perhaps they were authored in total isolation. However, a
third party (such as foofancy’s author) might like to combine both of them into greater
utility by defining the missing type class instance, but this third party would necessarily define
the instance as an orphan. To avoid the orphan, exactly one of the first two packages must
depend on the other and then define the instance along with its own class or type. Not only
does this introduce a synchronization problem between the two authors; it also introduces a
superfluous package dependency—compilation bloat that package authors generally wish to
avoid.

4.2.4 New diagnosis: deficient type system

The Haskell spec describes a key property that must hold for valid programs: the so-called
global uniqueness of type class instances. And many Haskell programs are written with this
property in mind, to the extent that the correctness of their downstream clients depends on
it, as the Funny example shows.
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However, the spec’s terse description of global uniqueness doesn’t sufficiently instruct
Haskell implementors (or semanticists) how to faithfully implement (or formalize) it.16 It’s
a non-local property in the sense that, when checked on a per-module basis, it’s not neces-
sarily preserved under module composition (i.e., the import of modules into the same client
module): a program might define multiple conflicting type class instances without any mod-
ule witnessing their incoherence. Moreover, it’s a property not of a module’s own apparent
instances but of its “in-scope” instances, some of which trickle down from upstream depen-
dencies that the composing module knows nothing about.

The real problem with the spec is that it defines a non-local property with no explanation
of how to decompose it into modular properties. In other words, it lacks a type system.

A type system for Haskell modules should encode and enforce modular properties that
enable the determination of non-local properties like global uniqueness. With a type system,
client modules could “look at the types” to determine whether the import of two modules
preserves such properties.17 And as with a conventional typechecker, said types would be
stored, reused, and perhaps substituted for further analysis at other usage sites.

In contrast to a type system, with the (insufficient) non-orphanhood restriction many
Haskell programmers rely on, client modules have no language for determining whether par-
ticular modules maintain global uniqueness after composition. Somewhat paternalistically,
programmers are simply unable to define instances that might potentially, but not necessar-
ily, break global uniqueness.

4.3 world semantics for type classes

As described in the previous section, global uniqueness of type class instances is a key prop-
erty for Haskell. However, defined at the granularity of instance definitions ranging over the
whole program, rather than at the granularity of modules, global uniqueness doesn’t lend
itself naturally to modular enforcement and composition. Consequently, GHC attempts to
enforce the property by checking only instance definition sites18 and not module import sites, an
attempt which the previous section revealed to be inadequate.

As an example of how the granularity of the global uniqueness property matters for mod-
ularity, consider the following question: Do the already-typechecked modules A and B main-
tain global uniqueness when composed? With the property defined at the granularity of
instance definitions ranging over the whole program, one should look at all instance defini-
tions in A, B, and their upstream dependencies and check for conflicts. With a more modular
formulation of global uniqueness, one might answer the question by analyzing only the
already-synthesized static knowledge of the two modules A and B—essentially, their types.

In order to modularize global uniqueness, we need a semantical component that describes
the “static knowledge” that each module has about type class instances: worlds. Roughly
speaking, a world maps a type class constraint like Eq Int to the module that defines an
instance for that constraint, while the world inhabited by a module determines the in-scope
instances of that module.

In §4.4 worlds will get fleshed out in technical detail. For now, since worlds are a fairly
straightforward idea, we’ll jump right into some examples.

4.3.1 World tour

In this first example, modules successively depend on each other and add additional in-
stances, none of which conflict with each other.

16 The semantics of recursive modules (Marlow, 2010, Ch. 5) is similarly left open for others to flesh out (Diatchki et al.,
2002; Kilpatrick et al., 2014).

17 Type systems for ML modules similarly evolved out of a need to express, in the types of modules, relationships
between abstract type components. Consider, for example, the introduction of “manifest types” (Leroy, 1994) and
“translucent signatures” (Harper and Lillibridge, 1994).

18 When typechecking a module, GHC checks that each new instance definition does not conflict with any instances
defined upstream or with any other instances in the same module.
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module A where

class Foo a where . . .

module B where

import A

data TB = . . .

instance Foo TB where . . .

module C where

import A

import B

data TC = . . .

instance Foo TC where . . .

Each module’s world is determined by (1) the worlds of imported modules and (2) the mod-
ule’s own instance definitions; both are combined according to a merge operation on worlds,
⊕ . In the absence of conflict, that merge operation acts essentially like a set union, but
because merging fails in the case of two worlds with conflicting instances, the operation is
partial. The world inhabited by some module is defined as ω = ω1 ⊕ . . . ⊕ ωn ⊕ ωM,
where ωi is the world inhabited by the ith imported module, and ωM is the set of additional
instances defined in this module. For example, the worlds in the trivial example above are:

ωA = ∅
ωB = ωA ⊕ { Foo TB 7→ B }

ωC = ωA ⊕ ωB ⊕ { Foo TC 7→ C }

As a consequence of the definition of a module’s world, every downstream module knows at
least as much as its upstream modules. In particular, the current module’s worldω extends each
of the imported modules’ worlds ωi, where world extension, written ω ′ w ω, means that ω ′

is equal to the merging of ω with some additional knowledge. For example, ωC w ωB w ωA.
In §4.4 we will see how world extension factors into matching in Backpack extended with type
classes.

Returning to the Funny example from Figure 4.1, we see what happens when worlds col-
lide, i.e., when two worlds cannot be merged because they have mutually inconsistent knowl-
edge.

Supposing that Data.Set defines no instances, what are the worlds inhabited by the five
modules in the program? For all but FunnyBottom, it’s straightforward:

ωT = { Eq I 7→ FunnyTop, Show I 7→ FunnyTop }

ωL = ωT ⊕ { Ord I 7→ FunnyLeft }

ωR = ωT ⊕ { Ord I 7→ FunnyRight }

FunnyBottom, however, is different. Because it imports the left and right modules, its world
is defined, in part, as the merging of ωL and ωR. And, intuitively, this merging should be
undefined since the left and right instances conflict. Indeed, each of the two worlds ωL and
ωR maps the class constraint Ord I to a different module defining the instance; ωL ⊕ ωR is
thus obviously undefined. Moreover, because the FunnyBottom module composes FunnyLeft
and FunnyRight, and thus ωB = . . . ⊕ ωL ⊕ ωR, we say that FunnyBottom inhabits an
“inconsistent” world ωB = ⊥.19

19 We abuse notation by saying that ωB = . . . ⊕ ωL ⊕ ωR is both undefined and equal to ⊥, as worlds can be
understood also as a total commutative monoid with ⊥.



62 class struggle : type classes in backpack

4.3.2 Redefining type class semantics with worlds

Not simply a new layer sitting on top of Haskell, the worlds semantics described above is
intended to subsume the existing semantics of Haskell type classes—at least at the level of
the module system, i.e., import and export semantics. Although worlds determine the in-scope
instances available to a module, they say nothing about instance resolution, constraint solving,
or type inference—type class semantics at the level of the core language of types and values.

Haskell’s module system treats instances as core-level program entities, like types and
values, that are imported and exported between modules. Unlike types and values, however,
instances are imported and exported somewhat magically: “All instances in scope within a
module are always exported and any import brings all instances in from the imported module. Thus,
an instance declaration is in scope if and only if a chain of import declarations leads to the module
containing the instance declaration.”20 Compared to the spec’s definition, the worlds semantics
of type classes offers an alternative, cleaner characterization: an instance is in scope within a
module if and only if that module’s world knows about it.

Beyond the module-level semantics of type classes, the world semantics enables a clear
re-formulation of global uniqueness:

World Consistency Property. Every module in the program must inhabit a consistent world.

Because consistent worlds characterize exactly those modules which see no conflicting in-
stance definitions, the world consistency property subsumes the global uniqueness property
for a complete program. Even better, it’s a more modular property. As a quantification over
modules, world consistency decomposes cleanly into a property that may be verified at the
granularity of a module—with a worldω acting as evidence—and then stitched back together
for a whole program.

Unfortunately, in the more modular system of Backpack, where modules can depend on
signatures which can then be implemented by other modules, world consistency does not
suffice to guarantee global uniqueness, at least not at the level of modules. We’ll return to this
point in §4.4, but for now we’ll continue with the idea of world semantics for Haskell.

Both global uniqueness and world consistency have been stated as ad hoc properties that
should be true of any valid Haskell program. Instead, why not formally encode such a prop-
erty as part of the type system of modules? Then the truth of the property would be es-
tablished by the well-typedness of a program’s modules. Our more modular formulation
of the property, world consistency, quite naturally facilitates such an encoding since worlds
are determined during module typechecking and since module well-typedness is established
within those worlds. In §4.4 I will detail the encoding of worlds into module types—though
in the richer system of Backpack.

Much later in this dissertation, I will show that the Internal Language of Backpack—more
or less a formalization of plain Haskell—satisfies world consistency as a consequence of a
program being well-typed. Indeed, the idea of embedding world consistency into the type
system is evidenced in that system; see §9.3.6.

* * *

Embedding type classes into the module type system seems like a win-win situation: make
formal and “typey” an otherwise informally specified and mostly unchecked requirement of
Haskell. What can go wrong? As it turns out, when world semantics enter the type system for
Haskell’s modules, that type system loses conventional metatheoretic, structural properties.
In rough terms that’s the flip side of embedding worlds—which in a sense act as barriers to
modular composition—into the type system.

Take Weakening, for example. In most type systems with a typing judgment of the form
Γ ` e : τ, Weakening states that if such a typing derivation can be formed, then so can Γ ′ `
e : τ, where Γ ′ has more, or richer, assumptions than Γ . This property can then be proven in

20 Peyton Jones (2003), “Haskell 98 Language and Libraries: the Revised Report,” §5.4.

http://haskell.org/definition/


4.3 world semantics for type classes 63

terms of the particular definitions of the judgment. With type classes and world semantics,
however, imported modules in that richer Γ ′ possibly define new type class instances that
cause conflicts downstream in e—to the point that e is no longer well-typed at all, let alone
with type τ!

In my formalization of Backpack’s Internal Language (Chapter 9), I have stated and proved
several such metatheoretic properties that are conventional for typing derivations in type
systems, e.g., Weakening and Cut. In all such cases the properties stipulate an onerous side
condition I call world preservation: the concerning module expression must inhabit a consistent
world even after the structural modification to the typing derivation. Indeed, the proofs of
these properties are stuck without this additional assumption. Looking at these painful side
conditions to otherwise conventional type systems metatheory sheds new light on the oft-
heard folklore assessment that type classes are antimodular.

4.3.3 World consistency in the wild

I have argued that the world semantics is the right semantics for (the module level’s interac-
tion with) type classes in Haskell. And I have argued that world consistency, the modulariza-
tion of global uniqueness, is a crucial property that should hold of every Haskell program.
But do Haskell programs in the wild actually inhabit consistent worlds?

To answer this question I have developed a post hoc, prototype implementation21 of world
semantics and tested it on over 100 common Haskell libraries (and almost 200 more when
including their dependencies). With my protoype I have found that, yes, the vast majority of
common Haskell libraries inhabit consistent worlds.

prototype The prototype synthesizes the world inhabited by every module in a package
by processing those modules’ “binary interface files” (i.e., the .hi files) which result from
locally compiling, with GHC 7.8.4, their source files. Each binary interface file lists the locally
defined type class instances and the names of imported modules.22 Therefore, by processing
these interface files, one can synthesize worlds from compiled modules. The full process for
analyzing worlds in some package P goes as follows:

1. Install package P in a local (sandbox) repository on our test machine. P must be a “Ca-
balized” package that defines a library, not merely an executable. Installation involves
compiling every (exposed and hidden) module in the package—with default Cabal
settings—and locally storing their binary interface files.

2. For each moduleM in P, use the GHC API to read inM’s binary interface file and parse
it for its locally defined type class instances and imported modules.

3. Recursively23 synthesize a world for each of M’s imports, and then merge these worlds
with M’s local instances to form M’s world.

package selection I selected packages from two sources that together constitute some
notion of “common”: first, the 53 packages included in the Haskell Platform 2014 release, and
second, the 80 most-downloaded packages from Hackage, defined as all those with at least
1000 downloads at the time of my testing.24 From both sources I only considered packages
that define libraries and not just executables (e.g., alex and cabal-install), as binary inter-
face files of modules from Cabal executables are not installed locally. In total, 118 packages

21 Code and data available at https://gitlab.mpi-sws.org/backpack/class-struggle/tree/v3.
22 Technically, each interface file lists not the directly imported modules but some subset of the transitively imported

modules that contains at least the modules from which it imports instances.
23 In the case of recursive modules, GHC requires that the import cycle be broken with a “boot file.” Because my

prototype treats a boot file for M as a separate module from M itself, the prototype also visits and synthesize
worlds for boot files (which themselves have binary interface files, .hi-boot files). Saving the boot files’ interfaces
when installing a package with recursive modules required a straightforward modification to Cabal; see instructions
at my fork of Cabal 1.22: https://gitlab.mpi-sws.org/backpack/cabal-hi-boot/tree/class-struggle

24 Package lists with sources: https://gitlab.mpi-sws.org/backpack/class-struggle/blob/v3/data/pkgs

https://gitlab.mpi-sws.org/backpack/class-struggle/tree/v3
https://gitlab.mpi-sws.org/backpack/cabal-hi-boot/tree/class-struggle
https://gitlab.mpi-sws.org/backpack/class-struggle/blob/v3/data/pkgs
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Which Packages # Consis. # Inconsis. # Total % Consis.

Selected from Platform 53 0 53 100%
Selected from Popular 59 21 80 74%

All Selected 97 21 118 82%

All Analyzed 263 31 294 89%

Table 4.1: Calculation of world consistency in the wild.

Analyzed Package Selected? A B

ReadArgs-1.2.2 1 2

aeson-0.8.0.2 yes 3 20

egison-3.5.6 yes 1 0

ghc-7.8.4 2 3

haskeline-0.7.1.2 4 1

pandoc-citeproc-0.6 yes 2 1

persistent-2.1.2 yes 2 7

persistent-template-2.1.1 yes 1 4

shelly-1.6.1.2 yes 3 0

yesod-1.4.1.4 yes 1 0

yesod-persistent-1.4.0.2 1 3

Table 4.2: Sources of world inconsistency in the wild. Column A denotes the number of modules in
the package that create inconsistency, i.e., where the locally defined instances, the imported
instances, or the merging of both such groups lead to overlap. Column B denotes the number
of additional packages analyzed that inherit inconsistent worlds from each such package.

were selected from the two sources. Since I needed to install (and process) not just those
packages but also all their dependencies, a total of 294 packages were analyzed.

Because these 118 packages were selected only by their names, like containers, I also
needed to select a particular version of each, like 0.5.5.1, in order to uniquely identify some
code to compile. For this selection I used the Stackage snapshot of “safe” package configura-
tions.25

results The results of the calculation are presented in Table 4.1. Although 31 packages
were found to define modules with inconsistent worlds, only 11 of all 294 analyzed packages
(4%) define any modules that “create” inconsistency, i.e., modules that either define instances
that conflict with imported worlds or whose imported worlds are mutually inconsistent. 20

additional packages “inherit” their inconsistency from these 11. The 11 packages creating
inconsistency are listed in Table 4.2.26 Additionally, Table 4.3 presents an enumeration of the
orphan instances defined within the same packages. Interestingly, the percentage of orphans
among all instances defined in each category of packages is roughly 3%.

25 Stackage LTS 2.1: http://www.stackage.org/snapshot/lts-2.1
26 See the project README for more information about how to analyze and interpret these results: https://gitlab.

mpi-sws.org/backpack/class-struggle/tree/v3/

http://www.stackage.org/snapshot/lts-2.1
https://gitlab.mpi-sws.org/backpack/class-struggle/tree/v3/
https://gitlab.mpi-sws.org/backpack/class-struggle/tree/v3/
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Which Packages # Orphans # Total % Orphans

Selected from Platform 171 5,136 3%
Selected from Popular 345 10,282 3%

All Selected 426 14,083 3%

All Analyzed 651 20,332 3%

Table 4.3: Enumeration of orphan instances in the wild.

The worst offender in the sources of inconsistency is the aeson-0.8.0.2 package, a com-
mon library for dealing with JSON in Haskell.27 But instead, given that it’s the implement-
ation of the compiler itself, ghc-7.8.4 is what I’ll focus on in more detail.28

This package, the GHC API, is one of the 11 packages causing inconsistency. Within this
package one module, CmmExpr, defines two sets of conflicting instances (three in one set, four
in the other), and in a downstream module, CmmNode, one of those instances conflicts with
a locally defined one, making 8 total conflicting instances.29 All instance conflicts in this
package stem from two type classes for which there exist overly generic instances with naked
type variables in their parameters:

• CmmExpr.DefinerOfRegs r r

• CmmExpr.UserOfRegs r r

Each one of these two instances clashes with every other instance of the form C a (· · · b · · · ),
like CmmExpr.DefinerOfRegs r [a], which is unifiable with the overly generic instance above.

The inconsistency from one or both of these modules trickles down into the worlds of 260

other modules. That’s over half of the 448 total modules defined in the ghc package. All told,
the package’s combined world contains 3,921 instances, of which 1,472 are defined within
the package itself. And of those 1,472 instances only 8 are conflicting, thereby producing
inconsistency. Finally, to further hammer home the point that orphans aren’t the problem,
none of these 8 instances is one of the 56 orphan instances defined in the package. Full
results can be found in the data files in the accompanying repository.30

* * *

To summarize, my prototype demonstrates that, among hundreds of common Haskell
packages, modules that don’t inhabit consistent worlds are only a small minority. My analysis
suggests that the Haskell ecosystem could remain largely unchanged if it were typechecked
against the world semantics of type classes.

Moreover, since world consistency was designed as a modularization of the Haskell spec’s
global uniqueness property, the analysis shows which of these common packages adhere to
the spec (with respect to type class instances): exactly those packages that inhabit consistent
worlds. This is a contribution in itself, regardless of world semantics.

27 Package description in Hackage: http://hackage.haskell.org/package/aeson-0.8.0.2
28 Source code: https://github.com/ghc/ghc/tree/ghc-7.8.4-release
29 The CmmExpr and CmmNode modules define data and functionality for GHC’s internal C– representation of pro-

grams. Both modules use the extensions FlexibleContexts and UndecidableInstances, thereby allowing GHC to
accept them as well-typed despite defining conflicting instances. See the GHC documentation on the latter lan-
guage extension: https://downloads.haskell.org/ghc/7.8.4/docs/html/users_guide/type-class-extensions.
html#undecidable-instances

30 A slightly modified output from the prototype that demonstrates the inconsistency and worlds in the ghc-7.8.4
package can be found at the following URL, with more info at the project README: https://gitlab.mpi-sws.org/
backpack/class-struggle/blob/v3/data/worlds/islands-ghc.txt#L736-797

http://hackage.haskell.org/package/aeson-0.8.0.2
https://github.com/ghc/ghc/tree/ghc-7.8.4-release
https://downloads.haskell.org/ghc/7.8.4/docs/html/users_guide/type-class-extensions.html#undecidable-instances
https://downloads.haskell.org/ghc/7.8.4/docs/html/users_guide/type-class-extensions.html#undecidable-instances
https://gitlab.mpi-sws.org/backpack/class-struggle/blob/v3/data/worlds/islands-ghc.txt#L736-797
https://gitlab.mpi-sws.org/backpack/class-struggle/blob/v3/data/worlds/islands-ghc.txt#L736-797
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package a-sig where

A ::



data Set a
empty :: Set a
insert :: Ord a => a -> Set a -> Set a

class Foldable t where

foldr :: (a -> b -> b) -> b -> t a -> b
instance Foldable Set


package client where

include a-sig

B =



import A
export (main, Foldable)

data T = T Int
xs = insert (T 5) empty
main = print (foldr ... xs)

instance Eq T where ...
instance Ord T where ...


package a-impl where

A =



data Set a = ...
empty = ...
insert = ...

class Foldable t where

foldr :: (a -> b -> b) -> b -> t a -> b
instance Foldable Set where ...
instance Eq a => Eq (Set a) where ...


package main where

include client

include a-impl

Figure 4.4: Revised example of modular abstraction, now with type classes.

4.4 retrofitting backpack with type classes

Now that the reader has a grasp of the world semantics for type class instances in Haskell,
we return our attention to Backpack. Figure 4.4 contains a few Backpack packages whose
modules and signatures contain type classes and instances. We will now walk through how
type classes, instances, and worlds manifest in this example, along the way discussing how
Backpack’s semantics should be updated—with worlds—to capture that change.

4.4.1 Type classes as core entities

Most immediately, we see the need for representing type classes (like Foldable) and instances
(like that of Eq I) as definable core entities like values and types. However, only classes, not
instances, should be imported and exported like the other core entities (e.g., Foldable in B);
instances should instead obey the world semantics discussed in §4.3. We therefore need to
augment Backpack’s core names:

Class Names C ∈ ClassNames

Defined Entities dent ::= . . . | C(x)

Instance names, however, don’t exist in the surface syntax. They are implicitly generated,
derived from the types and classes in the instance definitions.
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Module types need to capture all the typed information about core entities (defined in those
modules). So they’ll also need to know the types of everything related to class definitions
and instance definitions. For example, the type of A contains the following specification of
the type class definition for Foldable:

class Foldable (t :: * -> *) {} where

foldr :: (a -> b -> b) -> b -> t a -> b

The empty curly braces represent the fact that this class has no superclass constraints. Like-
wise, the specification of the instance definition for the Eq instance in a-impl’s A module is:

instance (a :: *) {[ν0]Eq a} [ν0]Eq ([νA]Set a)

This specification contains all the information to uniquely identify each name and type in
the instance definition: the originating module identity, in square brackets, along with that
entity’s syntactic name, together forming a physical name (phnm). Note that the Set type is
defined in this module itself, which has identity νA.

To account for these new kinds of entity definitions, the semantic object that describes
the typed specifications of entities needs to be updated. As a prerequisite, we also need a
semantic representation of class constraints like [ν0]Eq ([νA]Set a), just as Backpack needed
a semantic representation of types (§3.1):

Semantic Class Constraints cls ::= [ν]C typ

Defined Entity Specs

dspc ::= . . .

| class C kenv {cls} where x :: typ

| instance kenv {cls} cls

Like type constructors, classes are uniquely identified with physical names as well, like [ν]C.
In the above example of the specification of A’s Eq instance, there are multiple mentions of
the physical name of that class, [ν0]Eq.31

The multiple occurrences of typ in the semantic object for class constraints, cls, highlights
a departure from the Haskell spec: type classes in Backpack are inherently multi-parameter.
That’s because the complexity of multi-parameter type classes is entirely orthogonal to the
module level; nothing in Backpack’s definitions has any need for there to be only a single type
parameter on classes.32

4.4.2 Worlds in module typing

The instances known to each module are determined not via the import and export resolution
of entity names, but via the world semantics (§4.3). For reference, the definition of worlds in
Backpack, as semantic objects, is provided in Figure 4.5. The full definition will be provided
in §7.2 (Figure 7.5).

The mechanics of worlds in Backpack essentially match what we saw in the previous sec-
tion: worlds form a partial commutative monoid (PCM) on finite maps from class constraints
to module identities.

31 We assume that the class Eq originates in some implicit, builtin module with identity ν0, as does the type Int. We
shall also assume that the same module defines instances like Eq Int.

32 Indeed, the problem with orphanhood presented in §4.2 showed that such syntactic restrictions (i.e., prohibiting
orphan instances) were insufficient as compared to semantic restrictions (i.e., requiring consistent worlds). The com-
plexity for multi-parameter type classes exists instead at the core level; as such, the complexity is shoved under the
rug of the (assumed) core type unification (unify(typ; typ)) used as part of instance head avoidance (head # head)
defined in Figure 4.5.
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ω fact head Instance Heads head ::= kenv.cls
Instance Facts fact ::= head 7→ ν

Worlds ω ::= {| fact |}†

head # head(
kenv1.([ν1]C1 typ1)

)
#
(
kenv2.([ν2]C2 typ2)

)
def⇔

true ν1 6= ν2 ∨C1 6= C2
∀i : ¬unify(typ1,i; typ2,i) otherwise

consistent(ω) consistent(ω)
def⇔ ∀fact1, fact2 ∈ ω : head(fact1) # head(fact2) ∨ fact1 = fact2

ω ⊕ ω ω1 ⊕ ω2
def
= ω1 ∪ω2, if

∀

(
fact1 ∈ ω1,

fact2 ∈ ω2

)
: head(fact1) # head(fact2) ∨ fact1 = fact2

ω w ω ω ′ w ω def⇔ ∃ωF : ω ′ = ω ⊕ ωF

apply(θ;ω)

apply(θ; {| fact |}) def
= {| θfact |}, if

∀fact1, fact2 ∈ fact : θhead(fact1) # θhead(fact2) ∨ θfact1 = θfact2

Figure 4.5: Definition of world semantic objects in Backpack. † refers to the fact that, although worlds
have the presented syntax, they additionally carry the invariant consistent(−).



4.4 retrofitting backpack with type classes 69

As a first example, consider the world of the A module defined in a-impl. Its world is
determined exactly as in the previous section: merge the worlds of its imports (empty, in this
case) with the world consisting only of locally defined instances. That world is:

ω ′A =

{
[νA]Foldable [νA]Set 7→ νA,

(a :: *). [ν0]Eq ([νA]Set a) 7→ νA

}

There are three key observations about this world. First, rather than syntactic instance names,
we simply map each class constraint to the module identity that locally defines the instance
for that constraint. This suffices to identify a particular instance with a particular class con-
straint because each module can only define a single instance producing that class constraint;
otherwise, such a module would define two conflicting instances.

Second, all class and type names occurring in the class constraints are uniquely identi-
fied with their defining module identities, like νA for Foldable, this module’s identity as
determined earlier in the section.

Third, the Eq instance is polymorphic and thus requires a kind environment (kenv) to make
sense of the type variable a. The latter addition—polymorphic class constraints in worlds—is
not unique to Backpack; Haskell would require the same mechanism with a worlds semantics,
even though the discussion in §4.3 didn’t necessitate it. Not just syntactic noise, the possible
polymorphism in instance definitions directly concerns the true definition of the partial merge
operation on worlds (Figure 4.5): two distinct instances conflict—i.e., overlap—if their class
constraints are unifiable in core-level type variables a (not in module identity variables), hence
the unify operation in the definition of merge.

Two instances defined in the same module would of course conflict even when their class
constraints are unifiable. That’s a classic case of overlapping instances. For example, if the A
module in a-impl also defined a specialized instance for Eq (Set Int), that instance would
impose the following additional fact in the world ω ′A:

(). [ν0]Eq ([νA]Set [νI]Int) 7→ νA

That semantic class constraint absolutely unifies (in core type variables) with that of the
other Eq instance in the world, using the core type substitution a := [νI]Int. In other words,
the statement

unify
(

(a :: *). [ν0]Eq ([νA]Set a) ; (). [ν0]Eq ([νA]Set [νI]Int)

)
holds, but we don’t actually want to treat these two world facts as compatible. As a result, the
world that contains both instance facts would simply not be a valid semantic object. (Again,
alternatively, one could say such a world exists, but it’s the inconsistent world, ⊥.)

This partiality of merge that requires the facts in the two worlds to be consistent with each
other—i.e., non-overlapping—is not just part of the world merging definition. It’s actually a
key invariant of worlds themselves, expressed as consistent(ω) in Figure 4.5. Worlds as seman-
tic objects maintain this invariant in Backpack: in the formalization’s metatheory, everywhere
a world semantic object is synthesized or denoted, the consistency invariant must be proven.
As far as the type system goes, this manifests in the consistency condition of definedness for
partial operations denoting worlds, like (ω1 ⊕ ω2) and apply(θ;ω).

Worlds of modules are determined just as presented earlier in this chapter for Haskell, but
where are they actually located in Backpack’s semantics? The approach of inserting them into
the module level is meant literally—I augment module contexts and judgments with world
objects, as “@ ω” (see §7.2 for full definitions):

Physical Shape Ctxts Φ̂ ::= ν:τ̂m@ ω̂

Physical Type Ctxts Φ ::= ν:τm@ω
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Module Shaping Γ̂ ; ν0 
 M⇒ τ̂ @ ω̂

Module Typing Γ ; ν0 ` M : τ @ω

As an example, the shape of the A implementation in a-impl is

τ̂ ′A =

〈
Set(..), . . . ,

Foldable(foldr)
;
[νA]Set(..), . . . ,

[νA]Foldable(foldr)

〉
@ ω ′A.

Note that this shape does not mention, among its defined entity names in the first component,
either of the two instances defined in this module. In a hypothetical Haskell with syntactic
instance names, they would occur here, but for now, the module shape has no use for them.
During the typing pass, however, the module type will indeed mention the specs for the two
instances:

instance (a :: *) {[ν0]Eq a} [ν0]Eq ([νA]Set a)

instance {} [νA]Foldable [νA]Set

4.4.3 Worlds for signatures too

The very first package already confronts us with a scenario we didn’t see in the previous
section—signatures, and they inhabit worlds just like modules do.

The world of a signature like A in a-sig is determined exactly as if it were a module:
merge the worlds of its imports with the world consisting only of locally defined (rather,
declared) instances. Thus the world of this signature only knows about the single instance for
Foldable Set. What is the module identity that defines this instance?

In the original semantics section for Backpack (§3.2), we saw that signatures yield a mod-
ule identity variable α, to be substituted by the identity of the implementation, and also n
variables βi, each to be substituted by the identity of the module that provides the i-th entity
declared in the signature. Concretely, in a-sig, the identity of A is αA and the identities of (the
modules that will implement) its declared entities are βS, βe, βi, βF, and βFS, all of them
fresh and distinct. Padding the class, instance, and type names with their defining identities,
we see that A’s world is the singleton

ωA = {[βF]Foldable [βS]Set 7→ βFS}.

Although this world mentions module identity variables, it’s still a perfectly valid world.
We have now demonstrated the worlds of both the implementation of A (ω ′A) and the hole

of A (ωA), as they exist in their respective packages. Notably, the former is not related to
the latter because the class constraint and defining module identity in the hole are entirely
distinct from those in the implementation: Foldable, Set, and the instance itself all come from
module νA in the implementation but from modules βF, βS, and βFS in the hole. However,
this does not present a problem for the well-typedness of main, as it will see unified identities
in the respective worlds.

4.4.4 Worlds when linking

During Backpack’s shaping pass (§3.2), when an implementation is linked for a hole, the
identities contained in the implementation are unified with their corresponding identities (as
variables) in the hole. Then, during the typing pass, the module type of the implementation
must be a subtype of the now-unified module type of the hole.

The same unification-followed-by-subtyping occurs with worlds as well; i.e., the world of
the implementation must extend the world of the hole. In our example, that means θ(ω ′A) w
θ(ωA), where θ is the unifying substitution that results from linking.
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However, we must slightly adjust Backpack’s linking semantics to account for worlds. In
Backpack, the identities to unify between two module types are looked up according to the
exported entities list of the two types: if the implementation exports [ν]x and the hole exports
[β]x, then we know to unify ν and β. In Backpack extended with worlds, the identities to
unify must be looked up not just in these export specs but also in the two modules’ worlds.

For example, when unifying the shapes of the A implementation and hole, the identities
for the exported Foldable and Set in the implementation (both νA) are unified with their
counterparts in the hole (βF and βS)—just as expected from Backpack. However, type class
instances demand an extra unification. After the previous unification, the implementation
and the hole both know an instance for the constraint [νA]Foldable [νA]Set, but the two
worlds map this constraint to distinct module identities: νA in ω ′A and βFS in ωA. Therefore
we must unify the defining identities of these instances, νA and βFS, that have equal class
constraints. Without this additional unification on the instances’ defining module identities,
the linking substitution θ would not yield θ(ω ′A) w θ(ωA).

Note however that substitution on worlds is actually partial, as the consistency invariant
must be maintained. (See the definition of apply(θ;ω) in Figure 4.5.) Why might substitution
on a world produce an inconsistent world? The example in §4.5.3 shows exactly that.

In Backpack a world of an implementation must extend the world of a signature it matches.
That’s because a downstream module that imports the signature might rely on some fact ex-
posed by that signature; after all, signatures have worlds constructed from imported worlds
and locally declared instances just like modules do. Then in order to make sure that the
downstream module continues to observe the same fact after linking, the world of the imp-
lementation must be checked to contain all the facts known to the world of the signature. In
§4.5.1 an example highlights this further.

4.4.5 Lifting world consistency to packages

In §4.3.2 it was hinted that the World Consistency Property, stated as a modular reformulation
of the Global Uniqueness Property in Haskell, would not suffice in the more modular context
of Backpack. To illustrate why, let’s reconsider the motivating Funny example from Figure 4.1.
First, we rewrite it as a package in Backpack, and second, we replace the FunnyRight module
with a signature that hides the problematic instance. The resulting package, funny-partial, is
defined in Figure 4.6.

Within funny-partial, there is only one instance for Ord I and therefore no concerns about
consistency. However, what about the package funny-complete that links in the same problem-
atic, conflicting instance? Statically, during the typing of funny-partial, the world inhabited by
FunnyBottom is consistent. And in funny-complete, the module hasn’t changed and neither has
its world. The linking of the FunnyRight implementation does not cause its world to percolate
retroactively into that of FunnyBottom.

But, as in Haskell, the FunnyBottom program from funny-complete would see the misabstrac-
tion and therefore the erroneously constructed list. That’s because, regardless of static typing
of worlds, the elaboration of this package will be the exact same modules as in the original
Haskell example. Though worlds aid the type system in statically ruling out misabstraction,
they offer the dynamic execution of a program no such benefits.

What this example shows is that satisfying the World Consistency Property in Backpack
(“every module inhabits a consistent world”) does not guarantee in the elaborated Haskell
program the Global Uniqueness Property (“there are no two conflicting instances defined
in the program”). Since the latter is the (admittedly heavyweight) property that rules out
misabstraction, we need a way to recover it. Concretely, we need the type system of Backpack
to prohibit the funny-complete package.

To recover Global Uniqueness in the elaboration, we add a new requirement to Backpack’s
type system:

Package-Level Consistency Property. The world of a package, obtained by merging together the
worlds inhabited by all modules in that package’s type, must be consistent.
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package funny-partial where
include containers (Data.Set)

FunnyTop =


import Data.Set

data I = I Int
instance Eq I where ...
instance Show I where ...



FunnyLeft =



import Data.Set
import FunnyTop

instance Ord I where ...
insL :: I -> Set I -> Set I
insL = insert



FunnyRight ::


import Data.Set

import FunnyTop

insR :: I -> Set I -> Set I



FunnyBottom =



import Data.Set
import FunnyTop
import FunnyLeft
import FunnyRight

funnySet :: Set I
funnySet =
insR (I 1) (insL (I 1) (insL (I 2) empty))
main = print (toAscList funnySet)


-- is this well-typed?

package funny-complete where
include funny-partial

FunnyRight =



import Data.Set
import FunnyTop

-- reverse ordering
instance Ord I where ...
insR :: I -> Set I -> Set I
insR = insert



Figure 4.6: Revisiting the Funny example from Figure 4.1 with modular abstraction.
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By lifting the consistency requirement to the level of entire packages, we can truly rule out
any violations of Global Uniqueness—which, by replacing mentions of “global” and “the
program” with “the package” is essentially the same property. As with our original motiva-
tion for worlds, however, Package-Level Consistency retains the footing in the Backpack type
system: it’s a property expressible with the semantic objects of module types and in particu-
lar it’s a clearly stated property about a package’s “type,” so to speak; see Property A.3, for
example.

Returning to the funny-full package, we can see how it would be considered ill-typed. The
include binding has a package type Ξ1 that contains within it a module typing νL:τL

+@ωL,
while the FunnyRight binding has a package type Ξ2 that contains the single module typing
νR:τR

+@ωR, with ωL 6 ⊕? ωR since they define conflicting instances for [ν0]Ord [νT]I. There-
fore, by augmenting the definition of the partial merging of package types to require that
their combined worlds are consistent with each other, we cannot prove Ξ1 ⊕? Ξ2 as required
for the well-typedness of module bindings, and thus the package is ill-typed.

Package-Level Consistency is unfortunately quite a blunt instrument. By requiring that all
worlds across an entire package be mutually consistent, we ensure that the desired World
Consistency property holds for each module—but at the cost of ruling out possibly valid
packages that define conflicting instances that are never witnessed by any particular module.

The funny-full example demonstrates the trickiness of designing a semantics for type classes
in the presence of abstraction as in Backpack. The blunt instrument isn’t necessarily the best
way to rule out such examples, but it’s the present way that I have chosen for Backpack.

4.4.6 Elaborating Backpack with worlds

The internal language (IL) of Backpack, into which Backpack packages are elaborated, was
designed with a principal goal: to model “plain Haskell” as it exists today. When Backpack
is augmented with type classes and worlds, the IL needs to be augmented in turn.

Since worlds in Haskell are a semantical concept used to model existing Haskell behavior
of type class instances, worlds in the IL are likewise only a peripheral ingredient to IL’s
semantics. In particular, the world semantics for plain Haskell, as presented at the beginning
of this section, is integrated into the IL. The modified syntax and semantic objects of the IL
are presented below:

(Directory Expressions) dexp ::= {f 7→ tfexp @w}

(World Facts) fact ::= instance kenv ˚cls from f

(Worlds) w ::= {|fact|}

(File Environments) fenv ::= f : ftypm @w

This integration of IL worlds (w) directly resembles that of worlds into Backpack’s semantic
objects of module contexts. It is a straightforward translation from the EL concept into the
ingredients of the IL, e.g., with source file names f replacing module identities ν. The typing
judgment of the IL must also be augmented to yield the world inhabited by the concerning
module source file (hsmod), and the merging operation on both directory expressions (dexp)
and file environments (fenv) must be augmented to handle worlds as they are in the EL.

One noteworthy exception is the lack of any kind of Package-Level Consistency Property
in the IL. No where in the IL are the various worlds of a directory or environment aggre-
gated and required to be consistent.33 Instead, as in the presentation of worlds for Haskell,
they are only ever analyzed and checked for consistency at the granularity of individual
modules. More accurately, they are consistent in the EL and the elaboration preserves that

33 Worlds in the EL are semantic objects and not present in the syntax of the expression language at any level. Worlds
in the IL, however, are part of the syntax of the directory expression (dexp) via the typed file expression (tfexp). On
that basis and because the latter better models Haskell, I decided to impose consistency as an implicit invariant on
EL worlds but not IL worlds.
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consistency; that’s one of the consequences of Backpack’s primary Elaboration Soundness
Theorem (§9.6).34

The reader might wonder, why augment the IL with worlds at all, given that the mechanics
of (fully closed, complete programs in) the IL still just models that of the Haskell spec? The
answer is simply that their presence aids technical definitions. Moreover, their presence in di-
rectory expressions acts as a certificate of global uniqueness: since each world is consistent by
definition, and since a well-typed directory expression dexp has for each of its module source
files the world that the module inhabits, each module in dexp inhabits a consistent world—no
module in the program can witness (or execute code from) two conflicting instances.

As with the rest of this chapter, full technical details are provided in the formalization in
Chapters 6, 7, and 8.

4.5 subtleties of type classes and abstraction

The interaction between type classes and modular abstraction introduces a number of sub-
tleties that, in the course of the development of type classes for Backpack, proved quite
challenging to pin down. However, once I settled on the world semantics (rather than treat-
ing instances as implicitly imported and exported entities, as the Haskell spec does), the
subtleties became more holistically comprehensible. We now walk through some examples
that illustrate these subtleties.

4.5.1 Signature matching and world extension

Earlier it was revealed that worlds of implementations must extend worlds of signatures
they match. At first glance, that might seem backwards and overly restrictive, according to
one interpretation of substitutability. In that interpretation, the more instance facts a module’s
world contains, the less composable that module is with others, for each of its instances might
clash with one in a prospective composed module. Therefore the implementation, which has
a larger world, can be used in fewer places than can the signature it matches against, which
has a smaller world—a violation of intuition about substituting an implementation for a
signature.

A practical example illuminates Backpack’s imposed order of extension along signature
matching. Consider the following package providing a signature for some module X:

package x-sig-1 where
include prelude-sig

X ::



import Prelude

data T

value :: T

power :: T -> Int -> T

toStr :: T -> String


Because this signature imports Prelude (in order to know about Int and String), its world
is as large as Prelude’s. Any prospective implementation needs to have a world that extends
that world. That might seem like too hefty a requirement.

But in order to match the signature, that implementation needs to know about Int and
String, if not by importing Prelude directly, then by importing something that imported them.
And if that’s the case then it must know everything Prelude did along with any intervening

34 Elaboration Soundness proves that a well-typed EL package definition elaborates to a dexp such that, according to
the Soundness Relation (§9.5), each world of a module typing in the EL elaborates directly to a world of a file in the
IL. Specifically, for the EL world {| fact1, . . . , factn |} of module ν, the elaboration of ν is a module named ν? with IL
world {| fact1

?, . . . , factn
? |}, where (−)? is just the straightforward translation of module names.
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modules. Its world is naturally larger than X’s; the seemingly backwards world extension
requirement no longer seems so restrictive.

Now let’s consider the case that the X signature also imported some particular concrete
implementation, for example, because the programmer had some unnecessary imports:

package some-lib where
include prelude-sig

include containers-sig

include mtl-sig

SomeLib =



import Prelude
import Data.Set
import Control.Monad.FancyStuff

data Thing a = Blah Blah Blah

thing = sadf

instance Monad Thing where ...



package x-sig-2 where
include prelude-sig

include some-lib

X ::



import Prelude
import SomeLib

data T

value :: T

power :: T -> Int -> T

toStr :: T -> String

data U = MkU Thing

other :: T -> U -> Thing



At this point, just by importing SomeLib, X’s world in x-sig-2 knows everything from Prelude,
Data.Set, Control.Monad.FancyStuff, and the additional instance in SomeLib. Now the burden
on an implementation is quite a bit higher! It too has to import that exact same SomeLib,
for example. That seems unfortunate. If only the author of X had split it into X and Y, with
only Y importing that module, this additional burden of implementation of X wouldn’t have
existed.

That consideration of granularity of dependency (on holes) is exactly the kind of consid-
eration of how best to modularize and parameterize her code that the author of X needs to
make under Backpack.

4.5.2 Coherence and superclass constraints

The second example concerns not only the visibility of instances within signatures, but also
the status of superclass instances required for instance definitions.
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package superclass-coherence where
A =

[
data T = T Int

]
B =

[ import A
instance Eq T where ...

]

C ::

 import A, B
-- requires an Eq T instance

instance Ord T



D =

 import A, C
-- which Eq T instance applied?

main = print ((T 0) == (T 1))



-- (×) ill-typed package

package incoherent-attempt where
include superclass-coherence

B’ =

[ import A
instance Eq T where ...

]
C =

[ import A, B’
instance Ord T where ...

]

In module D which instance of Eq T is (statically) chosen for the equality check? Does the C
implementation match the signature since they each used a different Eq T to validate their
Ord T instance?

The first question is interesting because it demonstrates a certain kind of coherence (i.e.,
determinism of instance resolution) in the presence of abstract instance declarations in Back-
pack. In module D, there are two potential ways to construct an instance for the required
constraint Eq T: (1) by directly applying B’s Eq T instance known to this module (thanks to
the design decision for signatures to obey world semantics just like modules do), or (2) by
extracting it, as superclass evidence, from the (abstractly declared) Ord T from the hole C.35

At this point, we don’t actually know which Ord T instance will come with the implement-
ation of C, so there’s no telling which Eq T instance will have been used as evidence of its
superclass constraint.

Fortunately, as it turns out, the two methods of constructing evidence must be the same.
The answer to the second question, regarding the alleged implementation of C in incoherent-
attempt, shows why. Consider the worlds of the modules among the two packages above:

ωA = ∅
ωB = {[ν0]Eq [νA]T 7→ νB}

ωC = {[ν0]Eq [νA]T 7→ νB, [ν0]Ord [νA]T 7→ βOT}

ωD = {[ν0]Eq [νA]T 7→ νB, [ν0]Ord [νA]T 7→ βOT}

ω ′B = {[ν0]Eq [νA]T 7→ ν ′B}

ω ′C = {[ν0]Eq [νA]T 7→ ν ′B, [ν0]Ord [νA]T 7→ ν ′C}

(where βOT is the variable for the identity that implements the abstractly declared Ord T

instance in the hole C). As discussed earlier, the world of an implementation must extend the
world of a hole—a natural extension of Backpack’s signature matching. But in the case of C
in incoherent-attempt, this is not the case: the world of the hole, ωC, contains an instance for
Eq T from module identity νB, while the world of the hole, ω ′C, contains an instance for the

35 Proof systems for type class constraint solving often include a rule for proving such superclass constraints, e.g.,
(Peyton Jones et al., 1997b; Sulzmann, 2006).
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same constraint but from a different module identity, ν ′B, i.e., the instance defined in B’, not
B. Then the implementation does not match the hole and this package, incoherent-attempt, is
therefore ill-typed. Returning to the coherence issue, this shows that a valid implementation
of C must have known the same Eq T instance that the hole knew, thus ruling out incoherence
stemming from the abstract instance declaration.

The fastidious reader might wonder what makes these example packages tricky, for Package-
Level Consistency rules incoherent-attempt ill-typed as soon as it merges (the types of) a bind-
ing for module B’, which has an instance for [ν0]Eq [νA]T, and the included binding for
module B, which has a different instance for the same class constraint. Here, yes, the blunt in-
strument of Package-Level Consistency makes the example quite moot. But the example nonetheless
highlights the subtleties behind mixing type classes and modular abstraction—possibly for a
future attempt with a different semantics.

4.5.3 Instances on abstract types

The final subtle example highlights what happens when instances are defined on abstractly
declared types from signatures.

package uncertain where
X1 :: [ data T ]

X2 :: [ data T ]

Y =

 import qualified X1, X2
instance Eq X1.T where ...

instance Eq X2.T where ...



-- (×) ill-typed package

package certainly-bad where
include uncertain

X = [ data T = MkT Int ]

X1 = X

X2 = X

Is module Y well-typed, considering that it doesn’t completely know the identities of the two
T types? If uncertain is well-typed, then what happens in certainly-bad when X1 and X2 are
bound to be aliases?

The world inhabited by the Y module knows only about its two locally defined instances:

ωY =

{
[ν0]Eq [β1]T 7→ νY,

[ν0]Eq [β2]T 7→ νY

}

(where β1 and β2 are the identities of T in X1 and in X2 respectively). There’s something
fishy about these two instances. They almost overlap, as they are defined on two Haskell
types, [β1]T and [β2]T, that are distinct but unifiable in their free module identity variables.
At the moment, within uncertain, there’s no reason to worry since they don’t actually overlap;
the world of Y is consistent and this package is well-typed.

But the next package, certainly-bad, is not well-typed. In this package, the two holes X1 and
X2 are linked together (with an alias binding, §2.5), and thus β1 and β2 will be unified by
some linking substitution θ. The application of θ to the worldωY would be undefined since it
would unify two distinct instances’ class constraints. In other words, applying a substitution
θ to a world ω is a partial function that is only defined when θ is an injection on ω’s class
constraints; indeed, that’s how substitution maintains the implicit consistent(−) invariant on
worlds (Figure 4.5).
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Let’s put that technical description of substitution’s definedness criterion in simpler words.
This example show that linking requires we check existing module worlds, in the module
context (Φ), to make sure they are still consistent after substitution. It shouldn’t be so surpris-
ing that linking could potentially result in inconsistent worlds, however. In §4.2 we demon-
strated that module composition in Haskell—expressed as the import of two modules into the
same client module—does not necessarily preserve world consistency. Since Backpack offers
a much richer system of modularity, it offers a richer language for composing modules. And,
as is the case in Haskell, composing modules does not necessarily preserve world consistency.
That’s why, with Backpack, we aimed to integrate world consistency into the well-typedness
of modules in the first place.
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In Part I of this dissertation I’ve presented intuition and examples for how to make sense of
programs in Backpack. What we haven’t seen yet is a technical definition for that intuition;
that’s the subject of Part II over the course of the next several chapters. In this chapter I de-
scribe the formalization of Backpack at a high level. Not only does the formalization fully and
precisely define Backpack as a type system spanning both an External Language (EL) and Inter-
nal Language (IL)—along with the elaboration of the former into the latter—it also includes
metatheory that validates that definition. Figure 5.1 presents a diagram of the formalization.

The principal, outermost typing (and elaboration) judgment of Backpack is as follows:

∆ ` D : ∀α.Ξ  λf.dexp

A package definition D has package type ∀α.Ξ and elaborates to the parameterized IL ex-
pression λf.dexp. Explaining the definition of—and justification for—that judgment and its
constituent parts is the goal of this part of the dissertation, making more precise and con-
crete what was informally presented in Chapter 3. The package level is covered in Chapter 8.

That judgment is part of the outermost level of Backpack: the package level. Backpack is
formalized not just as this new layer atop Haskell, but as an entire three-layer cake. Below the
package level is the module level, where the two principal typing (and elaboration) judgments
are:

Γ ; ν0 ` M : τ @ω  hsmod

Γ ; ρ ` S : σ @ω | Φsig

Both judgments describe how a module or signature expression is typed in some module con-
text, with the module expression additionally elaborating to the IL expression (read: Haskell
module definition) hsmod. This module level of Backpack is mostly imported wholesale from
Haskell, retaining all its complexity while adding the additional notion of signatures. This
level is completely defined in the formalization, all in Chapter 7, with some spillover from
Chapter 6 as well.

Finally, below the module level is the innermost level of Backpack: the core level. “Here
be dragons,” as the saying goes. This is where the main focus of the world of Haskell has
always existed; it’s the domain of values, types, functions, data constructors, type classes and
instances, etc. For that reason, it’s actually the least interesting to the Backpack formalization.
There the principal typing judgments are:

Φ; ν0; eenv; ω ` defs : dspcs

Φ; ν; eenv; ω ` decls : dspcs

These judgments describe core-level definitions (in modules) and—new compared to Haskell—
declarations (in signatures) are typed with respect to contextual objects determined at the
module level. This level, unlike the other two, is not fully defined in the Backpack formal-
ization. Instead, I assume the existence of these (invented) judgments and axiomatize some
properties expected of them. The core level is covered first, in Chapter 6.

Altogether, the syntax, semantics, and metatheory of the core level, then module level,
and then package level of the EL will be presented in turn. Following that will be the syn-
tax, semantics, and metatheory of the IL—essentially a model of Haskell’s core and module
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Core
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Figure 5.1: Diagram of the entire Backpack formalization.

levels. Finally, the elaboration semantics will be presented, along with the core Elaboration
Soundness Theorem.

* * *

The formalization of Backpack, or any other language for that matter, is hardly a determin-
istic consequence of its intended design and semantics. It is instead, like Backpack itself, an
object designed according to certain goals and trade-offs.

goal : precise definition as type system

Expressions in Backpack are organized into a type system: well-formed expressions are clas-
sified by types according to inductively defined typing judgments. These typing judgments
are defined almost entirely deterministically—exceptions will be discussed later —and thus
collectively serve, along with shaping, as a typechecking algorithm for Backpack. Altogether,
this typechecking algorithm realizes the intuition presented in the earlier chapter.

nested levels Backpack’s type system is quite large. To manage the complexity, its syn-
tax and semantics are stratified across three levels: package, module, and core, which corre-
spond respectively to the new package constructs; modules, signatures, and import/export
resolution; and Haskell types, values, and typechecking.1 Moreover, this stratification serves
as a “parameterization” of the package and module levels over the core level, effectively ab-
stracting Backpack away from the specifics of Haskell types, values, and typechecking. For
exactly these reasons, such stratification is common in formalizations of type systems for ML
modules—minus the additional package level, however.

semantic objects Unlike many type systems, including some earlier ones for ML mod-
ules, Backpack’s types do not manifest in the syntax of expressions: there are no “syntactic
signatures.” For example, the types of module expressions (M) have no representation as
expressions; they are not signature expressions (S). Instead, Backpack’s types are defined
as—and in terms of—semantic objects.

Some of Backpack’s semantic objects carry additional structure beyond their syntactic rep-
resentation. For example, given the prevalence of merging operations (due to mixin compo-
sition), many of them are idempotent partial commutative monoids (PCMs). The formalization

1 While they together constitute a single type system, I sometimes refer to them as three different ones.
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defines the syntactic elements of such objects, like module types (τ), along with a (partial)
merging operation ( ⊕ ) and identity element (·) that satisfy laws of idempotence, associativ-
ity, commutativity, and identity. As an example of other structure, a physical module context
(Φ) acts as a finite mapping from module identities (ν) to polarities (m), module types (τ),
and worlds (ω). As such, two contexts are equivalent as mappings, despite the syntactically
written order of their constituent objects. Moreover, physical module contexts are idempotent
PCMs with a standard merging definition for finite mappings.

well-formedness Whereas some semantic objects satisfy properties which are “baked
in,” like being an idempotent PCM, most semantic objects have an additional notion of well-
formedness in some context. Well-formedness is captured by an additional judgment that as-
certains whether a syntactically valid semantic object satisfies certain properties with respect
to a context. For example, if a module type τ mentions some Haskell type [ν]T, then τ would
not be well-formed in context Γ if Γ did not contain a module ν that defines type T.

metatheory Not just a type system, the Backpack formalization also includes metathe-
ory, i.e., theorems about the type system (and elaboration, as we’ll see shortly) that support
and validate the definitions. The metatheory of type systems based on the lambda calcu-
lus often include so-called structural properties like weakening and substitution. Indeed, the
internal language of Backpack relies on such properties in order to prove the central elabo-
ration soundness theorem. As another example, typing judgments on Backpack expressions
satisfy a regularity property: when an expression is classified by a type in some context, then
that type is itself well-formed in the same (or some related) context. Then if the judgment
∆; Γ ; Ξ̂pkg ` B : Ξ is derivable (“package binding B has type Ξ”) then so is Γ ` Ξ wf
(“package type Ξ is well-formed in context Γ”).

goal : elaboration into modules

The formalization actually contains two languages: Backpack, the external language (EL), and
plain Haskell, the internal language (IL). Each of the two languages is specified with its own
type system (and accompanying metatheory), and they are linked together with an elabora-
tion from EL to IL (and its accompanying metatheory).

internal language “filesystem” As a model of plain Haskell, the IL largely resem-
bles the fragment of the EL restricted to (1) the module and core levels and (2) concrete
modules, i.e., no abstraction. This resemblance exists in the syntax, in the type systems, and,
to a lesser extent, in the metatheory.

While the EL comprises the package, module, and core levels mentioned above, the IL com-
prises the filesystem, module, and core levels. Instead of the EL’s rich package level the IL
has only a light filesystem level that groups together expressions at the module level: syntac-
tically, the IL’s filesystem level organizes module expressions into files, accompanied by file
types and bundled together in directories. This filesystem language intentionally resembles the
representation of a multimodule Haskell program in GHC: a module expression is defined
in a .hs file; a module interface is described in a .hi file; and all constituent modules are
grouped together in a filesystem directory (or nesting thereof).

elaboration The elaboration effectively “compiles away” the package level of the EL.
More concretely, the elaboration leaves the module and core levels of an EL expression mostly
unchanged—crucially, except for module naming—and replaces the package level with the
filesystem level for the resulting IL expression.

Although the type system specifies how to mechanically characterize valid Backpack ex-
pressions, the type system itself doesn’t claim to represent Backpack’s “semantics.” Instead, it
is the elaboration that bears the weight of that claim, for it is the elaboration that explains the
essence of retrofitting a weakly modular system with strong modularity. To bear that weight, a
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statement and proof of soundness technically validates the elaboration’s preservation of mean-
ing and structure.

no dynamic semantics Following in the research tradition of the ML module system,
Backpack’s EL is defined via the static semantics of typing and elaboration; there is no dy-
namic semantics. Is that a limitation of the formalization? No, it’s not. Because of the Haskell
core language’s purity, there is no core-level evaluation that happens as the result of process-
ing a module in the IL. Then the evaluation of a program in the IL (i.e., a directory expression
with a "main" module file) would not be concerned with the order in which its module files
were defined or processed.2

goal : compatibility with haskell

One of the goals of the formalization is to maintain compatibility with Haskell. Given the
stratification into a type system across three levels, that goal concretely means that the type
system at the module level (and the core level subsequently) should adhere as closely as
possible to the semantics of Haskell described in the Haskell 98 specification.3

While the Haskell 98 specification informs the design of the type system, it does not and
cannot fully determine it, for Backpack adds a package level and extends the module level.
For the parts of Backpack that already exist in Haskell, the type system follows Haskell 98;
elsewhere, it reuses ingredients from the former, like import resolution and world determi-
nation.

2 In particular, recursive modules in the IL need not be concerned with the order in which they are loaded and
processed. This simplification cannot be made with recursive modules in ML, where the evaluation of core-level
bindings in a module might produce side effects, for example, by printing to the screen.

3 I use the Haskell 98 and Haskell 2010 specifications interchangeably, as they are identical with respect to the module
system and identification of core entities. The one exception is the addition in 2010 of hierarchical module names,
a purely cosmetic convention. For more information, see https://www.haskell.org/onlinereport/haskell2010/
haskellli2.html#x3-5000

https://www.haskell.org/onlinereport/haskell2010/haskellli2.html#x3-5000
https://www.haskell.org/onlinereport/haskell2010/haskellli2.html#x3-5000
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We begin with the innermost level of Backpack: the core. At this level a program consists of a
list of Haskell entity bindings, either concrete definitions (inside modules) or abstract declarations
(inside signatures). The type system for the core level is primarily described by the following
two typing judgments for definitions and declarations respectively:

• Φ; ν0; eenv; ω ` defs : dspcs and

• Φ; ν; eenv; ω ` decls : dspcs.

inputs (from module level) From the module level, the core level uses a physical
module context (Φ) giving types to module identities; a module identity or list of identities
(ν0 or ν0) determining the provenance of the corresponding entity bindings, respectively;
an entity environment (eenv) mapping the syntactic references in the bindings to their unique
physical names from the physical module context; and a world (ω) describing the type class
facts known to these bindings.

outputs (to module level) The primary goal of the core level is to classify entity
bindings with their corresponding defined entity specifications (dspcs), which act as the canon-
ical static descriptions for those entities. Given (the unique physical name of) a value entity
x, what is its type? The answer is determined by consulting the dspc for x—although how to
obtain that dspc within a particular context is a problem for the module level.

internals As the innermost level of the Backpack formalization, there is no underlying
level to employ in the internals of the core. Instead, the actual semantics of typing entity
bindings is axiomatized and left undefined in the formalization. At exactly this point, as
with countless other formalizations of ML module systems , Backpack abstracts over the
(orthogonal) details of the underlying programming language, resulting in a smaller and
more generic formalization.

abstraction barrier In the Backpack formalization the core level models that of Haskell.
But we are not concerned with much of the details of Haskell’s core level. Backpack’s core
level specifies only those portions of Haskell’s core level necessary to build up the module
and package levels. For that reason, it defines core entity names and bindings but not the full
syntax of terms and types and especially not the semantics of typechecking on those terms.
This delineation between what is defined and what is undefined is the abstraction barrier of
Backpack’s core level. We will see shortly how the abstraction barrier manifests in the syntax,
semantics, and metatheory of the core level.

6.1 syntax of the core level

The syntax of the core level is presented in Figure 6.1. Generally speaking, the core syntax is
defined to be that of the underlying “programming language” of Haskell, i.e., the types and
terms of Haskell. However, for the purposes of simplicity and genericity, the formalization
abstracts over the details of types (utyp) and terms (uexp). Instead, Backpack is concerned
only with the named bindings of types and terms, collectively called entities, and with the
syntactic references to these bound entities.
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Backpack Core Syntax

Entity Names and References

Value Names x ∈ ValueNames
Datatype Names T ∈ TypeNames
Constructor Names K ∈ CtorNames
Class Names C ∈ ClassNames
Entity Names χ ::= x | T | K | C

Entity References eref ::= χ Unqualified Reference
| mref.χ Qualified Reference

Module References mref ::= Local Local Module Name
| ` Imported Module Name

Types and Terms

Type Variables a ∈ TypeVars
Types utyp ::= eref Datatype Reference

| . . .

Value Exprs uexp ::= eref Value Reference
| . . .

Kinds knd ::= * Type Kind
| knd -> knd Arrow Kind

Kind Environments kenv ::= a :: knd
Class Constraints ucls ::= eref utyp

Entity Bindings

Entity Definitions def ::= data T kenv = K utyp Datatype Definition
| x :: utyp = uexp Value Definition

|
class C kenv <=ucls
where x :: utyp

Class Definition

|
instance kenv ucls => ucls
where x = uexp

Instance

Entity Declarations decl ::= data T kenv Abstract Datatype Declaration
| data T kenv = K utyp Concrete Datatype Declaration
| x :: utyp Value Declaration

|
class C kenv <=ucls
where x :: utyp

Class Declaration

| instance kenv ucls => ucls Instance Declaration
List of Entity Definitions defs ::= def
List of Entity Declarations decls ::= decl

Figure 6.1: Syntax of Backpack’s core level.
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entity names and references Entity names are drawn from distinct sets and there-
fore distinct namespaces. An entity name χ is either a value name x (e.g., map, a datatype
name T (e.g., Maybe), a datatype constructor name K (e.g., Just), or a type class name C (e.g.,
Eq). An entity χ can be referenced (eref ) either qualified by some module reference (e.g., the
map in L.map) or unqualified (e.g., the Maybe in Maybe Int).

In the case of a qualified entity reference, a module reference (mref ) can be either the
keyword Local, which refers to the present module or signature , or a logical module name `
(e.g., Data.Set), which refers to some imported module that exports the entity. The core-level
syntax otherwise contains no mention of module names; such names are introduced into the
scope of a program by import statements at the module level.

types and terms The syntax of types (utyp) and terms (uexp), as already stated, is more
or less inconsequential to Backpack. The sole interesting part of each is the inclusion of entity
references to either a datatype entity T or a value entity x; the rest falls on the other, undefined
side of the abstraction barrier. The formalization’s omission of other kinds of types and terms
in the core level—denoted by the ellipses (. . . )—follows many type systems for ML modules1.

In addition to types and terms, the core-level syntax contains type class constraints (ucls)
which likewise include references to type class entities C (applied to some number of type
expressions).

The syntax also contains kinds (knd) to describe higher-kinded types. A kind environment
(kenv) simply associates type variables with their kinds. Throughout the formalization, we
presume that kind environments bind type variables over a constituent type or class con-
straint, where obvious, and thus obey standard α-equivalence on top of syntactic equivalence.

entity bindings At the core level, a program consists of a sequence of entity bindings
that describe them. If the program is a signature, then the bindings are all declarations, in
which no value expressions (i.e., executable code) exists, and in which datatype entities may
be declared abstractly without their constructors. Otherwise, if the program is a module, then
the bindings are all definitions, in which value expressions exist in the cases of value bindings
(x :: utyp = uexp) and instance definitions (the method implementations x = uexp).

Each entity binding describes a set of entity names. A value binding introduces only its
name x; a datatype binding introduces its name T along with any constructor names K it
describes; a type class binding introduces its name C along with any class method names x
it describes; and an instance binding introduces no names. In the case of datatypes and type
classes entities, the additional names are referred to as subordinate names of the entity.

6.1.1 Comparison with Haskell 98

• Module references in Backpack additionally include a reserved reference Local. Like
a “self” reference in many OO languages, this module reference always identifies the
current, ambient module (or signature). In Haskell, one can write a qualified reference
to a locally defined entity χ in module ` as `.χ. In Backpack, however, this could be
written as Local.χ.

• Type synonyms and newtype declarations are excluded. While the latter would manifest
in the formalization exactly like datatypes with one constructor, the former would be a
little more involved.

• Value definitions must include type annotations. There’s no particular reason for this
other than to simplify presentation, as the Backpack formalization is not concerned
with core-level type inference. See §6.4 for more.

1 Leroy (1994, 2000), Rossberg and Dreyer (2013), and Rossberg et al. (2014).
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• As discussed in Chapter 4, the syntax of type classes and instances is more permissive
than in Haskell 98. One restriction, however, is the absence of default implementations
of class methods.

6.2 semantics of the core level

The semantics of the core level is defined as a type system of entity bindings: a program,
represented as a list of entity bindings, is classified by semantic objects according to a typing
judgment. For example, . The design of this type system introduces two main challenges.

semantic objects First, the semantic objects that act as “types” for entity bindings must
refer to other bound core entities by name. For example, the “type” of the value defini-
tion for member must somehow mention the datatypes Set and Bool. Then we need a
constituent semantic object to represent each bound core entity. Moreover, as we saw in
§3.1, the core-level semantics must distinguish two Haskell types with the same entity
name, such as Foo.T and Bar.T (for which we introduced the notion of module identity).

Because they permeate every level of the formalization, the real meat of the core seman-
tics lies in the definition of semantic objects.

typing judgments Second, the typing judgment for a program necessarily involves the ac-
tual static semantics of Haskell typing, kinding, and class constraint solving. Otherwise,
how might the semantics determine which value definitions have well-typed expres-
sions (matching their annotated types); which datatype definitions have well-kinded
constructors; which instance definitions have their superclass constraints satisfied; and
so on.

As already discussed, the answers to such questions lie on the other side of the abs-
traction barrier; the Backpack formalization does not provide them. Instead, the formal-
ization merely specifies the typing judgments and, in the next section, imposes some
axioms about their behavior.

As a concrete example of a core-level program, this section will focus primarily on a
Backpack-ification of Haskell’s canonical implementation of a set data structure.2 Figure 6.2
provides the core-level definitions of this module, while Figure 6.3 provides the core-level
declarations of a corresponding signature. This implementation of Set uses a straightforward
binary tree to store the elements at the branch nodes, represented by the data constructor Bin.
Crucially, the implementation of some operations, like member, requires an ordering on the
element type, denoted as the Ord a class constraint.

As an additional example, of more interesting types and kinds, Figure 6.4 provides the core-
level declarations of a signature for Haskell’s canonical indexed-arrays implementation.3

6.3 semantic objects

The semantic objects of the core level are defined in Figure 6.5. As in all levels, these semantic
objects represent bound names and classify syntactic expressions. Since the core is the inner-
most level, they pervade the entire formalization—physical entity names (phnm) in particular.
Certain semantic objects that are critical to understanding the core level, like worlds (ω), will
be defined in the next chapter, on the module level (Chapter 7).

In this section I describe these core-level semantic objects with examples of (core-level)
programs.

2 The Data.Set module defined in the containers package: http://hackage.haskell.org/package/containers-0.5.6.
3/docs/Data-Set.html

3 The Data.Array.IArray module defined in the arrays package: http://hackage.haskell.org/package/array-0.5.3.
0/docs/Data-Array-IArray.html

http://hackage.haskell.org/package/containers-0.5.6.3/docs/Data-Set.html
http://hackage.haskell.org/package/containers-0.5.6.3/docs/Data-Set.html
http://hackage.haskell.org/package/array-0.5.3.0/docs/Data-Array-IArray.html
http://hackage.haskell.org/package/array-0.5.3.0/docs/Data-Array-IArray.html
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data Set a = Tip | Bin a (Set a) (Set a)

empty :: Set a
empty = Tip

member :: Ord a => a -> Set a -> Bool
member = \ x s -> case s of
Tip -> False
Bin y l r -> case compare x y of
LT -> member x l
GT -> member x r
EQ -> True

insert :: Ord a => a -> Set a -> Set a
insert = . . .

toAscList :: Set a -> [a]
toAscList = \ s -> case s of
Tip -> Nil
Bin x l r -> append (toAscList l) (cons x (toAscList r))

instance Eq a => Eq (Set a) where
(==) = \ s1 s2 -> toAscList s1 == toAscList s2

instance Ord a => Ord (Set a) where
compare = \ s1 s2 -> compare (toAscList s1) (toAscList s2)

Figure 6.2: A slightly simplified excerpt of the Data.Set implementation. Within this excerpt, the only
change to the standard implementation is the omission of a size field on the Set type.

data Set a

empty :: Set a
member :: Ord a => a -> Set a -> Bool
insert :: Ord a => a -> Set a -> Set a
toAscList :: Set a -> [a]

instance Eq a => Eq (Set a)
instance Ord a => Ord (Set a)

Figure 6.3: An excerpt of the Data.Set implementation converted to signature declarations. Note that
Set has been made abstract.

class IArray (a :: * -> * -> *) e where
bounds :: Ix i => a i e -> (i, i)
numElements :: Ix i => a i e -> Int

data Array i e

(!) :: (IArray a e, Ix i) => a i e -> i -> e

Figure 6.4: An excerpt of the Data.Array.IArray implementation converted to signature declarations.
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Backpack Core Semantic Objects

Physical Entity Names phnm ::= [ν]χ

Semantic Types typ ::= [ν]T typ Datatype (Application)

| forall kenv. cls => typ Polymorphic Type

| a typ Type Variable (Application)

Semantic Class Constraints cls ::= [ν]C typ
Semantic Instance Heads head ::= kenv . cls
Entity Definition Specs dspc ::= data T kenv Abstract Datatype

| data T kenv = K typ Concrete Datatype

| x :: typ Value

| class C kenv {cls} x :: typ Class

| instance kenv {cls} cls Instance

Entity Name Specs espc ::= [ν]χ Simple Entity

| [ν]χ(χ ′) Entity with Subnames

Entity Name Spec Sets espcs ::= espc
Entity Environments eenv ::= { eref 7→ phnm } ; espcs

Module Types τ ::= 〈| dspc ; espcs ; ν |〉
Module Worlds ω ::= {| head 7→ ν |}

Physical Module Contexts Φ ::= {|ν:τm@ω |}

Figure 6.5: Semantic objects relevant to Backpack’s core level, with key objects in bold. Although pre-
sented here since they’re mentioned in the semantics of the core level, module-level semantic
objects like worlds (ω) and module types (τ) will be presented in Chapter 7.

physical names To get a sense for the ways in which nested semantic objects at the
core level permeate the formalization at all levels, consider the definition of the value entity
member in Figure 6.2. This function tests whether an element is in a given Set, in part by
calling the compare function, which uses the Ord a constraint, to determine which side of the
tree to search.

What would the type of member look like? In most type systems for Haskell,4 the type
would be some variation of

∀α. Ord α⇒ α→ Set α→ Bool

where Ord and Set/Bool refer to class and type names (respectively) bound in some context.
But that context should accept multiple distinct classes and types, defined in distinct modules,
that happen to share the same syntactic names. For example, the type system of Faxén5 would
record, in its type of member, the local name Set since it denotes a type defined in the same,
local module but also the original name GHC.Types.Bool since it denotes a type defined in an
imported module. We therefore need a way to distinguish, in the semantic objects, similarly-
named entities bound in distinct modules—and that was exactly the motivation for tracking
module identity in 3.1.

Backpack uses module identities (ν) to represent the original, binding module for a core
entity. Any entity named χ that was originally bound in the module with identity ν can then
be uniquely identified with the physical name (phnm) [ν]χ. Physical names are thus used, for
example, to distinguish between the bound occurrence of Set from module νS, [νS]Set, and
that of Set from some other module ν ′S, [ν ′S]Set. (How the module identity νS got associated

4 Jones (1994), “Qualified Types: Theory and Practice”.
5 Faxén (2002), “A static semantics for Haskell”.
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with Set will be described shortly.) Moreover, they generalize to uniquely identify all named
entities, like [νS]member.

semantic types and class constraints We now see how physical names play an
important role in the representation of Haskell types, For example, consider the actual seman-
tic type (typ) of member:

typ1 , forall (a :: *). [νP]Ord a => a -> [νS]Set a -> [νP]Bool

This type is more or less identical to the example type given above, modulo some cosmetic
changes. In particular, the three syntactic class and type names are translated to physical
names.

The most interesting form of typ is the datatype reference, [ν]T typ, since this form explicitly
mentions a physical name of a type: [ν]T . Such physical names of entities (phnms) enable
the distinction of similarly-named types, a distinction that is necessary for defining type
equivalence.

Polymorphic types are represented with a simple kind environment (kenv) that binds core-
level type variables (a) over some constituent type (typ). We assume standard alpha-renaming
of the type variables on these binders. Type variable references a typ are in weak-head nor-
mal form simply to avoid a separate form of semantic type for applications (apart from the
datatype references).

We keep types in normal form so that type equivalence is just syntactic equality (modulo
alpha-conversion for polymorphic types) on typ. Because this restricted syntax of Haskell
types6 lacks type-level computation, there is no nontrivial equivalence necessary for core-
level types in Backpack. (See §11.2 about the future work of supporting more advanced
features like type families.)

Class constraints are also kept in normal form, thereby also enabling equivalence to be
defined as syntactic equality—and here too, polymorphism stemming from binding kind
environments on class constraints means that they can be alpha-converted.

entity environments and interpretation of syntax The translation of the syn-
tactic type utyp1 , which is annotated on member’s definition, to the semantic one typ1, is
an example of a key operation in the formalization: the interpretation of syntactic terms into
semantic objects.

But how did the syntactic references to class and type names Ord, Set, and Bool get trans-
lated to the physical names [νP]Ord, [νS]Set, and [νP]Bool? By an accompanying entity envi-
ronment (eenv) that maps the syntactic references to physical names. Entity environments are
considered “inputs” to the core level, having been constructed in the module level. They’re
constructed by processing the import statements and local bindings of a module (or signa-
ture): each import statement and each local binding yields some portion of the entity envi-
ronment, and those portions are all merged together. (The full details will be given in §7.2.)

The running example has been implicitly governed by the entity environment eenv1, de-
fined in Figure 6.6. A realistic entity environment for this program would contain additional
mappings for qualified names, but we omit them for the sake of the discussion of the core level.
The second component of eenv1, the in-scope entity names, will be explained shortly.

The interpretation of syntactic terms into semantic objects is realized in the formalization
with a straightforward partial operation applying an entity environment to a syntactic term.
For example, typ1 = eenv1(utyp1). Interpretation of an entity reference (eref ) simply behaves
like the underlying mapping of the environment, whenever that mapping acts as a function
for that particular reference. See Figure 6.7 for the full definition. Interpretation is also defined
recursively on syntactic terms that contain entity references: class constraints (ucls 7→ cls), and
types (utyp 7→ typ).

6 The Haskell 98spec, which lacks some of the richer, more modern type features like type families.
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eenv1 ,



Bool 7→ [νP]Bool

Ord 7→ [νP]Ord

compare 7→ [νP]compare

Set 7→ [νS]Set

Bin 7→ [νS]Bin

Tip 7→ [νS]Tip

member 7→ [νS]member
...



;


[νP]Bool()

[νP]Ord(compare)

[νS]Set(Bin,Tip)

[νS]member



Figure 6.6: Sample entity environment for the running example.

entity name specifications The second component of the entity environment, the
entity name specifications (espcs), lists the entity names that are considered “in scope” within a
program. Like the mapping of name references to physical names, it contains all the names
gotten from import statements and from the local bindings of the program. (Hence the pres-
ence of imported names like [νP]Ord and local names like [νS]member in eenv1.) Entity name
specs look just like physical names but with one exception: for entities with subordinate
names (i.e., datatype names and class names), the spec contains a list of some number of
those subordinate names. For example, the presence of [νS]Set(Bin,Tip) in eenv1 means that
the subordinate names Bin and Tip, Set’s data constructors, are also in scope. It’s possible
that neither of these subordinate names would be part of the entity name spec for Set, in
which case the constructors Bin and Tip would not be in scope in the program; such is the
case for all modules that import the Set module, since it exports only [νS]Set(). We shall
see more examples of how entity name specs factor into import and export resolution at the
module level.

entity definition specifications The formalization distinguishes the semantic type
of member as a value, typ1, with the “type” of the def1 definition itself; i.e., the distinction
between the type of the value and the type of the whole definition/binding of that value. We
call these “types” of core entity bindings entity definition specifications (dspcs). In the case of
value bindings, this specification trivially pairs the value name with its semantic type:

dspc1 , member :: typ1

The specifications of datatype bindings look similar: the syntactic types mentioned in the
datatype binding are interpreted into semantic types, yielding a specification that resembles
the original syntax but with types replaced. And similarly for class and instance bindings.
The exact syntax of these specifications don’t matter much; they need only record all the
interpreted, semantic types for any syntactic types occurring in the entity bindings.

The dspcs for declarations look very similar to the dspcs for definitions, as the specs contain
only type information and not value-level terms. One distinction, however, is the additional
dspc form for abstract datatype declarations.

use of physical names in typechecking One of the motivations presented earlier
for tracking module identity was to distinguish between distinct types with the same syntac-
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Interpretation with Entity Environments

Interpretation of single entity references eenv(eref ) :par phnm eenv(eref ) = phnm : espc

eenv(eref ) def
= phnm if

eref 7→ phnm ∈ eenv

∀ eref ′ 7→ phnm ′ ∈ eenv : eref = eref ′ ⇒ phnm = phnm ′

eenv(eref ) = phnm : espc def⇔


espc ∈ locals(eenv)

phnm = eenv(eref )

phnm ∈ allphnms(espc)

Syntactic intepretation eenv(utyp) :par typ eenv(ucls) :par cls eenv(kenv.ucls) :par head

eenv(T utyp) = eenv(T) eenv(utyp)
eenv(forall kenv.utyp) = forall kenv.eenv(utyp)
eenv(a) = a

eenv(C utyp) = eenv(C) eenv(utyp)

eenv(kenv.ucls) = kenv.eenv(ucls)

Figure 6.7: Definition of syntactic interpretation via entity environments. Note the following: (1) The
interpretation of a single entity reference requires that the reference be unambiguous: the
entity environment (eenv) cannot map the reference to more than one physical name (phnm).
(2) The allphnms(espc) operation gathers up all the physical names concerning a particular
export spec and is defined in Appendix §A.1.2.1. And (3) throughout this dissertation, the
notation OPERATION : OBJECT is used to mean the meta-level OPERATION is a total function
producing OBJECT; when “:” is replaced with “:par” then the meta-level OPERATION is a partial
function producing OBJECT.
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tic name. An implementation observes this distinction by comparing physical names of types.
As an example, consider the following core program containing two definitions.

data T = MkT Int

n :: Int

n = f (MkT 5)

The function f is presumed to have been imported from another module; then the given eenv
maps f to a physical name [ν]f, and the givenΦmaps [ν]f to an entity spec f :: [ν ′]T -> [νP]Int.
The T mentioned in the type of f is not the locally defined T, which has physical name [ν0]T,
but rather some other type T, [ν ′]T. Because the domain type of f does not match the type of
the expression (MkT 5), the program is ill-typed.

overlapping entity names Among the entity bindings of a core program, none may
bind any common names. Clearly, it wouldn’t make sense to bind two different values both
name x, for example. But the subordinate names must also be distinct. The following core
programs are ill-typed because of overlapping names.

data T

data U = K | MkU

data V = K | MkV

class C a b where

g :: a -> b

f :: Int -> Bool

f = . . .

g :: String -> String

g = . . .

In the first program, a list of declarations, the constructor name K is a subordinate name of
both U and V. In the second program, a list of definitions, the class method g, a subordinate
name of class C, overlaps with the value definition g.7

As we shall see shortly, rejecting programs with such overlap is not merely a design deci-
sion to cohere with Haskell semantics; it enforces a key invariant in the formalization. Because
Backpack ascribes identity to modules and not to entities, the formalization critically relies on
the uniqueness of entity names paired with modules. If a single module with identity ν
could bind two distinct entities for name χ, then the physical name [ν]χ would no longer
uniquely identify one or the other. Concretely, in terms of the second example above, if one
were to request from Φ the specification for the physical name [ν]g, should the specification
for (the method g in) the class C or the specification for the value g be returned? By following
Haskell’s rejection of such overlap, we avoid this question altogether.

ambiguous entity references In Haskell it’s possible that a module has two distinct
entities with the same name in scope. For example, consider the following core program, a
list of declarations, that declares a fresh datatype named Bool, which overlaps with the entity
of the same name imported from the Prelude module.

data Bool = True | False | Dunno

7 If the Backpack formalization had included records in datatype bindings, then record field names would present
another potential form of overlap.
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Consider the typing of this program with respect to an eenv that contains the following
entries:

eenv contains



Bool 7→ [νP]Bool

Prelude.Bool 7→ [νP]Bool

Bool 7→ [ν1]Bool

Local.Bool 7→ [ν1]Bool
...


In this example, the environment specifies that the locally declared Bool is identified with
provenance ν1, which is distinct from νP. Curiously, eenv has multiple entries for the syntactic
reference Bool—but single entries for the syntactic references Prelude.Bool and Local.Bool—
and therefore cannot interpret references to the unqualified name Bool into a physical name.

Despite this curiosity, the core program is still well-typed, in order to cohere with Haskell
98. That’s because in this program there aren’t any syntactic references to Bool; there is merely
a declaration for Bool without any reference to Bool. It’s quite unrealistic to define a datatype
but no other entities that mention it, so consider a modified program and eenv:

data Bool = True | False | Dunno

not :: Bool -> Bool

not b = ... b ...

eenv contains



...

not 7→ [νP]not

Prelude.not 7→ [νP]not

not 7→ [ν2]not

Local.not 7→ [ν2]not


Because there are references to Bool in the type of not, and because eenv doesn’t uniquely map
Bool to a physical name, this program is ill-typed for having an ambiguous reference. We can
recover well-typedness by eliminating the ambiguity with qualified references:

data Bool = True | False | Dunno

not :: Local.Bool -> Local.Bool

not b = ... b ...

In this final example, with the same eenv as the previous one, there are no longer any am-
biguous references. This core program is well-typed. This would be a pain in practice; indeed,
Haskell provides an alternative form of import statement that hides unwanted entities from
the imported module. In Haskell, the above example might be written (with an explicit im-
port of the Prelude module) as:

import Prelude hiding(Bool, not)

data Bool = True | False | Dunno

not :: Bool -> Bool

not b = ... b ...

Backpack omits this construct to simplify the presentation. It would pose no complication to
the formalization.

Finally, it’s important to note in which of the Backpack typing judgments such ambiguous
references would be rejected. Because the presence of ambiguous references depends on the
eenv and the actual core bindings, such programs are rejected here in the core level, not in the
module level where the eenv is synthesized.



96 core level

overlapping instances In §4.4 we saw that Backpack follows Haskell 98’s rejection of
overlapping type class instances. However, overlapping instances are rejected at the module
level when the world ω is constructed, not in the core typing judgment. We return to this
point in the next chapter.

6.4 typing judgments

With the syntax and semantic objects in mind, we now return to the core typing judgments:

1. Φ; ν0; eenv; ω ` defs : dspcs and

2. Φ; ν; eenv; ω ` decls : dspcs.

The judgments state, respectively, the following: in the module context Φ, with the core
environment eenv, in the world ω,

1. the definitions defs for the program with identity ν0 are well-formed with respective
specifications dspcs; and

2. the declarations decls with respective provenances ν are well-formed with respective
specifications dspcs.

In other words, under the given assumptions about the module context and about the names
and identities, the bindings are all well-typed and well-kinded.

As already discussed, we axiomatize over these definitions, rather than define them, in
order to avoid the particulars of the Haskell programming language. (In the next subsection
I formally define some axioms to describe their expected behavior.) We therefore have no
inductive definitions for these judgments. A natural question to ask, then, is what necessitates
each component of the judgments; e.g., why does each judgment include Φ and eenv? The
answer is that any faithful definition of these judgments—i.e., any implementation of core
typechecking—would require at least these components. For example, a core typechecker
must know the specifications of imported entities (in Φ) and how to map syntactic names to
their physical names (via eenv).

6.4.1 Examples of Core Typing

In this section we walk through some examples of well- (and ill-) typed core bindings and
how the core typing judgments would accept (or reject) them. Figure 6.2 and Figure 6.4
provide the main examples for this section; the former a mock implementation of Data.Set
(a list of definitions) and the latter a mock specification of Data.Array.IArray (a list of

declarations).
We describe, in turn, the typing of each kind of core binding, distinguishing between defini-

tions (in modules) and declarations (in signatures) where relevant. And though the Backpack
formalization abstracts over these core-level judgments, we still relate them as tightly as pos-
sible to the rest of Backpack’s judgments, revealing how the latter shine some light on the
undefined former.

typechecking value bindings Value definitions contain actual Haskell expressions to
typecheck, whereas value declarations contain only syntactic types to interpret. We look first
at the former.

In the definition of the value member in Figure 6.2, we see both the annotated syntactic
type of this value, utypm, and the Haskell expression the entity is bound to, uexpm, and as
discussed before the interpretation of that type, typm, all reproduced below:

utypm = forall (a :: *) . Ord a => a -> Set a -> Bool

uexpm = \ x s -> case s of ...

typm = forall (a :: *). [νP]Ord a => a -> [νS]Set a -> [νP]Bool
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As would be expected, the well-formedness of the definition would involve first synthesizing
a type for uexpm; second, checking that it conforms to the type typm; and third, ensuring that
typm itself is well-formed and has kind * (i.e., that it is the type of terms). Backpack abstracts
over the details of the first and second parts, providing enough “semantic ingredients” for
someone else to implement, but it does offer the means to mechanically verify the third. Next
we describe how Backpack’s axiomatized core typing judgment facilitates these three steps.

First, to adequately abstract over the details of typechecking, the core typing judgment
Φ; ν0; eenv; ω ` defs : dspcs must provide enough information to implement that type-
checking. Indeed it does. In order to typecheck uexpm, a typechecker implementation would
necessarily consult

• eenv for the physical names of all syntactic entity references like Ord, Set, and member;

• Φ for the corresponding dspcs of those physical names, yielding their types, kinds, etc;8

and

• ω for the visible type class instances that may be applied to class methods like compare,

all provided to it, in a sense, by the Backpack formalization.
Second, to check that the synthesized type conforms to the annotated type, an implement-

ation would consult some kind of order on (semantic) types. But Backpack does not define
any notion of subtyping, conversion, or even judgmental equality on semantic types. Instead,
two semantic types are “equivalent” if and only if they are syntactically equivalent (modulo
alpha conversion of bound type variables). An implementation, however, would support
a “generalization” order on types, as defined in the Haskell spec,9 allowing for the well-
typedness of a definition like

intEq :: Int -> Int

intEq = \ x y -> x == y

Third, to determine whether a type is well-formed, an implementation would consult
Backpack’s kinding judgment on semantic types, written Φ; kenv ` typ : knd.10 Further
explanation—and definition—of this rather conventional judgment will be presented in §6.5.1.
For now, however, consider how the judgment applies to the member example. A derivation
of ΦL

S ; · ` typm : * must be constructed in order to satisfy this third requirement of
typechecking the member definition. But there’s some sleight of hand in this application of
the judgment. The module context ΦL

S is not the same as ΦS, the module context from the
typing judgment for the whole set of definitions defsS. (That application of the core typing
judgment is ΦS; νS; eenvS; ωS ` . . . , (member :: utypm = uexpm), . . . : dspcsS.) Why not?
The ambient module context ΦS lacks information about the local module νS and its defined
entities, like [νS]Set, whereas the localized module context ΦL

S contains the ambient context
as well as these locally defined entities. We shall return to this idea of localization, and how
to derive ΦL

S , later.
Typechecking a value definition comprises the three steps above, with Backpack only defin-

ing the means to perform the third step. Typechecking a value declaration, however, can be
described entirely within Backpack, as it only requires that third step.

Consider the declaration of insert in Figure 6.3. The annotated type of this value, utypi,
is part of the declaration. And in the corresponding entity environment eenvS, that syntactic
type is interpreted into the semantic type typi. Together,

utypi = forall (a :: *) . Ord a => a -> Set a -> Bool

typi = forall (a :: *). [νP]Ord a => a -> [βS]Set a -> [νP]Bool

8 Technically, Φ does not contain dspcs of anything defined locally within defs. We shall return to this point shortly.
9 Peyton Jones (2003), “Haskell 98 Language and Libraries: the Revised Report,” §4.1.4.

10 This judgment exists in Backpack in order to define well-formedness of module types τ, but here it would be repur-
posed as part of core typechecking.

http://haskell.org/definition/
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Then the well-formedness of the semantic type amounts to constructing the derivationΦL
S; · `

typi : *, just as in the previous case of a value definition. (Once again, the module context
for the kinding judgment is the localized context ΦL

S, not the ambient context ΦS.)

typechecking datatype bindings Datatype bindings take two forms: concrete (with
constructors) and abstract (without constructors), with the latter syntax only available for
declarations, not definitions. Typechecking abstract datatype bindings, like Set in Figure 6.3,
is a no-op.

Typechecking of concrete datatype bindings, on the other hand, resembles that of value
declarations. Like the syntactic types in value declarations, each syntactic type appearing
in concrete datatype bindings must be interpretable and well-formed with kind * in the
specified kind environment (kenv).

Consider the definition of Set in Figure 6.2, a binary tree. Each of the two constructors
must have type fields that are indeed well-formed types. The Tip case is trivial, but the Bin

case specifies three syntactic type fields: a (the value at this node), Set a (the left subtree),
and Set a (the right subtree). First, these types are interpreted by the corresponding eenv
into semantic types a (type variables are trivially interpreted in any entity environment),
[νS]Set a, and [νS]Set a. Next, these semantic types have kind * according to the kinding
judgment in the kind environment a :: *.11 Indeed, we can prove

• ΦL
S ; (a :: *) ` a : * and

• ΦL
S ; (a :: *) ` ([νS]Set a) : *

in the corresponding localized module context ΦL
S .

typechecking class bindings Class bindings are syntactically identical between dec-
laration and definition and, like datatype bindings and value declarations, contain no Haskell
expressions.12 As with the other bindings, all the syntactic types occurring in class bindings
must be well-formed, in respective kind environments, and the types of class methods must
have kind *.

Class bindings include superclass contexts, syntactically expressed as class constraints
(ucls), which must also be well-formed in the kind environment annotating the class bind-
ing. That necessitates another judgment in the core level for class constraint well-formedness,
written Φ; kenv ` cls wf, analogous to that for type well-formedness. The definition for this
judgment, along with the other judgment, is described in §6.5.1.

As an example of checking class constraints, consider the Prelude’s definition of the Ord

class, which has Eq as a superclass:

class Eq a => Ord a where

compare :: a -> a -> Ordering

This Haskell-like syntax translates into Backpack syntax (with kind inference for the type
variable a) as

class Ord (a :: *) <= Eq a where . . . ,

making explicit the kind environment (a :: *) that binds the type variable a over the whole
definition. Then the superclass constraint, interpreted as [νP]Eq a, must be well-formed in
the localized module context ΦL

P (containing all the entities defined locally in the Prelude

module): ΦL
P; (a :: *) ` ([νP]Eq a) wf.

11 The reader might wonder where the kind of a was specified in the Set binding. Haskell 98 defines a “kind inference”
procedure to synthesize kinds of type variables like a; for the sake of presentation we omit this synthesis but assume
its existence.

12 As discussed earlier, unlike Haskell 98, Backpack does not support default method implementations in class bind-
ings.
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How might a class constraint be ill-formed? Suppose we modify the IArray class from
Figure 6.4 to (erroneously) add a superclass constraint for Eq a:

class IArray (a :: * -> * -> *, i :: *, e :: *) <= Eq a where . . .

The intention is for the type variable a to come with equality, but actually the type of arrays
within IArray is a i e. The difference? The type variable a has kind * -> * -> *, not Eq’s
expected kind *; therefore the statement

ΦL
A; (a :: * -> * -> *, i :: *, e :: *) ` ([νP]Eq a) wf

cannot be proved, making this hypothetical class binding ill-formed.
On top of type well-formedness, class bindings (along with instance bindings) should sat-

isfy additional validity checks—not for any technical reason for Backpack’s metatheory, but
for reasons specific to type class mechanics. These checks ensure crucial properties of type
classes, what Sulzmann13 concisely defines as “Haskell type class conditions.” Since they
are irrelevant for Backpack’s study of modularity in Haskell, and since core-level typing is
abstracted out of Backpack anyway, we can safely omit them entirely from the formalization.

typechecking instance bindings The most involved sort of binding to check, in-
stance definitions, necessitate three key checks: typechecking expressions (i.e., Haskell code),
checking the well-formedness of the instance head, and checking auxiliary invariants, as
mentioned in the case of class bindings, purely for the soundness of properties specific to
type classes. And since instance declarations contain no code, only the latter two checks are
required.

Of course, instance uniqueness would also need to be checked, as we wouldn’t want to
accept an instance binding if an overlapping instance was imported from elsewhere. But this
particular requirement of well-formed instances isn’t part of core typing. That’s because this
check intersects with Backpack’s concern with modularity; as Chapter 4 showed, the world
consistency property is key. Instead, the world ω already contains all the instances known in
this scope, including any locally declared instances, and this world is consistent by construc-
tion (i.e., the implicit invariant consistent(ω) that is maintained by all worlds). In short, when
the module level appeals to this judgment on the core level, it has already done the work of
proving world consistency, i.e., global uniqueness of instances.

With that aside, now back to typechecking instance bindings. Consider the instance defini-
tion for equality on the Set type, from Figure 6.2 and reproduced below.

instance (a :: *) Eq a => Eq (Set a) where (==) = uexp==

The typechecking of the Haskell expression for (==) must be done in a context that knows
not only the other instances among the Set definitions, but also the hypothesis Eq a. Again,
Backpack abstracts over the details of this core-level typechecking and type class require-
ments.

Finally, the relevant part for Backpack: the well-formedness of the instance head must be
checked. This amounts to proving the well-formedness of Eq (Set a) in the localized module
context for Set, ΦL

S :

ΦL
S ; (a :: *) ` [νP]Eq ([νS]Set a) wf

Since the type [νS]Set a is well-formed with kind *, this statement would indeed be derivable.

13 Sulzmann (2006), “Extracting Programs from Type Class Proofs”.
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Auxiliary Core Judgments: Type and Class Constraints

Semantic type well-formedness (“kinding”) Φ; kenv ` typ : knd

(a :: knd) ∈ kenv
Φ; kenv ` a : knd

(KndVar)

dom(kenv) # dom(kenv ′) Φ; kenv, kenv ′ ` cls wf Φ; kenv, kenv ′ ` typ : *

Φ; kenv ` (forall kenv ′. cls => typ) : *
(KndAll)

Φ(ν)(T) = data T (a :: knd,a ′ :: knd ′) . . . Φ; kenv ` typ : knd

Φ; kenv ` ([ν]T typ) : knd ′ -> *
(KndCtor)

Semantic class constraint well-formedness Φ; kenv ` cls wf

Φ(ν)(C) = class C (a :: knd) . . . Φ; kenv ` typ : knd
Φ; kenv ` ([ν]C typ) wf

(ClsWf)

Figure 6.8: Definition of auxiliary core well-formedness judgments for semantic types (“kinding”) and
for semantic class constraints. The notation Φ(ν)(χ) = dspc is used to mean that ν ∈ Φ, and
dspc has name χ in ν’s type; this mapping of names to specs is well-defined since a module
type’s dspcs have non-overlapping names.

6.5 metatheory of the core level

Most of the definition of the semantics of the core level of Backpack is abstracted away
as undefined typing judgments. These judgments are nevertheless a key part of Backpack;
the semantics of the outer levels depend in turn on their semantics. For that reason these
judgments should satisfy particular metatheoretic properties required by the outer levels.

In this section I describe those metatheoretic properties of the core-level typing judgments
as axioms that Backpack presumes to hold. The proofs of the necessary properties in the
outer levels therefore rest on these axioms. But before detailing the axioms I present some
well-formedness judgments that characterize contextually valid semantic objects at the core
level.

6.5.1 Well-formedness of semantic objects

In the last section we described examples of typechecking core programs to illustrate how one
might define core typing, i.e., how core typing interacts with the mechanics of the Backpack
formalization like module identities and entity specifications. In many examples above, the
well-typedness of core programs depended upon the well-formedness (a.k.a. “kinding”) of
semantic types (typ) and class constraints (cls). To further illustrate how core typing interacts
with the formalization, we provide, in Figure 6.8 definitions for these two well-formedness
judgments.

The judgments are largely straightforward and conventional. They are contextualized by
both a module context Φ and a kind environment kenv, the same environment occurs as part
of syntactic types (utyp). We briefly describe the rules that define these judgments; of note
are rules (KndCtor) and (ClsWf), since they illustrate how core typing depends upon the
mechanics of the Backpack formalization.
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• Rule (KndVar) defines the well-formedness of a type variable a. It is trivially well-
formed, with kind knd, if the environment describes it as such.

• Rule (KndAll) defines the well-formedness of a polymorphic (qualified) type forall

kenv ′. cls => typ, which always has kind *. The first premise states that the variables
bound in the ambient kind environment kenv does not overlap with those bound in
kenv ′. The second premise states that the class constraints cls are well-formed in the
extended kind environment. And the third premise states that the constituent type typ
has kind *.

• Rule (KndCtor) defines the well-formedness of a (possibly partial) application of a type
constructor, [ν]T typ. The kind of such a type is * if all the “type arguments” are applied;
otherwise, for a partial application, the type has some other, higher kind. For example,
the type [νS]Set (with no types applied), has kind * -> *. The first premise of this rule
states that the type constructor [ν]T is defined in the module context Φ with a kind
environment that binds the variables a,a ′ with kinds knd, knd ′; the former variables
(and kinds) correspond to the type arguments typ. Moreover, the ellipsis indicates that
the specification for this type may either be an abstract or concrete one. The second
premise states that the type arguments typ have kinds knd, leaving the rest of the kinds
knd ′ as part of the higher kind of the whole type, knd ′ -> *.

• Rule (ClsWf) defines the well-formedness of a class constraint [ν]C typ. The first premise,
once again, states that the class [ν]C is defined in the module context Φ with a kind en-
vironment that binds the variables a with kinds knd. The second premise merely states
that the types typ have those kinds.

6.5.2 Axioms of core typing

As already hammered home, most of the semantics of Backpack’s core level—the formal
model of Haskell’s core language of types and terms (and classes and instances)—are ab-
stracted out of this formalization. Now it’s time to be a bit more precise about what that
means.

The two core-level typing judgments,

Φ; ν0; eenv; ω ` defs : dspcs and

Φ; ν; eenv; ω ` decls : dspcs,

are treated as parameters to Backpack. What remains is to specify what’s required of them.
For that reason we assert some axioms about their expected behavior, axioms that are directly
required in the proofs of desired properties in (the outer levels of) Backpack. Four of the five
axioms fall into two categories—regularity and soundness—with one for each category and
judgment.14

• Regularity: The regularity axioms simply assert some basic properties expected to hold
of the typing judgments. These are the kinds of properties that would be immediate by
inverting an inference rule whose conclusion is known. For example, regularity of both
core typing judgments asserts that the number of bindings is equal to the number of
dspcs, and that any instance bindings’ syntactic heads can be interpreted by eenv into
semantic heads that are matched by those bindings’ corresponding specs in dspcs. Full
axiom statements can be found in the appendix: Axiom A.13 for definition typing and
Axiom A.14 for declaration typing.

14 These axioms differ considerably from their original definitions as presented in (Kilpatrick et al., 2013). In the original
work, only the internal language (IL) part of the formalization was parameterized by core typing on definitions, while
the external language (EL) part actually defined core typing via elaboration into that parameterized IL judgment.
Consequently, the corresponding soundness axiom was defined as a corollary to soundness on the IL judgment, as
“Soundness of module definition checking in image of translation” (Corollary A.24). The definitions in this thesis
have no such connection to elaboration and are much cleaner.
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• Soundness: The soundness axioms are more interesting. They both assert, in some
way, the well-formedness of the dspcs that classify core bindings. But instead of ap-
pealing to core-level well-formedness, of the dspcs object itself, it asserts module-level
well-formedness, of module types and physical module contexts. We’ll see those prop-
erties in more detail in the next chapter, on the module level. Full axiom statements
can be found in the appendix: Axiom A.15 for definition typing and Axiom A.16 for
declaration typing.

The axioms have been designed according to the proofs for which they’re required in the
rest of Backpack. Soundness axioms in particular have quite a bespoke set of premises and
conclusion. On one hand, this over-fitting to the proofs is undesireable, but on the other
hand, it’s sufficient for our purposes. This thesis is simply not concerned with the semantics
of Haskell’s core level.
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The previous level of Backpack, the core level, mostly introduced new notation to represent
existing Haskell things. We look now at the next level out, the first one to include some
significant new concepts introduced by this thesis: the module level.

Syntactically, Backpack introduces signatures to the module level of Haskell, and semanti-
cally, it introduces shaping. In comparison to Haskell 98, these two concepts quadruple the
number of typing judgments needed to capture the semantics of a module-level program:
from one in Haskell 98 (well-typing of a Haskell 98 module) to four in Backpack (well-
shaping/-typing of a Backpack module/signature). To manage and mitigate this complexity,
the judgments are defined with explicitly parallel structure and semantic objects: module
variants mirror signature variants, and typing variants mirror shaping variants.

modules signatures

shaping Γ̂ ; ν0 
 M⇒ τ̂ @ ω̂ Γ̂ ; ν 
 S ⇒ σ̂ @ ω̂ | Φ̂sig

typing Γ ; ν0 ` M : τ @ω Γ ; ρ ` S : σ @ω | Φsig

What’s the goal of the module level? Notably, the goal is not to perform any unification
or linking. (That’s one of the goals of the package level.) In the shaping pass, the goal is to
determine the entities exported by the module and their provenances, along with the world
that the module inhabits. In the typing pass, the goal is to perform typechecking via the core
level.

inputs (from package level) From the package level, the module level uses, first, a
module context (Γ ) which has two constituent functions: it maps module names to module
identities (L, new in the module level) and it maps module identities to types (Φ, as used in
the core level); and second either a single module identity to “name” the present module or,
in the case of signatures, a realizer mapping entity names to module identities (ρ). All such
inputs in the module level come in two flavors: the full versions as already stated, and the
“shapey” versions, denoted with a ·̂, that contain names and module identities but lack any
core-level types (typ).

outputs (to package level) The module level produces module types (τ) which de-
scribe entities exposed by a module, along with their specifications (dspcs)—as were deter-
mined by the core level—and the world they inhabit (ω). These will be used by the package
level for linking and for setting up subsequent module contexts (Γ ).

As an additional output for signatures, a signature context (Φsig) contains the specifications
of the entities declared in the signature. It’s a technical device to enable Backpack’s definition
of module linking in terms of merging package types, as we shall see in the next chapter.

internals The module level primarily uses its input objects to determine the core envi-
ronment (eenv) that represents the scope of the module/signature and the world (ω) that it
inhabits; this process is called import resolution. With these two objects, the core-level typing
then determines the entity specifications (dspcs) of the entities defined/declared in the mod-
ule/signature. That’s only for the typing judgments, as the shaping judgments do not employ
core-level typing. Indeed, the theme of shaping is that no core-level typechecking is involved.
Finally, the set of names exposed by the module/signature (espcs) is determined by a process
called export resolution.
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Backpack Module Syntax

Logical Module Names ` ∈ ModNames
Module Expressions M ::= impdecls; expdecl; defs
Signature Expressions S ::= impdecls; decls
Imported Entity Specs import ::= χ Entity Only

| χ(χ) Entity & Some Subordinates
| χ(..) Entity & All Subordinates

Imported Module Specs impspec ::= · All Entities
| (import) Some Entities

Import Declarations impdecl ::= import ` [as `] impspec Unqualified Import Declaration

|
import qualified

` [as `] impspec
Qualified Import Declaration

List of Import Declarations impdecls ::= impdecl List of Imports
Exported Entity Specs export ::= eref Entity Only

| eref(χ) Entity & Some Subordinates
| eref(..) Entity & All Subordinates
| scope mref Entities in Namespace

Export Statements expdecl ::= · Implicit Exports
| export (export) Explicit Exports

Figure 7.1: Syntax of Backpack’s module level.

details , details Much of the formalization of Backpack’s module level consists of bor-
ing technical details. These details have been designed to balance, on one hand, modeling
Haskell 98’s import and export resolution and, on the other hand, integrating them with the
rest of the formalization, the metatheory in particular.

Backpack is the first formalization of Haskell 98’s module system that treats it as a (more or
less) conventional type system with attendant metatheory. As such, the semantics of import
and export resolution must be defined in such a way that resulting semantic objects must
be judged well-formed with respect to some context, yielding a key metatheoretic result,
for example, that “import statements within sensible module contexts produce sensible re-
sults” Lemma A.17. Such lemmas are composed together to form proofs of the larger desired
metatheory Theorem A.1 (§7.7.3). To support these lemmas, the formalization of the module
level defines additional semantic objects and judgments that are entirely separate from the
main four typing judgments.

7.1 syntax of the module level

The syntax of Backpack’s module level is presented in Figure 7.1. The key syntactic forms are
M, module expressions, and S, signature expressions.

Similarity between Backpack module expressions and Haskell modules (as defined in
Haskell 98) is obvious and intentional. However, some deviations do exist:

• Modules in Backpack do not syntactically name themselves, and thus the syntax of mod-
ule expressions M excludes a “self” name `. As discussed in the core level, the module
reference for an entity defined/declared locally in some module/signature expression
is written as the new keyword Local.

• Module export lists1 have a different syntax, as export statements.

1 Peyton Jones (2003), “Haskell 98 Language and Libraries: the Revised Report,” §5.2.

http://haskell.org/definition/
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• The keyword scope for an exported entity spec replaces Haskell’s keyword module,
given that the latter clashes too much with Backpack concepts. The semantics of this
keyword is indeed subtly different in Backpack than in Haskell; see the description of
(ExpModAll) in §7.5.

• Import “hiding” declarations are excluded from Backpack in order to simplify the pre-
sentation. They would be straightforward to include.

Signature expressions (S), on the other hand, are not based on any syntactic form in Haskell
98. (Instead, signatures are based on GHC Haskell’s “boot files” mechanism for recursive
modules.) They resemble module expressions with a few important differences:

• Signature expressions contain core declarations, not core definitions. Put simply, they
don’t contain any executable code to typecheck.

• Signature expressions have no export statements. The only entities exported by sig-
natures are those that are declared in the signature—with the exception of type class
instances, which flow into and out of signatures just as they do in modules.

7.2 semantics of the module level

We have already seen the four main judgments for the module level, of which the two typing
judgments are the principal concerns for the Backpack type system. But behind the typing
judgments lie two prerequisite concerns:

core environment construction What are the entities within the scope of a mod-
ule/signature?

export resolution What are the entities exported by a module/signature?

Both concerns are obviously relevant to the module system of Haskell, and here they have
a particular relevance. In Backpack the shaping pass of the module level must produce the
names and identities of core-level entities exported by the module. Those names and iden-
tities are used to perform unification when modules are linked into signatures. As we saw
in the chapter on the core level (Chapter 6), core environments (eenv) perform the work of
translating syntactic entities into semantic ones, i.e., with module identities. Thus the mod-
ule level must construct the core environments in the first place in order to facilitate linking.
Moreover, core environment construction involves import resolution, which in turn requires
that export resolution was performed on the imported modules. The processes that attend to
both concerns therefore enable the critical mechanics of Backpack.

Core environment construction and export resolution constitute much of the boring details
of Backpack’s module level. Compounding that boringness is the fact that both shaping and
typing judgments depend on these two mechanisms, with slight variations that require a du-
plication of their definitions, necessitating “typey” versions and “shapey“ versions. Whereas
the distinction between these two variants generally has revolved around the presence or
absence of core types (typ), at the module level the distinction revolves around the presence
of worlds (ω) as opposed to world shapes (ω̂).

7.3 semantic objects

module identities Module identities are a key technical concept in Backpack. They’ve
already been presented in §3.1 with as much detail as is needed to understand the module-
level formalization. For more technical discussion of module identities, see Appendix §A.1.1.

module types Modules types (τ) model, as a key insight in the design of Backpack goes,
the binary interface files (.hi files) of GHC. They classify modules by serving as specifications
of a module’s contents. That specification is threefold.
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Backpack Module Semantic Objects

Entity Environments eenv ::= { eref 7→ phnm } ; espcs

Module Types τ ::= 〈| dspc ; espcs ; ν |〉
Module Shapes τ̂ ::= 〈 ˆdspc ; espcs ; ν 〉
Entity Definition Shape Specs ˆdspc ::= T | T(K) | x | C(x) | instance

Module Worlds ω ::= {| head 7→ ν |}†

Module Shape Worlds ω̂ ::= { head 7→ ν }

Signature Realizers ρ ::= τ̂ @ ω̂

Physical Module Contexts Φ ::= {|ν:τm@ω |}

Physical Module Shape Contexts Φ̂ ::= { ν:τ̂m@ ω̂ }

Logical Module Contexts L ::= ` 7→ ν

Module Contexts Γ ::= (|Φ ; L |)

Module Shape Contexts Γ̂ ::= ( Φ̂ ; L )

Identified Bindings ibnds ::= (ν | bnds)
Realizable Bindings rbnds ::= (ρ | decls) Signature Declarations to be Identified

| ibnds Already Identified Bindings
Augmented Entity Envs aenv ::= aenv+ | aenv−

Augmented Mod Entity Envs aenv+ ::= (Φ̂;ν0; defs)
Augmented Sig Entity Envs aenv− ::= (Φ̂; ρ; decls)

Figure 7.2: Semantic objects relevant to Backpack’s module level, with key objects in bold. † refers to the fact that, although worlds have the
presented syntax, they additionally carry the invariant consistent(−) (Figure 7.5).

• First, there are the core-level entity specifications (dspcs), first described in §6.3. These
semantic objects, as discussed in the last chapter, capture all the static information about
the values, types, and type classes originally bound in a module. Notably, they do not
contain specifications of entities that are merely exported by the module. This part of
the module type designates the definitive location of those specifications, for use in
core-level type-checking.

We implicitly consider a vector of specifications (dspcs) to declare non-overlapping entity
names (χ).2

• The second component of a module type are the entity name specifications (espcs), also
described in §6.3. This part of the module type serves two roles: designating the exposed
entities available to importing modules, and signaling the module identity provenances
to unify during linking. The first role is why espcs in module types—often written as
espcs ∈ τ̂—appear all over the definitions of import resolution (Figure 7.7). The second
role is part of why the shapes of signatures always lead to the n different βi variables.
At this point the reader should be aware of how a signature’s n exposed entities can be
implemented by definitions imported from up to n different defining modules. It’s the
espcs component of the signature’s τ1 and the implementing module’s τ2 that is used
to actually unify the βi for some entity exposed in τ1 and the νi for the corresponding
entity exposed in τ2.

2 Except when specified explicitly with the straightforward nooverlap(−) property.
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As with dspcs, we implicitly consider a vector of entity name specifications (espcs) to
declare non-overlapping entity names (χ).

• The third and final component of a module type is a set of imported module identi-
ties. This part of the module type is used by the thinning feature of package inclusion.
Effectively it allows “walking the dependency tree” of some module, collecting up in-
formation like its free module identity variables.

Module types classify both concrete module implementations and abstract module signa-
tures. Often they’re paired with a sign or polarity (m), with + meaning the former and −

meaning the latter.
Module types form a partial commutative monoid (PCM) through a key merging operation

( ⊕ ), which itself induces a partial order (6). The former means “combine the information
in the two types” (think of signature merging) and the latter means “the l.h.s. type has more
information than the r.h.s. type” (think of signature matching). Figure 7.3 contains the key
definitions.

Module types appearing in module contexts are annotated with a polarity and a world,
written τm@ω. The m specifies the sign of the module while the ω specifies the world the
module inhabits.

module shapes The recurring theme is that shapey variants are like typey variants minus
core-level typing information like semantic types (typ) and semantic class constraints (cls). So
module shapes (τ̂) have shapey versions of entity definition specs, ˆdspcs, which contain only
syntactic names of defined entities; for instance entities only the token instance. All the PCM
definitions and annotations from module types carry over to module shapes.

physical and logical module contexts Physical module contexts (Φ, as in “phys-
ical”) are the primary typing context for modules and have already been demonstrated at
length in Chapter 3. They act as finite mappings from module identities (ν) to typings of
those modules, each such mapping written ν:τm@ω, which denotes that module ν has type
τ and inhabits world ω and is either a module implementation or signature depending on
the sign m (+ for module, − for signature). They contain module identity variables (α,β)
which are implicitly bound; later, we shall see slightly more careful binding of them as part
of package types.

Physical module contexts also form a PCM, as defined in Figure 7.4. Merging on these ob-
jects is a key operation in Backpack: it’s precisely the operation that structurally links together
modules, unifying holes and matching implementations against them. This structural merg-
ing is based on physical, semantic module identities (ν), not on the logical, syntactic module
paths (`). Other formalizations based on mixin linking, in particular those based on linksets,3

contain such an operation, in some form.
What’s missing from a physical module context is the mapping from logical path variables

` to the physical module identities they point to. That’s precisely what is captured by logical
module contexts (L, as in “logical”), which are covered in the section on the package level.
Backpack provides mixin linking by (logical) name, a feature that is enabled by the logical
context’s mapping from those names into the physical modules they denote.4

Logical contexts have another primary use besides mixin-linking at the package level: they
determine which modules are designated by import statements, via import resolution. Every
module imports logical paths `, and it’s up to the logical context to map those to particular
module identities, as ` 7→ ν, whose entities are then determined by the typings (or really, the
shapings) of ν in the physical context Φ. Since physical and logical contexts are thus highly

3 Cardelli (1997), “Program fragments, linking, and modularization”.
4 In earlier work, logical module contexts were written as B and mapped logical names (written p) to both module

identities (ν) and module types (τ). The additional type was used to support examples like that of (Kilpatrick et al.,
2013, §3). Here, however, alias bindings confer no such typing information and instead purely affect the logical
module context.
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bound together, we pair them up as a compound semantic object simply called the module
context, written as Γ to resemble traditional contextual typing judgments.

A fundamental property to note about the definition of physical module contexts is what
I deemed the Package-Level Consistency (PLC) property in §4.4.5, specified as Property A.3.
This property asserts, quite strongly, that among all the worlds inhabited by modules in a
particular context Φ, none of them define conflicting instances with each other. (Recall the
discussion of PLC from Chapter 4, §4.4.5.) I assume PLC to be a baked-in invariant about Φ
objects, preserved by merging and always true of any explicit constructions of Φ as a vector
of ν typings that appear in the formalization. In the section on the Elaboration Soundness
Theorem, §9.6, PLC will play a key role.

Finally, the elaboration into the IL will act primarily on physical module contexts. Indeed,
given a context, one can map out the entire physical structure of a program: some modules
and signatures, their types, and (via those types) their imports of other modules and signa-
tures, along with their worlds and entities.

worlds A world (ω) is a finite mapping from instance heads to module identities. Each
such mapping, called a fact, describes a type class instance: its head and the identity of
the module that defined it. See Figure 7.5 for relevant definitions on worlds, summarizing
Chapter 4, and briefly described below.

An additional property of a world is that each of the instance heads in the domain of the
mapping must be non-overlapping, i.e., they must avoid, in the same sense as “overlapping
instances.” Concretely, a world ω by definition satisfies consistent(ω). As a result, if any two
mappings are unifiable in their type variables (a)—not in their module identity variables
(α)—then those two mappings must be equal.5

This consistency property is a subtlety that is perhaps lost in the presentation of the syntax
of worlds as mappings from instance heads to module identities. The world as a semantic
object carries this invariant in such a way that every time a world object is denoted or results
from an operation, the consistency property must be maintained. To the type system, e.g., to
the person typechecking a Backpack program, the consistency property is maintained in the
definedness criteria of all the partial operations that denote worlds.

Moreover, like many other semantic objects, worlds form a partial commutative monoid
(PCM): the identity is the empty world (i.e., the empty mapping) and the partial merge
operation ( ⊕ ) merges two finite mappings, so long as they are non-overlapping. And this
PCM induces an order as with other semantic objects.

Substituting module identities in a world (apply(θ;ω)) is also a partial operation, since such
a substitution might make two facts in a world overlap. §4.5.3 showed an example of why
that partiality exists.

Finally, worlds have an extension relation (w). A world ω1 extends a world ω2 exactly
when ω1 6 ω2 via the PCM order. (The name and notation are intended to refer to Kripke
understandings of worlds.) A world of an implementation must extend the world of a hole it
links into.

instance heads An instance head (head) is a pairing of a kind environment kenv with a
semantic class constraint cls, over which the type variables in kenv are bound. See Figure 7.5
for relevant definitions, which are summarized below.

As the name suggests, an instance head denotes the “coverage” of a type class instance. For
example, the instance head for the Eq instance for Set is (a :: *) . [νP]Eq ([νS]Set a). Related
to coverage, instance heads also have an avoidance relation (#) which determines whether the
two heads are non-overlapping in the core types that they apply to. Avoidance is defined in

5 This invariant of the world semantic object isn’t so dissimilar from conventional finite mappings, which require
distinct “keys.” The only difference is that instead of two mappings’ keys needing to be distinct, in worlds the two
mappings’ keys (i.e., instance heads) need to avoid, i.e., not overlap.
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terms of unification on core-level types, i.e., over core type variables (a) rather than module
identity variables (α). For example,

(a :: *) . [νP]Eq ([νS]Set a) # (a :: *) . [νP]Ord ([νS]Set a)

(a :: *) . [νP]Eq ([νS]Set a) 6# () . [νP]Eq ([νS]Set ([νP]Int)) (overlap)

(a :: *) . [νP]Eq ([νS]Set a) # () . [νP]Eq ([νP]Int)

Instance heads are α-convertible in their type variables, so we extend ordinary syntactic
equality to α-equality. In other words, we treat the following two instances heads as syntacti-
cally equal:

(a :: *) . [νP]Eq ([νS]Set a) and (b :: *) . [νP]Eq ([νS]Set b)

world shapes A world shape (ω̂) is the “shapey” variant of a world that exists during
the shaping pass (and which is propagated as part of realizers (ρ)). Generally in Backpack
the shapey variants of semantic objects lack any core-level typing information as compared
to their typey variants Unlike the typey variants, module shapes have no non-overlapping
property, so their merging operation ( ⊕ ) is the trivial union of mappings, regardless of
heads that overlap on core types.

Consider a module or signature that knows, during shaping, about a signature-declared in-
stance [νC]C ([νT ]T) 7→ ν1 and a module-defined instance [νC]C ([νT ]T) 7→ ν2. These two facts
clearly overlap but are distinct, as their defining module identities differ. However, consider
the case that further in the package, linking will yield a substitution θ such that θ(ν1) = θ(ν2),
unifying the two facts—and the two instances—into a single one. For this reason, we relax
the non-overlapping restriction for world shapes.

Because consistency is not baked into the definition of world shapes like it is with worlds,
there’s a separate definition consistent(ω̂) that has the exact same meaning.

realizers For both modules and signatures in the typing pass, module identities must
be passed in as “inputs” from the package level, after having been determined during the
shaping pass, to be assigned to the core bindings contained within. How are these inputs
transmitted from package to module level? Through a semantic object called a realizer (ρ).6

For signatures, the realizer (ρ) is a pairing of a module shape (τ̂0) with a world shape (ω̂0),
which together determine the provenance of each entity declared in the signature: the former
are determined by matching up the entity name from the declaration to the corresponding
export spec (espc) in the shape (τ̂0), and the latter are determined by locating an instance
declaration’s head, interpreted via a core environment (eenv), in the world shape (ω̂0). See
Figure 7.6 for an example of a signature and a corresponding realizer.

For modules, on the other hand, a single module identity (ν0) subsumes the work of the
realizer, as all definitions in the module trivially have that identity as their provenance. There
is therefore no realizer or realizing for modules.7

Realizers are a roundabout way to transmit identities to the module level. Cleaner would be
to “pass in” identities in direct correspondence with signature declarations. However, using
the module shape and world shape as a realizer enables a very clean transfer of identities
from shaping pass to typing pass, in the package-level signature binding rule (TyPkgSig).

realizable and identified bindings There are generally four modes of analysis for
a module-level expression, based on the combinations of shaping vs. typing and modules
vs. signatures. In all such modes but the typing of signatures, the module identities desig-
nated as the provenance for the core-level bindings are straightforwardly “passed into” the
analysis.

6 The term “realizers” comes from MixML (Rossberg and Dreyer, 2013).
7 In MixML realizers refer only to the abstract, unknown type components of a mixin module. In both that system

and Backpack, they’re unnecessary for concrete modules.
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For shaping and typing of a module, there’s only the one provenance for all core-level
definitions—the module identity assigned to the module (usually written as ν0), which is
itself considered an input to the analysis. For shaping of a signature, there are freshly gener-
ated variables βi designated to be the provenances of the core-level declarations. In all three
of these cases, the provenances are passed from the package-level judgments (which is the
domain of mixin linking and module identity unification) to the module-level judgments as a
vector of module identities (or single identity) corresponding to the vector of core-level bind-
ings. And in all three of these cases, that pairing of identities and bindings is called identified
bindings (ibnds). It’s a straightforward construct.

Constructing an entity environment for the local core-level bindings, with identified bind-
ings, is similarly straightforward: pair up the locally bound entity names with their corre-
sponding provenances, and you have an eenv. Similarly, constructing a local world simply
involves a world with a facti 7→ νi for each locally bound instance.

The fourth case, however, is more complicated. For typing of a signature, there is not
simply a vector of module identities to be designated as the provenance of each declaration.
Instead, as just discussed, there are realizers that act as the transmission of provenances from
package level to module level. The pairing of a realizer and local core bindings is called
realizable bindings (rbnds). More accurately, the pairing of provenances, in some form, with
local bindings are considered realizable bindings, whether that comes in the form of the
realizer (for signature typing) or the identified bindings (for other analyses).

The reader might wonder why we need these two seemingly very bespoke objects. The an-
swer is that they help the definitions for core environment construction appear more regular
and parallel—more generic—by shoving most of the distinction in the analysis into auxiliary
definitions like mklocworld(−; −), all of which are defined in Figure 7.8.

augmented entity environments An augmented entity environment aenv is a deeply
technical semantic object that doesn’t appear in the type system of Backpack. Instead, it’s
used in the metatheory about core environment construction.

Since we have a contextual judgment that derives a core environment eenv @ω for a module
expression, how do we state a property that the core environment is well-formed with respect
to the context? Regularity properties like this tend to say things like “if e is judged to have
type t in context Γ then t is well-formed with respect to Γ .” Here, we can’t simply say that
eenv @ω is well-formed with respect to the context, Γ because that context only contains the
imported modules, and the core environment will also mention module identities, types, etc.
from the local bindings.

An augmented environment is essentially a pairing of module context for imports and re-
alizable bindings for locals. In particular it acts as the context for well-formedness judgments
aenv 
 eenv loc-wf and aenv; eenv 
 ω loc-wf, which state that an entity environment or a
world (shape) is “locally well-formed.” As an example of where this judgment is employed,
check the import resolution soundness metatheory (§7.7.3).

The utility of this kind of machinery might seem unnecessary. The reader should recall that,
unlike other semantics for Haskell modules (of which core environment construction, i.e.,
import resolution is a key part), Backpack’s semantics comes with metatheory to justify the
correctness of (most of!) the definitions. To develop a sense for how intrinsically complicated
is the business of import resolution and core environments in Haskell, I refer the reader to
the similar definitions of Faxén,8 definitions which don’t come with metatheory.

7.4 core environment construction

Figure 7.7 contains the definitions for core environment construction, i.e., the entity envi-
ronment (eenv) and world (ω) determined from the imported modules and the local core
bindings. There are two variants with exactly parallel structure: a shapey one and a typey

8 Faxén (2002), “A static semantics for Haskell,” Figures 11 and 15.
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one. And both definitions comprise two parts: the core environment eenvi @ωi for the im-
ports and the core environment for the local bindings, which are then merged together to
form the result. The first part is straightforward, so let’s focus instead on the locals.

constructing the local entity environment The auxiliary definition mkloceenv
(rbnds) converts the realizable bindings into a local entity environment. With the realizable
bindings from Figure 7.6 as an example, mkloceenv((ρSet | declSet)) would yield the following
entity environment:

mkeenv



[β1]Set()

[β2]empty

[β3]member

[β4]insert

[β5]toAscList


⊕ . . .

The realizer ρSet was used to designate the provenances for the syntactic declarations declSet,
which were then straightforwardly mapped to entity export specs (espcs). The remaining
mkeenv(−) function simply maps the five export specs into a syntactic mapping from entity
name to its physical name. Finally the r.h.s. is simply the same as the l.h.s. but each syntactic
reference is prefixed with the (reserved keyword) identifier Local.

One low-level detail in the definition of mkeenv(−) is the matching operator v, which is
defined when the entity spec on the left is mapped down into the export spec on the right.
It’s just extracting the name—and any potential subnames, like data constructors for a type
or instance methods for a type class—from the entity spec.

That was an example of constructing a local entity environment, for signature typing, using
a realizer. An example for shaping or for module typing would be even more straightforward:
instead of having to “look up” the provenance of each core binding in a realizer, they’re just
given in order by the identified bindings.

constructing the local world The construction of local worlds is a little trickier.
The goal is to create a local world ω0 that contains all the locally bound type class instances.
There’s an added complication here because this definition requires the full entity environ-
ment for these bindings; and not just the environment synthesized for the local bindings in
the last step, but also for the imported entities. That’s because ω0 mentions semantic class
constraints cls, which we can only get from the local instances by mapping their syntactic
instance heads via an entity environment—an entity environment which should also know
the physical names of locally bound classes and types.

There are three definitions of the mklocworld(−; −) operation: a trickier one for signature
typing which again uses a realizer, a more straightforward one for module typing, and a
similar one for both kinds of shaping. We consider first the latter cases, defined for identified
bindings ibnds. The idea goes as follows:

1. The set J contains the indices, into the vector of local bindings, of any instance bindings.
This index set will be used also as an index into the designated identities, ν.

2. For each index i ∈ J, the mapping from syntactic instance head into semantic instance
head must be defined. This rules out any ill-formed types or class constraints.

3. Every pair of instance bindings must avoid each other; i.e., the space of types they
apply to, if defined for the same class, must not overlap.

4. Then the result of the operation is the world gotten from the mapping of local semantic
instance heads to the corresponding provenance νi.

The case for the shaping variant, ˆmklocworld(−; −), is exactly the same, with the trivial dis-
tinction of creating a world shape ω̂ not a world ω.
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Now the trickier case, for signature typing, mklocworld(rbnds; eenv). At first glance, since
the realizer designates a world shape ω̂0, it might seem correct to just use that. However,
the realizer might know about an eventual implementation of this signature, which perhaps
contains a whole lot more instances than those declared in the signature. (Recall that for a
module to implement a signature, the module’s world must extend the signature’s world.) So
instead we must create the local world from the local instance declarations by matching those
declarations against the (possibly much larger) world shape in the realizer. The r.h.s. of the
definition contains exactly those facts from ω̂0 that are equal to the mapping of a local syntac-
tic instance declaration into a semantic instance head. In effect, ω̂0 designates the provenance
ν of the instance. And any other facts known to the realizer’s world shape don’t matter.

But what about the additional consistent(ω̂0) requirement? Essentially it serves to keep sig-
nature deterministic in the presence of ambiguity, as the ω̂0 might actually have two different
mappings head 7→ ν1 and head 7→ ν2. (Recall that world shapes are simply sets and do not
bake in any kind of consistency.) This requirement also serves to fail fast in signature typing,
instead of allowing packages to be well-typed despite requiring very particular conditions to
use.

As an example, consider the following package, along with the world shapes synthesized
for its two bindings:

package unreasonable where

A =

[
data T = T Int

instance Eq T where ...

]
B ::

[ import A
instance Eq T

]
ω̂A = {[νP]Eq [νA]T 7→ νA}

ω̂B =

{
[νP]Eq [νA]T 7→ νA

[νP]Eq [νA]T 7→ βB

}

(Recall that a fresh variable β is synthesized to stand in for the provenance of each declaration
in a signature.) When it comes time to type the signature, its realizer will pass in ω̂B for con-
structing its local world. At this point, because ¬consistent(ω̂B), the local world is undefined
and thus the rule (CoreEnv) cannot be applied, making the signature ill-typed.

What would happen without that consistency requirement? There’d be nondeterminism
in constructing the local world, as there are two possible mappings for this instance in the
realizer. Or perhaps one could apply unification within the world shape (during (ShPkgSeq),
§8.2), so as to unify the two facts inside it and thus the two world shapes. That, however,
would be quite a departure from the rest of linking unification in Backpack, which is always
directed by logical module names, and here the two names are distinct.

import resolution There are two points worth mentioning about the semantics of im-
port resolution.

First, subordinate names of entities cannot be imported in isolation from their owning
names. In particular, Haskell allows the import of a type class method (e.g., hash) without im-
porting the class itself (e.g., Hashable). In Backpack, because imported names are designated
by an export spec espc, and because subordinate names do not have their own espc, there’s noDeviation from Haskell:

importing subordinate
names.

way to import those subordinate names separately. For example, the espc [νH]Hashable(hash)
denotes the export of the class and the class method, and [νH]Hashable() denotes the class
without any methods, but there’s no espc for hash itself.

Second, the judgments for import resolution are shapey: they are defined on module shape
contexts, not full typing contexts. That’s so that the shaping and typing judgments can reuse
the same definitions; note the shape(Γ) appearing in (CoreEnv). There would be even more
“sharing” of definitions if not for the presence of world shapes in the shapey variants, which
subtly change the meaning.
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7.5 export resolution

Figure 7.9 contains the definitions of export resolution for modules. For the most part these
are straightforward specifications of Haskell semantics. Some notes on the definitions:

• Haskell permits export of subordinate names without their owning names in the case Deviation from Haskell:
exporting subordinate
names.

of class methods. Backpack doesn’t allow this because every exported entity must have
its own espc, but a class method does not. This exactly parallels the situation for imports
just discussed.

• (ExpLocal): In the case that no exports are explicitly declared (i.e., expdecl = ·), the
resolved exported entities are exactly those contained in the entity environment eenv
that are qualified with the distinguished module reference Local. The definition of core
environment construction, of mkloceenv in particular, was set up so that such entities
are exactly the locally defined ones.

• (ExpModAll): As per the Haskell spec,9 exactly those entities which are accessible Deviation from Haskell:
export lists.both unqualified (as χ) and qualified (as mref.χ) are exported with “scope mref .”10 But

in Backpack I impose an additional restriction, the bottom premise of the rule: every
entity so exported must be unambiguously identifiable with both the qualified and un-
qualified entity reference. This restriction was required in the proof of soundness of the
elaboration (Lemma A.136), in order to prove that it’s semantics-preserving to elaborate
a module to one with all exports explicit.Therefore this rule shows how metatheory can
iron out the exact definitions of subtle language features like Haskell’s module exports.

7.6 shaping and typing judgments

Figure 7.10 provides the shaping and typing judgments for the module level. One can imme-
diately see some parallelism among the four judgments:

• All four judgments involve (1) an ambient module context (Γ/Γ̂ ), (2) the construction
of a core environment (eenv @ ω/ω̂), (3) the checking of core bindings (decls or defs)
according to specs (dspcs/ ˆdspcs), and (4) the determination of what specs to expose
(espcs).

• The two module judgments differ only in the shapeyness of certain objects and in the
way in which the core entity specs are determined: either derived directly from the
definitions (for shaping) or by core typing of them (for typing).

• The two signature judgments differ in similar ways and in one key additional way.
Both judgments either derive shapey entity definition specs or full entity specs via core
typing. But they also differ in how they determine the provenances of the core entities
they declare, ν.

The judgments have been designed to elucidate this parallelism. As noted in the introduc-
tion, shaping is based on the “static pass” in type systems for recursive modules, a la Dreyer’s
work. Instead of defining two sets of highly parallel rules, Dreyer employed clever shading
of select parts of typing rules, such that the variant for the static pass was defined to be the
same rules but with shaded premises removed.11

9 Marlow (2010), “Haskell 2010 Language Report,” §5.2.
10 Why did Haskell define this export form in this way? In private correspondence, early Haskell contributor Simon

Peyton Jones could not recall any particular reason for the official definition. However, Iavor Diatchki suggested
that the Haskell definition enables a convenient way for a module to expose an imported module’s interface with
modification:

module ModifiedA (x, module A) where

import qualified A

import A hiding (x)

x = modify_in_some_way A.x
11 Dreyer (2007a), “A Type System for Recursive Modules,” Figure 6.
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module shaping The goal with module shaping is to determine the names and structure
of the module, rather than any typing information. Concretely, this judgment synthesizes the
shape, τ̂, that determines the (names of) entities defined locally, ˆdspcs, the name specifications
of exposed entities, espcs, and the module identities directly imported, N. Additionally, the
world shape ω̂ is synthesized as part of the annotated shape of the module.

The provenance of the module is passed in as the single identity of this module, ν0, as
determined by the package level. Consequently that identity is “replicated” into a vector of
size equal to the local definitions defs in order to form the identified bindings (§7.3) used to
construct the core environment.

module typing In module typing the goal is not to determine simply the names and
structure of the module but the full typing information about its contents. The key difference
from module shaping is the way the entity definition specs are determined, dspcs. The shapey
version of this object, ˆdspcs, simply contains names and can be directly derived from defs. But
here in typing we must appeal to the typing judgment of the core level. As already covered in
Chapter 6, that judgment takes as “inputs” the following objects: the physical module context
component of the ambient module context, denoted Γ .Φ; the identity of this module, ν0; and
the two objects forming the core environment, eenv and ω, which describe the imported and
locally defined entities. All of those together are used to judge the well-typedness of the
definitions according to specifications dspcs.

signature judgments Signature judgments necessitate an additional component not
present in the module judgments: the signature declaration context, written Φsig.

Already we’ve seen plenty of times, most recently in the discussion of realizable bindings
(§7.3), that the n declarations in a signature are actually granted n different module identities
to represent their provenances. For signatures that designate holes in a package (i.e., those
signatures left unimplemented), those “β” variables allow the n entities to have been defined
in any module, not simply the module that (eventually) implements the hole, i.e., the module
for which α is substituted. In the example of Figure 7.6, for the Set signature, they were
β1, . . . ,β7; the variable for the signature itself would be some additional module identity
variable, α.

The consequence of that setup is that each βi denotes itself another module expression—
an abstract one, a signature—that declares and exposes the corresponding declaration decli
from the original signature. Those n additional signatures each have a module type of the
form

τi = 〈| dspci ; espci ; · |〉

That type locally declares the decli, which has spec dspci, and exposes that entity with name
spec espci. The merging of these n additional signatures is called the signature declaration
context, written Φsig and defined in Figure 7.10.

A signature S is judged well-formed with respect to a module type τ, but that τ has no
defined entity specs (dspcs) in it. Instead, the defined entity specs come from the signature
declaration context for S. However, τ does expose all of the entities from that context, since
clients of the signature should be able to import them from that signature. The module type
of S—before any merging into the module context, at the package level—therefore has the
form

τ = 〈| · ; espcs ; · |〉

The typing information about the core-level declarations is relegated to the accompanying
signature declaration context as an additional “output” of signature judgments.

Figure 7.11 presents an example of a signature declaration context, from the Set signature
and realizer of the running example. Given the definition of sigenv(−; −; −) in Figure 7.10,
we can see how this example context is constructed by merging the singleton contexts cor-



7.7 metatheory of the module level 115

responding to each of the n entities. Two points about the definition are worth noting. First,
the espc is derived from the shapey entity definition spec ˆdspc and the associated provenance
νi (in our example, βi). Second, each such singleton context has the same world ω for the
whole signature.

signature shaping With signature declaration contexts in mind, the signature shaping
judgment is fairly straightforward. That’s because, as we saw in the discussion of realizers,
the provenances of the decls are passed into the judgment as a simply vector of module
identities. A core environment is constructed; the shapey entity definition specs are derived
from the declarations; name specs are derived from those specs and the provenances; and
the signature declaration context is constructed. Notably, that context is actually shapey, but
the definition of the shapey version of construction, ˆsigenv(−; −; −), differs only in the
shapeyness of the dspcs and ω. The actual module shape of the signature is empty except for
the n entity name specs, espcs, for the n declarations bound in the Φ̂sig.

signature typing At this point most of the pieces of this judgment look straightforward.
Like with module typing, a core environment is constructed and passed to the core-level typ-
ing judgment in order to ascertain the entity definition specs (dspcs). And like with signature
shaping, those entity definition specs determine the name specs (espcs) and, along with the
provenances and world, the signature declaration context Φsig. The difference from those
judgments lies in the determination of the provenances, ν, which is captured in the top right
premise.

This determination of provenances in signature typing is called signature declaration realiza-
tion, a judgment also defined in Figure 7.10. As the name implies, it’s the mechanism that puts
the realizers to work. See Figure 7.6c for the instance of this judgment on the Set example.

Rule (1) specifies the realization for a named, non-instance declaration. The first premise
identifies an espc ′ in (the module shape component of) the realizer such that it matches,
possibly by being more specific (i.e., having more subnames) than, the concerning decl. The
rule is deterministic since the espcs inside module shapes (and types) have non-overlapping
names.

Rule (2) specifies the realization for an instance declaration. The syntactic head of the
instance, head(decl), is interpreted through the entity environment in the judgment, resulting
in some semantic instance head head. If there’s a fact head 7→ ν in (the world shape component
of) the realizer, then the provenance of this instance declaration is that ν.

Finally, rule (3), technically a judgment on a vector of declarations, simply maps the main
judgment over that vector.

7.7 metatheory of the module level

Backpack’s module level is defined not just as a type system, specified with typing judgments,
but also as metatheory that validates those judgments. The latter distinguishes (the Haskell
portion of) Backpack from previous formalizations of Haskell’s module system. The devel-
opment of this metatheory was driven by the statement and proof of the main Soundness
theorem for Backpack. The aspects of the metatheory specific to the elaboration into the IL
will be presented later §9.3. For now I’ll concentrate on those aspects of the metatheory that,
while used by the Soundness proof, constitute some reasonably conventional statements one
would like to know about a type system.

Backpack’s language of types is extremely rich. Take module types for example; they con-
tain multiple objects—module identities, entity names, and entity specifications—that only
make sense in particular contexts. Because of that richness, it’s important to know that the
module types judged to be the types of module expressions are themselves well-formed, i.e.,
that all the constituent objects inside them make sense. This notion of well-formedness is
generally defined via inductive inference rules in the form of judgments, one judgment per
semantic object to be considered well-formed.
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The definition of well-formedness aside, a key property about the module-level typing
judgments is that, when the context for a typing judgment is well-formed, then so is the
“result” of the judgment, like the module type. As in the rest of the formalization, we refer to
these properties as Regularity statements.

In this section I present the definitions of well-formedness judgments on some key seman-
tic objects for the module level. Then I present the regularity statements about the typing
judgments at the module level, along with a sketch of their proofs. Of particular note are the
corresponding regularity properties on core environment construction and on export resolu-
tion, both of which are involved in those proofs.

7.7.1 Well-formedness

The various well-formedness judgments for the module level aren’t too surprising for the
most part. On module types and shapes, they reduce trivially to the well-formedness of core
objects, already covered in §6.5.1.

One notable distinction is between well-formedness of world facts (head 7→ ν) with respect
to a physical module context and that of world facts with respect to a physical module
context shape. the latter does not structurally resemble the former. Rule (WfFact) judges a
world fact to be well-formedness in Φ when Φ maps the module ν to a type τ that locally
binds an instance whose head is equal to that of the fact. Essentially, it verifies that the context
properly contains the instance that originated the fact, the evidence of it. Rule (WfFactShp),
on the other hand, cannot search the context Φ̂ for the originating instance because module
context shapes don’t have any information about the instances or their heads; recall that the
instance form of ˆdspc in module shapes is simply a token instance. Instead, the rule requres
that the fact be contained in the world shape bound to the module ν.12

Well-formedness on module contexts is less straightforward, for two key reasons. First, a
module typing in a context, ν:τm ω ∈ Φ, depends not only on “previous” modules bound
in the context, but also on itself ; entities defined locally in ν will manifest, as physical names
with provenance ν, in the type τ. Then judging well-formedness of this typing requires a
self-reference to ν.

Second, modules in Backpack and in Haskell are implicitly defined in recursive knots, not
sequentially. (Backpack’s module bindings are processed sequentially, but the semantic object
representing those bindings—physical module contexts—does not preserve that sequence.)
As a result, multiple module typings within a context might refer to each other. For example,
two mutually recursive module implementations inΦ, µα1.ν1 and µα2.ν2, will mention each
other’s identities in the “imports” component of their module types.

To address both of these requirements, well-formedness of a physical module context
must assume itself, thereby enabling the consideration of such recursive references. Well-
formedness of (combined) module contexts also does this in the application of the judgment
to its constituent logical module context (WfModCtx). The main rule for physical module
context well-formedness (WfPhModCtx) exhibits this strange definition: the context to be
judged is merged into the ambient context in the premises. In those premises are auxiliary
judgments, Φ ` Φ X-wf, where X is one of four analyses of four different components of
physical module context bindings: specs, for the entity definition specs in module types; exps,
for the entity name/export specs in module types; imps, for the imports in module types;
and wlds, for the worlds annotating module types. And shapey versions as well, of course.13

All such definitions are provided in Figure 7.13. Although the context being judged as well-
formed doesn’t get smaller from the consequent to the premises, the judgment on that context
switches to these “smaller” judgments.

12 Further review of the formalization would perhaps reveal this premise to be unnecessary for the desired proofs.
13 Notably absent from (WfPhModCtxShp) is the shapey version of the imps-wf judgment. This property was simply

unnecessary in the proofs of the formalization as presented in this thesis.
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The four constituent judgments are mostly straightforward: though defined on whole phys-
ical module contexts, they’re decomposed into a universal property on all annotated module
types (or module context typings) in the context. Some notes on them follow:

• (WfSpecs)/(WfShSpecs): The validspc(dspc;m) property simply determines whether
the given spec is valid for the polarity of the module. Essentially, this verifies that
abstract data type declarations only appear in signatures, i.e., for m = −.

• (WfShSpecs): There’s no well-formedness judgment on shapey entity definition specs
( ˆdspcs) since they’re too trivial to say anything about.

• (WfSigImports): This rule ensures that the imports inside signature types are always
empty; cf. §7.6.

• (WfModImports): This rule ensures that any module identities occuring in the type
of a (concrete) module, as physical name provenances, (provs(τ)) or in its world, as
world fact provenances, (idents(ω)) are either (1) the module itself (ν) or (2) gotten from
walking the dependency graph of the module’s imports and collecting up provenances
in imported modules’ types, transitively (depends+Φ(imps(τ))). (This auxiliary function is
defined in the appendix.) A module context typing would not have well-formed imports
if, for example, there exists a physical name [ν?]χ such that ν? is not (a provenance in
the type of) a transitively imported module.

• (WfWorlds): The second premise requires that the world of the module context typing
(ω) extends the world extracted from locally-bound instances in the type (τ) of the
module (ν). In other words, the context’s world for the module must have at least every
local instance defined in the module, as determined from the entity definition specs of
the module type. Similarly here, a module context typing would not have a well-formed
world if there exists some instance spec that doesn’t appear, with this module as its
provenance, in that world.

7.7.2 “Local” well-formedness

In the metatheory at the module level there is an additional notion of “local” well-formedness,
encapsulated in judgments like aenv 
 eenv loc-wf. This notion does not appear in the main
well-formedness definitions described in the previous section. Instead it’s used internally as
part of the statements and proofs of metatheory at the module level.

Local well-formedness is necessitated by the fact that entities appearing in the core bind-
ings within a module expression originate from two places: the physical module context,
when they are imported from other modules, and the local core bindings, when they are
bound locally inside this module expression.

One way around this bifurcation would be to add the “recursive self” module binding to
the context as part of the well-typing of a module expression. At first glance this looks just
like how the well-formedness of physical module contexts “assumes itself.” With a typing
judgment, however, it’s a different story: the typing judgments of Backpack have been de-
signed to be deterministic so as to also describe a typechecking algorithm for expressions. For
the typing of a module to assume itself, we’d have to nondeterministically guess its module
type (and, in the case of a signature, its signature declaration context) in order to move it into
the context, a nondeterministic guess that the other judgment doesn’t require.

The key context in the local well-formedness judgments is the augmented entity environment,
as introduced in §7.3. This environment packs in those two sources: the module context
(shape) and the local bindings. Local well-formedness with respect to an augmented entity
environment looks at shapey information about names and provenances only. In particular, in
the full details in the appendix, the ctxmatch and locmatch definitions on these environments
describe how to perform the bifurcated lookup of the source of any entity. Their details are
uninteresting and left entirely to the appendix.
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7.7.3 Regularity of module-level typing

As in the general theme of the formalization, the typing judgments of the module level
come equipped with regularity properties that enable the composing of well-formedness
judgments. Aside from the elaboration soundness statements (), the two key metatheoretic
statements about the module level are the regularity of module and signature typing. Both
statements are presented as part of Theorem A.1 but are restated below (assume Γ = (|Φ ; L |)):

• Regularity of module typing: IfΦ ` Γ wf and Γ ; ν0 ` M : τ@ω andΦ ⊕? ν0:τ
+@ω,

thenΦ ` ν0:τ+@ω wf. A well-typed module, in a well-formed context that’s mergeable
with the module itself, has a singleton physical module context that is well-formed in
the context.

• Regularity of signature typing: IfΦ ` Γ wf and Γ ; ρ ` S : σ@ω |Φsig andΦ ⊕? Φsig
and Φ ⊕? ν0:σ

−@ω, then Φ ` Φsig wf and Φ ⊕ Φsig ` ν0:σ
−@ω wf. A well-typed

signature, in a well-formed context that’s mergeable with the signature itself and with
the signature environment context, has a singleton physical module context that is well-
formed in the context and a signature environment context that is well-formed in the
context.

The proofs of these regularity statements will be discussed shortly. At a high level, though,
they’re decomposed into properties about core environment construction, export resolution,
and the axioms about core-level typing.

core environment construction soundness The semantics of core environment
construction are validated with a corresponding soundness property: roughly, if the module
context is well-formed and if the core environment construction judgment is derivable, then
the entity environment and world are themselves well-formed. Well-formed in, well-formed
out. This soundness property is needed in the proof of regularity of module-level typing. Its
own proof requires a number of highly technical lemmas for the various judgments defining
import resolution, and for the auxiliary definitions like mklocworld(−; −). See Lemma A.17

for the full statement, along with the subsequent technical lemmas needed for its proof.

export resolution soundness Serving a similar purpose is the soundness property
for export resolution. This property, also needed in the proof of regularity of module-level typ-
ing, ensures that in the ambient module context extended with “this module,” this module’s
type has well-formed exports, i.e., entity name specs. The statement on modules is defined
as Lemma A.27, while the statement on signatures (rather, signature environment contexts)
is defined as Lemma A.28.

proofs of regularity of typing The proofs of regularity of module and signature
typing require the properties above, along with various technical lemmas provided in the
appendix. Critically, the proofs also require the axioms about core typing presented in the
previous chapter (§6.5). Now, in the context of these proofs at the module level, the exact
premises of those axioms should make more sense.

The proof of regularity of module typing composes core environment construction sound-
ness (Lemma A.17) and the axiomatized core definition typing regularity (Axiom A.15) to get
specs-wf. Then the proof of exps-wf comes from Lemma A.27, and imps-wf from Lemma A.49.
And finally Lemma A.37 yields wlds-wf.

The proof of regularity of signature typing first addresses the well-formedness ofΦsig. First,
Φsig specs-wf is a direct result of the axiom about core-level typing of signature declarations
(Axiom A.16). Second, exps-wf comes from Lemma A.28. Third, wlds-wf is a straightforward
corollary of the trickier lemma Lemma A.36. And fourth, imps-wf is trivial since module
types in signature contexts have no imported identities. As a result, Φ ` Φsig wf. Then the
well-formedness of the singleton context comes from Lemma A.38.
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Algebraic Definitions for Module Types

Module types merging τ ⊕ τ :par τ τ ⊕? τ

〈| dspc1 ; espc1 ; ν1 |〉 ⊕ 〈| dspc2 ; espc2 ; ν2 |〉 def
= 〈| dspc ; espc ; ν |〉

where


dspc = dspc1 ⊕ dspc2
espc = espc1 ⊕ espc2
nooverlap(dspc) ∧ nooverlap(espc)
{ν} = {ν1}∪ {ν2} = {ν1} or {ν2}

〈| dspc1 ; espc1 ; ν1 |〉 ⊕? 〈| dspc2 ; espc2 ; ν2 |〉 def⇔



dspc1 ⊕? dspc2
espc1 ⊕? espc2
nooverlap(dspc1 ⊕ dspc2)

nooverlap(espc1 ⊕ espc2)

{ν1}∪ {ν2} = {ν1} or {ν2}

Module types implementation order τ 6 τ

〈| dspc1, dspc ′1 ; espc1, espc ′1 ; ν1 |〉 6 〈| dspc2 ; espc2 ; ν2 |〉
def⇔

dspc1 6 dspc2 ∧ espc1 6 espc2 ∧ {ν1} ⊇ {ν2}

Annotated module types merging τm@ω ⊕ τm@ω :par τ
m@ω τm@ω ⊕? τ

m@ω

τ1
−@ω1 ⊕ τ2

−@ω2
def
= (τ1 ⊕ τ2)

−@ (ω1 ⊕ ω2)

τ1
−@ω1 ⊕ τ2

+@ω2
def
= τ2

+@ω2 if

τ1 > τ2ω1 v ω2

τ1
+@ω1 ⊕ τ2

−@ω2
def
= τ1

+@ω1 if

τ1 6 τ2ω1 w ω2

τ1
+@ω1 ⊕ τ2

+@ω2
def
= τ1

+@ω1 if

τ1 = τ2

ω1 = ω2

τ1
m1@ω1 ⊕? τ2

m2@ω2
def⇔


m1,m2 = −,− ⇒ τ1 ⊕? τ2 ∧ω1 ⊕? ω2

m1,m2 = −,+ ⇒ τ1 > τ2 ∧ω1 v ω2
m1,m2 = +,− ⇒ τ1 6 τ2 ∧ω1 w ω2
m1,m2 = +,+ ⇒ τ1 = τ2 ∧ω1 = ω2


Module identity substitution θτ : τ

θ〈| dspcs ; espcs ; ν |〉 def
= 〈| (θdspcs) ; (θespcs) ; θν |〉

Figure 7.3: Partial commumative monoids (PCMs) and induced partial orders on module types and
annotated module types. As usual, the ⊕? binary relation is just the definedness property
of ⊕ . Definitions of ⊕? are nonetheless stated above for clarity.
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Algebraic Definitions for Physical Module Contexts

Physical module contexts merging Φ ⊕ Φ :par Φ Φ ⊕? Φ

Φ1 ⊕ Φ2
def
= ν:τm@ω,Φ ′1,Φ ′2 where



Φ1 = ν:τ1m1@ω1,Φ ′1
Φ2 = ν:τ2m2@ω2,Φ ′2
τm@ω = τ1m1@ω1 ⊕ τ2m2@ω2

dom(Φ ′1) # dom(Φ ′2)

∀ω1 ∈ Φ1,ω2 ∈ Φ2 : ω1 ⊕? ω2

Φ1 ⊕? Φ2
def⇔ ∀

(
ν:τ1

m1@ω1 ∈ Φ1
ν:τ2

m2@ω2 ∈ Φ2

)
: τ1

m1@ω1 ⊕? τ2
m2@ω2 ∧ ω1 ⊕? ω2

Module identity substitution apply(θ;Φ) :par Φ

apply(θ;Φ)
def
=

⊕
ν:τm@ω∈Φ (θν):(θτ)m@ (θω), if ∀ν:τm@ω ∈ Φ : extworld(θν; θτ) defined

Figure 7.4: Partial commumative monoid (PCM) on physical module contexts, i.e., merging of physical module contexts. As usual, the ⊕? binary
relation is just the definedness property of ⊕ . Definitions of ⊕? are nonetheless stated above for clarity. The side condition on substitution
prohibits substitution from unifying locally defined instances to a module in the context; extworld(ν;τ) will be defined later.
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Auxiliary Definitions on Worlds and World Shapes

Instance Heads head(fact) : head

head(head 7→ ν)
def
= head

Instance Head Avoidance head # head

(
kenv1.([ν1]C1 typ1)

)
#
(
kenv2.([ν2]C2 typ2)

) def⇔

true ν1 6= ν2 ∨C1 6= C2
∀i : ¬unify(typ1,i; typ2,i) otherwise

World (Shape) Consistency consistent(ω) consistent(ω̂)

consistent(ω)
def⇔ ∀fact1, fact2 ∈ ω : head(fact1) # head(fact2) ∨ fact1 = fact2

consistent(ω̂)
def⇔ likewise

World (Shape) Merging ω ⊕ ω :par ω ω̂ ⊕ ω̂ : ω̂

{| fact1 |} ⊕ {| fact2 |}
def
= (fact1)∪ (fact2)

if ∀fact1 ∈ fact1, fact2 ∈ fact2 : head(fact1) # head(fact2) ∨ fact1 = fact2

{| fact1 |} ⊕ {| fact2 |}
def
= (fact1)∪ (fact2)

World Extension ω w ω

ω ′ w ω def⇔ ∃ωF : ω ′ = ω ⊕ ωF

Identity Substitution on Worlds apply(θ;ω) :par ω

apply(θ; {| fact |}) def
= {| θfact |} if ∀fact1, fact2 ∈ fact : θhead(fact1) # θhead(fact2) ∨ θfact1 = θfact2

Figure 7.5: Auxiliary definitions for worlds in Backpack. A couple notes: unify is core-level (i.e., Haskell-level) unification of types; and ] is the
conventional (partial) union on finite mappings.
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SSet = (import Prelude; declSet)

where declSet =



data Set a

empty :: Set a

member :: Ord a => a -> Set a -> Bool

insert :: Ord a => a -> Set a -> Set a

toAscList :: Set a -> [a]

instance Eq a => Eq (Set a)

instance Ord a => Ord (Set a)


(a) The definition of a full signature for Data.Set: an import to Prelude followed by the same declarations that were

presented in Figure 6.3.

ρSet = τ̂0 @ ω̂0

where



τ̂0 = 〈 · ;


[β1]Set

[β2]empty

[β4]member

[β3]insert

[β5]toAscList

 ; · 〉

ω̂0 =


· · ·

(a :: *) . [νP]Eq ([β1]Set a) 7→ β6

(a :: *) . [νP]Ord ([β1]Set a) 7→ β7

· · ·


(b) An example of a particular realizer that determines the identities for all the declarations in the signature.

ρSet; eenv ` declSet  νSet

where νSet =



β1
β2
β4
β3
β5
β6
β7



data Set a
empty :: Set a
member :: Ord a => a -> Set a -> Bool
insert :: Ord a => a -> Set a -> Set a
toAscList :: Set a -> [a]
instance Eq a => Eq (Set a)
instance Ord a => Ord (Set a)

(c) The result of realizing the signature declarations with ρSet and some related entity environment eenv: the seven
provenances of the declared entities.

Figure 7.6: A reproduction of the declarations of a typical Data.Set signature first presented in Fig-
ure 6.3, followed by an example of a realizer that identifies the provenance of every entity
declared in the signature.
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Core Environment Construction

Environment construction Γ̂ 
 impdecls; ibnds  eenv @ ω̂ Γ ` impdecls; rbnds  eenv @ ω

∀i ∈ [1..n] : Γ̂ 
 impdecli  eenvi
eenv =

⊕
i∈[1..n] eenvi ⊕ mkloceenv(ibnds)

ω̂ =
⊕
i∈[1..n] worldΓ̂ (imp(impdecli)) ⊕ ˆmklocworld(ibnds; eenv)

Γ̂ 
 impdecl1, . . . , impdecln; ibnds  eenv @ ω̂
(CoreEnvSh)

∀i ∈ [1..n] : shape(Γ) 
 impdecli  eenvi
eenv =

⊕
i∈[1..n] eenvi ⊕ mkloceenv(rbnds)

ω =
⊕
i∈[1..n] worldΓ (imp(impdecli)) ⊕ mklocworld(rbnds; eenv)
Γ ` impdecl1, . . . , impdecln; rbnds  eenv @ ω

(CoreEnv)

Import resolution Γ̂ 
 impdecl  eenv Γ̂ ; ` 
 impspec  espcs Γ̂ ; ` 
 import  espc

Γ̂ ; ` 
 impspec  espcs eenvbase = mkeenv(espcs) eenvqual = qualify(`[ ′]; eenvbase)

Γ̂ 
 (import ` [as ` ′] impspec)  (eenvbase ⊕ eenvqual)
(ImpDeclUnqual)

Γ̂ ; ` 
 impspec  espcs eenvbase = mkeenv(espcs) eenvqual = qualify(`[ ′]; eenvbase)

Γ̂ 
 (import qualified ` [as ` ′] impspec)  eenvqual
(ImpDeclQual)

espcs ∈ Γ̂(`)
Γ̂ ; ` 
 ·  espcs

(ImpSpecAll)

∀i ∈ [1..n] : Γ̂ ; ` 
 importi  espci espcs =
⊕
i∈[1..n]{espci}

Γ̂ ; ` 
 (import1, . . . , importn)  espcs
(ImpSpecSome)

espc ∈ Γ̂(`) espc = [ν]χ

Γ̂ ; ` 
 χ  espc
(ImpSing)

espc ∈ Γ̂(`) espc 6 espc ′ = [ν]χ()

Γ̂ ; ` 
 χ  espc ′
(ImpSingParent)

espc ∈ Γ̂(`) espc = [ν]χ(χ ′)

Γ̂ ; ` 
 χ(..)  espc
(ImpMultAll)

espc ∈ Γ̂(`) espc 6 espc ′ = [ν]χ(χ ′)

Γ̂ ; ` 
 χ(χ ′)  espc ′
(ImpMultSome)

Entity Environment Qualification qualify(mref ; eenv) :par eenv

qualify(mref ; eenv) def
= {mref.χ 7→ phnm | χ 7→ phnm ∈ eenv}; locals(eenv)

where ∀eref ∈ dom(eenv) : ∃χ : eref = χ

Figure 7.7: Definition of core environment construction and import resolution. Note that the rules for resolving an impdecls employ bracketing
([]) to denote rule schemas. As a result each of these rules is interpreted as two distinct rules: with and without the parts in brackets.
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Core Environment Construction (Continued)

Local Entity Environment Construction

mkloceenv(rbnds) :par eenv mkeenv(espc) :par eenv

mkeenv(espcs) :par eenv locespcs(rbnds) :par espcs

mkloceenv(rbnds) def
= mkeenv(locespcs(rbnds))

⊕ qualify(Local; mkeenv(locespcs(rbnds)))

mkeenv([ν]χ) def
= {χ 7→ [ν]χ} ; [ν]χ

mkeenv([ν]χ(χ ′)) def
= {χ 7→ [ν]χ}∪ {χ ′ 7→ [ν]χ ′ | χ ′ ∈ χ ′} ; [ν]χ(χ ′)

mkeenv(espcs) def
=

⊕
espc∈espcs mkeenv(espc)

locespcs((ν1, . . . ,νn | bnd1, . . . , bndn))
def
= (espc | ∃i ∈ [1..n] : bndi vνi espc)

locespcs((τ̂0 @ _ | decls)) def
= (espc ′ | espc ∈ τ̂0, ∃decl ∈ decls : decl v espc ′ 6 espc)

Local World Construction mklocworld(rbnds; eenv) :par ω ˆmklocworld(ibnds; eenv) :par ω̂

mklocworld((_ @ ω̂0 | decl1, . . . , decln); eenv) def
= {| eenv(head(decli)) 7→ ν ∈ ω̂0 | i ∈ I |},

where



consistent(ω̂0)

I = {i ∈ [1..n] | decli = instance . . . }

∀i ∈ I : eenv(head(decli)) defined

∀i 6= j ∈ I : eenv(head(decli)) # eenv(head(declj))

mklocworld((ν1, . . . ,νn | bnd1, . . . , bndn); eenv) def
= {| eenv(head(bndi)) 7→ νi | i ∈ I |},

where


I = {i ∈ [1..n] | bndi = instance . . . }

∀i ∈ I : eenv(head(bndi)) defined

∀i 6= j ∈ I : eenv(head(bndi)) # eenv(head(bndj))

ˆmklocworld((ν1, . . . ,νn | bnd1, . . . , bndn); eenv) def
= (similar)

Figure 7.8: Definition of core environment construction, continued.
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Module Export Resolution

Module Export Declarations Resolution eenv 
 expdecl  espcs

phnm = ([ν]χ | Local.χ 7→ [ν]χ ∈ eenv)

eenv 
 ·  filterespcs(locals(eenv); phnm)
(ExpLocal)

∀i ∈ [1..n] : eenv 
 exporti  espci
espcs =

⊕
i∈[1..n]{espci} nooverlap(espcs)

eenv 
 export (export1, . . . , exportn)  espcs
(ExpList)

Entity Export Resolution eenv 
 export  espc

eenv(eref ) = [ν]χ : [ν]χ

eenv 
 eref  [ν]χ
(ExpSimple)

eenv(eref ) = [ν]χ : [ν]χ(χ ′)

eenv 
 eref  [ν]χ()
(ExpSimpleEmpty)

eenv(eref ) = [ν]χ : [ν]χ(χ ′,χ ′′)
eenv 
 eref(χ ′)  [ν]χ(χ ′)

(ExpSubList)
eenv(eref ) = [ν]χ : [ν]χ(χ ′)

eenv 
 eref(..)  [ν]χ(χ ′)
(ExpSubAll)

phnm = ([ν]χ | χ 7→ [ν]χ ∈ eenv, mref.χ 7→ [ν]χ ∈ eenv)
∀[ν]χ ∈ phnm : eenv(χ) = [ν]χ ∧ eenv(mref.χ) = [ν]χ

eenv 
 scope mref  filterespcs(locals(eenv); phnm)
(ExpModAll)

filterespc([ν]χ; phnm)
def
= [ν]χ

filterespc([ν]χ(χ ′); phnm)
def
= [ν]χ(χ ′′) where {[ν]χ ′′} = {[ν]χ ′}∩ {phnm}

filterespcs(espc; phnm)
def
=

 filterespc(espc; phnm)

espc ∈ espc,
phnm ∈ phnm,
espc v phnm


Figure 7.9: Definition of module export resolution.
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Module-Level Shaping and Typing

Module shaping Γ̂ ; ν0 
 M⇒ τ̂ @ ω̂

Γ̂ 
 impdecls; (ν0, . . . ,ν0 | defs)  eenv @ ω̂ eenv 
 expdecl  espcs
defs v ˆdspcs N = {Γ̂(imp(impdecl)) | impdecl ∈ impdecls}

Γ̂ ; ν0 
 (impdecls; expdecl; defs)⇒ 〈 ˆdspcs ; espcs ; N 〉 @ ω̂
(ShMod)

Module typing Γ ; ν0 ` M : τ @ω

Γ ` impdecls; (ν0, . . . ,ν0 | defs)  eenv @ ω eenv 
 expdecl  espcs
Γ .Φ; ν0; eenv; ω ` defs : dspcs N = {Γ(imp(impdecl)) | impdecl ∈ impdecls}

Γ ; ν0 ` (impdecls; expdecl; defs) : 〈| dspcs ; espcs ; N |〉 @ω
(TyMod)

Signature shaping Γ̂ ; ν 
 S ⇒ σ̂ @ ω̂ | Φ̂sig

Γ̂ 
 impdecls; (ν | decls)  eenv @ ω̂

decls v ˆdspcs ˆdspcs vν espcs Φ̂sig = ˆsigenv(ν; ˆdspcs; ω̂)

Γ̂ ; ν 
 (impdecls; decls) ⇒ 〈 · ; espcs ; · 〉 @ ω̂ | Φ̂sig
(ShSig)

Signature typing Γ ; ρ ` S : σ @ω | Φsig

Γ ` impdecls; (ρ | decls)  eenv @ ω ρ; eenv ` decls  ν

Γ .Φ; ν; eenv; ω ` decls : dspcs dspcs vν espcs Φsig = sigenv(ν; dspcs; ω)

Γ ; ρ ` (impdecls; decls) : 〈| · ; espcs ; · |〉 @ω | Φsig
(TySig)

Signature declaration context construction ˆsigenv(ν; ˆdspcs; ω̂) :par Φ̂ sigenv(ν; dspcs; ω) :par Φ

sigenv(ν1, . . . ,νn; dspc1, . . . , dspcn; ω)
def
=

⊕
(νi:〈| dspci ; espc ; · |〉−@ω | i ∈ [1..n], dspci vνi espc)

ˆsigenv(ν1, . . . ,νn; ˆdspc1, . . . , ˆdspcn; ω̂)
def
= (similar))

Signature declaration realization ρ; eenv ` decl  ν ρ; eenv ` decls  ν

decl vν espc > espc ′ espc ′ ∈ τ̂0
τ̂0 @ ω̂0; eenv ` decl  ν

(1)
eenv(head(decl)) 7→ ν ∈ ω̂0

τ̂0 @ ω̂0; eenv ` decl  ν
(2)

ρ; eenv ` decl  ν

ρ; eenv ` decl  ν
(3)

Figure 7.10: Definition of shaping and typing on module level.
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Φsig =



β1 : 〈| data Set a :: * ; [β1]Set() ; · |〉− @ω

β2 : 〈| empty :: forall (a :: *). typ ; [β2]empty ; · |〉− @ω

β3 : 〈| member :: forall (a :: *). [νP]Ord a => a -> typ -> [νP]Bool ; [β3]member ; · |〉− @ω

β4 : 〈| insert :: forall (a :: *). [νP]Ord a => a -> typ -> typ ; [β4]insert ; · |〉− @ω

β5 : 〈| toAscList :: forall (a :: *). typ -> [νP]List a ; [β5]toAscList ; · |〉− @ω

β6 : 〈| instance (a :: *) {[νP]Eq a} [νP]Eq typ ; · ; · |〉− @ω

β7 : 〈| instance (a :: *) {[νP]Ord a} [νP]Ord typ ; · ; · |〉− @ω



where


typ = [β1]Set a

ω = ωimp ⊕

 (a :: *) . [νP]Eq typ 7→ β6

(a :: *) . [νP]Ord typ 7→ β7


Figure 7.11: The signature declaration context for the Set signature and realizer from Figure 7.6.
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Well-Formedness at the Module Level

Module types and shapes Φ ` τ wf Φ̂ 
 τ̂ wf

∀dspc ∈ dspcs : Φ ` dspc wf
∀espc ∈ espcs : Φ ` espc wf

{ν} ⊆ dom(Φ)

Φ ` 〈| dspcs ; espcs ; ν |〉 wf
(WfModTyp)

∀espc ∈ espcs : Φ̂ 
 espc wf
{ν} ⊆ dom(Φ̂)

Φ̂ 
 〈 ˆdspcs ; espcs ; ν 〉 wf
(WfModShp)

Worlds and world shapes Φ ` ω wf Φ̂ 
 ω̂ wf

Φ ` head 7→ ν wf

Φ ` {| head 7→ ν |} wf
(WfWorld)

Φ̂ 
 head 7→ ν wf

Φ̂ 
 { head 7→ ν } wf
(WfWorldShp)

World facts Φ ` head 7→ ν wf Φ̂ 
 head 7→ ν wf

ν:τm@ω ∈ Φ dspc ∈ τ head = head(dspc)
Φ ` head 7→ ν wf

(WfFact)
ν:τ̂m@ ω̂ ∈ Φ̂ head 7→ ν ∈ ω̂

Φ̂ 
 head 7→ ν wf
(WfFactShp)

Module contexts Φ ` Γ wf Φ̂ 
 Γ̂ wf

Φ ⊕? Φ
′

Φ ` Φ ′ wf Φ ⊕ Φ ′ ` L ′ wf
Φ ` (|Φ ′ ; L ′ |) wf

(WfModCtx)

Φ̂ ⊕? Φ̂
′

Φ̂ 
 Φ̂ ′ wf Φ̂ ⊕ Φ̂ ′ 
 L ′ wf

Φ̂ 
 ( Φ̂ ′ ; L ′ ) wf
(WfModShpCtx)

Logical module contexts Φ ` L wf Φ̂ 
 L wf

{ν} ⊆ dom(Φ)

Φ ` ` 7→ ν wf
(WfLogModCtx)

{ν} ⊆ dom(Φ̂)

Φ̂ 
 ` 7→ ν wf
(WfLogModShpCtx)

Figure 7.12: Definition of well-formedness of some semantic objects relevant to module level. Well-formedness of physical module contexts (Φ)
is defined in Figure 7.13.
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Well-Formedness of Module Contexts

Module contexts Φ ` Φ wf Φ̂ 
 Φ̂ wf

Φ ⊕? Φ
′

Φ ⊕ Φ ′ ` Φ ′ spcs-wf
Φ ⊕ Φ ′ ` Φ ′ exps-wf
Φ ⊕ Φ ′ ` Φ ′ imps-wf
Φ ⊕ Φ ′ ` Φ ′ wlds-wf

Φ ` Φ ′ wf
(WfPhModCtx)

Φ̂ ⊕? Φ̂
′

Φ̂ ⊕ Φ̂ ′ 
 Φ̂ ′ spcs-wf
Φ̂ ⊕ Φ̂ ′ 
 Φ̂ ′ exps-wf
Φ̂ ⊕ Φ̂ ′ 
 Φ̂ ′ wlds-wf

Φ̂ 
 Φ̂ ′ wf
(WfPhModCtxShp)

Entities well-formed in contexts

Φ ` Φ spcs-wf Φ̂ 
 Φ̂ spcs-wf

Φ ` τm spcs-wf Φ̂ 
 τ̂m spcs-wf

Φ ` τm spcs-wf
Φ ` {|ν:τm@ω |} spcs-wf

Φ̂ 
 τ̂m spcs-wf

Φ̂ 
 { ν:τ̂m@ ω̂ } spcs-wf

nooverlap(dspcs) ∀dspc ∈ dspcs : Φ ` dspc wf∧ validspc(dspc;m)

Φ ` 〈| dspcs ; espcs ; ν |〉m spcs-wf
(WfSpecs)

nooverlap( ˆdspcs) ∀ ˆdspc ∈ ˆdspcs : validspc( ˆdspc;m)

Φ̂ 
 〈 ˆdspcs ; espcs ; ν 〉m spcs-wf
(WfShSpecs)

Exports well-formed in contexts

Φ ` Φ exps-wf Φ̂ 
 Φ̂ exps-wf

Φ ` τ exps-wf Φ̂ 
 τ̂ exps-wf

Φ ` τ exps-wf
Φ ` {|ν:τm@ω |} exps-wf

nooverlap(espcs) ∀espc ∈ espcs : Φ ` espc wf
Φ ` 〈| dspcs ; espcs ; ν |〉 exps-wf

(WfExports)

Φ̂ 
 τ̂ exps-wf

Φ̂ 
 { ν:τ̂m@ ω̂ } exps-wf

nooverlap(espcs) ∀espc ∈ espcs : Φ̂ 
 espc wf

Φ̂ 
 〈 ˆdspcs ; espcs ; ν 〉 exps-wf
(WfShExports)

Imports well-formed in contexts Φ ` Φ imps-wf Φ ` ν:τm@ω imps-wf

Φ ` ν:τm@ω imps-wf
Φ ` {|ν:τm@ω |} imps-wf

imps(τ) = ·
Φ ` ν:τ−@ω imps-wf

(WfSigImports)

imps(τ) ⊆ dom(Φ) provs(τ)∪ idents(ω) ⊆ {ν}∪ depends+Φ(imps(τ))
Φ ` ν:τ+@ω imps-wf

(WfModImports)

Worlds well-formed in contexts
Φ ` Φ wlds-wf Φ̂ 
 Φ̂ wlds-wf

Φ ` τm@ω wlds-wf Φ̂ 
 τ̂m@ ω̂ wlds-wf

Φ ` τm@ω wlds-wf
Φ ` {|ν:τm@ω |} wlds-wf

Φ̂ 
 τ̂m@ ω̂ wlds-wf

Φ̂ 
 { ν:τ̂m@ ω̂ } wlds-wf

Φ ` ω wf ω w extworld(ν; τ)
Φ ` τm@ω wlds-wf

(WfWorlds)
Φ̂ 
 ω̂ wf

Φ̂ 
 τ̂m@ ω̂ wlds-wf
(WfShWorlds)

Figure 7.13: Definition of well-formedness of module contexts and associated objects.
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Finally, the package level of Backpack is the outermost one. This is an entirely new contri-
bution to Haskell, rather than a formalization of existing Haskell entities or semantics, like
the core level and much of the module level are. The novelty of this level happily leads to
a formalization that is cleaner and more free of all the technical specifics that pervade the
module level. This isn’t surprising, however, since this level was entirely designed in tandem
with its formalization.

The main expression at the package level is, obviously, the package. Packages are declared in
an ambient package context, instantiated, and linked together. They’re treated, on one hand,
like mixin modules built out of logically named inner components, and on the other hand,
like dependency graphs of their constituent modules. Mixin linking of the logical module
names appeals to unification of semantic objects in order to determine the physical structure
of packages.

Much of the package level for Backpack was already introduced with motivating examples
in Chapter 2. This chapter will therefore focus on a more detailed discussion of the technical
formalization of packages in Backpack.

interaction with module level As the package level is the outermost level, there are
no Backpack objects “passed into” the package level from other levels. Instead, the package
level is concerned with top-level package declarations (D) and contexts thereof (∆). It does,
however, appeal to the module level for its own shaping and typing passes (as the module
level appeals to the core level).

The package level synthesizes a package shape (Ξ̂pkg) that determines the physical structure
of the package. From that, for each module ν in the package, it extracts the module-level in-
formation about the physical names (i.e., module identities) bound in the module expression.
For modules, that information is just the module identity to designate “this” module, ν0, and
for signatures, that information is a realizer (ρ, §7.3) that designates the provenances of core
declarations, whether they’re named core declarations or instance declarations.

With that structural information from the package shape, the module level performs the
typing of the module expression, yielding a module type (τ), a world (ω), and, for signatures,
a signature declaration context (Φsig). All of that type information gets assembled into a
package type (Ξ) describing both the logical and physical aspects of the package.

For shaping, the interaction with the module level is similar, with shapey variants of all the
objects from above. The passing of structural information from a package shape (Ξ̂) to module
level though is simpler during package shaping: it’s simply some fresh module identities that
are generated.

internals Unlike the module level, the package level has additional expression forms
whose typing does not appeal to lower levels of the formalization: a top-level package dec-
laration D and a package include binding. Both these expression forms involve thinning and
renaming, two key concepts in the package level without concern to the module level.

8.1 syntax of the package level

The syntax of Backpack’s module level is presented in Figure 8.1. In a couple key ways, this
syntax differs from that presented in the earlier Backpack work.1 First, there’s no “expression”

1 Kilpatrick et al. (2014), “Backpack: Retrofitting Haskell with Interfaces”.
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Backpack Package Syntax

Package Names P ∈ PkgNames
Logical Module Names ` ∈ ModNames
Package Bindings B ::= ` =M Module Binding

| ` :: S Signature Binding
| ` = ` Alias Binding
| include P t r Package Inclusion

Thinning Specs t ::= (`)

Renaming Specs r ::= 〈` 7→ `〉
Package Definitions D ::= package P t where B
Package Repositories R ::= D

Figure 8.1: Syntax of Backpack’s package level.

form—previously denoted with metavariable E—for modules, signatures, or module name
references, and with a single binding form ` = E. Instead, this formalization distributes the
three expression forms into three distinct binding forms. Second, module names no longer
have any hierarchical, “dotted path” structure, a restriction that eliminates some complica-
tions around thinning.

Package names (P) model the entire package name. Package names are drawn from a sort
PkgNames and therefore have no structure to them. In particular, two different “versions” of
a package would have names containers-1.0 and containers-1.5, names that have no semantic
connection to each other. (Recall that versioning is not part of Backpack.)

Logical module names (`)2 are similarly drawn from a sort (ModNames) rather than having
any structure. As mentioned above, this is a departure from earlier presentations of Backpack.

Package bindings (B) are the key expression forms at the package level. The first form,
module bindings, assigns a module name ` to a module expression M. As already discussed
in the module level, this is how module names are bound to (nameless) module expressions
to be subsequently imported, as opposed to the self-named module expressions in Haskell.
Signature bindings are similar.

Package inclusion brings the bindings from the designated package P into the current
namespace, after applying the given thinning and renaming specs, t and r respectively. A
thinning spec designates some subset of module names from a package, and a renaming
spec designates a renaming of module names when including the target bindings into the
namespace; the l.h.s. of the arrow is renamed to the r.h.s.

Package declarations (D) introduce new packages as defined by a sequence of bindings (B)
followed by a thinning spec (t). A couple deviations from existing Haskell are worth noting.

• In Haskell today—or rather, in the Cabal specification language—a package is defined
as an unordered collection of modules. A build tool deterministically derives the depen-
dency order of the collection so as to process the modules in order. (The same is true
of the internal language, or IL, introduced in the next chapter.) In Backpack, however, a
package is defined with a sequence of module bindings that must be processed in order;
this restriction regularized the definition of shaping and typing of bindings.

• Moreover, in a Cabal package specification, the constituent modules that comprise a
package’s definition are partitioned, by the package author, into exposed modules vs. hid-
den modules. The former modules are provided to client packages and made available
for importing by those clients’ modules, while the latter modules are internal imp-
lementation details that are not available for import by clients. This partition acts as

2 The metavariable ` comes from that used in MixML (Dreyer and Rossberg, 2008). Though that system imposes a
hierarchical structure to these “labels”, as “label paths” (`s).
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a form of implementor-side abstraction (§1.1.1): the implementor, i.e., the package author,
decides which aspects of the package to reveal to clients. In Backpack, this same form of
abstraction is expressed as a thinning specification on a package declaration. That thin-
ning spec designates the subset of module names that are bound within the package
that should be made available to clients.

Finally, a package repository is simply a sequence of package declarations. Every package
declaration is considered within some repository. The bindings that comprise a package dec-
laration can only include other packages which have been declared earlier in the sequence.
The vast complexity of package management systems is thereby swept under this austere
rug.

8.1.1 Inferring thinning and renaming specs

The careful reader might have noticed that the motivating examples from Chapter 2 omitted
thinning and renaming specs on include bindings and thinning specs on package declarations,
in contrast to the defined syntax which requires these specs on those forms. Though they’ve
been omitted from the examples for the sake of presentation, both thinning and renaming
can be implicitly derived in a straightforward manner as follows:

• The implicit thinning spec on an include P binding is the full list of logical names
bound in P. For example, within the structures package from Figure 2.2 (p. 38), the
include arrays-sig has an implicit thinning spec (Prelude,Array) since those are the two
logical module names bound in arrays-sig. This can be derived from the package type of
P (or even its shape).

• The implicit renaming spec on an include P binding is simply the empty renaming 〈·〉.

• The implicit thinning spec on a package P where B declaration is, again, the full list of
logical module names bound in the B. Returning to the structures package, its own dec-
laration’s implicit thinning spec is (Prelude,Array, Set,Graph,Tree). This can be derived
from the package type (or shape) of the bindings.

8.2 semantics of the package level

As with the module level, typing in the package level comprises a shaping pass and a typing
pass. The former concerns itself with all the mixin linking, unification, and dependency graph
structure, while the latter uses the result of that in order to perform typechecking all the way
down to the core level.

The package declaration form (D) is distinguished in Backpack in that it’s the origin of
the shaping-vs.-typing split. In the package type system, the typing of a package declaration
involves first synthesizing a package shape for the package’s bindings, and then using that
shape to synthesize a package type. The package shape is the origin of all “shapiness” across
the levels of Backpack.

The package level is given meaning via a typing judgment that classifies well-formed pack-
age bindings and package declarations with semantic objects. Those semantic objects are
package types (Ξ) and parameterized package types (∀α.Ξ) respectively. The typing judg-
ment directly yields the deterministic process we call the typing pass, and similarly a shaping
judgment yields the shaping pass. Those judgments are presented in §8.6

Also novel to the semantics of the package level are the concepts of thinning and renaming.
The former involves the traversal and analysis of dependency graphs formed by the module
identities occurring in package types, while the latter involves a straightforward transforma-
tion of the logical module names contained within package types (cf. the depends auxiliary
function).
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Backpack Module Semantic Objects

Signature Realizers ρ ::= τ̂ @ ω̂

Physical Module Contexts Φ ::= {|ν:τm@ω |}

Physical Module Shape Contexts Φ̂ ::= { ν:τ̂m@ ω̂ }

Logical Module Contexts L ::= ` 7→ ν

Module Contexts & Package Types Γ ,Ξ ::= (|Φ ; L |)

Module Shape Contexts & Package Shapes Γ̂ , Ξ̂ ::= ( Φ̂ ; L )

Module Identity Substitutions θ ::= {α := ν}

Package Environments ∆ ::= · | ∆, P : ∀α.Ξ

Figure 8.2: Semantic objects relevant to Backpack’s package level, with key objects in bold.

8.3 semantic objects

Figure 8.2 presents the semantic objects particularly relevant to the package level. Almost
all of these objects were introduced in the module level. The only object that is entirely new
at this level is the package environment (∆). Additionally, module identity substitutions (θ)
aren’t really new to this level, but they haven’t served as an explicit part of the semantics of
shaping and typing in the lower levels like they do in the package level. And finally, package
types (Ξ) are the same object as module contexts (Γ ) but deserve additional consideration
now.

package types and parameterized package types A package type (Ξ) is the exact
same object as the module contexts (Γ ) from the module level: it comprises a physical module
context (Φ) that contain typings for module identities and a logical module context mapping
logical module names to those physical module identities. Here at the package level, the same
object serves as the type of package bindings.

A parameterized package type (∀α.Ξ) serves as the type of whole packages. The ∀-quantifier
binds some module identity variables (α) over the constituent package type (Ξ). Those vari-
ables represent precisely those identities representing module holes (the “αs”) among the
package bindings designated by (Ξ), along with the provenances of those holes’ entities (the
“βs”). That the variables are bound simply denotes the type of a package, i.e., a collection
of module bindings that will not be extended or merged or unified (but, naturally, will be
included into other packages).

Parameterized package types admit α-conversion and -equivalence. Unlike conventional
∀ binders, however, parameterized package types are eliminated into package types not via
application of module identities but via substitution of those identities. We’ll see more on this
in §8.5.

package environments A package environment (∆) is a context that maps package names
(P) to parameterized package types (∀α.Ξ). References to other packages by their names, via
the include binding, are statically processed by looking up their types in this environment.
The environment is initialized to be empty and is extended during the processing of succes-
sive package declarations (D) within a package repository (R).

8.4 thinning judgment

Figure 8.3 presents the definition of the thinning judgment on package types. At the core is
a straightforward idea: gather up all the module identities which the chosen logical module
names (t) denote or on which they transitively depend, thereby accumulating a subset of
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module identities N, and restrict the package type Ξ to only those physical modules and only
the chosen logical ones.

The second premise appeals to the depends+Φ(ν) definition for the set of all module identi-
ties that ν transitively depends on withinΦ, including itself, resulting inN. The third premise
restricts both physical and logical components of the source package type Ξ: the former is
restricted to the set N, while the latter is restricted to only those logical names designated
in the thinning spec t. And finally the fourth premise asserts that any remaining holes must
be fillable, via the locatedΞ(ν) definition. The second and fourth premises deserve additional
consideration.

dependency closure The depends+Φ(ν) function is just the addition of ν to dependsΦ(ν).
The latter function in turn appeals to the inner function dependsΦ;N(ν) which carries out
the meat of the transitive closure. Its definition is perhaps most easily understood as the
reachability set within the dependency graph induced by the context Φ, while carrying the
setN of visited nodes. Each “step” of dependency is defined, via the setN ′, as all the modules
occurring within the module type (τ) and world (ω) of the source module ν’s typing in Φ.

abstract identities located in package Every abstract module in the resulting
package type must either be a module hole itself, with some logical name ` used to fill
it, or the identity of some declared entity in a signature that itself can be filled. Without this
premise, we might get a thinned package that has holes that have no ` by which to implement
them!

One might wonder why this fact must be explicitly ensured via the locatedΞ(ν) premise
of the thinning judgment; why does it not merely fall out of the Backpack type system? The
source of potential trouble lies in the thinning spec t. Consider the structures package from
Figure 2.2 (p. 38), which has two holes, Prelude and Array. Now consider the thinning spec
t = (Array,Graph) applied to the type of this package. If we apply the thinning judgment to
this type with this thinning spec, our set N contains the module identity variable denoting
the Prelude module—call it αP—but there’s no logical name ` pointing to this hole in the
resulting package type. The variable αP is therefore not “located” in the resulting package
type. Because such a variable can only be unified by linking in a concrete module binding
with the same logical name, that variable would be impossible to unify. The final premise of
the thinning judgment rules out such an ill-formed thinning.

8.5 unification

Unification in Backpack is the technical manifestation of linking: module identities of holes
are unified with the module identities of implementations. Figure 8.4 provides all the relevant
definitions for unification of semantic objects in Backpack. The various unification judgments
are explained in order:

At the outermost level is the unifying merge judgment on package shapes, 
 Ξ̂ + Ξ̂ ⇒
Ξ̂ which we’ll see is invoked in the shaping rule for sequencing package bindings. Rule
(UnifMerge) describes analyzing the two package shapes to determine a unifying substitu-
tion θ, which is then applied to each side and merged together to form the result.

The third premise of (UnifMerge) gathers up all the pairs of identities for logical module
names in both sides of the merge. Each such (ν1,ν2) describes a pair that should be linked
together, i.e., unified. The last premise invokes the unification of these pairs within their
respective physical module shape contexts, Φ̂1 and Φ̂2, each restricted to only the chosen
identities.

For example, if Ξ̂1 contains the implementation of a Data.Set module, νS, and Ξ̂1 contains
a signature for Data.Set, αS, then the common logical name will yield a pair to unify, (νS,αS).
As a final result, not only will αS := νS be part of the resulting subsitution, but so will all
the βi := νi determined from unifying the provenances of entities declared in the Data.Set
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signature and implemented in the Data.Set module (espcs), as well as further such βs from
unifying the identities of their respective world shapes (ω̂).

The next unification judgment, 

(
ν; Φ̂

)
�

(
ν; Φ̂

)
 θ, defines the main process

of unification in Backpack: unify, in order, (1) all pairs of module identities, (2) all pairs of
(export specs of) module shapes, and (3) all pairs of world shapes. Each unification produces a
substitution which is then applied to the subsequent objects to unify. In the end, the resulting
substitution is the (function) composition of the substitutions in order.

This unification judgment intentionally does not proceed “module-wise” through the pairs
of modules. Rather, it’s important that this last step (3) occurs after the second step (2) since
the former relies on all the class constraints in worlds having been already unified and sub-
stituted. Specifically, rule (UnifWorldShp) checks that two world facts to unify have syntac-
tically identical instance heads; since those heads can mention classes declared in signatures
being presently unified with implementations, we’d like that substitution to be applied to
their respective world (shapes) before trying to unify those.

Consider this staging in the Data.Set example. The module and signature would have the
following export specs and world (shape) facts:

Data.Set module:
espc1 = [νS]Set(. . . )

fact1 = (a :: *).[νP]Eq ([νS ]Set a) 7→ νS

Data.Set signature:
espc2 = [βS]Set()

fact2 = (a :: *).[νP]Eq ([βS ]Set a) 7→ β ′S

In order to unify fact1 and fact2, we must first apply the substitution βS := νS to each side,
resulting in two instance heads that are syntactically the same. Only at that point can the
two facts be unified, yielding β ′S := νS, which allows the two modules’ world shapes to be
merged in (UnifMerge).

Unification on module identities appeals to an underlying unification of first-order recur-
sive terms, denoted unify(−). This definition is not defined here in this formalization but it’s
standard folklore—from (Huet, 1976) to (Gauthier and Pottier, 2004), for example—and can
be performed efficiently. See A.1.1 for more details about unification on module identities.

Unification on sets of entity name specs, i.e., export specs, proceeds by matching syntactic
entity names. In the earlier example, the entity name Set appearing in both sides’ export specs
led to the unification of their respective provenances, νS and βS. Rule (UnifEspcs) applies
when two such specs have matching names, while rule (UnifEspcsTriv) applies when none
of them match.

Unification on world shapes proceeds by matching syntactic instance heads. As already
discussed above, in order to correctly unify world shapes in the presence of locally declared
classes and types—which may appear in the instance heads of those world shapes—those
classes and types should have already been unified in (UnifPhysCtx). The structure of these
rules follows that of the previous rules.

Finally, the judgments for sequentially unifying vectors of objects are entirely straightfor-
ward.

8.6 shaping and typing judgments

The shaping judgments for the package level are defined in Figure 8.5. These judgments are
straightforward and closely match the abridged versions from Chapter 3. A few observations
about the rules defining the judgments are worth noting:

• Compared to the earlier presentation, the module (ShPkgMod) and signature (ShPkgSig)
rules feature world shapes and the include rule (ShPkgInc) features thinning.

• The thinning rule (ShPkgInc) operates on types, appealing to the thinning judgment of
§8.4, before casting down the resulting package type to a shape.
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• The notation α fresh is a conventional way to denote α-converted variables such that
the α do not appear in the contexts of the rule conclusion.

• Rule (ShPkgSeq) invokes the unifying merge judgment of §8.5. Here is where the Back-
pack type system determines linking.

The typing judgments for the package level are likewise defined in Figure 8.6. Again, these
judgments are straightforward extensions of the earlier abridged versions, with the following
observations:

• Compared to the earlier presentation, the module (TyPkgMod) and signature (TyPkgSig)
rules feature worlds and the include (TyPkgInc) and package definition (TyPkg) rules
feature thinning.

• The presence of worlds in (TyPkgSig) is worth noting in particular. The contextual
package shape, Ξ̂pkg, designates not just the module shape τ̂0, which determines the
provenances of the named entities declared in the signature, but now also the world
shape ω̂0, which determines the provenances of the type class instances declared in the
signature. Together, these two objects constitute the realizer, τ̂0 @ ω̂0, that’s passed to
the module-level judgment; recall §7.3.

• The typing of package repositories (R) has been defined. There’s nothing technically
interesting about it, although we’ll soon see an interesting modification of it for the
elaboration semantics.

8.7 metatheory of the package level

The package level introduces one new semantic object that comes equipped with a well-
formedness judgment: package environments (∆). This judgment is straightforwardly defined
as the well-formedness of every package type bound in the environment:

` ∆ wf def⇔ ∀(P : ∀α.Ξ) ∈ ∆ : · ` Ξ wf

8.7.1 Structural metatheory about well-formedness

The well-formedness judgments on semantic objects across all of Backpack satisfy various
structural properties. Here I use the term structural to indicate both their structural similarity
across all such judgments and their utility to the rest of the metatheory. I use conventional
names for some of these properties as found elsewhere in the type theory literature, e.g.,
Weakening and Cut.

The structural metatheoretic properties about the well-formedness of a semantic object A
are the following:

• Weakening (Lemma A.4): If A is well-formed in some physical module context Φ and
Φ ⊕? ΦW , then A is also well-formed in the weakened, sub-context3 Φ ⊕ ΦW . We can
keep adding more (compatible) module information to the context and preserve the
well-formedness of A.

• Merging (Lemma A.5): If A1 is well-formed in Φ1 and A2 is well-formed in Φ2, and
if A1 ⊕? A2 and Φ1 ⊕? Φ2, then the merged object A1 ⊕ A2 is well-formed in the
merged context Φ1 ⊕ Φ2. The individual well-formedness of two mergeable objects
combines into their merged well-formedness.

• Invariance under substitution4 (Lemma A.6): If Φ is well-formed and if module iden-
tity substitution θ is applicable to Φ (i.e., apply(θ;Φ) is defined), and if A is well-formed

3 According to the 6 order on Φ.
4 This is not called “substitutability” since that generally refers to the preservation of expression typing under sub-

stituting a free variable with an expression of the same type. In Backpack, substitution is not on expressions but on
types, in a sense. That fits in with the general theme of Backpack being about linking rather than substitution.
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in Φ and θ is applicable to A, then apply(θ;A) is well-formed in apply(θ;Φ). We can link
implementations for holes and still preserve the well-formedness of A, so long as the
linking substitution was compatible with the context (which is a big “if”).

• Strengthening (Lemma A.7): If A is well-formed in Φ and N is a subset of the module
identities contained in Φ, and if A in some sense depends only on the identities in N,
then A is also well-formed in the strengthened, super-context Φ|N. We can drop some
module information from the context, so long as A doesn’t rely on any of it,5 and
preserve the well-formedness of A.

• Cut (Lemma A.8): This property is primarily defined for physical module contexts. If
Φ1 is well-formed in Φ and Φ2 is well-formed in the merged context Φ ⊕ Φ1, and
if Φ1 ⊕? Φ2, then Φ1 ⊕ Φ2 is well-formed in the original context Φ. Chaining to-
gether the well-formedness of Φ1 with the contingent well-formedness of Φ2 assuming
Φ1 means we can prove the well-formedness of their merged result as if they were
originally considered together.

Many instances of these properties are defined quite literally by substituting various se-
mantic objects for A. Other instances are “thematically equivalent” to that substitution but
not literally so. In any case, the full definitions are given in the appendix (B.2).

8.7.2 Regularity of typing judgments

The typing judgments of the package level satisfy the same kind of regularity property as
those of the module level. As we’ll see in the next chapter, the more interesting property of
these judgments is elaboration soundness, but for now the regularity property suffices—and
it’s used in the proofs of elaboration soundness.

• Regularity of typing of a package binding: A well-typed package binding, in a well-
formed package environment and a well-formed context, has a package type that’s
well-formed if that type is mergeable within the module context.

• Regularity of typing of a sequence of package bindings: A well-typed sequence of
package bindings, in a well-formed package environment and a well-formed context,
has a package type that’s well-formed.

• Regularity of typing of a package definition: A well-typed package definition, in
a well-formed package environment, has a parameterized package type that’s well-
formed, i.e., the constituent package type is well-formed including the free variables.

The mergeability hypothesis in the regularity for package bindings, Γ ⊕? Ξ (which is nota-
tion for Γ .Φ ⊕? Ξ.Φ), might seem surprising. The justification for this hypothesis is located
in the recursive appeal to regularity of module typing, which is required in the proof of this
property (for the case that the B is a ` = [M]), and which has its own such mergeability re-
quirement, that Γ .Φ ⊕? ν0:τ

+@ω. That requirement stems from the fact that, as discussed in
§7.7.1, well-formedness of a physical module context must “assume itself” by merging itself
into its own context, thus Γ .Φ ⊕ ν0:τ

+@ω ` . . .. To summarize, we have that mergeability is
a requirement of regularity of module typing which is a requirement of regularity of package
binding typing.

Another point to note is that the latter two regularity properties don’t concern a mod-
ule context (Γ ). That’s because both judgments are not contextualized by a module context;
instead they’re both contextualized only by a package context.

The proofs of these regularity statements rely on two key ingredients: first, the structural
metatheory about the various well-formedness judgments on semantic objects, across all layers,
and second, metatheory about various auxiliary definitions that are part of the type system.

5 Backpack’s syntax of “types,” i.e., its semantic objects, is so rich that a type expresses all the dependency that actually
exists at the “term level,” i.e., its module expressions. That richness of semantic objects is why the Strengthening
property holds.
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Theorem (Regularity of typing of a package binding).

If ` ∆ wf and · ` Γ wf and ∆; Γ ; Ξ̂pkg ` B : Ξ and Γ ⊕? Ξ, then Γ .Φ ` Ξ wf.

Proof. By case analysis on the rule of the judgment derivation. Let Γ = (|Φ ; L |).
- Case (TyPkgAlias): immediate.

- Case (TyPkgMod): As already discussed above, the mergeability premise yields merge-
ability of Φ ⊕? ν0:τ

+@ω. Then by regularity of module typing we have Φ ` Ξ wf.

- Case (TyPkgSig): The mergeability premise gives Φ ⊕? (ν0:σ
−@ω ⊕ Φsig), which entails

that Φ ⊕? ν0:σ
−@ω and Φ ⊕? Φsig individually. Then by regularity of signature typing

we have Φ ` Φsig wf and Φ ⊕ Φsig ` ν0:σ
−@ω wf. Then by Cut we have the desired

result.

- Case (TyPkgInc): We need to show that apply(θ;Ξ ′′) is well-formed.

- Wf-ness of ∆ implies wf-ness of Ξ, the type of P, by definition.

- Wf-ness of Ξ implies wf-ness of Ξ ′ due to the preservation of wf-ness by thinning
(Lemma A.9).

- Wf-ness of Ξ ′ implies wf-ness of Ξ ′′ due to the preservation of wf-ness by logical
module renaming (Lemma A.12).

- The existence of this derivation means that the resulting package type, apply(θ;Ξ ′′) we
know that θ is applicable to Ξ ′′. Then by Invariance under Substitution, wf-ness of Ξ ′′

implies wf-ness of apply(θ;Ξ ′′).

Theorem (Regularity of typing of a sequence of package bindings).

If ` ∆ wf and ∆; Ξ̂pkg ` B : Ξ, then Φ ` Ξ wf.

Proof. By induction on the judgment derivation.
- Case (TyPkgNil): immediate.

- Case (TyPkgSeq):

- By inductive hypothesis we have wf-ness of Ξ1.

- By inversion of the rule we have that Ξ = Ξ1 ⊕ Ξ2, then Ξ1.Φ ⊕? Ξ2.Φ.

- By regularity on single package binding we have Ξ1.Φ ` Ξ2 wf.

- By Cut (2) we have wf-ness of Ξ.

Theorem (Regularity of typing of a package definition).

If ` ∆ wf and ∆ ` D : ∀α.Ξ, then Φ ` Ξ wf.

Proof. By inversion of the (TyPkg) rule. We want to show · ` Ξ ′ wf.
- By regularity on sequences of package bindings we have wf-ness of Ξ.

- By preservation of wf-ness by thinning (Lemma A.9) we have wf-ness of Ξ ′.
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Thinning of Package Types

Thinning ` Ξ t−−→ Ξ

Ξ = (|Φ ; L |) N =
⋃
`∈` depends

+
Φ(L(`))

Ξ ′ = (|Φ|N ; L|` |) ∀ν:τ−@ω ∈ Ξ ′.Φ : locatedΞ ′(ν)

` Ξ (`)−−−→ Ξ ′

Φ|N
def
= {|ν:τm@ω | ν:τm@ω ∈ Φ ∧ ν ∈ N |}

L|`
def
= (` 7→ ν | ` 7→ ν ∈ L ∧ ` ∈ `)

Module identity dependency dependsΦ(ν) :par N dependsΦ;N(ν) :par N depends+Φ(ν) :par N

dependsΦ(ν)
def
= dependsΦ;·(ν) where ν ∈ dom(Φ)

dependsΦ;N(ν)
def
= ∅ where ν ∈ N, ν ∈ dom(Φ)

dependsΦ;N(ν)
def
= N ′ ∪

(⋃
ν ′∈N ′ dependsΦ;(N,ν)(ν

′)
)

where

ν 6∈ NN ′ = provs(τ)∪ provs(ω) if ν:τm@ω ∈ Φ

depends+Φ(ν)
def
=

{ν} ν 6∈ dom(Φ)

{ν}∪ dependsΦ(ν) ν ∈ dom(Φ)

Provenances & imports imps(τ) : N provs({τ, dspc, typ, cls,ω, fact}) : N

imps(〈| dspc ; espc ; ν |〉) def
= ν

provs(〈| dspc ; espc ; ν |〉) def
=

(⋃
dspc∈dspc provs(dspc)

)
∪
{
ident(espc)

}
∪ {ν}

provs(data T kenv) def
= ∅

provs(data T kenv = K typ) def
=

⋃
typ∈typ provs(typ)

provs(x :: typ) def
= provs(typ)

provs(class C kenv {cls} x :: typ) def
=

(⋃
cls∈cls provs(cls)

)
∪
(⋃

typ∈typ provs(typ)
)

provs(instance kenv {cls} cls) def
=

(⋃
cls∈cls provs(cls)

)
∪ provs(cls)

provs(a) def
= ∅

provs(forall kenv. typ) def
= provs(typ)

provs([ν]T typ) def
= {ν}∪

⋃
typ∈typ provs(typ)

provs([ν]C typ) def
= {ν}∪

⋃
typ∈typ provs(typ)

provs(ω)
def
=

⋃
fact∈ω provs(fact)

provs(kenv.cls 7→ ν)
def
= provs(cls)∪ {ν}

Located in package locatedΞ(ν)

located(|Φ ;L|)(ν)
def⇔ ∃`,α`, τ`,ω` :


` 7→ α` ∈ L ∧ α`:τ`

−@ω` ∈ Φ ∧ α` = ν

∨ ∃espc : (espc ∈ τ` ∧ ident(espc) = ν)
∨ ∃fact : (fact ∈ ω` ∧ ident(fact) = ν)




Figure 8.3: Definition of thinning on package types and auxiliary definitions.
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Unification on Shapes

Unifying merge on package shapes 
 Ξ̂+ Ξ̂⇒ Ξ̂

Ξ̂1 = (Φ̂1;L1) Ξ̂2 = (Φ̂2;L2) (ν1,ν2) = ((L1(`),L2(`)) | ` ∈ dom(L1)∩ dom(L2))



(
ν1; Φ̂1|ν1

)
�
(
ν2; Φ̂2|ν2

)
 θ Ξ̂ = apply(θ; Ξ̂1) ⊕ apply(θ; Ξ̂2)


 Ξ̂1 + Ξ̂2 ⇒ Ξ̂
(UnifMerge)

Unification of physical module shape contexts 

(
ν; Φ̂

)
�
(
ν; Φ̂

)
 θ


 ν1 � ν2  θ 
 θτ̂1.espcs � θτ̂2.espcs  θ ′ 
 θ ′θω̂2 � θ ′θω̂2  θ ′′



(
ν1;ν1:τ̂

m1
1 @ ω̂1

)
�
(
ν2;ν2:τ̂

m2
2 @ ω̂2

)
 θ ′′ ◦ θ ′ ◦ θ

(UnifPhysCtx)

Unification on single objects 
 ν � ν  θ 
 espcs � espcs  θ 
 ω̂ � ω̂  θ


 ν1 � ν2  θ
def⇔ unify(ν1

.
= ν2) = θ

name(espc1) = name(espc2) 
 ident(espc1) � ident(espc1)  θ



(
θespc ′1

)
�
(
θespc ′2

)
 θ ′



(

espc1, espc ′1
)
�
(

espc2, espc ′2
)
 θ ′ ◦ θ

(UnifEspcs)

∀ (espc1 ∈ espcs1, espc2 ∈ espcs2) : name(espc1) 6= name(espc2)

 espcs1 � espcs2  id

(UnifEspcsTriv)

head(fact1) = head(fact2) 
 ident(fact1) � ident(fact2)  θ



{
head(fact ′1) 7→ θident(fact ′1)

}
�
{
head(fact ′2) 7→ θident(fact ′2)

}
 θ ′



{

fact1, fact ′1
}
�
{

fact2, fact ′2
}
 θ ′ ◦ θ

(UnifWorldShp)

∀ (fact1 ∈ ω1, fact2 ∈ ω2) : head(fact1) 6= head(fact2)

 ω1 � ω2  id

(UnifWorldShpTriv)

Sequential unification on vectors 
 U � U  θ for U ∈ {ν, espcs, ω̂}


 · � ·  id
(UnifVecNil)


 U1 � U2  θ 
 θU ′1 � θU ′2  θ ′


 U1,U ′1 � U2,U ′2  θ ′ ◦ θ
(UnifVecCons)

Figure 8.4: Definition of unification on various shape objects. All unification is predicated on a core unification definition, unify(−), on module
identities, which performs unification on first-order recursive terms (A.1.1).
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Package Shaping Judgments

Shaping package bindings ∆; Γ̂ 
 B ⇒ Ξ̂

` ′ 7→ ν ∈ Γ̂
∆; Γ̂ 
 ` = ` ′ ⇒ ( · ; ` 7→ ν )

(ShPkgAlias)

ν0 = mkident(M; Γ̂ .L) Γ̂ ; ν0 
 M⇒ τ̂ @ ω̂

∆; Γ̂ 
 ` = [M] ⇒ ( ν0:τ̂+@ ω̂ ; ` 7→ ν0 )
(ShPkgMod)

α,β fresh Γ̂ ; β 
 S ⇒ σ̂ @ ω̂ | Φ̂sig Φ̂ ′ = α:σ̂−@ ω̂, Φ̂sig

∆; Γ̂ 
 ` :: [S] ⇒ ( Φ̂ ′ ; ` 7→ α )
(ShPkgSig)

α fresh (P : ∀α.Ξ) ∈ ∆ ` Ξ t−−→ Ξ ′ Ξ ′′ = rename(r;Ξ ′)

∆; Γ̂ 
 include P t r ⇒ shape(Ξ ′′)
(ShPkgInc)

Shaping sequences of package bindings ∆ 
 B ⇒ Ξ̂

∆ 
 · ⇒ ( · ; · )
(ShPkgNil)

∆ 
 B1 ⇒ Ξ̂1 ∆; Ξ̂1 
 B2 ⇒ Ξ̂2 
 Ξ̂1 + Ξ̂2 ⇒ Ξ̂

∆ 
 B1,B2 ⇒ Ξ̂
(ShPkgSeq)

Logical renaming rename(r;Ξ) :par Ξ rename(r; Ξ̂) :par Ξ̂

rename(r; (|Φ ; L |))
def
= (|Φ ; rename(r;L) |)

rename(r; ( Φ̂ ; L ))
def
= ( Φ̂ ; rename(r;L) )

rename(〈·〉;L) def
= L

rename(〈`1 7→ `2, ` ′1 7→ ` ′2〉;L) def
= rename(〈` ′1 7→ ` ′2〉;L ′) if

L = `1 7→ ν, ` ′ 7→ ν ′

L ′ = `2 7→ ν, ` ′ 7→ ν ′

Figure 8.5: Definition of package shaping judgments.
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Package Typing Judgments

Typing package bindings ∆; Γ ; Ξ̂pkg ` B : Ξ

` ′ 7→ ν ∈ Γ
∆; Γ ; Ξ̂pkg ` ` = ` ′ : (| · ; ` 7→ ν |)

(TyPkgAlias)

` 7→ ν0 ∈ Ξ̂pkg Γ ; ν0 ` M : τ @ω

∆; Γ ; Ξ̂pkg ` ` = [M] : (|ν0:τ+@ω ; ` 7→ ν0 |)
(TyPkgMod)

` 7→ ν0 ∈ Ξ̂pkg (ν0:τ̂
m
0 @ ω̂0) ∈ Ξ̂pkg

Γ ; (τ̂0 @ ω̂0) ` S : σ @ω | Φsig Φ ′ = ν0:σ
−@ω ⊕ Φsig defined

∆; Γ ; Ξ̂pkg ` ` :: [S] : (|Φ ′ ; ` 7→ ν0 |)
(TyPkgSig)

α fresh (P : ∀α.Ξ) ∈ ∆ ` Ξ t−−→ Ξ ′ Ξ ′′ = rename(r;Ξ ′)
α ′ = α∩ dom(Ξ ′′.Φ) ` Ξ̂pkg 6α ′ Ξ

′′  θ apply(θ;Ξ ′′) defined

∆; Γ ; Ξ̂pkg ` include P t r : apply(θ;Ξ ′′)
(TyPkgInc)

Matching package types against shapes ` Ξ̂pkg 6α Ξ  θ

θ = {α := ν} fv(ν) # α Ξ̂pkg 6 apply(θ; shape(Ξ))

` Ξ̂pkg 6α Ξ  θ
(PkgMatch)

Typing sequences of package bindings ∆; Ξ̂pkg ` B : Ξ

∆; Ξ̂pkg ` · : (| · ; · |)
(TyPkgNil)

∆; Ξ̂pkg ` B1 : Ξ1 ∆;Ξ1; Ξ̂pkg ` B2 : Ξ2 Ξ = Ξ1 ⊕ Ξ2 defined

∆; Ξ̂pkg ` B1,B2 : Ξ
(TyPkgSeq)

Typing package definitions ∆ ` D : ∀α.Ξ

∆ 
 B ⇒ Ξ̂pkg ∆; Ξ̂pkg ` B : Ξ ` Ξ t−−→ Ξ ′ α = fv(Ξ ′.Φ)

∆ ` package P t where B : ∀α.Ξ ′
(TyPkg)

Typing package repositories ∆ ` R

∆ ` ·
(TyPkgRepoNil)

∆ ` D : ∀α.Ξ ∆,P : ∀α.Ξ ` D ′

∆ ` D,D ′
(TyPkgRepoSeq)

Figure 8.6: Definition of package typing judgments.





9E L A B O R AT I O N

The Backpack formalization thus far has comprised typing judgments and metatheory for
three conceptual levels of the system. Notably absent from this formalization has been any
presentation of the elaboration semantics described in §3.4. In that section I painted the overall
picture of the elaboration semantics: how the elaboration compiles away the new package level
of Backpack by rewriting all the module expressions into Haskell module files and using
binary interface files to represent the module types of signatures. That presentation lacked the
worlds introduced in Chapter 4, however; in that chapter was a sketch of how to extend the
IL.

All of the formalization presented so far has been the Backpack External Language (EL),
which is a language for expressing modular programs. In this chapter I extend the Backpack
formalization with the Internal Language (IL), which is a formal model of GHC Haskell mod-
ules in a file sytem. Concretely, I define the elaboration semantics for translating (well-typed)
EL expressions into IL expressions; and, as the primary technical validation of this semantics,
I state and prove an Elaboration Soundness theorem, conveying that well-typed EL (package)
expressions elaborate to well-typed IL (directory) expressions whose (package) types have
identical structure.

9.1 syntax and semantic objects of the il

The syntax of the IL is presented in Figure 9.1. Many forms use the metavariables from the
corresponding forms in the EL; they are syntactically identical except that module identities
ν are replaced with module file names f. In order to disambiguate we sometimes use a circle
above the metavariable to mean the IL variant, e.g., ˚dspc for an IL core entity spec. Auxiliary
definitions for IL syntax are defined in the appendix (§A.2).

Recall from §3.4 that import and export syntax in the IL is a restriction of that of the EL:
all imports and exports are explicit. This restriction is sufficient to capture the target of our
elaboration semantics, and it’s necessary to ensure certain metatheoretic properties, like a
Weakening property on module typing in the IL.

While the EL contained three levels—core, module, and package—the IL contains forms
corresponding only to the former two. The entire point of the elaboration of the EL into the
IL is to shed the package level. In its place are directories of module source files, whose main
syntactic form is the directory expression (dexp). The stratification of the EL into the three levels
was primarily conceptual and for presentation; the IL doesn’t necessitate this stratification
since it’s mostly a replica of the EL. The IL is presented here all at once, including core,
module, and directory.

An IL directory expression does not model only the Haskell source files which the user
writes; it models those source files along with their types, and the types of any as-yet undefined
modules. As a consequence, and because they may refer to each other as a mutually recursive
knot, directory expressions do not need to be statically analyzed in any dependency order.
This is not unlike the typing of, say, top-level value definitions in a fully type-annotated
Haskell module.

The primary addition from the initial presentation in §3.4 is the syntactic forms for worlds.
How exactly to model them in the formalization was a tricky matter that took some time to
find a satisfying answer. The reason for the trickiness is the tension between, on one hand,
making the IL syntax and semantics directly correspond to those of the EL, and on the other
hand, making the IL syntax and semantics model the actually-existing module system of

145
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Backpack IL Syntax and Semantic Objects

Module File Names f,g ∈ ILModNames
Module Source Files hsmod ::= module f ˚expdecl where ˚impdecls; ˚defs
Module Source Types ftyp ::= 〈| ˚dspcs ; ˚espcs ; f |〉
Typed Source Expressions tfexp ::= hsmod : ftyp Module Source Files

| − : ftyp Stubbed Modules
Directory Expressions dexp ::= { f 7→ tfexp @ ω̊ }

File Environments fenv ::= {| f:ftypm@ ω̊ |}

Import Declarations ˚impdecls ::= import f as f ′ ˚impspec Unqualified Import
| import qualified f as f ′ ˚impspec Qualified Import

Entity Import Lists ˚impspec ::= ( ˚import)
Entity Import Specs ˚import ::= χ Simple Entity

| χ(χ ′) Entity with Subordinates
Export Declarations ˚expdecl ::= ( ˚export)
Entity Export Specs ˚export ::= ˚eref Simple Entity

| ˚eref(χ ′) Entity with Subordinates

Figure 9.1: Syntax and semantic objects of Backpack’s IL. Disambiguation between EL and IL metavariables for the same concept are done by
annotating the IL metavariables with Å and keeping A as the EL metavariable, but this annotation is often elided for simplicity.

(GHC) Haskell. In the end, in order to facilitate the development of the formalization and the
proof of Elaboration Soundness, the former was chosen.

Worlds in the IL are semantic objects that carry the consistent(−) invariant just like in the
EL. The key difference lies in their construction and in their role in module typings in a
context, as we’ll soon see.

9.2 semantics of the il

The semantics of the IL are mostly similar to those of the core and module levels of the EL,
considering only the typing (not shaping) and module (not signatures) fragment of the EL. The
two main points of departure with (this fragment of) the EL semantics are the directories in the
IL, which are an (intentionally) dumbed-down shadow of packages, and the type annotations
(ftyp) on expressions.

typing of directory expressions Whereas EL package-level expressions operate on
a physical structure of modules—and abstract, undefined modules—through manipulation
of logical module names, IL directory expressions fully describe the overall physical structure
in situ. As a result, the well-formedness of IL directory expressions is considerably simpler
than that of EL packages: one simply type-checks the module files in the directory in any
order.

The typing judgment for directory expressions, fenv ` dexp, characterizes those expres-
sions whose files are all well-formed, with types and worlds matching their annotations, in
the ambient context extended with themselves. The context in the premise of the (IlTyDexp)
reveals that last part. Like with the well-formedness of physical module contexts in the EL,
well-formedness of a directory expression must “assume itself” (§7.7.1).

typing of typed file expressions The judgment for typed file expressions, fenv; f0 `
tfexp @ω, characterizes those module source files whose synthesized type and world, from a



9.2 semantics of the il 147

IL Typing Judgments

Typing of directory expressions fenv ` dexp

fenv ` bdexpc wf
∀f 7→ tfexp @ ω̊ ∈ dexp : fenv ⊕ bdexpc; f ` tfexp @ ω̊

fenv ` dexp
(IlTyDexp)

Typing of typed file expressions fenv; f0 ` tfexp @ ω̊

name(hsmod) = f0 fenv ` hsmod : ftyp @ ω̊ ′ ω̊ ′ w ω̊ w extworld(f0; ftyp)
fenv; f0 ` (hsmod : ftyp) @ ω̊

(IlTyHsmod)

fenv ` ftyp wf fenv ` ω̊ wf ω̊ w extworld(f0; ftyp)
fenv; f0 ` (− : ftyp) @ ω̊

(IlTyStub)

Flattening directories to environments bdexpc : fenv

b{ f 7→ tfexp @ ω̊ }c def
= {| f:typ(tfexp)pol(tfexp)@ ω̊ |}

World extraction extworld(f; ftyp) : ω̊

extworld(f; 〈| dspcs ; espcs ; f |〉) def
= {| head(dspc) 7→ f | ˚dspc ∈ ˚dspcs s.t. ˚dspc = instance . . . |}

Auxiliary definitions pol(tfexp) : m typ(tfexp) : m

pol(hsmod : ftyp) def
= +

pol(− : ftyp) def
= −

typ(hsmod : ftyp) def
= ftyp

typ(− : ftyp) def
= ftyp

Figure 9.2: Definition of well-formedness judgments for IL expressions and some required auxiliary functions.

module typing judgment (explained shortly), match those of its annotations. Like in the EL,
part of the judgment is the identity of the module being analyzed; here in the IL, that’s some
module name f0 that this file was assigned in some ambient directory expression.

Moreover, in both forms of typed file expressions, the world annotation ω must extend
the extracted world of the type annotation ftyp. The extracted world, an operation defined
by extworld(f0; ftyp), is the world constructed from the locally declared instance specs in
ftyp.dspcs, with each identifying f0 as its defining module.1 This part of both rules is neces-
sary for the proofs of the metatheory; in particular, the proof of Invariance under Substitution
(Lemma A.104) requires this condition of well-formed typed file expressions.

Rule (IlTyHsmod) for source files appeals to the (IL) typing judgment for the Haskell
module (hsmod), checking that its synthesized module type, ftyp, is identical to the annotation
on the typed file expression. The world annotation ω, however, must be some parent world
of the synthesized one, ω ′; we’ll return to this distinction shortly. As just mentioned, the
world annotation must extend the extracted world of the type.

Rule (IlTyStub) is straightforward.

1 This operation existed also in the EL, e.g., in the definition of apply(θ;Φ) (Figure 7.4), but it was merely left
undefined then.
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typing of module source files Figure 9.3 presents the typing judgment for module
source files. This judgment is structurally identical to module typing in the Backpack EL (e.g.,
see that definition in Figure 7.10). The only distinction is in the exact “passing of arguments”
to the core environment construction judgment, which in the IL avoids the complication of a
realizer.

As in the EL, the typing of core definitions is undefined and axiomatized.
The figure also presents the core environment construction, import resolution, and export

resolution judgments, all of which similarly resemble their EL counterparts, with the excep-
tion of the construction of the world ω̊; again, we’ll return to this point shortly. The syntax
of imports and exports has been restricted to be entirely explicit:

• Rules (IlImpDeclUnqual) and (IlImpDeclQual) no longer allow for the absence of
aliases.

• Rules (IlImpSimple) and (IlImpSub) allow a more rigid form of entity imports than in
the EL. A single entity reference χ cannot refer to the name of an entity with subordi-
nates, and there’s no rule (or syntax) to designate all an entity’s subordinate names to
be imported.

• Export declarations are fully explicit; there’s no rule (or syntax) to implicitly export
local entities or all entities in some logical module scope.

• Rules (IlExpSimple) and (IlExpSub) are like the import rules: a single entity name
cannot designate entities with subordinates, and entity references with subordinates
must designate an explicit list.

As we will soon see, these judgments have been defined with the Elaboration Soundness
theorem (and proof) in mind.

different world semantics The fundamental distinction in EL and in IL typing is
the determination of module worlds. The reader may have even missed that tiny notational
distinction in (IlCoreEnv). In the IL, worlds are determined, as in Haskell, from the worlds of
all transitive dependencies of the module, denoted world+fenv(imps( ˚impdecls)).2 Back in the EL, how-
ever, worlds were determined from simply the worlds of the module’s immediate imports,
denoted worldΓ (imps(impdecls)). Figure 9.4 presents this new definition, as a straightforward
application of existing definitions elsewhere in the formalization.

A few questions about this different world semantics naturally arise:

• What’s the reason for the different semantics in the IL? Well, if the elaboration should
give meaning to Backpack in terms of actually-existing Haskell, the IL should then faith-
fully model (a slight syntactic restriction of) actually-existing Haskell. And in Haskell,
the instances known and available to a module are all those defined in any module in
the transitive closure of the module’s imports.

• What’s the point of keeping the “annotated worlds” on typed file expressions (tfexp)?
(Recall that in (IlTyHsmod) the world constructed for the module from its transitive
imports, ω̊ ′, is not used as the type of the tfexp that contains the module; that world is
instead the annotated world ω̊which must be extended by ω̊ ′.) The primary purpose of
annotated worlds is to regularize the intentional correspondence between EL semantic
objects and IL semantic objects. Whether it’s an EL physical module context (Φ) or an IL
file environment (fenv), or an EL module type (τ) or an IL module source type (ftyp), the
whole Backpack formalization was set up so that these objects could be defined once

2 To be more precise, world+fenv(f) isn’t defined as the transitive imports of f in fenv, but rather as the closure of all
module file names—read: module identities—that f’s type and world mention in fenv, i.e., the (translation of the)
depends+Φ(ν) definition for thinning back in Figure 8.3. That’s because stub files in an IL environment do not record
their direct imports, so there’s no way to accurately walk the module-and-signature import chains—just as how EL
module types of holes do not record imports, thereby necessitating this notion of dependencies.
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and reused between the two languages, along with their attendant well-formedness
and algebraic definitions. Indeed, the proof of Elaboration Soundness rests on various
metatheory about this direct connection—most notably in the fact that EL objects relate
to their translations in the IL by replacing module identities, ν, with the injection into
IL file names, ν?; see Appendix Ch. D for example.

• When typing a module in the EL it has only the worlds of its immediate imports to
consider for possible inconsistency, but when typing its elaboration in the IL it has all
the worlds of its transitive imports to consider—a much stronger requirement. So where
does the proof burden for that come from if not the original EL typing? An astute
question indeed. As we’ll see in the next section, the metatheory of the IL imposes
various world preservation conditions that are readily discharged by my heavyweight
Package-Level Consistency design choice in the EL.

9.3 metatheory of the il

Whereas the EL’s metatheory was concentrated on properties about the various well-formedness
judgments, the IL’s metatheory is concentrated on properties about the typing judgments, i.e.,
about terms rather than types. That’s because the key desired property in the elaboration
semantics is that IL terms, after transformations are performed on them in lock-step with
transformations on the EL terms that elaborate to them, are still well-typed and with struc-
turally identical types. This will become more clear in the proof of Elaboration Soundness.

The structural properties about well-formedness presented in §8.7.1 have direct analogues
in the IL, but about the typing judgments. Thematically, they are the same properties, but
technically, since they’re about the typing of terms rather than the well-formedness of types, they
are substantially more complicated, sometimes requiring abstruse side conditions to make
the proofs work. Most require axioms on the core-level typing judgment, axioms that weren’t
necessary in the more limited metatheory of the EL, like Weakening on core typing.

In particular, the proliferation of world preservation side conditions on each of the properties
highlights a precise, technical obstacle that type classes pose in developing type systems for
modules with type classes. Explaining the folklore idea that “type classes are anti-modular”
by invoking this technical requirement could be considered a technical contribution of this
thesis.

These side conditions refer to an auxiliary definition, modworldfenv(hsmod; ftyp), which de-
scribes the reconstructed or reinterpreted world of hsmod in some context. This reinterpreted
world is determined from (1) the worlds of modules in fenv that hsmod transitively depends
on and (2) the facts from local instances defined in hsmod and whose semantic heads are de-
rived from ftyp. See the definition in Figure 9.4. Crucially, the reinterpreted world of a module
source file and type is a partial function: if hsmod witnessed any sort of inconsistency among
the instances it derives within (1), within (2), or between (1) and (2), then this function is
undefined. When the world preservation conditions on the IL metatheory stipulate that a
reinterpreted world is defined, that’s a substantial proof burden.

In this section I present each key structural property for IL typing, all of which come into
play in the proof of Elaboration Soundness, followed by a noteworthy metatheoretic property
of the IL that connects back to the original introduction of world semantics. More details,
including precise statements, can be found in the Appendix (§C.2).

9.3.1 Weakening

Weakening (Lemma A.93) states that if a term is well-typed in environment fenv and if fenv ⊕?
fenv ′, then the term is also well-typed in fenv ⊕ fenv ′. But there’s an additional condition
on this statement, across almost all terms—the world preservation condition. Essentially, this
condition says that fenv ′ cannot introduce any additional type class instances to any imported
modules such that the importing module ceases to inhabit a consistent world.
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For example, for the module typing judgment fenv ` hsmod : ftyp @ ω̊, Weakening states:
if the module is well-typed with some world ω̊ and if the new world the module would inhabit in
the extended environment is consistent—i.e., world preservation—then the module will continue
to be well-typed, with the same type, in the extended environment but with the (extended)
new world.

The proof of Weakening is stuck without the world preservation premise on each part of the
statement. That matches the intuition that, by merging in the additional environment fenv ′

(which might link in implementations for module stubs), a module might now be importing
more type class facts than it did before, and those additional facts might clash with those
defined locally in the module or with those defined in other modules it imports.

Moreover, the proof of Weakening requires two axioms about the core typing judgment
in the IL: an obvious analogue of Weakening (Axiom A.89) and also a different property I
call Monotonicity (Axiom A.90). The typing judgment for core definitions in the IL looks just
like core typing in the EL; in particular, it’s parameterized by the world of the surrounding
module ω̊. Monotonicity states that if some definitions are well-typed in some world, then
they’re still well-typed—with the exact same static specifications—in any extension of that
world. This axiom models the actually-existing behavior of GHC: the type-checking of a
program cannot depend on type class instances that don’t exist; consequently, nothing about
type-checking that program will change if more (non-conflicting) instances are known.3

9.3.2 Merging

Merging (Lemma A.99) states that if similarly-named tfexp1 and tfexp2 are well-typed in their
respective environments fenv1 and fenv2, and if the reinterpreted world of the merged expressions
in the merged environment is consistent (i.e., if modworldfenv1 ⊕ fenv2(tfexpi; defined)), then that
merged expression is well-typed in the merged environment. This property is only stated
and proved for the tfexp typing judgment since that’s the only form of it actually necessary
to the metatheory—in the proof of Cut on dexp, which is the more useful property, as it turns
out. Merging also demands no axiom about core typing.

9.3.3 Strengthening

Strengthening (Lemma A.100) states that if F is a set of module file names such that the
dependencies4 of F in fenv are contained within F itself, and if an IL term is well-typed in
fenv, then it’s also well-typed in fenv|F, the restriction of fenv to only the module files named
in F. Notably, for this property, there is no world preservation premise because nothing about
the file types in fenv actually changes in the conclusion of the property. More specifically,
no module in the IL term sees any conflicting instances in the conclusion; it just sees fewer
modules that it didn’t transitively import.

The statement of the property for module source file typing has some noteworthy premises.
It states that, for such a set F, if fenv ` hsmod : ftyp @ ω̊ and and fenv(f0) = ftyp and
f0 ∈ F then fenv|F ` hsmod : ftyp @ ω̊. The premise about fenv(f0) states that fenv’s type
annotation for this module must match the synthesized type of the judgment, ftyp. (Recall
that, in IL module typing, a module source file has a full “recursive” view of itself and all
other modules in some ambient directory expression.)

The proof of Strengthening on module typing requires an analogous axiom (Axiom A.91)
on core-level typing of definitions. That axiom states that for some subset, F, of file names
in fenv, if F contains the transitive closure of files mentioned in the entity environment ˚eenv

3 Edward Yang provided this key observation that led to the axiom.
4 Here the notion of dependencies follows that of thinning in the EL, as defined by the depends+Φ(ν) definition in

Figure 8.3. A particular observation is that any orphan instances known to a module f will be represented in that
module’s world ω̊ as a ˚fact whose defining file name fo is exactly the module source file (or stub) that originally
defined the orphan instance. That then means that fo ∈ provs(ω̊)depends+fenv(f), and therefore modules providing
orphan instances will be included in the dependencies as far as Strengthening is concerned.
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and world ω̊, then the well-typing of definitions in fenv with ˚eenv and ω̊ leads to the well-
typing of those definitions in fenv|F and with the same ˚dspcs. The axiom matches the intuition
that dropping unrelated modules from the context should not change the type-checking of a
module’s definitions.

9.3.4 Invariance under Substitution

Invariance under Substitution (Lemma A.104) is the most technically complicated of the struc-
tural properties on IL typing. It states that if some file name substitution θ is applicable to
well-formed environment fenv, then from the typing of a term in fenv we can derive the typing
of the θ-substituted term in the θ-substituted fenv. Moreover, the file type in the new deriva-
tion is θ-substituted and the world is some extension of the θ-substituted original world. The
intuition for that world extension (i.e., (b) below) is that there may have been a stub (transi-
tively) imported by hsmod that was linked by the substitution θ, and therefore θhsmod would
see any additional instances known to the implementation of that stub.

In this property is where side conditions, like world preservation, complicate the metathe-
ory. Consider the statement on hsmod typing:

If
(i) apply(θ; fenv) defined

(ii) fenv ` hsmod : ftyp @ ω̊

(iii) avoidaliases(θ; hsmod)
(iv) apply(θ; ω̊) defined
(v) ∃ ω̊0 : θfenv ⊕? (θname(hsmod)):(θftyp)+@ ω̊0

(vi) modworldθfenv(θhsmod; θftyp) defined

then
(a) θfenv ` θhsmod : θftyp @ ω̊ ′

(b) ω̊ ′ w θω̊

Premise (iii) states that the file name substitution θ does not change the import aliases in
hsmod. Recall from §9.1 that the import syntax of the IL is restricted to always be of the form
import [qualified] f1 as f2. This premise says that θ(f2) = f2, i.e., that no qualified entity ref-
erence f2.χ will be perturbed by applying θ throughout the module. And premise (vi) is the
world preservation condition: if we reinterpret the world not of hsmod but of the substitution
θhsmod and in the substituted environment θfenv, the resulting world is consistent.

Proving this property requires an analogous lemma on import resolution and core environ-
ment construction (Lemma A.110). In part (4) of that lemma, the potential dangers of apply-
ing θ to the well-typedness of a module are directly avoided with three premises stating that:
reinterpreting the imported world of the substituted module in the substituted environment
is okay; applying the substitution to the locally defined world is okay; and merging the above
two worlds is okay.

9.3.5 Cut

Cut (Lemma A.111) states that from the well-typing of dexp1, the mergeability of dexp1 and
dexp2, and the well-typing of dexp2 in the flattened bdexp1c, we can derive the well-typing of
dexp1 ⊕ dexp2. Here, world preservation manifests as a requirement that, for each module
in each directory expression, its reinterpreted world in the combined environment bdexp1 ⊕
dexp2c be consistent.

9.3.6 World consistency

The final noteworthy metatheoretic property of IL typing is now a straightforward statement
based on all the machinery built up for the previous properties. When I first introduced
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the world semantics (§4.3), I described a desired World Consistency property for Haskell (not
Backpack): every single module in a closed program should inhabit a consistent world. Not
only was this property necessary to rule out misabstraction, it also gave a more modular,
tighter framing to the Global Uniqueness property that says all type class instances defined
across a closed program must be mutually consistent.

With the IL serving as a model of Haskell’s type system augmented with the world seman-
tics, we now have a foundation in place to definitively state that well-typed closed programs
in the IL obey World Consistency.

As mentioned at the start of this section, the notion of a reinterpreted world of a mod-
ule typing, modworldfenv(hsmod; ftyp), denotes precisely the world inhabited by that module.
(That’s in stark contrast to the annotated world of the module as it exists in a closed dexp.)
When a module’s reinterpreted world is defined in a context, then the world it inhabits is
consistent (since all world semantic objects are consistent). Lemma A.95, an auxiliary lemma
developed for the proof of Weakening, shows that the reinterpreted world of a well-typed
IL module is defined. Then World Consistency is a straightforward corollary of this lemma:
if a closed dexp is well-typed in the empty context, then every module it defines inhabits a
consistent world (Corollary A.96).

9.4 elaboration semantics

Up to this point the formalization has been focused on defining well-formedness of semantic
objects and typing judgments characterizing expressions with those objects. But what’s the
meaning of a package expression? Here, I give the meaning of Backpack expressions, across
the package and module levels, via an elaboration semantics.

The elaboration semantics is defined as an extension of the typing judgments of the EL
package and module levels; the judgments for the package level are presented in Figure 9.5,
while the single judgment and auxiliary definitions for the module level are presented in
Figures 9.6 and 9.7. Each elaboration judgment has an additional “ IL-expression” part
that specifies the IL expression into which the well-typed EL expression elaborates.5

For the package level, the elaboration necessitates an extension of the package environment
semantic object (∆): it must map each package name P not just to a parameterized package
type (∀α.Ξ) but also to the parameterized IL directory expression (λα.dexp) defining package
P. The typing of a package repository must therefore store the package’s elaboration along
with its type when appending to its own ambient package. The absence of an expression form
in the IL to which an entire package repository elaborates, i.e., a “ . . . ” in the consequent of
(ElabPkgRepoSeq) is a gap within Backpack. Instead, package repositories internally shuffle
around the elaborations of their constituent packages, observed in the premises to the same
rule.

The key high-level ideas in this elaboration were presented in §3.4: naming IL modules
structurally according to module identities; rewriting import statements to the new structured
names while preserving local syntactic module names; and otherwise preserving core-level
definitions.

That first idea has deep ramifications across the eleboration semantics: the embedding of
module identities (ν) into IL module names (f). For this embedding we assume the existence
of an identity translation function (−)? that performs the embedding; see Appendix §A.1.1 for
more details on this embedding. In addition to the image of (−)?, the set of IL module names,
ILModNames, also contains the EL’s logical module names (`); we additionally assume that
the two embeddings into IL module names are entirely distinct,6 i.e.,

IlModNames ∼= (ModIdents)? + ModNames + . . .

5 Viewed differently, this judgment is a mapping from typing derivations in the EL to expressions in the IL.
6 In a real implementation of Backpack elaboration, this distinctness would be ensured by translating identities into

internal names inexpressible in the surface syntax, like #Foo(#Bar(),#Baz()).
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We’ll soon see the details of each elaboration definition in the discussion of the elaboration
soundness proof.

9.5 soundness relation

The elaboration semantics describes the “compiling away” of the package level of the EL into
plain Haskell, represented by IL terms. But what can we say about the relation between the
former and the latter? Three key ideas characterize this relation:

• First, their physical structure is identical: the organization of both concrete and abstract
modules is exactly the same, with a bijection between modules and their dependencies
on each side of elaboration (between Ξ and dexp).

• Second, module types and worlds (τ @ω) correspond precisely with module file types
(ftyp @ ω̊): they define, export, and import the same core entities and modules, and they
inhabit worlds with the same facts.

• And third, the core-level definitions inside modules are the same: the definitions are syn-
tactically identical modulo local imported module names, and all core entities (phnm)
referred to in the definitions are the same.

The soundness relation formalizes this connection, defined as the binary relations Ξ ∼ dexp
and (ν:τm@ω) ∼ (f 7→ tfexp @ ω̊), and presented in Figure 9.8. This judgment states that (the
physical part of) the package type Ξ and the directory expression dexp have related module
contents according to the three key ideas above.

The definition of the relation is mostly straightforward, but three points about the defini-
tion of the relation between concrete modules and module source files deserve mention.

First, the injective translation function from EL identities to IL names, (−)?, plays a key
role in relating EL objects to IL objects: they’re the same but with the congruent extension of
the injective translation function.

Second, the EL side of the relation has no actual terms (i.e., no package or module expres-
sions). The singleton module context is related to a singleton directory expression containing
a module source file hsmod. What does it mean for that module to be related to ν:τ+@ω?
The module must simply be in the image of the elaboration of modules, as defined via the
mkmod(−) function, for some objects and, critically, the same module identity ν and export
specs τ.espcs. In this way, the relation is tied to Backpack’s particular elaboration semantics.

Third, here we can see the elegance of the annotated worlds on typed file expressions in the
IL: they preserve the symmetry between EL typings/objects and IL typings/objects. (Recall
from §9.2 that these are not the same as the worlds actually inhabited by their modules.)

9.6 elaboration soundness

With the elaboration semantics and relation in mind, we are finally equipped to state and
prove the key Elaboration Soundness Theorem of Backpack’s formalization.

The Elaboration Soundness Theorem is the central technical validation of the formalization
and of the whole idea of packages as logical structure affixed on top of physical structure.
Proving it drove much of the development of the formalization, as demonstrated by the some-
times abstruse qualification on earlier metatheory, e.g., the world preservation conditions on
the structural properties of IL typing (§9.3).

Elaboration Soundness is defined on the module typing and package-level typing judg-
ments as follows:

Theorem (Elaboration Soundness).

Assume Γ = (|Φ ; L |), where applicable.
(1) If · ` Γ wf and Γ ; ν0 ` M : τ @ω  hsmod and Φ ⊕? ν0:τ

+@ω, then
Φ? ` hsmod : τ? @ ω̊ ′ and ω̊ ′ w ω?.
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(2) If ` ∆ wf and · ` Γ wf and ∆; Γ ; Ξ̂pkg ` B : Ξ  dexp and Γ ⊕? Ξ, then
Φ? ` dexp and Ξ ∼ dexp.

(3) If ` ∆ wf and ∆; Ξ̂pkg ` B : Ξ  dexp, then · ` dexp and Ξ ∼ dexp.
(4) If ` ∆ wf and ∆ ` D : ∀α.Ξ  λα.dexp, then · ` dexp and Ξ ∼ dexp.

The statement acts as an extension of the corresponding Regularity statement. Whereas
that statement concludes that the object classifying a well-typed term is itself well-formed,
the Elaboration Soundness statement concludes that a well-typed term’s elaboration is itself
well-typed and related to its EL type via the soundness relation. (Indeed, the proofs of this
statement rely on Regularity.) The translation function from EL module identities to IL mod-
ule names, (−)?, plays a central role in stating the various parts of the Soundness Theorem
and in establishing the relationship between EL and IL.

Each part of Elaboration Soundness is described and its proof is sketched in order in the
rest of this section. Each proof makes heavy use of technical lemmas about the elaboration
and about the soundness relation; see Appendix D for the complete listing. For example, we
presume yet another axiom about core-level typing: if defs are well-typed in the EL then their
translation, via refs?ν0(−), is well-typed in the IL (Axiom A.132).

In particular, the proofs employ Package-Level Consistency (PLC, Property A.3)—the prop-
erty that in a single EL module context (Φ), there are no two worlds that conflict with each
other—in a number of different places. The metatheory of the IL required meticulous side
conditions like world preservation, and the proofs that follow knock them away, ungracefully,
with PLC and its corollaries (e.g., Corollary A.139).

9.6.1 Soundness of module elaboration

Proof. By inversion of the elaboration derivation Γ ; ν0 ` M : τ @ω  hsmod. Rule
(ElabMod) defines the elaborated module hsmod via the definitions presented in Figure 9.6.

- By Lemma A.129(4) we know the elaborated imports resolve to the translated environment
eenv? and world ω̊ ′ that extends the translated one ω?. But for this lemma we need to
satisfy the following subgoals:

- (a) world+Φ(L(imps(impdecls))) defined

- (b) world+Φ(L(imps(impdecls))) ⊕? ω

- (a):

- Immediate by a corollary to Package-Level Consistency used in the elaboration (Corol-
lary A.139)—the first instance in the Soundness proofs where this sledgehammer is
swung. The reason we need it here is because we’re moving from the EL semantics of
“use the worlds of my direct imports” to the IL semantics of “use the worlds of all my
transitive imports,” and the latter is a heftier requirement.

- (b):

- By definition of world+−(−) and depends+−(−), the subgoal is rewritable to worldΦ(N) ⊕
worldΦ(dependsΦ(N)) ⊕? ω, where N = L(imps(impdecls)).

- By inversion on the core environment construction of the EL typing, we know that
ω = worldΦ(N) ⊕ . . . . Now it sufficies to show that worldΦ(dependsΦ(N)) ⊕? ω.

- Let νi ∈ N; then νi = L(imps(impdecli)) for some i. Now it suffices to show that
worldΦ(dependsΦ(νi)) ⊕? ω.

- Let ν ′i ∈ dependsΦ(νi). Now it suffices to show that worldΦ(ν ′i) ⊕? ω.

- By assumption, Φ ⊕? ν0:τ
+@ω. Then by Package-Level Consistency in the definition of

⊕ on Φ, we know that every world in Φ is mergeable with ω.

- Then we know that the world of ν ′i is also mergeable with it, achieving the subgoal.

- Now Lemma A.129(4) is applied.
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- By the axiom on core definition checking in the IL (Axiom A.132), we know the well-typing
of the translated definitions but only in the translated world ω?.

- By monotonicity of core definition checking (Axiom A.90), we moreover know the well-
typing of those translated definitions also in the extended world ω̊ ′.

- By Lemma A.134 we know the elaborated exports resolve to the translated espcs?.

- By definition of mkimpdecls(−;−), N? = imps(mkimpdecls(Γ ; impdecls)).

- Then by rule (IlTyMod) we have the result.

9.6.2 Soundness of package binding elaboration

Proof. By case analysis on the elaboration derivation ∆; Γ ; Ξ̂pkg ` B : Ξ  dexp. We need
to show (1) Φ? ` dexp and (2) Ξ ∼ dexp.

- Case (ElabPkgMod):

- By Elaboration Soundness on module typing and rule (IlTyHsmod), we knowΦ?; ν?0 `
hsmod : τ? @ ω̊ ′ and ω̊ ′ w ω?.

- For (1), by rule (IlTyDexp) with annotated world ω?, it suffices to show that Φ? `
bdexpc wf.

- By Weakening on tfexp typing (Lemma A.93(2)), we know Φ? ⊕ bdexpc;ν?0 ` . . . . But
first we must satisfy the following subgoal:

- (a) modworldΦ? ⊕ bdexpc(hsmod; ftyp) defined

- (a):

- By Package-Level Consistency in the elaboration (Corollary A.139) and Property A.131,
it suffices to show that world+Φ(N)

? ⊕ world+ν0:τ+@ω(N)
? ⊕? extworld(ν?0; τ?), where

N = L(imps(impdecls)).

- Then by a similar approach as in the previous proof, of module soundness, it suf-
fices to show that world+

(ν0:τ+@ω)?
(N?) ⊕? extworld(ν?0; τ?).

- Since the LHS is either ω? (if ν0 ∈ N), which equals the RHS plus some imported
worlds, or {| · |} (if not), we have the subgoal.

- By regularity of EL typing (Theorem A.1(3)), we know Φ ` Ξ wf.

- By translating the well-formedness of Ξ.Φ (Property A.142), we know Φ? ` Ξ.Φ? wf.

- By definition of b−c and this dexp, Ξ.Φ? = bdexpc, which with the previous result gives
us (1).

- (2) is immediate.

- Case (ElabPkgSig):

- For (1), we need to show Φ? ` mkstubs(Φ ′) wf.

- By Regularity of S typing and then applying Cut on the two resulting Φ-wf judgments,
we know Φ ` Φ ′ wf.

- By translation of Φ wf-ness (Property A.142), Φ? ` Φ ′? wf.

- By Lemma A.112 since Φ ′? = bmkstubs(Φ ′)c, we have (1).

- By the expansion of Φ ′? and by Lemma A.150, we have (2).

- Case (ElabPkgAlias) is trivial.

- Case (ElabPkgInc): Since it involves both substitution and filtering, this is the trickiest
case to prove.
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- For (1), we need to show Φ? ` apply(θ?; dexp|dom(Ξ ′′.Φ)?) wf. The approach is to first
apply Strengthening of dexp typing and then Invariance under Substitution.

- By ∆ wf-ness, we know fenv ` dexp and · ` Ξ wf and Ξ ∼ dexp.

- By wf-ness preservation under thinning (Lemma A.9), we know · ` Ξ ′ wf and
dependsΞ.Φ(N) ⊆ N, where N = dom(Ξ ′.Φ).

- By injectivity of (−)?, we have dependsΞ.Φ(N)? ⊆ N?.

- By Property A.153,

dependsΞ.Φ?(N?) = dependsΞ.Φ(N)? ⊆ N?.

- Since dependsfenv(F) ⊆ F, where F = N? and fenv = Ξ.Φ?, then by Strengthening on dexp
typing, we have · ` dexp|F.

- Moreover, by Lemma A.152, we have Ξ.Φ|N ∼ dexp|F.

- Next we need to apply Invariance under Substitution to the well-typing of dexp|F. For
that we have three subgoals:

- (a) apply(θ?; dexp|F) defined

- (b) avoidaliases(θ?; dexp|F)

- (c) ∀f 7→ tfexp @ ω̊ ∈ dexp|F : modworldθ?bdexp|Fc(θ
?f; θ?tfexp) defined

- (a):

- For (a), we already know apply(θ;Ξ ′′) defined from (ElabPkgInc), which means

apply(θ;Ξ ′′.Φ) defined.

- Since Ξ ′′ = rename(r;Ξ ′), we moreover know

apply(θ;Ξ ′.Φ) defined.

- By commutativity of substitution with translation (Lemma A.147), we know apply(θ?;Ξ ′.Φ?) defined.

- Since Ξ.Φ|N ∼ dexp|F, by Lemma A.151, bdexp|Fc = (Ξ.Φ|N)? = Ξ ′.Φ?.

- Since Ξ ′.Φ? = bdexp|Fc, by Lemma A.147, apply(θ?; bdexp|Fc) defined if and only if
apply(θ?; dexp|F) defined.

- Finally, since apply(θ?;Ξ ′.Φ?), we have (a).

- (b): Immediate by Lemma A.155, since we already know that Ξ.Φ|N ∼ dexp|F. That
lemma expresses the fact that the mkmod(−) definition of Figure 9.6 produces import

statements that always have import aliases that avoid θ?, since ModIdents?∩ModNames =
∅.

- (c): This is the world preservation condition described in §9.3; its proof burden should
now be more clear.

- Suppose f 7→ tfexp @ ω̊ ∈ dexp|F. Then we must show that

modworldθ?bdexp|Fc(θ
?f; θ?tfexp) defined

Proceed by case analysis on the syntax of tfexp.

- Case tfexp = (− : ftyp):

- By definition of modworld...(f; (− : ftyp)), the goal is to show that

extworld(θ?f; θ?ftyp) defined.
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- The side condition in the definition of apply(θ̊; fenv)—a straightforward translation
of the EL definition in Figure 7.4)—says that the substitution is only defined if
extworld(θ̊f; θ̊ftyp) is defined for each file f in the fenv. Although it matches the
intuition that a substitution on fenv cannot “break any worlds,” the side condition
exists entirely to support this proof.

- With that in mind, since apply(θ?; bdexp|Fc) defined, and since tfexp @ ω̊ ∈ dexp|F ⇒
tfexp @ ω̊ ∈ bdexp|Fc, by the side condition we have extworld(θ?f; θ?typ(tfexp)), which
is the goal.

- Case tfexp = (hsmod : ftyp):

- By definition of modworld...(f; (hsmod : ftyp)), we have three subgoals:

- (i) ω̊ ′ext = extworld(θ?f; θ?ftyp) defined, for some ω̊ ′ext
- (ii) ω̊ ′imp = world+θ?bdexp|Fc(imps(θ?hsmod)) defined, for some ω̊ ′imp

- (iii) ω̊ ′ext ⊕? ω̊
′
imp

- (i):

- As above, due to the definition of substitution on fenv, we have extworld(θ?f; θ?ftyp) defined.

- Since · ` dexp|F from above and f · · · ∈ dexp|F, then by (IlTyDexp), we have
bdexp|Fc; f ` (hsmod : ftyp) @ ω̊.

- By (IlTyHsmod) we have ω̊ w extworld(f; ftyp), and therefore we have extworld(f; ftyp) defined;
call it ω̊ext.

- By Lemma A.121, we have

ω̊ ′ext = extworld(θ?f; θ?ftyp) = θ?extworld(f; ftyp) = θ?ω̊ext

and therefore the goal (i).

- (ii):

- By the well-typing of hsmod in bdexp|Fc, imps(hsmod) ⊆ dom(bdexp|Fc).

- We next need to show that the imports of θ?hsmod are contained in dom(bdexp|Fc).

imps(θ?hsmod) = θ?imps(hsmod)

⊆ θ?dom(bdexp|Fc)
= θ?dom(Ξ ′.Φ?

)

= dom(θ?Ξ ′.Φ?
) (a substitution we know is defined)

= dom(θΞ ′.Φ?
) (by Lemma A.147)

= dom(Ξ ′.Φ)
? (by injectivity of (−)?)

- Since Ξ.Φ|N ∼ dexp|F and hsmod ∈ dexp|F, we know that

hsmod = mkmod(Γ ;ν0; eenv; impdecls; defs; espcs).

- Then we additionally know that imps(hsmod) is in the image of (−)?, and therefore
θ?imps(hsmod) is too.

- Let N0 be the preimage of imps(θ?hsmod) under (−)?. Then N0? = imps(θ?hsmod)
and N0 ⊆ dom(Ξ ′.Φ).

- Then by Package-Level Consistency in the EL Property A.3, world+θΞ ′.Φ(N0) is defined;
let it be ω ′.

- By preservation of worlds under (−)? (Property A.145), world+
θΞ ′.Φ?(N0

?) is defined
and equals ω ′?.
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- By rewriting, world+bdexp|Fc(imps(θ?hsmod)), which is the goal (ii).

- (iii):

- As above, via (IlTyHsmod), we have ω̊ ′ w ω̊ w extworld(f; ftyp), where ω̊ ′ is the
actual world that hsmod is typed under.

- By preservation of world extension under substitutions (Property A.85), θ?ω̊ w
θ?extworld(f; ftyp).

- By rewriting using the definition of ω̊ ′ext as before, θ?ω̊ w ω̊ ′ext.

- By definition of world+fenv(−), ω̊ = world+bdexp|Fc(f).

- By commutativity of substitution with contextual worlds (Property A.86), θ?ω̊ =

world+θ?bdexp|Fc(θ
?f).

- By Package-Level Consistency in the EL Property A.3, every world in the same context
Ξ ′.Φ is mergeable, and therefore world+θΞ ′.Φ(N0) ⊕? world+θΞ ′.Φ(θν), where ν is the
inverse of f under (−)?.

- By commutativity of translation with contextual worlds (Property A.145) and by
rewriting, ω̊ ′imp ⊕? θ

?ω̊.

- Finally, since θ?ω̊ w ω̊ ′ext, we have ω̊ ′imp ⊕? ω̊
′
ext, goal (iii).

- By applying Invariance under Substitution on dexp typing, we have · ` θ?dexp|F.

- At this point, we need to apply Weakening on dexp typing in order to get goal (1),
Φ? ` θ?dexp|F. For that we have two subgoals:

- (a) Φ? ⊕? bθ?dexp|Fc

- (b) ∀f 7→ (hsmod : ftyp) @ ω̊ ∈ θ?dexp|F : modworldΦ? ⊕ bθ?dexp|Fc(hsmod; ftyp) defined

- (a):

- By assumption, Γ ⊕? θΞ
′′, which means Φ ⊕? θ(Ξ

′′.Φ).

- By distributivity of translation over merging (Property A.143), we know Φ? ⊕?
θ(Ξ ′′.Φ)?, which by earlier result gives us goal (a).

- (b): Suppose f 7→ (hsmod : ftyp) @ ω̊ ∈ θ?dexp|F.

- We have three subgoals:

- (i) ω̊ ′imp = world+Φ? ⊕ bθ?dexp|Fc(imps(hsmod)) defined

- (ii) ω̊ ′ext = extworld(f; ftyp) defined

- (iii) ω̊ ′imp ⊕? ω̊
′
ext

- (i):

- Rewriting this file environment, we have (Φ ⊕ θΞ ′′.Φ)?.

- Since hsmod ∈ θ?dexp|F, imps(hsmod) ⊆ModIdents?.

- Then by Package-Level Consistency, we have world+Φ ⊕ θΞ ′′.Φ(imps(hsmod)) defined,
and then after translation, world+

(Φ ⊕ θΞ ′′.Φ)?
(imps(hsmod)).

- By pushing the (−)? back into the environment, we have the goal (i).

- (ii) is immediate since f 7→ (hsmod : ftyp) @ ω̊ in well-typed θ?dexp|F (in empty
environment), by (IlTyHsmod).

- (iii):

- Let N be the preimage of imps(hsmod) under (−)? and let ν such that ν? = f.

- By Package-Level Consistency, since Φ ⊕? θΞ
′′.Φ, all worlds appearing in this

context must be mergeable, i.e., world+Φ ⊕ θΞ ′′.Φ(N) ⊕? world+Φ ⊕ θΞ ′′.Φ(ν).
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- By Property A.131, world+
Φ? ⊕ (θΞ ′′.Φ)?

(N?) ⊕? world+
Φ? ⊕ (θΞ ′′.Φ)?

(ν?).

- By rewriting, world+Φ? ⊕ θ?dexp|F
(imps(impdecls)) ⊕? world+Φ? ⊕ θ?dexp|F

(f).

- By Property A.98 the RHS w world+θ?dexp|F
(f).

- Since f 7→ (hsmod : ftyp)@ ω̊ ∈ θ?dexp|F the RHS is mergeable with extworld(f; ftyp)
since together they form ω̊ (by the core environment construction from the
hsmod typing).

- Then taken together the last few steps mean that ω̊ ′imp ⊕? ω̊
′
ext, which gives us

goal (iii).

- Therefore we have subgoal (b) and can now apply Weakening to get goal (1).

- Now we must prove goal (2) θΞ ′′ ∼ θ?dexp|F.

- By applying preservation of soundness relation under substitution (Lemma A.154) to
the earlier result Ξ.Φ|N ∼ dexp|F, we have goal (2).

9.6.3 Soundness of sequence of package bindings elaboration

Proof. By induction on the elaboration derivation ∆; Ξ̂pkg ` B : Ξ  dexp. We need to
show (1) · ` dexp and (2) Ξ ∼ dexp. The (ElabPkgNil) case is trivial. The proof for the
(ElabPkgSeq) case proceeds.

- By inductive hypothesis, · ` dexp1 and Ξ1 ∼ dexp1, and as a result, Ξ1.Φ? = bdexp1c.

- By Regularity on the typing of B1 (Theorem A.1), · ` Ξ1 wf.

- Since ` ∆ wf, · ` Ξ1 wf, and Ξ1 ⊕? Ξ2, by Elaboration Soundness on the typing of B2,
we have Ξ1.Φ? ` dexp2 and Ξ2 ∼ dexp2.

- We concentrate first on goal (1), which we need only to apply Cut on IL typing to get.
That yields subgoals:

- (a) · ` dexp1
- (b) bdexp1c ` dexp2
- (c) dexp1 ⊕? dexp2
- (d) ∀i ∈ [1, 2] : ∀ f 7→ tfexp @ ω̊ ∈ dexpi : modworldbdexp1 ⊕ dexp2c(f; tfexp) defined

- Subgoals (a), (b), and (c) are all immediate, leaving (d) as the meat of this proof.

- Suppose i ∈ [1, 2] and f 7→ tfexp @ ω̊ ∈ dexpi.

- Case i = 1:

- Case tfexp = (− : ftyp):

- Then modworldfenv(f; tfexp) def
= extworld(f; ftyp), for any fenv.

- Since · ` dexp1 and f 7→ tfexp @ ω̊ ∈ dexp1, by rule (IlTyStub) we have the existence
of extworld(f; ftyp) and therefore, with fenv = bdexp1 ⊕ dexp2c, the goal (d).

- Case tfexp = (hsmod : ftyp):

- Let Φ1 = Ξ1.Φ and Φ2 = Ξ2.Φ. By earlier results we have Φ?
1 = bdexp1c and

Φ?
2 = bdexp2c.

- Then the goal can be rewritten to modworldΦ?
1 ⊕Φ

?
2
(f; tfexp) defined, which has three

subgoals:

- (i) world+Φ?
1 ⊕Φ

?
2
(imps(hsmod)) defined; call it ω̊imp

- (ii) extworld(f; ftyp) defined; call it ω̊ext
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- (iii) ω̊imp ⊕? ω̊ext

- (i):

- Since hsmod is well-typed in bdexp1c, we know imps(hsmod) ⊆ dom(bdexp1c).

- Then also imps(hsmod) ⊆ dom(bdexp1c ⊕ dexp2), the latter of which can be
rewritten to dom(Φ?

1 ⊕ Φ?
2).

- Since imps(hsmod) ⊆ModIdents? (because hsmod is from elaboration), by Package-
Level Consistency we have such a ω̊imp.

- (ii) is immediate; by rule (IlTyHsmod), ω̊ w extworld(f; ftyp) = ω̊ext.

- (iii):

- By the typing of hsmod : ftyp @ ω̊ in dexp1, we know that its imported worlds
and local world merge: world+bdexp1c

(imps(hsmod)) ⊕? extworld(f; ftyp). That’s al-
most the subgoal; we just need the environment on the LHS to be expanded to
bdexp1 ⊕ dexp2c.

- Let F = imps(hsmod). Because hsmod is the result of elaboration then imps(hsmod)
are all contained in ModIdent?; let N be the preimage of F under (−)? and, like-
wise, ν the preimage of f.

- By Package-Level Consistency in the EL, world+Φ1 ⊕Φ2(N) ⊕? world+Φ1 ⊕Φ2(ν).

- Then by translating and distributing translation into world+−(−), world+Φ?
1 ⊕Φ

?
2
(N?) ⊕?

world+Φ?
1 ⊕Φ

?
2
(ν?).

- By rewriting we then have ω̊imp = world+Φ?
1 ⊕Φ

?
2
(imps(hsmod)) ⊕? world+Φ?

1 ⊕Φ
?
2
(f).

Now it remains to show that ω̊imp additionally merges with ω̊ext.

- By the rules of dexp merging, f 7→ tfexp @ ω̊ ∈ dexp1 ⊕ dexp2 as well. Then
ω̊ = worldbdexp1c(f) = worldbdexp1 ⊕ dexp2c(f).

- By the typing of hsmod in dexp1, ω̊ w ω̊ext = extworld(f; ftyp).

- Taken together, ω̊imp = world+Φ?
1 ⊕Φ

?
2
(imps(hsmod)) w worldΦ?

1 ⊕Φ
?
2
(imps(hsmod)) =

ω̊ ⊕? ω̊ext, so that we have subgoal (iii).

- Case i = 2, i.e., f 7→ tfexp @ ω̊ ∈ dexp2:

- Since bdexp1c ` dexp2, by soundness of reinterpreted module world (Lemma A.95),
we have modworldbdexp1c ⊕ bdexp2c(f; tfexp) defined.

- With simple rewriting, this is the goal (d).

- With subgoals (a) through (d) met, via Cut on dexp typing we have goal (1).

- Now we must prove (2) Ξ1 ⊕ Ξ2 ∼ dexp1 ⊕ dexp2.

- Since we already proved Ξ1 ∼ dexp1 and Ξ2 ∼ dexp2, we simply apply the preservation of
relation under merging (Lemma A.157) to get (2).

9.6.4 Soundness of package definition elaboration

The proof of this part of Elaboration Soundness is fairly straightforward given all the machin-
ery built up for the earlier parts of the theorem. Notably, there’s nothing interesting to say
about the α part of the parameterized package type and directory expression. The notation
is, admittedly, a technical nuisance to the formalization.

Proof. By inversion of the elaboration derivation ∆ ` D : ∀α.Ξ  λα.dexp, rule (ElabPkg).
- Let N = dom(Ξ ′.Φ) and F = N?.
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- We need to show (1) · ` dexp|F and (2) Ξ ′.Φ|N ∼ dexp|F.

- By Elaboration Soundness on B elaboration, we have · ` dexp and Ξ ∼ dexp.

- By Regularity on B typing, we have · ` Ξ wf.

- Then by thinning preservation (Lemma A.9), we have · ` Ξ ′ wf and dependsΞ.Φ(N) ⊆ N.

- We have (1) by Strengthening on dexp typing and (2) by Strengthening on soundness
relation.
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IL Module Judgments

Typing of module source files fenv ` hsmod : ftyp @ ω̊

fenv; f0 ` ˚impdecls; ˚defs  ˚eenv @ ω̊ ˚eenv ` ˚expdecl  ˚espcs
fenv; f0; ˚eenv; ω̊ ` ˚defs : ˚dspcs {f} = {imp( ˚impdecl) | ˚impdecl ∈ ˚impdecls}

fenv ` (module f0 ˚expdecl where ˚impdecls; ˚defs) : 〈| ˚dspcs ; ˚espcs ; f |〉 @ ω̊
(IlTyMod)

Environment construction fenv; f0 ` ˚impdecls; ˚defs  ˚eenv @ ω̊

∀i ∈ [1..n] : fenv ` ˚impdecli  ˚eenvi
˚eenv =

⊕
i∈[1..n] ˚eenvi ⊕ ˚mklocaleenv(f0; ˚defs)

ω̊ =
⊕
i∈[1..n] world

+
fenv(imp( ˚impdecli)) ⊕ ˚mklocalworld(f0; ˚defs; ˚eenv)

fenv; ˚impdecl1, . . . , ˚impdecln ` ˚impdecls; ˚defs  ˚eenv @ ω̊
(IlCoreEnv)

Import resolution fenv ` ˚impdecl  ˚eenv fenv; f ` ˚impspec  ˚espcs fenv; f ` ˚import  ˚espc

fenv; f ` ˚impspec  ˚espcs
˚eenvbase = mkeenv( ˚espcs) ˚eenvqual = qualify(f ′; ˚eenvbase)

fenv ` (import f as f ′ ˚impspec)  ( ˚eenvbase ⊕ ˚eenvqual)
(IlImpDeclUnqual)

fenv; f ` ˚impspec  ˚espcs
˚eenvbase = mkeenv( ˚espcs) ˚eenvqual = qualify(f ′; ˚eenvbase)

fenv ` (import qualified f as f ′ ˚impspec)  ˚eenvqual
(IlImpDeclQual)

∀i ∈ [1..n] : fenv; f ` ˚importi  ˚espci ˚espcs =
⊕
i∈[1..n]{ ˚espci}

fenv; f ` ( ˚import1, . . . , ˚importn)  ˚espcs
(IlImpSpec)

˚espc ∈ fenv(f) ˚espc = [f]χ

fenv; f ` χ  ˚espc
(IlImpSimple)

˚espc ∈ fenv(f) ˚espc 6 ˚espc ′ = [f]χ(χ ′)

fenv; f ` χ(χ ′)  ˚espc ′
(IlImpSub)

Export resolution ˚eenv ` ˚expdecl  ˚espcs ˚eenv ` ˚export  ˚espc

∀i ∈ [1..n] : ˚eenv ` ˚exporti  ˚espci
˚espcs =

⊕
i∈[1..n]{ ˚espci} nooverlap( ˚espcs)

˚eenv ` ( ˚export1, . . . , ˚exportn)  ˚espcs
(IlExpList)

˚eenv( ˚eref ) = [f]χ : [f]χ

˚eenv ` ˚eref  [f]χ
(IlExpSimple)

˚eenv( ˚eref ) = [f]χ : [f]χ(χ ′,χ ′′)

˚eenv ` ˚eref(χ ′)  [f]χ(χ ′)
(IlExpSub)

Figure 9.3: Definition of typing judgment and related definitions for IL module source files. The judgments constitute a restriction of their EL
counterparts, with the notable distinction of using world+−(−) in (IlCoreEnv) instead of the EL’s world−(−).
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Auxiliary Definitions on Worlds

Reinterpreted module world modworldfenv(hsmod; ftyp) :par ω̊ modworldfenv(f; tfexp) :par ω̊

modworldfenv(hsmod; ftyp) def
= world+fenv(imps(hsmod)) ⊕ extworld(name(hsmod); ftyp)

modworldfenv(f; hsmod : ftyp) def
= modworldfenv(hsmod; ftyp)

modworldfenv(f;− : ftyp) def
= extworld(f; ftyp)

Worlds from a context worldfenv(f) :par ω̊ worldfenv(F) :par ω̊

worldfenv(f)
def
= ω̊ if f:ftypm@ ω̊ ∈ fenv

worldfenv(F)
def
=

⊕
f∈F∩dom(fenv) worldfenv(f)

Transitive worlds from a context world+fenv(f) :par ω̊ world+fenv(F) :par ω̊

world+fenv(f)
def
= worldfenv(depends

+
fenv(f))

world+fenv(F)
def
=

⊕
f∈F∩dom(fenv) world

+
fenv(f)

Figure 9.4: Definition of the reinterpreted world of a module source file in some file environment. Used in the statement of world preservation
conditions in structural properties of the IL typing judgments.



164 elaboration

Elaboration Semantics at Package Level

Elaboration of package bindings ∆; Γ ; Ξ̂pkg ` B : Ξ  dexp

` ′ 7→ ν ∈ Γ
∆; Γ ; Ξ̂pkg ` ` = ` ′ : (| · ; ` 7→ ν |)  { }

(ElabPkgAlias)

` 7→ ν0 ∈ Ξ̂pkg Γ ; ν0 ` M : τ @ω  hsmod

∆; Γ ; Ξ̂pkg ` ` = [M] : (|ν0:τ+@ω ; ` 7→ ν0 |)  {ν?0 7→ hsmod : τ? @ω? }
(ElabPkgMod)

` 7→ ν0 ∈ Ξ̂pkg (ν0:τ̂
m
0 @ ω̂0) ∈ Ξ̂pkg

Γ ; (τ̂0 @ ω̂0) ` S : σ @ω | Φsig Φ ′ = ν0:σ
−@ω ⊕ Φsig defined

∆; Γ ; Ξ̂pkg ` ` :: [S] : (|Φ ′ ; ` 7→ ν0 |)  {ν? 7→ − : τ? @ω? | ν:τ−@ω ∈ Φ ′ }
(ElabPkgSig)

α fresh (P= λα.dexp : ∀α.Ξ) ∈ ∆ ` Ξ t−−→ Ξ ′ Ξ ′′ = rename(r;Ξ ′)

α ′ = α∩ dom(Ξ ′′.Φ) ` Ξ̂pkg 6α ′ Ξ
′′  θ

∆; Γ ; Ξ̂pkg ` include P t r : apply(θ;Ξ ′′)  apply(θ?; dexp|dom(Ξ ′′.Φ)?)
(ElabPkgInc)

Elaboration of sequences of package bindings ∆; Ξ̂pkg ` B : Ξ  dexp

∆; Ξ̂pkg ` · : (| · ; · |)  { }
(ElabPkgNil)

∆; Ξ̂pkg ` B1 : Ξ1  dexp1 ∆;Ξ1; Ξ̂pkg ` B2 : Ξ2  dexp2 Ξ = Ξ1 ⊕ Ξ2 defined

∆; Ξ̂pkg ` B1,B2 : Ξ  dexp1 ⊕ dexp2
(ElabPkgSeq)

Elaboration of package definitions ∆ ` D : ∀α.Ξ  λα.dexp

∆ 
 B ⇒ Ξ̂pkg ∆; Ξ̂pkg ` B : Ξ  dexp ` Ξ t−−→ Ξ ′ α = fv(Ξ ′.Φ)

∆ ` package P t where B : ∀α.Ξ ′  λα.dexp|dom((Ξ ′.Φ))?
(ElabPkg)

Elaboration of package repositories ∆ ` R

∆ ` ·
(ElabPkgRepoNil)

∆ ` D : ∀α.Ξ  λα.dexp ∆,P= λα.dexp : ∀α.Ξ ` D ′

∆ ` D,D ′
(ElabPkgRepoSeq)

Figure 9.5: Definition of the elaboration semantics, defined as judgments that augment earlier typing judgments with elaborations. The
shaded parts are the only changes from the corresponding typing judgments.
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Elaboration Semantics at Module Level

Elaboration of modules Γ ; ν0 ` M : τ @ω  hsmod

Γ ` impdecls; (ν0, . . . ,ν0 | defs)  eenv @ ω eenv 
 expdecl  espcs
Γ .Φ; ν0; eenv; ω ` defs : dspcs N = {Γ(imp(impdecl)) | impdecl ∈ impdecls}

Γ ; ν0 ` (impdecls; expdecl; defs) : 〈| dspcs ; espcs ; N |〉 @ω

 mkmod(Γ ;ν0; eenv; impdecls; defs; espcs)

(ElabMod)

Module patching mkmod(Γ ;ν0; eenv; impdecls; defs; espcs) :par hsmod

mkmod(Γ ;ν0; eenv; impdecls; defs; espcs) def
=

 module ν?0 mkexpdecl(espcs; eenv) where
mkimpdecls(Γ ; impdecls)
refs?ν0(defs)



Module patching, imports

mkimpdecls(Γ ; impdecls) :par ˚impdecls mkimpdecl(Γ ; impdecl) :par ˚impdecl

mkimpspec(Γ ; `; impspec) :par ˚impspec mkentimp(Γ ; `; import) :par ˚import

mkentimp(espc) : ˚import

mkimpdecls(Γ ; impdecls) def
= (mkimpdecl(Γ ; impdecl); | impdecl ∈ impdecls)

mkimpdecl(Γ ; import [qualified] ` impspec) def
=

import [qualified] (Γ .L)(`)? as ` mkimpspec(Γ ; `; impspec)

mkimpdecl(Γ ; import [qualified] ` as ` ′ impspec) def
=

import [qualified] (Γ .L)(`)? as ` ′ mkimpspec(Γ ; `; impspec)

mkimpspec(Γ ; `; ·) def
= (mkentimp(espc) | espc ∈ Γ(`).espcs)

mkimpspec(Γ ; `; (import)) def
= (mkentimp(Γ ; `; import))

mkentimp(Γ ; `;χ) def
= mkentimp(espc) if

espc ∈ Γ(`)

χ = name(espc)

mkentimp(Γ ; `;χ(..)) def
= mkentimp(espc) if


espc ∈ Γ(`)

χ = name(espc)

hasSubs(espc)

mkentimp(Γ ; `;χ(χ ′)) def
= χ(χ ′)

mkentimp([ν]χ) def
= χ

mkentimp([ν]χ(χ ′)) def
= χ(χ ′)

Figure 9.6: Definition of the elaboration semantics at the module level.
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Elaboration Semantics at Module Level, Continued

Module patching, exports mkexpdecl(espcs; eenv) : ˚expdecl mkexp(espc; eenv) :par ˚export

mkexpdecl(espcs; eenv) def
= (mkexp(espc; eenv) | espc ∈ espcs)

mkexp([ν]χ; eenv) def
= refs?ν0(eref ) if ∃ eref : eenv(eref ) = [ν]χ

mkexp([ν]χ(χ ′); eenv) def
= refs?ν0(eref )(χ ′) if ∃ eref : eenv(eref ) = [ν]χ : [ν]χ(χ ′)

Entity patching refs?ν(eenv) : ˚eenv refs?ν(eref ) : ˚eref refs?ν(· · · ) : · · ·

refs?ν(eenv) def
= {refs?ν(eref ) 7→ phnm? | eref 7→ phnm ∈ eenv} ; locals(eenv)?

refs?ν(χ)
def
= χ

refs?ν(`.χ)
def
= `.χ

refs?ν(Local.χ)
def
= (ν?).χ

refs?ν(· · · eref · · · ) def
= · · · refs?ν(eref ) · · ·

Figure 9.7: Definition of the elaboration semantics at the module level, continued.

Elaboration Soundness Relation

Relation of module context to directory expression Ξ ∼ dexp

Ξ ∼ dexp def⇔ Ξ.Φ ∼ dexp

Φ ∼ dexp def⇔ ∀i ∈ [1..n] : (νi:τi
mi@ωi) ∼ (fi 7→ tfexpi @ ω̊i)

where

Φ = ν1:τ1
m1@ω1, . . . ,νn:τnmn@ωn

dexp = { f1 7→ tfexp1 @ ω̊1, . . . , fn 7→ tfexpn @ ω̊n }

Relation of singleton module context to file (ν:τm@ω) ∼ (f 7→ tfexp @ ω̊)

(ν:τ+@ω) ∼ (ν? 7→ hsmod : τ? @ω?)
def⇔ ∃ Γ , eenv, impdecls, defs :

hsmod = mkmod(Γ ;ν; eenv; impdecls; defs; τ.espcs)

(ν:τ−@ω) ∼ (ν? 7→ − : τ? @ω?)
def⇔ always

Figure 9.8: Definition of the soundness relation between EL module contexts and IL directory expressions.
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10R E L AT E D W O R K

In the introduction I tied together the constellation of concepts pertaining to modularity that
would be necessary to understand the core contributions of Backpack. In this chapter I flesh
out in more detail some of the comparisons to related work in module systems and mixins.

10.1 mixin modules

ML modules provide a very expressive and convenient language for programming with
abstract data types. However, due to a variant of the double vision problem (Section 2.6),
functors are fundamentally incompatible with recursive linking.1 There have therefore been
several attempts to synthesize aspects of ML modules and mixin modules in a single system,
including Owens and Flatt’s typed unit calculus2 and Duggan’s type system for recursive
DLLs.3 Arguably the most advanced system in this space is Rossberg and Dreyer’s MixML,4

which will be discussed in the next section.
Our focus has been on mixin-based strong modularity in the setting of a typed functional

language. In the object-oriented community, mixins have already seen significant uptake.
Both Scala5 and J&6, for instance, incorporate mixin-style composition into the very fabric of
their designs. However, as we have explained, we are particularly interested in the question of
how to retrofit existing languages with mixin-based strong modularity, and to our knowledge
there is relatively little work on that.

In their FJig line of work,7 Servetto and Zucca imbue abstract classes in Java with mixin
behavior: various mixin operators like merge combine abstract classes to form new ones.
Whereas Backpack retrofits Haskell modules with a whole new layer on top, the FJig lan-
guages redefine the existing abstract class layer of a Java-like language; they are implemented
via “flattening” all the mixin operations into ordinary abstract class definitions. In compari-
son, the Backpack retrofitting is a somewhat more modular extension to Haskell in that we
essentially do not touch the existing language of Haskell modules at all.

The SmartJavaMod/component systems of Ancona et al.8 define a new level of mixin mod-
ules to encapsulate existing Java classes. Because they do not redefine the existing language
constructs, these component systems are more closely related to Backpack than other mixin
systems for OO languages.

A component contains defined classes and deferred classes—essentially just the difference
between implementations and holes in Backpack. Deferred classes are specified as abstract
class names with constraints on their inheritance and methods and fields. The “bind” con-
struct mixin-merges two components by plugging in definitions from one component for
deferred classes in the other; moreover, bind instantiates the components generatively, pro-
ducing a unique copy of all the classes inside the merged result (and thus fresh abstract
types). In contrast, Backpack supports an applicative semantics of instantiation.

The SmartJavaMod/component languages are implemented with a translation into “poly-
morphic bytecode,”9 essentially an extension of JVM bytecode with markers and constraints

1 Rossberg and Dreyer (2013), “Mixin’ Up the ML Module System”.
2 Owens and Flatt (2006), “From Structures and Functors to Modules and Units”.
3 Duggan (2002), “Type-safe linking with recursive DLLs and shared libraries”.
4 Rossberg and Dreyer (2013), “Mixin’ Up the ML Module System”.
5 Odersky and Zenger (2005), “Scalable component abstractions”.
6 Nystrom et al. (2006), “J&: Nested Intersection for Scalable Software Composition”.
7 Corradi et al. (2011) and Lagorio et al. (2012).
8 Ancona et al. (2005b, 2006).
9 Ancona et al. (2005a), “Polymorphic bytecode: compositional compilation for Java-like languages”.
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for the deferred classes (i.e., holes) in the component. For that reason, their internal language
resembles Backpack’s, although they present no formal definition of their elaboration into
this language. Instead, they define a reduction semantics on components that, like the flat-
tening in FJig languages, produces fully instantiated class definitions that can be understood
by the underlying Java-like language. In Backpack, following much work on ML module sys-
tems,10 packages do not have a direct reduction semantics—rather, their meaning is given by
a formal translation into a typed internal language, in our case based on Haskell.

As is the tradition in object-oriented languages, the aforementioned systems emphasize
dynamic binding, virtual methods, overriding, etc., and do not consider the issue of the
double vision problem. In contrast, Backpack supports only static binding, does not permit
overriding, and invests great effort to avoid double vision.

10.2 mixml

The most conceptually and technically relevant work to Backpack is Rossberg and Dreyer’s
MixML11, a highly expressive foundational calculus of mixin modules for an ML-like core
language. Backpack’s design and semantics are inspired by those of MixML, but our design
decisions, driven by our goal of retrofitting Haskell with strong, large modularity, have led to
considerable simplifications.12

MixML supports first-class and higher-order units (i.e., instantiable mixins), whereas Back-
pack’s units—packages—only exist at the top-level. We find Backpack’s units to be sufficient
for practical programming, and restricting them to top-level streamlines the semantics of ap-
plicative identities. MixML also supports hierarchical mixin modules with “deep linking”,
but Backpack restricts packages to be flat namespaces of modules. Deep linking lets MixML
express many different ML constructs (e.g., n-ary signatures) using just the single form of
linking. Since our focus is on practicality rather than expressiveness, we sacrifice features like
first-class units and deep linking for simplicity of syntax and semantics, optimizing instead
for common usage patterns. In particular, Backpack’s include construct is syntactically more
straightforward to program with than MixML’s binary linking/binding construct, and fits
better with the “feel” of the Haskell module language (e.g., its import statements).

MixML lacks some features that Backpack provides for practical reasons. In particular,
renaming and thinning allow programmers greater control over the automatic mixin linking
behavior. Moreover, our thinning semantics also allows programmers to completely discard
irrelevant holes from a package. Module projection in MixML similarly allows programmers
to selectively use certain parts of modules while ignoring the rest, but there is no way to
ignore undefined parts of those modules even when the selected parts do not depend on
them, i.e., like thinning in Backpack.

Concerning the double vision problem, MixML solves it through the use of a two-pass al-
gorithm for typechecking linked modules: the first pass computes all information about type
components in the modules, and the second pass performs full typechecking. In MixML,
these two passes are defined using a single set of inference rules, with the first pass defined
by conveniently ignoring certain premises. Backpack adopts the same two-pass idea in or-
der to compute the physical module identities involved in a package before typechecking
it. However, Backpack distinguishes the two passes—shaping and typing—using completely
separate judgments and rules. Although this leads to a doubling of rules, the rules themselves
are (we feel) much easier to understand. In particular, the account of linking given by the se-
quencing rules (ShPkgSeq) and (TyPkgSeq) feels simpler than MixML’s formidable linking
rule, though much of the complexity in Backpack’s linking stems from an admittedly com-
plicated unification specification (Figure 8.4). Moreover, Backpack stages the shaping pass
over a whole package entirely before the typing pass, leading to a clearer conceptual split

10 Harper and Stone (2000), Rossberg and Dreyer (2013), and Rossberg et al. (2010).
11 Rossberg and Dreyer (2013), “Mixin’ Up the ML Module System”.
12 Backpack’s complexity is largely due to its core and module levels, not the package level, which is the actual point

of comparison with mixin modules.

http://doi.acm.org/10.1145/2450136.2450137


10.2 mixml 171

between the two phases of package typechecking than in MixML, where the two passes are
interleaved.

A key reason we can get by with a simpler semantics of linking is that we are deliberately
less ambitious than MixML in a certain sense: unlike MixML, we do not aim to completely
subsume the functionality of ML modules. MixML does, and this means that its semantics
must deal with nested uses of translucent sealing (i.e., the ability to define types that are
“transparent” inside a module but “opaque” outside), a defining feature of ML modules
which compounds the already-tricky double-vision problem. In contrast, Backpack does not
attempt to support translucent sealing—and thus does not suffer the attendant complexities—
for the simple reason that Haskell, our target of elaboration, cannot support it.

In MixML, instantiations happen in the full domain of core-language types. Unfortunately,
the (potential) presence of higher-kinded types in the core language rules out the use of
ordinary unification to determine instantiations, as higher-order unification is undecidable
in general.13 Therefore to implement instantiation without unification, MixML employs se-
mantic metadata called “locators” and a “bidirectional type lookup” judgment that together
complicate the linking rule. In Backpack, on the other hand, instantiations happen in the
(closed) domain of module identities and are determined with ordinary unification on recur-
sive first-order terms.

An additional simplification of Backpack over MixML arises in our use of context shapes in
the typing judgment, based on MixML’s “realizers”. Realizers in MixML tell the typing judg-
ment what the interpretation of an undefined type component should be. They are defined
hierarchically and directly correspond to the structure of the concerning expression in the
typing judgment. As a result, MixML’s linking rule involves a complicated, nondeterministic
splitting of the realizer in the conclusion in order to give realizers to the constituent expres-
sions. Similarly, context shapes in Backpack tell the typing judgment what the identities for a
signature binding should be. However, context shapes are flat and always describe the entire
package rather than only the concerning binding expression; the TyPkgSeq rule consequently
requires no such splitting and is deterministic.

Because MixML’s typing judgment (and thus also its “static pass” judgment) are defined
nondeterministically, implementing them with a deterministic algorithm is nontrivial. They
define an additional semantic object called “templates” that, essentially, determinize the typ-
ing judgment by specifying, for a given expression, (1) the necessary realizer and abstract
type variables to feed into the typing judgment and (2) the aforementioned realizer splitting
in the linking rule. Templates are synthesized according to a separate (but similar) template
computation judgment. We circumvent all this work in Backpack’s type system by unifying
template computation and the static typing pass into a single judgment—shaping. This uni-
fication is made possible by the unique way in which we stage the static pass entirely before
the typing pass.

Finally, MixML is defined by elaboration into an internal language, LTG, which was de-
signed specifically to capture all the necessary features of MixML. (LTG is an extension, with
linear kinds, of an earlier internal language, similarly specialized for recursive ML module
systems, called RTG14.) LTG’s tricky metatheory underscores MixML’s status as a founda-
tional calculus rather than a practical language design, in contrast to Backpack, whose inter-
nal language (IL) is a formalization of an existing implementation artifact, the GHC module
system. A major benefit of our approach is that the semantics (via elaboration) of a Backpack
package may be understood by Haskell programmers essentially in terms of a reshuffling of
import and export lists in their Haskell modules. The elaboration in Figure 3.7 is a prime
example of this.

13 Goldfarb (1981), “The Undecidability of the Second-Order Unification Problem”.
14 Dreyer (2007b), “Recursive Type Generativity”.
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10.3 logical module names vs . physical module identities

Module identities, which establish canonical physical names for modules (as distinct from
program-level logical names), serve two important roles in Backpack’s semantics: (1) they
simplify and regularize the elaboration into Haskell modules (and its soundness proof), and
(2) they are the principal component of our solution for how to support applicative mixin
linking.

Concerning the first point: The distinction between logical and physical names is a central
technical element enabling—and conceptually reinforcing—the elaboration into our Haskell-
based IL. In particular, a key invariant of elaboration is that the physical part of a package’s
EL type gives a precise description of the IL modules that it elaborates to; the logical part of
its type is only relevant for namespace management during Backpack-level typechecking.

Concerning the second point: The idea of distinguishing between logical and physical
names is not new. A number of prior formalisms for ML-style modules—including the Defini-
tion of Standard ML itself—rely on a similar distinction.15 The key advantage of this approach
(as opposed to more direct, syntactic type systems for modules16) is that physical identities
greatly simplify the treatment of type equality in the presence of aliasing: no matter their
logical names, two types are equal iff they have the same physical identity. This eliminates
the need for fancier mechanisms for handling type sharing, like translucent sums or single-
ton kinds (see Rossberg et al.17 for further discussion). Moreover, for recursive and mixin
module extensions of ML,18 the logical/physical distinction has enabled clean solutions to
the double vision problem, as discussed above. (There is some more recent work by Im et
al. on solving double vision “syntactically”—i.e., using only logical names—but it does not
account for separate typechecking of mutually recursive modules in general.19)

What distinguishes Backpack from these prior systems is its support for both separate type-
checking of recursive modules and an applicative semantics of instantiation, as appropriate
for a pure language like Haskell. To handle the combination, we needed to enrich the lan-
guage of module identities with both (equi-)recursive µ-binders and constructor applications,
and employ (standard) unification and equivalence-checking algorithms that work for these
recursive identities.20 To see why, consider the example from Section 2.6, in which the mod-
ules A and B in package ab-rec-sep have the recursive identities νA and νB defined on the
subsequent page. If one were to define another package ab-rec-sep2 in the same way, the iden-
tities of A and B would be exactly the same. In contrast, were we to code up this example
in MixML, each distinct package defined like ab-rec-sep would produce modules with “fresh”
(distinct) identities, as one would expect given MixML’s generative semantics of instantiation.
Nevertheless, we observe that recursive identities do not complicate the semantics much, a
testament to the scalability of the logical/physical approach.

10.4 module identities and sharing

Whereas Backpack largely concerns itself with the organization of module identities, conven-
tional type system for ML modules largely concern themselves with the organization of
types—abstract types in particular, whose creation exhibits generative and/or applicative se-
mantics. However, some other works in the literature of module systems have employed a
mechanism somewhat like Backpack’s module identities.

MacQueen and Tofte developed a term representation of the semantics of functors, which
they called stamps.21 Using stamps they solved the “technical challenge in defining a seman-
tics of higher-order functors [arising] from the way static identity information is propagated

15 Milner et al. (1997), Rossberg et al. (2010), and Russo (1998).
16 Harper and Stone (2000) and Leroy (1995).
17 Rossberg et al. (2010), “F-ing Modules”.
18 Dreyer (2007a) and Rossberg and Dreyer (2013).
19 Im et al. (2011), “A Syntactic Type System for Recursive Modules”.
20 Gauthier and Pottier (2004) and Huet (1976).
21 MacQueen and Tofte (1994), “A semantics for higher-order functors”.
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in Standard ML.” Their usage of stamps was inspired by the earlier Definition of Standard
ML,22 which called the same notion names (but which didn’t cover higher-order functors, an
innovation of MacQueen and Tofte’s system).

In the original SML system, the module system included structure sharing, which allowed
signatures to not only express equivalence of types but also equivalence of entire modules, like
in the following:

signature NUM = sig

structure Eq : EQ

structure Ord : ORD

type t = Eq.t

val plus : t * t -> t

(* Ord’s Eq component must be identical to Eq *)

sharing Eq = Ord.Eq

end

In Russo’s assessment,23 “sharing of structures is a stronger property than mere sharing of
types: it provides a static guarantee of the identity of values.” SML used a form of stamps
(names) to give meaning to such sharing constraints by requiring that the stamp of the Eq

component be identical to that of the Ord.Eq component. But years later the revised Defini-
tion of Standard ML of 1997 dropped structure sharing altogether since the feature introduced
technical complexity to the semantics and didn’t seem, to the authors, to provide much prac-
tical usage beyond what type sharing provided.24 (Further explanation of the presence and
then absence of structure sharing in Standard ML can be found in (Rossberg et al., 2014,
p. 585–586).)

Leroy compared stamps vs. syntactic names by defining two different module systems,
one with each of these two semantics, that supported translucent signatures (a.k.a. manifest
types) and generative functors (but not higher-order functors).25 In his TypModL system,
stamps represented identities of core-level names rather than of modules, so it supported
sharing of types but not of structures. In his TypModL’ system, syntactic names for core types
derived from paths, —sequences of structure identifiers projecting out a core type, e.g., X.Y.t—
provided the basis for determing type equivalence: two types were identical if they could be
expressed with the same syntactic path. This approach relied heavily on syntactic names
and on “self-ification” module typing rules whereby the type of a structure name would be
imbued with the path representing its own name; this formed the basis for syntactic, path-
based semantics to module systems. Leroy showed that with additional syntactic rewriting
the TypModL and TypModL’ systems were equivalent, even going so far as to sketch the
following loose relationship to connect the ideas of stamps and names:

type generativity and sharing = path equivalence + A-normalization + S-normalization

Russo’s thesis provided the first comprehensive treatment of a type system for ML modules
by modeling generativity and applicativity of abstract types through existential and universal
quantification in System F. The transitive influence of that work on Backpack’s formalization
is tremendous. Although Russo speculated that his system’s mechanism for tracking abstract
types could be readily extended to track module identity, his work did not support structure
sharing.26

The F-ing modules system of Rossberg, Russo, and Dreyer subsumed stamps—and therefore
module identity—into its comprehensive organization of abstract types, bringing the ideas of

22 Milner et al. (1990), “The Definition of Standard ML”.
23 Russo (1998), “Types for Modules”.
24 Milner et al. (1997), “The Definition of Standard ML (Revised),” §G.3.
25 Leroy (1996), “A syntactic theory of type generativity and sharing”.
26 Russo (1998), “Types for Modules,” p. 347.
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Russo’s thesis into fruition.27 Rather than stamps they model structure sharing using phantom
types that are generated for each value component; these phantom types for value components,
taken together with the types for type components, approximate a module identity. Rossberg
continued this same approach in his 1ML system.28

1ML unites the core and module levels
that are generally stratified and kept semantically distinct, as in the F-ing system, Backpack,
and countless other systems.

Backpack’s development and usage of module identities is unique. To my knowledge, no
account of module identity or stamps has supported both applicativity and recursion. Fur-
thermore, a major benefit in tracking module identities, rather than individual core-level
types like MixML, lies in the very straightforward elaboration into the underlying module
language that this enables.

10.5 linksets and separate compilation

In order to formally study linking and separate compilation of program fragments, Cardelli
introduced a foundational calculus called linksets29. In this framework a program fragment
represents (the typing derivation of) a module value together with interfaces for its internal
dependencies on other values, while a linkset represents a collection of these fragments, each
designated with a unique name, together with an interface for their collective external de-
pendencies. Separate compilation then describes the translation from (typing derivations of)
modules into these linksets. Through a reduction relation and algorithm, linking is imple-
mented on linksets by substituting a named fragment’s value for each reference to it in the
other fragments until no more such substitutions are possible.

Cardelli’s framework gives the impression of mixins and thus the two systems share some
cosmetic similarity. Linksets resemble the directory expressions of Backpack’s IL: each file
of a directory explicitly provides its type, and the interfaces of internal dependencies are
provided elsewhere in the directory. Like linksets, directories may be checked for individ-
ual well-typedness of files with respect to both internal and external dependencies. Unlike
linksets, directories have no reduction or merging semantics: linking in the Backpack IL is
realized instead through extra-linguistic means during elaboration, i.e., by appealing to the
dexp ⊕ dexp meta operation.

Despite its apparent similarity to Backpack, the linkset framework does not support recur-
sive modules (or values or types) or user-defined abstract data types—two prominent features
that drive the complexity of state-of-the-art module systems. As an example of how support-
ing these features steers Backpack away from the linkset framework, consider abstract data
types: the lack of reduction semantics for the Backpack IL stems from the need to faithfully
preserve the meaning of abstract data types (with the module identity mechanism) defined
in the EL package.

10.6 separate compilation for ml

Setting aside the lack of support for recursive linking, ML functors are not by themselves
really a practical mechanism for strong modularity due to the proliferation of “sharing” con-
straints that are known to arise when programming in a “fully functorized” style30 (i.e., in
which modules are parameterized explicitly, via the functor mechanism, over all their de-
pendencies). Consequently, a number of systems have been proposed for building a better
strong-modular framework on top of the existing ML module system.

Before discussing these systems in more detail, let us observe two important ways in which
they all differ from Backpack. First, unlike Backpack, the separate compilation systems for
ML build improved strong, large modularity support on top of the already-powerful ML

27 Rossberg et al. (2014), “F-ing modules”.
28 Rossberg (2015), “1ML - Core and modules united (F-ing first-class modules)”.
29 Cardelli (1997), “Program fragments, linking, and modularization”.
30 Harper and Pierce (2005), “Design Considerations for ML-Style Module Systems”.
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module system, which offers instantiation, reuse, and strong (albeit smaller) modularity via
functors. In contrast, Backpack is built on top of Haskell, which lacks those features, and
thus the expressiveness boost it offers over the underlying language is in some sense more
significant. Second, we realize this boost not through functors but through mixins. As a
result, Backpack supports recursive linking and it avoids the need for any separate notion
of sharing constraints, appealing instead to the implict, by-name linking of packages’ abstract
dependencies rather than to explicit sharing expressions in addition to those dependencies.

Building on Cardelli’s linkset foundation, Swasey et al. designed a typed language of pro-
gram fragments, SMLSC, that organizes lists of top-level SML definitions (e.g., modules) into
what they call units.31 Linking happens automatically by name when unit definitions are con-
sidered in the same linkset. In particular, when multiple units in a linkset have “interface im-
ports” on some common name, those dependencies unify automatically without extra annota-
tions. SMLSC units therefore eliminate the need for sharing constraints on dependencies—as
mixin modules do—but they do not permit recursive linking. Finally, as they are intended to
be units of compilation rather than units of reuse, SMLSC units may not be instantiated in a
single program with multiple different implementations of their imports, unlike Backpack.

In a different vein, targeting “open” modular programming, the Acute language of Sewell et
al.32 and the Alice ML language of Rossberg et al.33 support not only separate compilation,
but dynamic linking, marshalling/pickling, and (in the case of Acute) versioning of com-
ponents, all of which are beyond the scope of Backpack. While Acute repurposes modules
(with new primitive operations) as a mechanism for compilation units and linking, Alice ML
defines “components” by reduction to a simpler construct of “packages” (modules as first-
class core values). Linking in Acute consists of (non-recursive) chains of module definitions
and imports, whereas Alice ML employs a more flexible and dynamic “component manager”
approach based on Java class-loading (rather than linksets). Neither Acute nor Alice ML
supports recursive modules.

As part of the OCaml module system,34 the ocamlc compilation tool performs separate
compilation on files that contain module components. The tool treats the file system rather
like a mixin: each component (i.e., a file) can be defined as an implementation (i.e., a .ml

file) or a hole (i.e., a .mli file), and components can be recursively linked. Like SMLSC but
unlike Backpack, though, these “mixins” cannot be instantiated and reused: a separately-
compiled file cannot be linked with multiple implementations of its dependencies. In essence,
ocamlc implements something similar to the target IL of Backpack’s elaboration, albeit for
OCaml (obviously) and extended with full separate compilation rather than just separate
typechecking. It does not, however, provide a language for building and linking components,
as Backpack does.

10.7 modular type classes

Dreyer et al.’s modular type classes35 (MTC) sought to integrate type classes into the ML mod-
ule system as “a particular mode of use” of modules and functors. Their key insight was to
separate the definition of a type class instance and its canonicalization, or usage, in a particular
scope. The MTC system requires that every “scope” of implicit instance resolution be consis-
tent (which they call “coherence”); there cannot be two distinct ways to resolve the same
desired class constraint. This requirement corresponds to the world consistency property of
Backpack, that every module inhabit a consistent world.

In one particular way, Backpack goes further in ensuring consistency. Backpack’s world
preservation conditions (e.g., in the definition of substitution on module contexts, or in the
metatheory of the IL) guarantee that consistency is preserved by modular linking. The MTC
system, however, does not—or at least it seems not to—guarantee that consistency is pre-

31 Swasey et al. (2006), “A separate compilation extension to Standard ML”.
32 Sewell et al. (2007), “Acute: High-level programming language design for distributed computation”.
33 Rossberg (2006), “The missing link – Dynamic components for ML”.
34 Leroy et al. (2017), “The OCaml System release 4.06: Documentation and user’s manual”.
35 Dreyer et al. (2007), “Modular Type Classes”.
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served by modular linking, i.e., functor application. That’s because of the ability to define
and use instances on abstract types, as in the following:

functor F (

A : sig type t; ... end,

B : sig type t; ... end) = struct

structure EqAt = ... A.t ...

structure EqBt = ... B.t ...

using EqAt, EqBt in

... usage of EqAt ... usage of EqBt ...

end

F(IntModule, IntModule)

When this functor is statically analyzed, the MTC system accepts it by elaborating each
usage of EqAt or EqBt into calls on the respective modules. But an application of the functor
such that the two abstract types are actually the same will result in the functor body, within
the using declaration, witnessing the equivalence of the two purportedly distinct instances.

It’s not clear whether this behavior is actually problematic in the context of MTC. In this
system, the elaboration of the functor body would explicitly fix the particular instance chosen;
the body would not need to be later re-evaluated to choose a now-ambiguous instance. In the
context of Backpack, this would be a more serious problem, so this linking would be statically
ruled out. See the uncertain package from §4.5.3 for example.

10.8 backpack’17

As I hinted in the intro, Backpack’17, presented in Yang’s recent thesis,36 is a continuation
of the Backpack research project—of the original publication in particular, which he refers to
as “Backpack’14.” The reader will surely wonder how Backpack, as I’ve presented it in this
thesis, differs from that of Yang’s thesis.

Essentially, Backpack’17 is a practical implementation of the original Backpack presentation
without type classes, i.e., the system described in Chapters 2 and 3. Indeed, Yang has imple-
mented Backpack’17 in the GHC Haskell infrastructure: in the GHC compiler (version 8.2)
and in the cabal-install package manager (version 2.0).

But Backpack’17 is also a re-design of Backpack’s semantics, at times in collaboration with
myself and my Backpack co-authors, guided by an even more practical mission than my own:
to retrofit not just a model of Haskell but the entire actually-existing Haskell infrastructure, i.e.,
not just the actual compiler but the actual package management system. Through this effort
Yang identified a key flaw in Backpack (both the original Backpack’14 presentation and the
one presented in this thesis):

[D]espite its emphasis on being a practical design, Backpack’14 could not be implemented
in a real world compiler like GHC. Why not? The semantics of Backpack’14, especially
its package-level semantics, were closely entwined with the semantics of Haskell itself,
violating the traditional abstraction barrier between the compiler and package manager.
Without tightly coupling GHC (the Haskell compiler) and Cabal (the Haskell package
manager), there was no way to directly implement Backpack’14.37

Recognizing that abstraction barrier between compiler and package manager, and assign-
ing to the former the responsibility of mixin linking and to the latter the responsibility of
typechecking, is perhaps the key innovation behind Backpack’17.

36 Yang (2017), “Backpack: Toward Practical Mix-in Linking in Haskell”.
37 Ibid., p.3.
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10.8.1 Language and features

Backpack’17 considers the full Haskell/Cabal specification as the notion of packages. Inside
that specification are components, which are named bundles of Haskell code—either libraries
or executables—provided by the package. Resolved components are the analogue to packages
in Backpack: they contain module declarations, signature declarations, and dependencies
(i.e., include bindings, with thinning and renaming). These are then mixin linked into mixed
components, objects which resemble Backpack packages annotated with their shapes—in
particular, inclusion bindings are annotated with their linking substitutions.

Backpack’17 incorporates a number of Haskell features missing in Backpack:

• the full language of types, kinds, and roles in modern Haskell;

• type synonyms and the attendant notion of (core-level) type equality;

• the ability for type synonyms to “implement” abstract type declarations in signatures,
a feature of GHC Haskell with boot files in place of signatures; and

• type families and their instances.

Additionally, Backpack’17 does not require that concretely defined core entities have the same
syntactic name as the abstractly declared entities they implement.

The primary Backpack feature missing from Backpack’17 is full recursive linking, i.e., sup-
port for mutually recursive module bindings, although Yang sketches an approach based on
Backpack’s recursive module identities and on GHC Haskell’s “boot files” approach.38

More minor deviations include syntactic restrictions for the sake of simplicity—and to only
cover the kinds of components that generalize what people write today. As in Haskell, mod-
ules and signatures name themselves (with logical module names) and there are no alias
bindings at the package level. Moreover, there is no merging among the modules and signa-
tures defined within a single component. This means certain kinds of contrived examples in
Backpack are inexpressible in Backpack’17.

Finally, thinning in Backpack’17 seems not to allow for thinning out unused holes,39 i.e.,
the ability to require some subset of a component’s holes when the remaining holes are not
transitively imported by any of the included modules. The lack of tracking all upstream
modules in module types (except the orphan worlds; see below) provides further evidence
for that omission.

10.8.2 Identity

Backpack’17 represents identity not principally at the module level but at the component
level, called “unit identities.” (In Backpack this would be like representing package iden-
tities.) This representation of identity allows (component) shapes to be synthesized without
peering into the modules themselves, thus allowing shaping, i.e., the determination of physical
modular structure as part of mixin linking, to remain within the domain of the package man-
ager and not the compiler. Backpack, on the other hand, represents identity at the module
level, a technical design decision motivated in part by the elaboration semantics. In Backpack,
identity at the module level elucidated the elaboration, whereas in Backpack’17 identity at
the component level elucidates the package manager vs. compiler distinction.

As a result, Backpack’17 defines module identity as a unit identity plus a logical module
name, e.g., q[C = p[] : B], or, for a hole, as a specially denoted logical module name, e.g.,
〈A〉. This schema resembles Backpack’s notion of physical names of core entities. Indeed,
Backpack’17’s “original names” are pairings of module identities with syntactic core entity

38 Yang (2017), “Backpack: Toward Practical Mix-in Linking in Haskell,” Appendix B.
39 The definitions of rnthin and of mixin linking on dependencies (p. 36) does not impose any conditions on the

designated requirements. Moreover, the typing rules for mixed components do not actually require that a unit
identifier P = p[m =M] includes all of p’s holes among the designated m.

https://github.com/ezyang/thesis/releases
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names. But there’s an interesting second case for core-level original names: so-called “name
holes” {A.x}. The distinction between name holes and module holes is very much like the
distinction between βs and αs in Backpack: name holes denote the core bindings declared
in a signature. Rather than being substituted by module identities of modules that define a
matching core entity with the same syntactic name, however, they may be substituted by any
arbitrary original name of a core-level entity.

A seemingly strange aspect of unit identities is that, like Backpack’s module identities,
they’re parameterized by the identities of their module holes. In other words, unit identities
constitute a coarser granularity of identity, but they’re parameterized with the same gran-
ularity of identity. To see why module-level parameterization is necessary, in both systems,
consider the following example:

component p where

signature A where ...

module B where

import A

...

component q where

module A1 where ...

module A2 where ...

One might instantiate component p in two distinct ways: p with q requires (A as A1), and
p with q requires (A as A2). If unit identity were parameterized at the unit level, then
both instantiations would have some identity like p[q]. In order to observe the distinction—a
distinction that will exist in the evaluation of B—we need the unit identities to reflect the
different modules within a single component, e.g., p[A=q[]:A1] vs. p[A=q[]:A2].

10.8.3 Substitution

Substitution of module identities for holes is a key part of Backpack’17 as in Backpack, but the
former is lazy whereas the latter is eager. In Backpack, a linking substitution is applied to an
included package’s type, θΞ, which then gets merged into the module context for subsequent
modules to import. In Backpack’17, on the other hand, the linking substitution is more like
an annotation on an included component; in modules that import those included modules,
the substitution is applied lazily to the module type of the imported (substituted) module.

This decision guides Yang’s implementation, as the type-checker of a module need only
modify the interface of the looked-up module; what it never needs to do is apply a substitu-
tion to an entire component type in order to produce a new one to be processed.

10.8.4 Type classes

Backpack defines a world semantics of type classes in which the entire set of type class
instances known to any module are reified as semantic objects. Backpack’17 defines a dif-
ferent semantics—GHC’s orphan semantics described in Chapter 4, whereby orphanhood of
instances is known to the type system. As a result, the module types (i.e., “interfaces”) of
Backpack’17 contain the set of all upstream modules that define orphans.

Like in GHC Haskell, the orphan vs. non-orphan distinction is critical to the semantics and
representation of type class instances in Backpack’17. The manifestation of that distinction
is perhaps most evident in signature matching—called “module subtyping”—defined in the
rule (SubMod).40 The way that non-orphan instances are treated with respect to signature
matching in Backpack’17 precisely corresponds to the way that all instances are treated with
respect to signature matching in Backpack (§4.5.1).

In Backpack’17, in order for an implementing module to match a signature, two conditions
must be met:

1. The instances known to the implementation must be able to “solve”—in the core-level
instance resolution sense—each instance declaration in the signature. Translated to

40 Yang (2017), “Backpack: Toward Practical Mix-in Linking in Haskell,” Fig. 6.5, p. 51.

https://github.com/ezyang/thesis/releases
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Backpack’s world semantics, this first condition would be like requiring that an imp-
lementation’s world extend merely the smaller world of the signature’s directly de-
clared instances.

2. The set of orphan modules (i.e., module identities that define orphan instances) known
to the implementation must be a superset of those known to the signature. (In Back-
pack’17, orphan modules in the transitive closure of imports of a module are recorded
in that module’s type.)

Condition (2) is like the world extension requirement in my world semantics. But since my se-
mantics doesn’t make the distinction of orphan instances, thereby optimizing for the common
case of non-orphan instances, it has to generalize from (2).

Finally, because of the lazy application of linking substitutions, Backpack’17 does not pro-
hibit conflicting type class instances that result from linking.41 In my formalization of Back-
pack, however, prohibiting such invalid linking was a core concern for the world semantics;
recall the world preservation side conditions of the IL. For example, the uncertain package in
Backpack from §4.5.3 defines conflicting instances if it’s linked in such a way that the types
implementing X1.T and X2.T are equal.

10.8.5 Formalization

Backpack’17’s formalization is considerably more limited than that of Backpack. Notably, due
in large part to the design decision to abstract mixin linking from the compiler, Backpack’17

does not define a semantics for the Haskell module level. In Backpack, that portion of the
formalization drove perhaps the majority of the complexities detailed in this thesis.

Backpack’17 assumes some judgments from the Haskell core language, as does Backpack,
albeit without clearly stated axioms to accompany them.42 Noteworthy additions to these as-
sumed judgments are the core-level type equality judgment and the instance resolution judg-
ments. The former enables Backpack’17 to support type synonyms, which Backpack lacks.
The latter gives meaning to the orphan semantics for type classes. Backpack, on the other
hand, has no such judgment, even among its assumed judgments, as type class instance
resolution is left up to the assumed judgment of typing of core-level bindings.

41 Yang (2017), “Backpack: Toward Practical Mix-in Linking in Haskell,” p.83.
42 Ibid., §6.2.1.
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11.1 conclusion

The research project that led to Backpack started with the question, shared between Simon
Peyton Jones and Derek Dreyer, “what if Haskell had mixin modules à la MixML?” Originally
that question sought mixins at Haskell’s module level. Over the subsequent years the practical
challenges of “retrofitting Haskell with interfaces” pushed the focus one level up, to the
package level. The accumulation of questions and solutions, experiments in a new kind of
modularity for an existing language, became Backpack.

Over the course of my work developing the Backpack research project, I have

• brought the rich research tradition of type systems for ML modules into the world of
Haskell and the less robustly researched world of package management systems;

• staked out an entirely new kind of modular programming in practice;

• formalized the Haskell module system in all its complexity and developed novel metathe-
ory for that system, for example, to give a precise technical justification for a folklore
assessment of type classes;

• applied my modeling of type classes to verify that the vast majority of widely used
Haskell packages in the wild obey the key world consistency property; and

• stated and proved a key soundness theorem that both guides a potential implement-
ation strategy and validates the design.

The conclusions one should draw from my work on Backpack can be categorized into those
regarding Backpack’s design (Part I) and those regarding its formalization (Part II).

I see the key design conclusions of Backpack as twofold. First, since packages have become
an ubiquitous part of modular programming practice, they deserve the same attention that
modules tend to receive—primarily, with the research tradition and concepts of types. Second,
mixin modules offer a fertile ground for imbuing packages with the status of expression
language with a type system, more so than ML-style functors do.

Moreover, thanks to the work of Edward Z. Yang in continuing and engineering Backpack,
the Haskell community is already beginning to operationalize these design conclusions with
new packages in Hackage.

As for the conclusions from Backpack’s formalization, the primary one is that it acts as moti-
vation and proof of concept for the design: by stating and proving soundness and attending
to all the complexities of that process, the concrete design of Backpack—as a stratified system
across core, module, and package levels—was fleshed out. That’s true in particular for the
addition of type classes to Backpack, a challenging project that required substantive changes
to the formalization.

While my formalization of Haskell modules is certainly a technical contribution of my
work, its exact takeaways for the research community around Haskell aren’t so certain. I
have presented a type system for Haskell modules that incorporates their possibly recur-
sive nature, and in so doing, I have established some conventional metatheory around the
core typing judgments. Some of that metatheory is predicated on axioms about the behavior
of Haskell’s core typechecking; that axiomatization also offers some insights into how one
should formalize Haskell.

A particularly notable conclusion to draw from the formalization is the inherent complexity
posed by (my semantics for) Haskell’s type classes. It’s a common refrain in the programming
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languages research community that type classes are “antimodular.” By actually stating and
proving concrete properties about Haskell’s module system, I can now point to particular
awkward side conditions, for example, as justification for that intuition.

In the end, however, my research does not present any clear conclusions about the design of
type classes, i.e., what a more modular alternative might look like, as I have only undertaken
the challenge of formalizing (the primary features of) type classes as they exist in Haskell.

11.2 future work

My work on Backpack has formalized the bulk of Haskell’s features that concern modularity.
However, a few features have remained unincorporated into Backpack. On top of additional
Haskell features, there are a couple aspects of the formalization that deserve consideration.
These are discussed below.

11.2.1 Filling gaps in Backpack

type synonyms and newtype One could straightforwardly extend Backpack with both
type synonyms and Haskell’s newtype mechanism for defining abstract data types. Both
would be separate entities along with datatypes and values, with accompanying defined
entity specs (dspc); because they are core entities, they would be imported, exported, and
recorded in module types just like datatypes and values. However, for compatibility with
GHC, neither would be declarable “abstractly” in signatures (i.e., by omitting the “right-hand
sides”), unlike regular data types.

Type synonyms are different, though, as they violate two assumptions baked into the data

types of the Backpack core language. First, the latter generate fresh abstract types, whereas
the former are synonyms for existing ones. And second, the representation of core-level types
in Backpack are simply as the physical names of those types, including the syntactic name, like
T. Type synonyms necessitate a representation of types that can treat two different syntactic
type constructors as synonymous.

One way to accomplish this would be to simply expand type synonyms as part of Backpack
elaboration, ensuring that they never appeared in our semantic objects (the “F-ing modules”
approach of Rossberg et al.1 works similarly). Since the synonyms themselves would never
appear in any semantic types (typ), they would not complicate type equality. In contrast,
newtypes would not be automatically equated with their defining types; in semantic types
(typ) they would look and behave essentially like regular data types.

Another way to handle type synonyms might be to bake syntactic type equalities into the
type system of the core level. Such is the approach of Im et al.2 Alternatively, Yang’s Back-
pack implementation supports type synonyms by assuming a (core-level) type equivalence
judgment that is defined in part by looking up type synonym entities in module types.3

type families As open definitions of type-level functions that can be extended modularly,
type families introduce a whole new category of problems for the type system. A concrete
example can be found in the misabstraction problem presented in §4.2. There, the problem
resulted in the downstream module observing “the wrong” values at runtime. But if the same
example were rewritten with type family instances—with a type-level function F I = Bool on
the left side and F I = Int on the right—then the problem results in segmentation faults, i.e.,
breaking type safety. That’s why the GHC Haskell implementation enforces global uniqueness
for type family instances.

Backpack’s worlds describe static knowledge about type class instances which is propa-
gated implicitly to downstream modules. But there’s no reason to limit that static knowledge
to type class instances; type family instances could also fit nicely into the worlds framework.

1 Rossberg et al. (2010), “F-ing Modules”.
2 Im et al. (2011), “A Syntactic Type System for Recursive Modules”.
3 Yang (2017), “Backpack: Toward Practical Mix-in Linking in Haskell,” §6.2.1.

http://www.mpi-sws.org/~rossberg/f-ing
https://github.com/ezyang/thesis/releases
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And since Backpack already imposes package-level consistency, which was argued to be
a modularization of global uniqueness (§4.3), the uniqueness requirement necessitated by
type family instances would already be enforced. What’s left then is to support the resulting
core-level type computation and equality that type families introduce, perhaps using similar
mechanisms as needed to support type synonyms.

mechanization of the formalization The Backpack formalization has a profound
shortcoming: it was not mechanized in a proof system like Coq. As a result, the details of
the proofs of the myriad lemmas presented in the Appendix are mostly confined to my
own paper notebooks. Although I took great care to develop the entire formalization with
constructive proofs, I did not undertake the massive effort to mechanize them.

If I can impart one piece of wisdom for future PhD students in the field, it would be to
develop your systems in Coq. Pen and paper is more expedient but the days, weeks, months,
and years of extending and refactoring your system will surely become far easier when a
machine can help you re-check all the details.

further development of shaping My definitions of shaping judgments and “shapey”
objects are validated not by proofs and metatheory but by their pseudo-formal resemblance
to the corresponding definitions of typing judgments and “typey” objects. That’s because my
efforts developing the formalization were driven entirely by the Elaboration Soundness proof,
which had no need for anything interesting about shaping.

I did not state, let alone prove, any of the structural properties of the shaping judgments
and objects as I did with the typing judgments and objects. Moreover, I merely conjecture
that shaping can be straightforwardly implemented as if the judgments designate determin-
istic algorithms. Indeed, my definition of shaping judgments are inspired not just by the
“static” typing judgments of Dreyer’s systems but also the “templates” of his and Rossberg’s
MixML.4 But I do not argue that conjecture in formal terms.

11.2.2 Practical implementation of world semantics

In this dissertation I aimed to establish a more modular foundation for type classes: world
semantics (§4.3). This semantics has the benefit of conceptual simplicity on paper, but it poses
an interesting challenge for practical implementations: what should be the representation of
a world? While I don’t have a complete answer to this question, I can nonetheless describe
the problem with the canonical representation of worlds demonstrated so far, along with an
approach for a potential solution.

bloat in the canonical representation As described in §4.3, and as defined for-
mally in §4.4, worlds are canonically represented as mappings from class constraints to defin-
ing module names. Such objects would grow quite large in practice. For example, our proto-
type implementation (§4.3.3) revealed that the world of the automatically-imported Prelude
module (as defined in GHC 7.8.4) contains 1,375 instances, defined among 64 other modules.5

When one world extends another, the former is an object at least as large as the latter;
i.e., worlds, as objects, will grow larger as the chain of module imports grows larger. Since
I intend worlds to be embedded into module types (as in the extension to Backpack), this
accumulative effect would introduce bloat in the file system, as Haskell implementations
would surely represent module types on disk in order to implement modular typechecking.
For example, GHC uses “binary interface files” (i.e., .hi files) to represent module types.
When typechecking any particular module, it must read and write interface files on disk.
Such I/O operations necessitated the orphan instances distinction in the first place.

4 Rossberg and Dreyer (2013), “Mixin’ Up the ML Module System,” §9.2.
5 The analysis of GHC 7.8.4’s standard Prelude module in particular: https://gitlab.mpi-sws.org/backpack/
class-struggle/blob/v3/data/worlds/prelude-readme.md

http://doi.acm.org/10.1145/2450136.2450137
https://gitlab.mpi-sws.org/backpack/class-struggle/blob/v3/data/worlds/prelude-readme.md
https://gitlab.mpi-sws.org/backpack/class-struggle/blob/v3/data/worlds/prelude-readme.md
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On top of the accumulative effect of worlds, redundancy causes additional bloat. If multiple
modules inhabit the same (large) world, each of their module types would, naively, contain
the full contents of that world. This redundancy would cause bloat in the file system for the
same reasons.

Therefore, in the worst possible case, where each module defines at most c instances and in
which each new module imports all previous modules, the size of the world of the nth mod-
ule is the sum of the sizes of all previous n− 1 worlds (the imported instances) plus c (the
locally defined instances). And, worse still, if each new module’s world were represented dis-
tinctly from the worlds of all previous ones, then that number is added to the combined size
of all n− 1 worlds. The result is that the total size of all worlds together grows, at worst, ex-
ponentially in the number of modules.6 Clearly, then, it’s not sensible for an implementation
to represent the types of modules in the naive way derived from the syntax and semantic
objects of the Backpack formalization.

Indeed, the actually-existing implementation of (a variant of) Backpack, Yang’s Backpack’17,
does not adhere to the world semantics per se and therefore does not suffer any sort of ex-
ponential growth in the representation of type classes within a package. At the heart of that
approach is GHC Haskell’s existing representation of type class instances by considering
orphan instances as distinct from the others. I discussed that approach in §10.8.

checking mutual consistency When synthesizing the world inhabited by a module,
an implementation must check for definedness of the ⊕ operation in three ways: among
locally defined instances, between the world of those instances and the worlds of imports,
and among the worlds of imports.

As discussed in §4.2, GHC only checks the first two merges; the omission of the third
check is what allows global uniqueness to be broken. GHC omits this check as the result of a
tradeoff: the damage done by not enforcing global uniqueness is deemed less severe than the
expense of checking for conflicting instances among imported modules. In contrast to GHC’s
decision, I have argued that the former is severe enough to warrant the latter.

11.2.3 Broader scope for Backpack and modularity

Finally, by expanding the terrain of types into packages, Backpack introduces a number of
potential trajectories for further research, which I sketch below.

modules vs . packages vs . type classes As I argued in the introduction, with my
distinction between small and large modularity, both modules and packages have their uses
to modular programming. But do the different uses necessitate different constructs?

Backpack’s elaboration shows that packages are “compiled away” into just plain modules.
But that’s an explanation of their semantics, not an assertion that, to the programmer of the
external language (EL), only modules and not packages are available to structure her pro-
grams. Modules and packages are, sadly, two different mechanisms with two very different
semantics.

Recent work by Rossberg on 1ML has investigated how one system of modularity could
express both the core language (of values and types) and the module language (of structures
and signatures and data abstraction). One then wonders if something similar might unify
modules and packages.

I suspect the answer is no. Because of the different use cases of small and large modular-
ity, and in particular the different ways in which instantiation is conveniently expressed—
functions and application in small modularity; mixins and linking in large modularity—they
will necessitate different constructs with different semantics.

As for type classes, sadly, Backpack has little to say about evolving the design.

6 Let T(n) be the combined size of all worlds among n modules. Then T(n) 6 T(n− 1)+ T(n− 1)+ c, where c
is an arbitrary upper bound on the number of local instances any module can define. That yields the upper bound
T(n) 6 c2n−1+n− 1.
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Over the course of my research I toyed with different ways to bring type classes into the
original Backpack system.7 One such way was to introduce syntax at the module level that
explicitly “used” particular sets of type class instances within the scope of a module, à la the
modular type classes of Dreyer et al.8 Another way involved module-level expressions for
reconciling conflicting instances within the body of a module that otherwise would observe
an inconsistent world. All of these ideas ran up against the brick wall of my then-existing
Backpack formalization and my research goal of keeping Backpack grounded in actually-
existing Haskell.

The Package-Level Consistency (PLC) property (§4.4.5) that Backpack imposes is a very
strong property, perhaps too heavyweight for many use cases of type classes. In the case of
type classes that model algebraic properties of a program or a constellation of user-defined
types, the total assurance of non-conflicting instances is perhaps necessary. At the design
level, relying on PLC is how Backpack rules out misabstraction (§4.2). And at the formalization
level, relying on PLC is also how I managed, over the time-bounded course of this work, to
augment Backpack’s semantics to handle the kinds of interaction between type classes and
modular abstraction presented in §4.5. Indeed, PLC was crucially instrumentalized in the
proof of Elaboration Soundness. As I wrote in §9.6, “[the soundness proofs] employ Package-
Level Consistency [. . .] in a number of different places. The metatheory of the IL required
meticulous side conditions like world preservation, and the proofs that follow knock them
away, ungracefully, with PLC and its corollaries.”

Sometimes, though, instead of encoding invariants about abstract data, type classes are
just useful as a means of implicit programming, i.e., ad hoc polymorphism and overloading.
In these latter cases, one might want to weaken the consistency property, which might then
necessitate a distinction in the world semantics between world facts that must be consistent
and those that might not be.

In general, Backpack leaves open the possibility, if not the need, for further research on
reconciling module systems and type classes.

package versioning and dependency resolution Lastly, while the support for
versioning in Cabal does not obviate interfaces and mixins, neither do interfaces and mixins
obviate versioning. An important direction for future work is to investigate how best to
integrate versioning into Backpack. Versioning necessitates the concept of a named lineage of
packages, and therefore some kind of relation beyond structural matching based on types—or
at least those types need to be aware of names and lineage themselves.

If versioning were a first-class citizen in the package level and its type system, what might
modular type matching and mixin linking look like? One direction might be the constraining
of types by package lineages. For example, a way to express “give me any matching imp-
lementation of containers-sig-1.2 from the containers-impl lineage.” But that would also require
that the types of holes—at the module level—be associated with the identities and lineages
of the packages that define them. This would be a substantial departure from Backpack’s
semantics.

Moreover, the key idea of dependency resolution in package management systems could be
explored. Backpack sets up packages as fully explicit expressions assigned to unique names,
but in practice, packages often involve a combination of explicitly-requested dependencies
and implicitly-satisfied ones. The capability to express—and characterize with a type system—
both explicit (“link this module for this hole”) and implicit (“find me any module for this
hole”) mixin linking would be an interesting avenue for future work.

7 Kilpatrick et al. (2014), “Backpack: Retrofitting Haskell with Interfaces”.
8 Dreyer et al. (2007), “Modular Type Classes”.
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AA U X I L I A RY D E F I N I T I O N S

a.1 semantic objects

a.1.1 Module Identity

Each (non-variable) module identity uniquely identifies a module and its dependencies. Like
a closure in the λ-calculus, stamps contain the code and, recursively, the closures (stamps) of
its free variables (imports, resp.).

Identity Variables α,β ∈ IdentVars

Identity Constructors K ∈ IdentCtors

Identities ν ::= α | µα.K ν

Identity Substitutions φ, θ ::= {α := ν}

• Identity variables α correspond to identities of signatures without corresponding imple-
mentations, and to the provenances of code entities specified in signatures.

• Each application µα.K ν represents the closure of a particular module K with the identities
of all its imported modules ν. We assume a bijection between identity constructors K and
module source code M. The µ-binder is used for recursive modules that (transitively) import
themselves. When α does not appear in ν we leave off the binder:

(Identities) K ν
def
= µα.K ν for some α 6∈ fv(ν)

• Because module identities are recursive we cannot simply compare them for syntactic equal-
ity. Instead we need a coinductive interpretation of equivalence in which µ-binders are rolled
or unrolled as needed:

α ≡µ α
{α1 := µα1.K ν1} ν1 ≡µ {α2 := µα2.K ν2} ν2

µα1.K ν1 ≡µ µα2.K ν2

This definition directly follows that of the recursive types in (Gauthier and Pottier, 2004),
albeit without their notion of “atoms” or ∀ quantifiers.

• This coinductive definition of equivalence doesn’t lend itself naturally to an algorithm, so
we appeal to unification of first-order recursive terms to decide equivalence. We write this
unification as

unify(ν1
.
= ν2) = θ

This statement means that, when free variables in ν1 and ν2 are substituted according to θ,
the resulting identities are equivalent, i.e., θν1 ≡µ θν2. Unification on first-order recursive
terms is an old problem in the literature of compilers.1 The algorithm for implementing
this unification is quite efficient: it requires O(nα(n)) time, which is “almost linear” in the
number of nodes in the graph representation of the terms. (This is more or less the module
dependency graphs represented by the module identities.)

1 Knight (1989), “Unification: A Multidisciplinary Survey,” §3.
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• Due to a well-known correspondence of recursive types to DFAs and DFA minimization,2

there exists a normalization function

norm(−) : ModIdents→ModIdents

on module identities, which is used for the elaboration. Normalization has the property that
ν1 ≡µ ν2 if and only if norm(ν1) = norm(ν2), i.e., the normalized forms are syntactically
equivalent (modulo α-conversion).

• Throughout this thesis, particularly in definitions related to the typing pass, equality on
module identities is written like ordinary syntactic equality, as ν1 = ν2; this notation papers
over the true property in mind, ν1 ≡µ ν2. And when module identities are treated as an
index into a mapping, like in Φ, an actual implementation would likely index said mapping
by normalizing identities with norm(−).

• For the elaboration into the IL, we assume an injection from module identities (up to ≡α
equivalence) to plain Haskell module names,

(−)? : ModIdents/≡α� ILModNames

We lift this to an injection from module types τ (and other semantic objects) to plain Haskell
interfaces ftyp which translates each stamp occurring in τ (and other semantic objects) to its
injected module name,

(−)? : ModTypes/≡α� ILModTyps

• The creation of a module identity, performed in the rule, has a straightforward mechnical
definition, based on the module expression (M) and the ambient logical module context (L).
Creating a module identity from a logical module context:

mkident(M;L) def
= K ν1 . . . νn

where


K encodes M

M imports `1, . . . , `n

∀i ∈ [1..n] : L(`i) = νi

2 Considine (2000) and Gauthier and Pottier (2004).
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a.1.2 Semantic Signatures

• Coercing typey things into shapey things:

shape((|Φ ; L |))
def
= ( shape(Φ) ; shape(L) )

shape({|ν:τm@ω |})
def
= { ν:shape(τ)m@ shape(ω) }

shape(〈| dspcs ; espcs ; ν |〉) def
= 〈 shape(dspcs) ; espcs ; ν 〉

shape({| fact 7→ ν |})
def
= { fact 7→ ν }

shape(x :: typ) def
= x

shape(data T kenv) def
= T

shape(data T kenv = K typ) def
= T(K)

shape(class C kenv {cls} x :: typ) def
= C(x)

shape(instance kenv {cls} cls) def
= instance

• The domain of a binding signature or context, and the restriction to a given prefix:

dom({|ν:τm@ω |})
def
= {ν}

dom(` 7→ ν)
def
= {`}

domp(L)
def
= {p ′ | p ′ = p.p ′′, p ′ ∈ dom(L)}

domp((Φ;L)) def
= domp(L)

defined similarly for shapes and contexts

a.1.2.1 Local well-formedness and augmented entity environments

• aenv 
 eenv loc-wf Determine whether the physical names in the range of the entity
environment are indeed exported from their defining modules, or from a local definition.
Also check that the locally available export specs all make sense.

aenv 
 eenv loc-wf def⇔


∀espc ∈ eenv :

aenv 
 espc loc-wf

allphnms(espc) ⊆ rng(eenv)

∀eref 7→ phnm ∈ eenv :

aenv 
 eref 7→ phnm loc-wf

phnm ∈ allphnms(locals(eenv))

• aenv 
 eref 7→ phnm loc-wf Determine whether the physical name in the range of the
mapping is indeed exported from its defining module, or from a local definition.

eref = χ or mref.χ

(eref = Local.χ) ⇒ islocal(aenv; [ν]χ)
aenv 
 eref 7→ [ν]χ loc-wf
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• aenv 
 espc loc-wf aenv 
 espcs loc-wf Check that a locally available export name
spec is well formed with respect to a local definition and/or a spec in the context.

espc0 = locmatch(aenv; espc) espc1 = ctxmatch(aenv; espc) espc0 ⊕ espc1 6 espc
aenv 
 espc loc-wf

espc0 = locmatch(aenv; espc) noctxmatch(aenv; espc) espc0 6 espc
aenv 
 espc loc-wf

nolocmatch(aenv; espc) espc1 = ctxmatch(aenv; espc) espc1 6 espc
aenv 
 espc loc-wf

aenv 
 espcs loc-wf def⇔ ∀espc ∈ espcs : aenv 
 espc loc-wf

• provs(ω) : N provs(fact) : N provs(cls) : N Identities mentioned in worlds.

provs(ω)
def
=

⋃
fact∈ω

provs(fact)

provs(kenv.cls 7→ ν)
def
= provs(cls)∪ {ν}

provs([ν]C typ) def
= {ν}∪

⋃
typ∈typ

provs(typ)

• aenv; eenv 
 fact loc-wf aenv; eenv 
 ω̂ loc-wf Local well-formedness for world shapes
and world facts.

aenv.Φ̂ 
 head 7→ ν wf
aenv; eenv 
 fact loc-wf

(ShWfLocWorldCtx)

def ∈ defs ν = ν0 eenv(head(def )) = kenv.cls

(Φ̂;ν0; defs); eenv 
 kenv.cls 7→ ν loc-wf
(ShWfLocWorldDef)

decl ∈ decls kenv.cls 7→ ν ∈ ω̂0 eenv(head(decl)) = kenv.cls

(Φ̂; τ̂0 @ ω̂0; decls); eenv 
 kenv.cls 7→ ν loc-wf
(ShWfLocWorldDecl)

aenv; eenv 
 ω̂ loc-wf def⇔ ∀fact ∈ ω̂ : aenv; eenv 
 fact loc-wf

• Φ̂ 
 head 7→ ν wf Φ̂ 
 ω̂ wf Shapey well-formedness of facts and worlds. The for-
mer is not defined like its typey counterpart.

kenv.cls 7→ ν ∈ world
Φ̂
(ν)

Φ̂ 
 kenv.cls 7→ ν wf

Φ̂ 
 head 7→ ν wf

Φ̂ 
 { fact } wf

• islocal(aenv; espc) islocal(aenv; phnm) Is the given entity’s identity the same as the local
module? Or, in the case of signatures, is this entity one of the locally specified ones? (This
does not check for a matching definition/declaration; it merely looks at the identity.)

islocal((Φ̂;ν0; defs); espc) def⇔ ident(espc) = ν0
islocal((Φ̂; τ̂0 @ ω̂0; decls); espc) def⇔ ∃espc ′ ∈ τ̂0 : espc ′ ⊕? espc

islocal((Φ̂;ν0; defs); [ν]χ) def⇔ ν = ν0

islocal((Φ̂; τ̂0 @ ω̂0; decls); [ν]χ) def⇔ ∃espc ′ ∈ τ̂0 : espc ′ v [ν]χ
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• locmatch(aenv; espc) ctxmatch(aenv; espc) nolocmatch(aenv; espc) noctxmatch(aenv; espc)
Find a matching export spec in the context or the local environment.

locmatch(aenv; espc) def
= espc ′ if


islocal(aenv; espc),

∃bnd ∈ aenv.bnds : bnd v espc ′,

espc ′ ⊕? espc

ctxmatch(aenv; espc) def
= espc ′ if

espc ′ ∈ aenv.Φ̂(ident(espc)),

espc ′ ⊕? espc

nolocmatch(aenv; espc) def⇔ islocal(aenv; espc) ⇒
∀espc ′, bnd ∈ aenv.bnds : bnd v espc ′ ⇒ espc ′ 6 ⊕? espc

noctxmatch(aenv; espc) def⇔ ∀espc ′ ∈ aenv.Φ̂(ident(espc)) : espc ′ 6 ⊕? espc

• haslocaleenv(eenv; rbnds) Specifies that eenv contains all the locally bound entities in
rbnds and, moreover, that this subset is disjoint from the remainder of the environment.

haslocaleenv(eenv; rbnds; )
def⇔ ∃eenv ′ :

eenv = mklocaleenv(mkloceenv(; ) ⊕ )eenv ′

∀eref ∈ dom(eenv ′) : eref 6= Local.χ

• allphnms(espc) Get the set of all physical names mentioned by the espc.

allphnms(espc) def
= {[ident(espc)]χ | χ ∈ allnames(espc)}

allphnms(espc) def
=

⋃
espc∈espc allphnms(espc)

• eenv ⊕ eenv eenv ⊕? eenv Merge two entity environments.

eenv1 ⊕ eenv2
def
= {eref 7→ phnm | eref 7→ phnm ∈ eenv1 or eenv2};

〈|locals(eenv1) ⊕ locals(eenv2)|〉
eenv1 ⊕? eenv2

def⇔ locals(eenv1) ⊕? locals(eenv2)

• eenv(eref ) Look up the (single!) physical name referred to by eref in the environment.
See Figure 6.7.

• eenv(eref ) = phnm : espc Look up the (single!) physical name referred to by eref in the
environment, and also extract the relevant local espc from the eenv. See Figure 6.7.

• rng(eenv) :par phnm Get the set of all physical names that entities in the environment
refer to.

rng(eenv) def
= {phnm | eref 7→ phnm ∈ eenv}
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• name(dspc) name(espc) name(def ) name(decl) Get the name of some entity.

name(data T kenv) def
= T

name(data T kenv = K typ) def
= T

name(x :: typ) def
= x

name(class C kenv {cls} x :: typ) def
= C

name(instance kenv {cls} cls) undefined

name([ν]χ(χ ′)) def
= χ

name([ν]χ) def
= χ

name(data T kenv = K utyp) def
= T

name(x [ :: utyp] = uexp) def
= x

name(class C kenv <=ucls where x :: utyp) def
= C

name(instance . . . ) undefined

name(data T kenv) def
= T

name(data T kenv = K utyp) def
= T

name(x :: utyp) def
= x

name(class C kenv <=ucls where x :: utyp) def
= C

name(instance . . . ) undefined

• names(dspc) names(espc) names(def ) names(decl) Get the subordinate names of some
entity, such as data constructors or class methods.

names(data T kenv) def
= ∅

names(data T kenv = K typ) def
= {K}

names(x :: typ) undefined

names(class C kenv {cls} x :: typ) def
= {x}

names(instance kenv {cls} cls) undefined

names([ν]χ(χ ′)) def
= {χ ′}

names([ν]χ) undefined

names(data T kenv = K utyp) def
= {K}

names(x [ :: utyp] = uexp) undefined

names(class C kenv <=ucls where x :: utyp) def
= {x}

names(instance . . . ) undefined

names(data T kenv) def
= {}

names(data T kenv = K utyp) def
= {K}

names(x :: utyp) undefined

names(class C kenv <=ucls where x :: utyp) def
= {x}

names(instance . . . ) undefined
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• hasSubs(dspc) hasSubs(espc) hasSubs(def ) hasSubs(decl) Determine whether an entity
has subordinate names.

hasSubs(data T kenv) def
= true

hasSubs(data T kenv = K typ) def
= true

hasSubs(x :: typ) def
= false

hasSubs(class C kenv {cls} x :: typ) def
= true

hasSubs(instance kenv {cls} cls) def
= false

hasSubs([ν]χ(χ ′)) def
= true

hasSubs([ν]χ) def
= false

hasSubs(data T kenv = K utyp) def
= true

hasSubs(x [ :: utyp] = uexp) def
= false

hasSubs(class C kenv <=ucls where x :: utyp) def
= true

hasSubs(instance . . . ) def
= false

hasSubs(data T kenv) def
= true

hasSubs(data T kenv = K utyp) def
= true

hasSubs(x :: utyp) def
= false

hasSubs(class C kenv <=ucls where x :: utyp) def
= true

hasSubs(instance . . . ) def
= false

• allnames(dspc) allnames(espc) allnames(def ) allnames(decl) Get the set containing the
name and any subordinate names of the given entity.

allnames(A) def
=

{name(A)}∪ names(A) if hasSubs(A)

{name(A)} otherwise
for A = dspc, espc, def , decl

• nooverlap(dspc) nooverlap(espc) nooverlap(def ) nooverlap(decl) Get the set containing
the name and any subordinate names of the given entity.

nooverlap(A1, . . . ,An)
def⇔ ∀i, j ∈ [1..n] s.t. i 6= j : allnames(Ai) # allnames(Aj)

for A = dspc, espc, def , decl

• def v dspc def v espc dspc v espc espc v phnm This relation specifies that two core
entities are syntactically similar; that a definition syntactically matches a specification, that
a specification syntactically matches an export specification, and that an export specification
matches a physical name. This is a very weak statement; for example, the relation includes
the (def , dspc) pair

(x :: Int = 5) v (x :: [ν0]Bool)

despite the obvious problem with typing.



196 auxiliary definitions

def v decl

data T kenv = K utyp v data T kenv = K utyp

x [ :: utyp] = uexp v x :: utyp

class C kenv <=ucls where x :: utyp v class C kenv <=ucls where x :: utyp

instance kenv ucls => ucls where x = uexp v instance kenv ucls => ucls

decl v dspc

data T kenv v data T kenv

data T kenv = K utyp v data T kenv = K typ

x :: utyp v x :: typ

class C kenv <=ucls where x :: utyp v class C kenv {cls} x :: typ

instance kenv ucls => ucls v instance kenv {cls} cls

dspc v espc

data T kenv v [ν]T()

data T kenv = K typ v [ν]T(K)

x :: typ v [ν]x

class C kenv {cls} x :: typ v [ν]C(x)

espc v phnm

[ν]χ(χ ′) v [ν]χ

[ν]χ v [ν]χ

def v espc def⇔ ∃decl, dspc : def v decl v dspc v espc

decl v espc def⇔ ∃dspc : decl v dspc v espc

• validspc(dspc;m) States whether this specification is valid in a module type with the
given polarity. This is required because not all kinds of specs are valid in both modules and
signatures.

validspc(dspc;m)
def
=

false if m = + and dspc = (data T kenv)

true otherwise

a.1.3 Algebras for semantic objects

a.1.3.1 Partial merge operations and their definedness

Ξ1 ⊕ Ξ2
def
= (Φ1 ⊕ Φ2;L1 ⊕ L2)

where

{
Ξ1 = (Φ1;L1)

Ξ2 = (Φ2;L2)

(Φ1;L1) ⊕? (Φ2;L2)
def⇔ Φ1 ⊕? Φ2 ∧ L1 ⊕? L2
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L1 ⊕ L2
def
= ` 7→ ν,L ′1,L ′2

where


L1 = ` 7→ ν,L ′1
L2 = ` 7→ ν,L ′2
dom(L ′1) # dom(L ′2)

L1 ⊕? L2
def⇔ ∀`,ν1,ν2 :

(
` 7→ ν1 ∈ L1

` 7→ ν2 ∈ L2

)
⇒ ν1 ⊕? ν2

Φ1 ⊕ Φ2
def
= ν:τm @ω,Φ ′1,Φ ′2

where


Φ1 = ν:τm11 @ω1,Φ ′1
Φ2 = ν:τm22 @ω2,Φ ′2
τm @ω = τ

m1
1 @ω1 ⊕ τ

m2
2 @ω2

dom(Φ ′1) # dom(Φ ′2)

Φ1 ⊕? Φ2
def⇔ ∀ν, τ1, τ2,m1,m2,ω1,ω2 :

(
ν:τ1

m1@ @ω1 ∈ Φ1
ν:τ2

m2@ @ω2 ∈ Φ2

)
⇒ τ

m1
1 @ω1 ⊕? τ

m2
2 @ω2

τ1
−@ω1 ⊕ τ2

−@ω2
def
= (τ1 ⊕ τ2)

−@ (ω1 ⊕ ω2)

τ1
−@ω1 ⊕ τ2

+@ω2
def
= τ2

+@ω2 if

τ1 > τ2
ω1 v ω2

τ1
+@ω1 ⊕ τ2

−@ω2
def
= τ1

+@ω1 if

τ1 6 τ2
ω1 w ω2

τ1
+@ω1 ⊕ τ2

+@ω2
def
= τ1

+@ω1 if

τ1 = τ2

ω1 = ω2

τ1
m1@ω1 ⊕? τ2

m2@ω2
def⇔


m1,m2 = −,− ⇒ τ1 ⊕? τ2 ∧ω1 ⊕? ω2

m1,m2 = −,+ ⇒ τ1 > τ2 ∧ω1 v ω2
m1,m2 = +,− ⇒ τ1 6 τ2 ∧ω1 w ω2
m1,m2 = +,+ ⇒ τ1 = τ2 ∧ω1 = ω2



〈| dspc1 ; espc1 ; ν1 |〉 ⊕ 〈| dspc2 ; espc2 ; ν2 |〉 def
= 〈| dspc ; espc ; ν |〉

where


dspc = dspc1 ⊕ dspc2
espc = espc1 ⊕ espc2
nooverlap(dspc) ∧ nooverlap(espc)

{ν} = {ν1}∪ {ν2} = {ν1} or {ν2}
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〈| dspc1 ; espc1 ; ν1 |〉 ⊕? 〈| dspc2 ; espc2 ; ν2 |〉 def⇔



dspc1 ⊕? dspc2

espc1 ⊕? espc2

nooverlap(dspc1 ⊕ dspc2)

nooverlap(espc1 ⊕ espc2)

{ν1}∪ {ν2} = {ν1} or {ν2}

dspc1 ⊕ dspc2
def
= dspc, dspc ′′1 , dspc ′′2

where


dspc1 = dspc ′1, dspc ′′1
dspc2 = dspc ′2, dspc ′′2
dspc = dspc ′1 ⊕ dspc ′2
name(dspc ′′1 ) # name(dspc ′′2 )

espc1 ⊕ espc2
def
= espc, espc ′′1 , espc ′′2

where


espc1 = espc ′1, espc ′′1
espc2 = espc ′2, espc ′′2
espc = espc ′1 ⊕ espc ′2
mkphnm(espc ′′1 ) # mkphnm(espc ′′2 )

dspc1 ⊕? dspc2
def⇔ ∀dspc1, dspc2 :

(
name(dspc1) = name(dspc2)

dspc1 ∈ dspc1 ∧ dspc2 ∈ dspc2

)
⇒ dspc1 ⊕? dspc2

espc1 ⊕? espc2
def⇔ ∀espc1, espc2 :

(
mkphnm(espc1) = mkphnm(espc2)

espc1 ∈ espc1 ∧ espc2 ∈ espc2

)
⇒ espc1 ⊕? espc2

(data T kenv) ⊕ (data T kenv = K typ) def
= data T kenv = K typ

(data T kenv = K typ) ⊕ (data T kenv) def
= data T kenv = K typ

dspc ⊕ dspc def
= dspc

dspc1 ⊕? dspc2
def⇔ dspc1 = dspc2 ∨

(
dspc1, dspc2 = (data T kenv = K typ), (data T kenv) ∨

dspc1, dspc2 = (data T kenv), (data T kenv = K typ)

)

[ν]χ(χ1) ⊕ [ν]χ(χ2)
def
= [ν]χ(χ ′) where {χ ′} = {χ1}∪ {χ2}

[ν]χ ⊕ [ν]χ
def
= [ν]χ

espc1 ⊕? espc2
def⇔

 ident(espc1) = ident(espc2)

name(espc1) = name(espc2)

hasSubs(espc1) = hasSubs(espc2)


a.1.3.2 Partial order (induced from merge)

〈| dspc1, dspc ′1 ; espc1, espc ′1 ; ν1 |〉 6 〈| dspc2 ; espc2 ; ν2 |〉
def⇔

dspc1 6 dspc2 ∧ espc1 6 espc2 ∧ {ν1} ⊇ {ν2}

(data T kenv = K typ) 6 (data T kenv) def⇔ always

dspc 6 dspc def⇔ always

[ν]χ(χ1) 6 [ν]χ(χ2)
def⇔ {χ1} ⊇ {χ2}

[ν]χ 6 [ν]χ
def⇔ always
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a.2 internal language

• EL physical module contexts are isomorphic to file environments whose file names all lie in
the range of the translation function (−)?. Similarly with EL module types and source types,
and EL identity substitutions and file name replacements. We implicitly rely on this isomor-
phism by not duplicating definitions which are “parametric” in the identity/file names, like
all semantic object well-formedness judgments and algebraic definitions.

• File name replacement in various syntactic forms. Replacement on file names, source mod-
ules, file types, and file expressions is straightforward as there are no binding sites and thus
no concern for capture. Replacement on directory expressions is trickier since we must re-
cursively merge each substituted file into the rest. (Consider what happens when a dexp
containing two files/file names get substituted with the same name.)

{f := f ′,g := g ′}f
def
= f ′ where f 6∈ g

{g := g ′}f
def
= f where f 6∈ g

apply(θ̊; {}) def
= {}

apply(θ̊; {f 7→ tfexp @ ω̊, f ′ 7→ tfexp ′ @ ω̊ ′})
def
= {θ̊f 7→ θ̊tfexp @ θ̊ω̊} ⊕ apply(θ̊; {f ′ 7→ tfexp ′ @ ω̊ ′})

• Note that we require this operation to respect translation:

φ?(ν?)
def
= (φ(ν))?

• Merging of (typed) file expressions, file types, entity specs, export specs, directory expres-
sions, directory types, and file environments.

(hsmod1 : ftyp1 @ ω̊1) ⊕ (hsmod : ftyp2 @ ω̊2)
def
= hsmod1 : ftyp1 @ ω̊1

where

ftyp1 = ftyp2

ω̊1 = ω̊2

(hsmod1 : ftyp1 @ ω̊1) ⊕ (− : ftyp2 @ ω̊2)
def
= hsmod1 : ftyp1 @ ω̊1

where

ftyp1 6 ftyp2

ω̊1 w ω̊2
(− : ftyp1 @ ω̊1) ⊕ (hsmod2 : ftyp2 @ ω̊2)

def
= hsmod2 : ftyp2 @ ω̊2

where

ftyp2 6 ftyp1

ω̊2 w ω̊1
(− : ftyp1 @ ω̊1) ⊕ (− : ftyp2 @ ω̊2)

def
= − : (ftyp1 ⊕ ftyp2) @ (ω̊1 ⊕ ω̊2)

where

ftyp1 ⊕? ftyp2

ω̊1 ⊕? ω̊2

dexp1 ⊕ dexp2
def
=


f 7→ (tfexp1 @ ω̊1 ⊕ tfexp2 @ ω̊2),

f1 7→ tfexp ′1 @ ω̊ ′1,

f2 7→ tfexp ′2 @ ω̊ ′2


where


dexp1 = {f 7→ tfexp1 @ ω̊1}, {f1 7→ tfexp ′1 @ ω̊ ′1}

dexp2 = {f 7→ tfexp2 @ ω̊2}, {f2 7→ tfexp ′2 @ ω̊ ′2}

f1 # f2
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• dexp|F Filtering a directory expression.

dexp|F
def
= {f 7→ tfexp @ ω̊ ∈ dexp | f ∈ F}

• alias( ˚impdecl) aliases( ˚impdecls) aliases(hsmod) The name or names of module name
aliases on imports.

alias(import [qualified] f as f ′)
def
= f ′

aliases( ˚impdecls) def
= {alias( ˚impdecl) | ˚impdecl ∈ ˚impdecls}

aliases(module f0 ˚expdecl where ˚impdecls; defs) def
= aliases( ˚impdecls)

• imp( ˚impdecl) imps( ˚impdecls) imps(hsmod) The name or names of imported modules.

imp(import [qualified] f as f ′)
def
= f

imps( ˚impdecls) def
= {imp( ˚impdecl) | ˚impdecl ∈ ˚impdecls}

imps(module f0 ˚expdecl where ˚impdecls; defs) def
= imps( ˚impdecls)

a.2.1 Augmented environments in IL

With the augmented entity environments there is not a direct translation from EL to IL defini-
tions because the IL ˚aenv contains a full fenv, rather than something corresponding to Φ̂. The
semantics are copied below, but the only other change lies in the ˚eenv mapping judgment,
which no longer requires that “self” entity references have a local identity.

• ˚aenv ` ˚eenv loc-wf Determine whether the physical names in the range of the entity
environment are indeed exported from their defining modules, or from a local definition.
Also check that the locally available export specs all make sense.

˚aenv ` ˚eenv loc-wf def⇔

∀ ˚espc ∈ ˚eenv :

 ˚aenv ` ˚espc loc-wf

allphnms( ˚espc) ⊆ rng( ˚eenv)

∀ ˚eref 7→ ˚phnm ∈ ˚eenv :

 ˚aenv ` ˚eref 7→ ˚phnm loc-wf

˚phnm ∈ allphnms(locals(eenv))

• ˚aenv ` ˚eref 7→ ˚phnm loc-wf Determine whether the physical name in the range of the
mapping is indeed exported from its defining module, or from a local definition.

˚eref = χ or f.χ

˚aenv ` ˚eref 7→ [f]χ loc-wf

• ˚aenv ` ˚espc loc-wf ˚aenv ` ˚espcs loc-wf Check that a locally available export spec is
well formed with respect to a local definition and/or a spec in the context.

˚espc0 = locmatch( ˚aenv; ˚espc) ˚espc1 = ctxmatch( ˚aenv; ˚espc) ˚espc0 ⊕ ˚espc1 6 ˚espc
˚aenv ` ˚espc loc-wf

˚espc0 = locmatch( ˚aenv; ˚espc) noctxmatch( ˚aenv; ˚espc) ˚espc0 6 ˚espc
˚aenv ` ˚espc loc-wf
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nolocmatch( ˚aenv; ˚espc) ˚espc1 = ctxmatch( ˚aenv; ˚espc) ˚espc1 6 ˚espc
˚aenv ` ˚espc loc-wf

˚aenv ` ˚espcs loc-wf def⇔ ∀ ˚espc ∈ ˚espcs : ˚aenv ` ˚espc loc-wf

• islocal( ˚aenv; ˚espc) islocal( ˚aenv; ˚phnm) Is the given entity’s identity the same as the local
module? Or, in the case of signatures, is this entity one of the locally specified ones? (This
does not check for a matching definition/declaration; it merely looks at the identity.)

islocal((fenv; f0; defs); ˚espc) def⇔ ident( ˚espc) = f0
islocal((fenv; f0; defs); [f]χ) def⇔ f = f0

• locmatch( ˚aenv; ˚espc) ctxmatch( ˚aenv; ˚espc)

nolocmatch( ˚aenv; ˚espc) noctxmatch( ˚aenv; ˚espc) Find a matching export spec in the context
or the local environment.

locmatch( ˚aenv; ˚espc) def
= ˚espc ′ if


islocal( ˚aenv; ˚espc),

∃def ∈ ˚aenv.defs : def v ˚espc ′,

˚espc ′ ⊕? ˚espc

ctxmatch( ˚aenv; ˚espc) def
= ˚espc ′ if

 ˚espc ′ ∈ ˚aenv.fenv(ident( ˚espc)),

˚espc ′ ⊕? ˚espc

nolocmatch( ˚aenv; ˚espc) def⇔ islocal( ˚aenv; ˚espc) ⇒
∀ ˚espc ′, def ∈ ˚aenv.defs : def v ˚espc ′ ⇒ ˚espc ′ 6 ⊕? ˚espc

noctxmatch( ˚aenv; ˚espc) def⇔ ∀ ˚espc ′ ∈ ˚aenv.fenv(ident( ˚espc)) : ˚espc ′ 6 ⊕? ˚espc

a.2.2 Elaboration definitions

• mkstubs(Φ) Converts a module context of all signatures into a set of IL stubs, i.e., the
elaboration of signatures in rule (ElabPkgSig).

mkstubs(ν:τ−@ω)
def
= {ν? 7→ − : τ? @ω?}





BE X T E R N A L L A N G U A G E M E TAT H E O RY

b.1 hauptsätze

Theorem A.1 (Regularity of typing). Assume Γ = (|Φ ; L |), where applicable.
(1) If · ` Γ wf and Γ ; ν0 ` M : τ @ω and Φ ⊕? ν0:τ

+@ω, then Φ ` ν0:τ
+@ω wf.

(Proof discussed in §7.7.3.)
(2) If · ` Γ wf and Γ ; ρ ` S : σ @ω | Φsig and Φ ⊕? Φsig and Φ ⊕? ν0:σ

−@ω, then
Φ ` Φsig wf and Φ ⊕ Φsig ` ν0:σ−@ω wf. (Proof discussed in §7.7.3.)

(3) If ` ∆ wf and · ` Γ wf and ∆; Γ ; Ξ̂pkg ` B : Ξ and Γ ⊕? Ξ, then Φ ` Ξ wf. (Proof in
§8.7.2.)

(4) If ` ∆ wf and ∆; Ξ̂pkg ` B : Ξ, then · ` Ξ wf. (Proof in §8.7.2.)
(5) If ` ∆ wf and ∆ ` D : ∀α.Ξ, then · ` Ξ wf. (Proof in §8.7.2.)

Theorem A.2 (Elaboration Soundness). Assume Γ = (Φ;L), where applicable.
(1) If · ` Γ wf and Γ ; ν0 ` M : τ @ ω  hsmod and Φ ⊕? ν0:τ

+@ ω, then
Φ? ` hsmod : τ? @ w ′ and w ′ w ω?.

(2) If ` ∆ wf and · ` Γ wf and ∆; Γ ; Ξ̂pkg ` B : Ξ  dexp and Γ ⊕? Ξ, then Φ? ` dexp
and Ξ ∼ dexp.

(3) If ` ∆ wf and ∆; Ξ̂pkg ` B : Ξ  dexp, then · ` dexp and Ξ ∼ dexp.
(4) If ` ∆ wf and ∆ ` D : ∀α.Ξ  λα.dexp, then · ` dexp and Ξ ∼ dexp.

Property A.3 (Package-level consistency in the EL). For all contexts Φ,

∀

(
ν1:τ1

m1@ω1

ν2:τ2
m2@ω2

)
∈ Φ : ω1 ⊕? ω2

This property is a direct corollary of the definition of (the partial commutative monoid on)
the physical module context semantic object (Φ); see Figure 7.4.

b.2 structural properties of well-formedness

Lemma A.4 (Weakening physical context preserves well-formedness). Suppose Φ ⊕? ΦW.
(1) If Φ; kenv `c typ :: knd then Φ ⊕ ΦW; kenv `c typ :: knd.
(2) If Φ ` dspc wf then Φ ⊕ ΦW ` dspc wf.
(3) If Φ ` espc wf then Φ ⊕ ΦW ` espc wf.

(4) If Φ ` τ wf then Φ ⊕ ΦW ` τ wf.
(5) If Φ ` fact wf then Φ ⊕ ΦW ` fact wf.
(6) If Φ ` ω wf then Φ ⊕ ΦW ` ω wf.

(7) If Φ ` Φ ′ specs-wf then Φ ⊕ ΦW ` Φ ′ specs-wf.
(8) If Φ ` Φ ′ exports-wf then Φ ⊕ ΦW ` Φ ′ exports-wf.
(9) If Φ ` Φ ′ imps-wf then Φ ⊕ ΦW ` Φ ′ imps-wf. (Proof uses antitonicity of depends

[Property A.51] and Property A.62.)
(10) If Φ ` Φ ′ wlds-wf then Φ ⊕ ΦW ` Φ ′ wlds-wf.
(11) If Φ ` Φ ′ wf and Φ ′ ⊕? ΦW, then Φ ⊕ ΦW ` Φ ′ wf.

203
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(12) If Φ ` L wf then Φ ⊕ ΦW ` L wf.
(13) If Φ ` Ξ wf and Ξ.Φ ⊕? ΦW, then Φ ⊕ ΦW ` Ξ wf.

Lemma A.5 (Merging preserves well-formedness). Suppose Φ1 ⊕? Φ2.
(1) If validspc(dspc1;m1) and validspc(dspc2;m2) and dspc1 ⊕? dspc2, then validspc(dspc1 ⊕

dspc2;m1 ⊕ m2).
(2) If Φ1 ` dspc1 wf and Φ2 ` dspc2 wf and dspc1 ⊕? dspc2, then Φ1 ⊕ Φ2 `

dspc1 ⊕ dspc2 wf.
(3) If Φ1 ` espc1 wf and Φ2 ` espc2 wf and espc1 ⊕? espc2, then Φ1 ⊕ Φ2 `

espc1 ⊕ espc2 wf.

(4) If Φ1 ` τ1 wf and Φ2 ` τ2 wf and τ1 ⊕? τ2, then Φ1 ⊕ Φ2 ` τ1 ⊕ τ2 wf. (Proof
uses merge and weakening on dspc and espc.)

(5) If Φ1 ` ω1 wf and Φ2 ` ω2 wf and ω1 ⊕? ω2, then Φ1 ⊕ Φ2 ` ω1 ⊕ ω2 wf.

(6) If Φ1 ` Φ ′1 specs-wf and Φ2 ` Φ ′2 specs-wf and Φ ′1 ⊕? Φ
′
2, then Φ1 ⊕ Φ2 `

Φ ′1 ⊕ Φ ′2 specs-wf. (Proof uses merge and weakening on dspc.)
(7) If Φ1 ` Φ ′1 exports-wf and Φ2 ` Φ ′2 exports-wf and Φ ′1 ⊕? Φ

′
2, then Φ1 ⊕ Φ2 `

Φ ′1 ⊕ Φ ′2 exports-wf. (Proof uses merge and weakening on espc.)
(8) If Φ1 ` Φ ′1 imps-wf and Φ2 ` Φ ′2 imps-wf and Φ ′1 ⊕? Φ

′
2, then Φ1 ⊕ Φ2 `

Φ ′1 ⊕ Φ ′2 imps-wf. (Proof uses antitonicity of depends, Property A.51.)
(9) If Φ1 ` Φ ′1 wlds-wf andΦ2 ` Φ ′2 wlds-wf and Φ ′1 ⊕? Φ

′
2, then Φ1 ⊕ Φ2 `

Φ ′1 ⊕ Φ ′2 wlds-wf.
(10) If Φ1 ` Φ ′1 wf and Φ2 ` Φ ′2 wf and Φ ′1 ⊕? Φ

′
2 and Φ1 ⊕? Φ

′
2 and Φ2 ⊕? Φ

′
1,

then Φ1 ⊕ Φ2 ` Φ ′1 ⊕ Φ ′2 wf. (Proof uses merge and weakening on espc and Prop-
erty A.73.)

(11) If Φ1 ` L1 wf and Φ2 ` L2 wf and L1 ⊕? L2, then Φ1 ⊕ Φ2 ` L1 ⊕ L2 wf. (Proof
uses merge and weakening on τ.)

(12) If Φ1 ` Ξ1 wf and Φ2 ` Ξ2 wf and Ξ1.Φ ⊕? Ξ2.Φ and Φ1 ⊕? Ξ2.Φ and Φ2 ⊕? Ξ1.Φ,
then Φ1 ⊕ Φ2 ` Ξ1 ⊕ Ξ2 wf. (Proof uses merge on L and Φ.)

Lemma A.6 (Invariance of well-formedness under substitution). Suppose · ` Φ wf and
apply(θ;Φ) is defined.

(1) If Φ; kenv `c typ :: knd then θΦ; kenv `c θtyp :: knd.
(2) If Φ ` dspc wf then θΦ ` θdspc wf.
(3) If Φ ` espc wf then θΦ ` θespc wf.

(4) If Φ ` τ wf then θΦ ` θτ wf.
(5) If Φ ` fact wf then θΦ ` θfact wf.
(6) If Φ ` ω wf and apply(θ;ω) defined then θΦ ` θω wf.

(7) If Φ ` Φ ′ specs-wf and apply(θ;Φ ′) defined then θΦ ` θΦ ′ specs-wf. (Proof uses
invariace and merge on dspc.)

(8) If Φ ` Φ ′ exports-wf and apply(θ;Φ ′) defined then θΦ ` θΦ ′ exports-wf. (Proof uses
invariace and merge on espc.)

(9) If Φ ` Φ ′ imps-wf and apply(θ;Φ ′) defined then θΦ ` θΦ ′ imps-wf. (Proof uses
Property A.52.)

(10) If Φ ` Φ ′ wlds-wf and apply(θ;Φ ′) defined then θΦ ` θΦ ′ wlds-wf.
(11) If Φ ` Φ ′ wf and apply(θ;Φ ′) is defined and θΦ ⊕? θΦ

′, then θΦ ` θΦ ′ wf. (Proof
uses Lemma A.8 and invariance on exps/specs-wf.)

(12) If Φ ` L wf then θΦ ` θL wf. (Proof uses Lemma A.8.)



B.3 invariants of auxiliary el module machinery 205

(13) If Φ ` Ξ wf and apply(θ;Ξ.Φ) is defined and θΦ ⊕? θΞ.Φ, then θΦ ` θΞ wf. (Proof
uses Lemma A.8 and invariance on L and Φ.)

Lemma A.7 (Preservation of well-formedness under context strengthening). Suppose N ⊆
dom(Φ).

(1) If Φ; kenv `c typ :: knd and provs(typ) ⊆ N, then Φ|N; kenv `c typ :: knd.
(2) If Φ ` dspc wf and provs(dspc) ⊆ N, then Φ|N ` dspc wf.
(3) If Φ ` espc wf and ident(espc) ∈ N, then Φ|N ` espc wf.

(4) If Φ ` τ wf and provs(τ) ∈ N, then Φ|N ` τ wf.
(5) If Φ ` fact wf and ident(fact) ∈ N then Φ|N ` fact wf.
(6) If Φ ` ω wf and idents(ω) ⊆ N then Φ|N ` ω wf.

(7) If Φ ` Φ specs-wf and dependsΦ(N) ⊆ N, then Φ|N ` Φ|N specs-wf.
(8) If Φ ` Φ exports-wf and dependsΦ(N) ⊆ N, then Φ|N ` Φ|N exports-wf.
(9) If Φ ` Φ imps-wf and dependsΦ(N) ⊆ N, then Φ|N ` Φ|N imps-wf. (Proof uses

Lemma A.53.)
(10) If Φ ` Φ wlds-wf and dependsΦ(N) ⊆ N, then Φ|N ` Φ|N wlds-wf.
(11) If · ` Φ wf and dependsΦ(N) ⊆ N, then · ` Φ|N wf.

(12) If Φ ` L wf and dependsΦ(N) ⊆ N, then Φ|N ` L|N wf.
(13) If · ` (Φ;L) wf and dependsΦ(N) ⊆ N, then · ` (Φ;L)|N wf.

Lemma A.8 (Cut on physical contexts and signatures).
(1) If Φ ` Φ1 wf and Φ ⊕ Φ1 ` Φ2 wf, then Φ1 ⊕? Φ2 and Φ ` Φ1 ⊕ Φ2 wf. (Proof

uses merge on exps/specs/imps-wf.)
(2) If · ` Ξ1 wf and Ξ1.Φ ` Ξ2 wf and Ξ1 ⊕? Ξ2, then · ` Ξ1 ⊕ Ξ2 wf. (Proof uses cut

on physical contexts and merge on logical contexts.)

Lemma A.9 (Thinning preserves well-formedness). If · ` Ξ wf and ` Ξ
t−−→ Ξ ′ then

· ` Ξ ′ wf and dependsΞ.Φ(N) ⊆ N, where N = dom(Ξ ′.Φ).

Lemma A.10 (Well-formed contexts contain all modules’ dependencies). If · ` Φ wf then
dependsΦ(dom(Φ)) ⊆ dom(Φ).

Lemma A.11 (Well-formed contexts contain all modules’ dependencies). If · ` Φ ′ wf and
ν:τ−@ ∈ Φ ′, then Φ ` τ wf. (Proof straightforward since this judgment checks the same
properties as the context judgments.)

Lemma A.12 (Logical module renaming preserves well-formedness). If
rename(r;Ξ) is defined and Φ ` Ξ wf, then Φ ` rename(r;Ξ) wf. (Proof immediate since Ξ.Φ
and dom(Ξ.L)arepreservedbyrenaming.)

b.3 invariants of auxiliary el module machinery

b.3.1 Axioms about core typing

Axiom A.13 (Validity of module definition checking).

If Φ; ν0; eenv; ω ` defs : dspcs

then
(a) defs = def1, . . . , defn ∧ dspcs = dspc1, . . . , dspcn
(b) nooverlap(defs)
(c)

⋃
i∈[1..n] provs(dspci) ⊆ dom(Φ)∪ {ν0}

(d) ∀i ∈ [1..n] : def i v dspci
(e) ∀i ∈ [1..n] s.t. def i = (instance . . . ) : eenv(head(def i)) = head(dspci)
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Axiom A.14 (Validity of signature declaration checking).

If Φ; ν; eenv; ω ` decls : dspcs

then
(a) decls = decl1, . . . , decln ∧ dspcs = dspc1, . . . , dspcn
(b) nooverlap(decls)
(c)

⋃
i∈[1..n] provs(dspci) ⊆ dom(Φ)∪ {ν}

(d) ∀i ∈ [1..n] : decli v dspci
(e) ∀i ∈ [1..n] s.t. decli = (instance . . . ) : eenv(head(decli)) = head(dspci)

Axiom A.15 (Regularity of module definition checking).

If
(i) · ` Φ wf

(ii) aenv 
 eenv loc-wf
(iii) aenv; eenv 
 shape(ω) loc-wf
(iv) Φ; ν0; eenv; ω ` defs : dspcs
(v) τ.dspcs = dspcs

(vi) Φ ⊕? Φ0

then Φ ⊕ Φ0 ` τ+ spcs-wf,
where aenv = (shape(Φ);ν0; defs) and Φ0 = ν0:τ

+@ω.

Axiom A.16 (Regularity of signature declaration checking).

If
(i) · ` Φ wf

(ii) aenv 
 eenv loc-wf
(iii) aenv; eenv 
 shape(ω) loc-wf
(iv) ρ; eenv ` decls  ν

(v) Φ; ν; eenv; ω ` decls : dspcs
(vi) Φsig = sigenv(dspcs; espcs; ω)

(vii) Φ ⊕? Φsig

then Φ ⊕ Φsig ` Φsig
m spcs-wf

where aenv = (shape(Φ); ρ; decls).

b.3.2 Core environment construction and import resolution

Lemma A.17 (Soundness of core environment construction (EL)). • If · ` Γ wf and Γ `
impdecls; rbnds  eenv @ ω, then haslocaleenv(eenv; rbnds) and aenv 
 eenv loc-wf and
aenv; eenv 
 shape(ω) loc-wf, where aenv = mkaenv(shape(Γ .Φ); rbnds).

• If · 
 Γ̂ wf and Γ̂ 
 impdecls; ibnds  eenv @ ω̂, then haslocaleenv(eenv; ibnds) and
aenv 
 eenv loc-wf and aenv; eenv 
 ω̂ loc-wf, where aenv = mkaenv(Γ̂ .Φ̂; ibnds).

Lemma A.18 (Soundness of import declaration resolution (EL)). If · 
 Γ̂ wf and Γ̂ 

impdecl  eenv and aenv.Φ̂ = Γ̂ .Φ̂, then aenv 
 eenv loc-wf.

Lemma A.19 (Soundness of imported module specification resolution (EL)). If · 
 Γ̂ wf and
Γ̂ ; ` 
 impspec  espcs and aenv.Φ̂ = Γ̂ .Φ̂ and nooverlap(aenv), then aenv 
 espcs loc-wf.

Lemma A.20 (Soundness of imported module entity resolution (EL)). If · 
 Γ̂ wf and
Γ̂ ; ` 
 import  espc and aenv.Φ̂ = Γ̂ .Φ̂, then aenv 
 espc loc-wf.

b.3.2.1 Technical lemmas needed

Property A.21 (Local entity environment is always well-formed).



B.3 invariants of auxiliary el module machinery 207

• (Φ̂;ν0; defs) 
 mkloceenv((ν0, . . . ,ν0 | defs)) loc-wf
• (Φ̂; ρ; decls) 
 mkloceenv((ρ | decls)) loc-wf
• Ifω = mklocworld((ν0, . . . ,ν0 | defs); eenv) then, for any Φ̂, (Φ̂;ν0; defs); eenv 
 shape(ω) loc-wf.
• If ω = mklocworld((ρ | decls); eenv) then, for any Φ̂, (Φ̂; ρ; decls); eenv 
 shape(ω) loc-wf.

Lemma A.22 (Qualification preserves entity env well-formedness). If aenv 
 eenv loc-wf
then aenv 
 qualify(eenv; `) loc-wf.

Lemma A.23 (Merging locally well-formed objects preserves local well-formedness).
• If aenv 
 espc1 loc-wf and aenv 
 espc2 loc-wf and espc1 ⊕? espc2, then aenv 


espc1 ⊕ espc2 loc-wf.
• If aenv 
 espcs1 loc-wf and aenv 
 espcs2 loc-wf and espcs1 ⊕? espcs2, then aenv 


espcs1 ⊕ espcs2 loc-wf.
• If aenv 
 eenv1 loc-wf and aenv 
 eenv2 loc-wf and eenv1 ⊕? eenv2, then aenv 


eenv1 ⊕ eenv2 loc-wf.
• If aenv; eenv 
 ω1 loc-wf and aenv; eenv 
 ω2 loc-wf and ω1 ⊕? ω2, then aenv; eenv 

ω1 ⊕ ω2 loc-wf.

Lemma A.24.
• If aenv 
 espc loc-wf then aenv 
 mkeenv(espc) loc-wf.
• If aenv 
 espcs loc-wf then aenv 
 mkeenv(espcs) loc-wf.

Property A.25 (Domains of certain kinds of entity environments).
• ∀eref ∈ dom(qualify(m; eenv)) : eref = m.χ for some χ.
• ∀eref ∈ dom(mkeenv(espc)) : eref = χ for some χ.
• ∀eref ∈ dom(mkeenv(espcs)) : eref = χ for some χ.
• ∀eref ∈ dom(mkloceenv(rbnds)) : eref = χ or Local.χ for some χ.

Property A.26 (Distributivity of substitution over entity environment merging). This is a
corollary to Property A.67.

(1) If ˚eenv ′1 = apply(θ; ˚eenv1) is defined and if ˚eenv ′2 = apply(θ; ˚eenv2) is defined and
˚eenv1 ⊕? ˚eenv2 and ˚eenv ′1 ⊕? ˚eenv ′2, then apply(θ; ˚eenv1 ⊕ ˚eenv2) is defined and equals
˚eenv ′1 ⊕ ˚eenv ′2.

(2) If ∀i ∈ [1..n] : apply(θ; ˚eenvi) defined and ∀i, j ∈ [1..n] : ˚eenvi ⊕? ˚eenvj∧apply(θ; ˚eenvi) ⊕?
apply(θ; ˚eenvj) defined, then apply(θ;

⊕
i∈[1..n] ˚eenvi) is defined and equals

⊕
i∈[1..n] apply(θ; ˚eenvi).

b.3.3 Export resolution

Lemma A.27 (Soundness of module export resolution (EL)). If eenv 
 export  espc and
· ` Φ wf and aenv = (shape(Φ);ν0; defs) and aenv 
 eenv loc-wf and defs v dspcs and
τ = 〈| dspcs ; espcs ; N |〉 and Φ ⊕? ν0:τ

+@ω, then Φ ⊕ ν0:τ
+@ω ` τ exps-wf. (Proof by case

analysis on export judgment. Requires Lemma A.33. Case (ExpLocal) goes by case analysis
on eenv loc-wf and requires many technical lemmas about matching names in aenv to show
the espcs are non-overlapping. Case (ExpList) requires Lemma A.32, Lemma A.5 on exps-wf,
and Lemma A.35.)

Lemma A.28 (Soundness of signature environment exports in EL). If (|Φ ; L |); ρ ` S :

σ @ω | Φsig and · ` Γ .Φ wf and Φ ⊕? Φsig, then Φ ⊕ Φsig ` Φsig exps-wf. (Proof requires
Axiom A.14; Lemma A.29; Lemma A.5 on exps-wf among Φi ∈ Φsig; and Lemma A.4 on
exps-wf.)

Lemma A.29 (Regularity of declaration exports in EL). If ρ; eenv ` decls  ν then
|decl| = |espc| and decl v espc.

Lemma A.30 (Kinding is liftable). If Φ?; kenv ` IL
c typ? :: knd then Φ; kenv `c typ :: knd.
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b.3.3.1 Technical lemmas needed

Lemma A.31 (Soundness of module export resolution (EL)). If eenv 
 export  espc and
Φ ` Φ wf and aenv = (shape(Φ);ν0; def ) and aenv 
 eenv loc-wf and consistent(aenv) and
def v dspc and τ = 〈| dspc ; espc ; ν ′ |〉 and Φ ⊕? ν0:τ

+@ω, then Φ ⊕ ν0:τ
−@ω ` τ exps-wf.

(Note the polarity of τ in the context of the conclusion.)

Lemma A.32 (Lifting well-formedness of espc in aenv to Φ). If Φ ` Φ wf and aenv =

(shape(Φ);ν0; def ) and aenv 
 espc loc-wf and consistent(aenv) and ident(espc) = ν0 and
espc ∈ espc and def v dspc and τ = 〈| dspc ; espc ; ν ′ |〉 and Φ ⊕? ν0:τ

+@ω, then Φ ⊕ ν0:τ
+@

ω ` espc wf. (Used in proof of module export soundness for the local exports case.)

Lemma A.33 (Consistent augmented environments come from mergeable modules (EL)). If
def v dspc and dspc ∈ τ and Φ ⊕? ν0:τ

+@ω and nooverlap(def ), then consistent(aenv), where
aenv = (Φ;ν0; defs). (Proof very straightforward; uses Lemma A.60.)

Lemma A.34 (Signature environment context well-formedness implies singleton well-formed-
ness). If · ` Φ wf and (|Φ ; L |); ρ ` S : σ @ω | Φsig and Φ ` Φsig wf and Φ ⊕? Φ0, then
Φ ⊕ Φsig ` Φ0 wf, where Φ0 = ν0:σ

−@ω. (Used at end of proof of sig regularity.)

Lemma A.35 (Export well-formedness is invariant to polarity in the context). If ν:τm@ω `
Φ ′ exps-wf then, for any m ′ s.t. |m ′| = |m|, ν:τm ′@ω ` Φ ′ exps-wf.

Lemma A.36 (Well-formedness of signature world). If · ` Φ wf and consistent(ρ.ω̂0) and
ρ; eenv ` decls  ν and Φsig = sigenv(dspcs; ν; ω) and aenv; eenv 
 shape(ω) loc-wf
and Φ ⊕? Φsig, then Φ ⊕ Φsig ` ω wf, where Φ = Γ .Φ and aenv = (shape(Φ); ρ; decls).
(Proof by case analysis of well-formedness of fact ∈ shape(ω). In the case of the fact coming
from the context, proof requires Lemma A.40 and weakening on fact well-formedness. In the
case of the fact coming from a local declaration, proof requires inversion of the siganture
provenance judgment, some algebraic manipulation of the context Φ ′ = Φ ⊕ Φsig and,
critically, the world shape consistency premise to know that any two facts with the same
head in ρ.ω̂0 must have the same identity.)

Lemma A.37 (Well-formedness of module world). If Φ; ν0; eenv; ω ` defs : dspcs and
dspcs ∈ τ and Φ ⊕? ν0:τ

+@ω and (shape(Φ);ν0; defs); eenv 
 ω̂ loc-wf and · ` Φ wf, then
Φ ⊕ ν0:τ

+@ω ` ω wf, where Φ = Γ .Φ. (Proof analogous to that of Lemma A.36.)

Lemma A.38 (Well-formedness of singleton signature context). If · ` Φ wf and Γ ; ρ ` S :

σ @ω | Φsig and Φ ⊕? Φsig and Φ ⊕? Φ0 and Φ ` Φsig wf, then Φ ⊕ Φsig ` Φ0 wf, where
Φ0 = ν0:σ

−@ω. (Proof resembles the first part of the soundness of typing proof, making
critical use of weakening and merging of various well-formedness judgments.)

Property A.39 (Worlds created locally are well-formed in the local environment).

If ω = mklocalworld(ν0; defs; eenv) then, for any Φ̂, (Φ̂;ν0; defs); eenv 
 ω̂ loc-wf.

If ω = mklocalworld(τ̂0; decls; eenv) then, for any Φ̂, (Φ̂; ρ; decls); eenv 
 ω̂ loc-wf.

Lemma A.40 (Well-formed fact in shapey projection of context is well-formed in that context).
If Φ ` Φ wf and shape(Φ) 
 head 7→ ν wf, then Φ ` head 7→ ν wf

Property A.41 (Matching in augmented environments succeeds or it doesn’t).
• Either ∃espc0 : espc0 = locmatch(aenv; espc) or nolocmatch(aenv; espc), but not both.
• Either ∃espc1 : espc1 = ctxmatch(aenv; espc) or noctxmatch(aenv; espc), but not both.

Property A.42 (Matching in augmented environments is unique).
• If espc0 = locmatch(aenv; espc) then, ∀espc ′0 : espc ′0 = locmatch(aenv; espc), espc ′0 = espc0.
• If espc1 = ctxmatch(aenv; espc) then, ∀espc ′1 : espc ′1 = ctxmatch(aenv; espc), espc ′1 = espc1.
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Property A.43 (Matching in augmented environments is preserved under mergeability).
• If espc0 = locmatch(aenv; espc) and espc ′ ⊕? espc then, espc0 = locmatch(aenv; espc ′).
• If espc1 = ctxmatch(aenv; espc) and espc ′ ⊕? espc then, espc1 = ctxmatch(aenv; espc ′).
• If nolocmatch(aenv; espc) and espc ′ ⊕? espc then, nolocmatch(aenv; espc ′).
• If noctxmatch(aenv; espc) and espc ′ ⊕? espc then, noctxmatch(aenv; espc ′).

Lemma A.44 (In consistent definition environments, a context match implies a better local
match). If · 
 Φ̂ wf and aenv+ = (Φ̂;ν0; defs) and consistent(aenv+) and ident(espc) = ν0 and
espc1 = ctxmatch(aenv+; espc), then ∃espc0 : espc0 = locmatch(aenv+; espc) and espc0 6 espc1.

Corollary A.45. If · 
 Φ̂ wf and aenv+ = (Φ̂;ν0; defs) and consistent(aenv+) and espc0 =

locmatch(aenv+; espc) and espc1 = ctxmatch(aenv+; espc), then espc0 6 espc1.

Corollary A.46. If · 
 Φ̂ wf and aenv+ = (Φ̂;ν0; defs) and consistent(aenv+) and nolocmatch(aenv+; espc)
and espc1 = ctxmatch(aenv+; espc), then ident(espc) 6= ν0.

Definition A.47 (Consistent augmented local environments in EL). If ν0 exists within Φ̂ then
for each specification therein, there is an implementing definition among defs.

consistent((Φ̂;ν0; defs)) def⇔


nooverlap(defs),

∀ ˆdspc ∈ Φ̂(ν0) : ∃def ∈ defs, dspc ′ :

def v dspc ′ ∧ shape(dspc ′) 6 ˆdspc

b.3.4 Dependency invariants

Lemma A.48 (Locally available entities come from dependencies of imports).
Suppose Γ = (Φ;L) and · ` Γ wf.

• If · ` Γ wf and shape(Γ); ` 
 import  espc, then ident(espc) ∈ depends+Φ(L(`)).
• If · ` Γ wf and shape(Γ); ` 
 impspec  espcs, then ident(espcs) ∈ depends+Φ(L(`)).
• If shape(Γ) 
 impdecl  eenv, then

(ident(locals(eenv))∪ provs(ω)) ⊆ depends+Φ(L(imp(impdecl))).

• If shape(Γ) 
 impdecls; ibnds  eenv @ ω̂, then

(ident(locals(eenv))∪ provs(ω)) ⊆
(
provs(ibnds)∪ depends+Φ(L(imps(impdecls)))

)
.

• If Γ ` impdecls; rbnds  eenv @ ω, then

(ident(locals(eenv))∪ provs(ω)) ⊆
(
provs(rbnds)∪ depends+Φ(L(imps(impdecls)))

)
.

Lemma A.49 (Well-typed modules preserve dependency invariants). If · ` Γ wf and Γ ; ν0 `
M : τ @ω and Γ .Φ ⊕? ν0:τ

+@ω, then Γ .Φ ⊕ ν0:τ
+@ω ` ν0:τ+@ω imps-wf.

Property A.50. If ν ∈ dependsΦ(ν0) then dependsΦ(ν) ⊆ dependsΦ(ν0). (Proof relies on graph
interpretation.)

Property A.51 (Antitonicity of dependencies in the context).
• If Φ ⊕? ΦW and ν ∈ dom(Φ), then dependsΦ(ν) ⊆ dependsΦ ⊕ΦW

(ν).
• If Φ ⊕? ΦW and ν ∈ dom(Φ), then dependsΦ;N(ν) ⊆ dependsΦ ⊕ΦW;N(ν).
• If Φ ⊕? ΦW and ν ∈ dom(Φ), then depends+Φ(ν) ⊆ depends+Φ ⊕ΦW

(ν).

Property A.52 (Preservation of dependencies under substitution). If ν ∈ dependsΦ(ν0) and
Φθ = apply(θ;Φ) is defined, then θν ∈ dependsΦθ(θν0). (Proof relies on correspondence of
dependsΦ(−) to Φ-graph reachability; θ as a graph homomorphism; and graph homomor-
phism’s preservation of connectedness.)
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Lemma A.53. If ∀ν ∈ dom(Φ|N) : dependsΦ(ν) ⊆ dom(Φ|N), then ∀ν ∈ dom(Φ|N) : dependsΦ(ν) =

dependsΦ|N
(ν).

Property A.54 (A module’s dependencies contain the provenances of its types). If Φ(ν) = τ

then provs(τ) ⊆ dependsΦ(ν).

b.4 algebraic properties of classifiers

b.4.1 Package signatures

Property A.55. Package signatures (Ξ) form an idempotent partial commutative monoid.
• Idempotence: Ξ ⊕? Ξ and Ξ ⊕ Ξ = Ξ.
• Commutativity: If Ξ1 ⊕? Ξ2, then Ξ2 ⊕? Ξ1 and Ξ1 ⊕ Ξ2 = Ξ2 ⊕ Ξ1.
• Associativity: If Ξ1 ⊕? Ξ2 and Ξ1 ⊕ Ξ2 ⊕? Ξ3, then Ξ2 ⊕? Ξ3 and Ξ1 ⊕? Ξ2 ⊕ Ξ3 and

(Ξ1 ⊕ Ξ2) ⊕ Ξ3 = Ξ1 ⊕ (Ξ2 ⊕ Ξ3).
• Identity: (·; ·) ⊕? Ξ and (·; ·) ⊕ Ξ = Ξ.

b.4.2 Logical module contexts

Property A.56. Logical module contexts (L) form an idempotent partial commutative monoid
with identity element (·).

b.4.3 Physical module contexts

Property A.57. Physical module contexts (Φ) form an idempotent partial commutative monoid
with identity element (·).

Property A.58 (Substitution distributes over context merging).
(1) If Φ ′1 = apply(θ;Φ1) is defined and if Φ ′2 = apply(θ;Φ2) is defined and Φ1 ⊕? Φ2 and

Φ ′1 ⊕? Φ
′
2, then apply(θ;Φ1 ⊕ Φ2) is defined and equals Φ ′1 ⊕ Φ ′2.

(2) If ∀i ∈ [1..n] : apply(θ;Φi) defined and ∀i, j ∈ [1..n] : Φi ⊕? Φj ∧ apply(θ;Φi) ⊕?
apply(θ;Φj), then apply(θ;

⊕
i∈[1..n]Φi) is defined and equals

⊕
i∈[1..n] apply(θ;Φi).

b.4.4 Polarized module types

Property A.59. Polarized module types (τm) form an idempotent partial commutative monoid
with identity element 〈| · ; · ; · |〉−.

Lemma A.60.
• If τm = τm11 ⊕ τ

m2
2 then m = m1 ⊕ m2 and τ = τ1 ⊕ τ2.

• If τm @ω = (τm11 @ω1) ⊕ (τm22 @ω2) then m = m1 ⊕ m2 and τ = τ1 ⊕ τ2 and
ω = ω1 ⊕ ω2.

• If τm11 ⊕? τ
m2
2 and m1 = + then τm11 ⊕ τ

m2
2 = τm11 .

• If (τm11 @ω1) ⊕? (τm22 @ω2) and m1 = + then (τm11 @ω1) ⊕ (τm22 @ω2) = τ
m1
1 @ω1.

b.4.5 Module types

Property A.61. Module types (τ) form an idempotent partial commutative monoid with iden-
tity element 〈| · ; · ; · |〉.

Property A.62. If τ = τ1 ⊕ τ2 then provs(τ) = provs(τ1)∪ provs(τ2).
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b.4.6 Entity specifications

Property A.63. Sets of entity specifications (dspcs) form an idempotent partial commutative
monoid with identity element (·).

Property A.64. Merging of two entity specifications (dspc1 ⊕ dspc2) is idempotent, associa-
tive, and commutative.

b.4.7 Export specifications

Property A.65. Merging of two export specifications (espc1 ⊕ espc2) is idempotent, associa-
tive, and commutative.

Property A.66. Sets of export specifications (espcs) form an idempotent partial commutative
monoid with identity element (·).

Property A.67 (Substitution distributes over espc-set merging).
(1) If espcs ′1 = apply(θ; espcs1) is defined and if espcs ′2 = apply(θ; espcs2) is defined and

espcs1 ⊕? espcs2 and espcs ′1 ⊕? espcs ′2, then apply(θ; espcs1 ⊕ espcs2) is defined and
equals espcs ′1 ⊕ espcs ′2.

(2) If ∀i ∈ [1..n] : apply(θ; espcsi) defined and ∀i, j ∈ [1..n] : espcsi ⊕? espcsj∧apply(θ; espcsi) ⊕?
apply(θ; espcsj), then apply(θ;

⊕
i∈[1..n] espcsi) is defined and equals

⊕
i∈[1..n] apply(θ; espcsi).

(Proof uses previous part, Property A.74.)

Property A.68 (Substitution on non-overlapping espc-sets is always defined). If nooverlap(espcs)
then apply(θ; espcs) is defined. We often write θespcs instead of apply(θ; espcs) for non-overlapping
espcs.

Property A.69 (Membership in a merging of espc-sets entails similarity to some espc).
(1) If espc ∈ espcs1 ⊕ espcs2 then ∃i ∈ {1, 2}, espci ∈ espcsi : espc ⊕? espci.
(2) If espc ∈

⊕
i∈[1..n] espcsi then ∃i ∈ [1..n], espci ∈ espcsi : espc ⊕? espci.

Property A.70 (Merge produces a greatest lower bound on espc).
(1) If espc 6 espc1 and espc 6 espc2 then espc 6 espc1 ⊕ espc2.
(2) If ∀i ∈ [1..n] : espc 6 espci then espc 6

⊕
i∈[1..n] espci.

b.4.8 Extra properties of semantic objects

Lemma A.71 (Name disjointedness of two merged sets of uniquely-named entities).
• If dspc1 ⊕? dspc2 and nooverlap(dspc1) and nooverlap(dspc2), then nooverlap(dspc1 ⊕

dspc2) ⇔ ∀χ1:dspc1∈dspc1,χ2:dspc2∈dspc2 s.t. χ1 6= χ2 : allnames(dspc1) # allnames(dspc2).
• Likewise but with espc everywhere instead of dspc.

Lemma A.72 (Name disjointness of three merged sets of uniquely-named entities).
• If nooverlap(dspc1 ⊕ dspc2) and nooverlap(dspc2 ⊕ dspc3) and nooverlap(dspc2 ⊕ dspc3)

and ∀i ∈ {1, 2, 3} : nooverlap(dspci), then nooverlap(dspc1 ⊕ (dspc2 ⊕ dspc3)).
• Likewise but with espc everywhere instead of dspc.

Property A.73 (Partiality of multiple merges).
• If dspc1 ⊕? dspc2 and dspc2 ⊕? dspc3 and dspc1 ⊕? dspc3, then dspc1 ⊕? (dspc2 ⊕

dspc3).
• If espc1 ⊕? espc2 and espc2 ⊕? espc3 and espc1 ⊕? espc3, then espc1 ⊕? (espc2 ⊕ espc3).
• If dspcs1 ⊕? dspcs2 and dspcs2 ⊕? dspcs3 and dspcs1 ⊕? dspcs3, then dspcs1 ⊕?

(dspcs2 ⊕ dspcs3).
• If espcs1 ⊕? espcs2 and espcs2 ⊕? espcs3 and espcs1 ⊕? espcs3, then espcs1 ⊕? (espcs2 ⊕

espcs3).
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• If τ1 ⊕? τ2 and τ2 ⊕? τ3 and τ1 ⊕? τ3, then τ1 ⊕? (τ2 ⊕ τ3). (Proof also uses
Lemma A.72.)

• If τm11 ⊕? τ
m2
2 and τm22 ⊕? τ

m3
3 and τm11 ⊕? τ

m3
3 , then τm11 ⊕? (τm22 ⊕ τ

m3
3 ).

• If Φ1 ⊕? Φ2 and Φ2 ⊕? Φ3 and Φ1 ⊕? Φ3, then Φ1 ⊕? (Φ2 ⊕ Φ3).

Property A.74 (Partiality of multiple merges). If
⊕
i∈[1..n]Ai defined and ∀i ∈ [1..n] : Ai ⊕?

A ′, then
⊕
i∈[1..n]Ai ⊕? A

′, where A ranges over all syntactic categories in previous state-
ment.

Property A.75 (Preservation of entity membership by substitution).
• If apply(θ;Φ) and dspc ∈ Φ(ν), then ∃dspc ′ ∈ apply(θ;Φ)(θν) : dspc ′ 6 θdspc. Likewise

for espc.
• If apply(θ; espcs) and espc ∈ espcs, then ∃espc ′ ∈ apply(θ; espcs) : espc ′ 6 θespc.

Property A.76 (Structure of sums of environments and types).
• If

⊕
i∈[1..n]Φi is fully defined and ν:τm@ ∈ (

⊕
i∈[1..n]Φi) and I = {i ∈ [1..n] | ν ∈

dom(Φi)} and {τ
mi
i }i∈I = {(τ ′)m

′
| ν:(τ ′)m

′ ∈ Φi}i∈I, then τm =
⊕
i∈I
(
τ
mi
i

)
.

• If
⊕
i∈[1..n] τi is fully defined and χ:dspc ∈ (

⊕
i∈[1..n] τi) and I = {i ∈ [1..n] | ∃dspc ′ :

χ:dspc ′ ∈ τi} and {dspci}i∈I = {dspc ′ | χ:dspc ′ ∈ τi}i∈I, then dspc =
⊕
i∈I dspci.

• Likewise but with espc everywhere instead of dspc.

Property A.77.
• If espc1 ⊕? espc2 then allphnms(espc1 ⊕ espc2) = allphnms(espc1)∪ allphnms(espc2).
• If espc1 ⊕? espc2 then allphnms(espc1 ⊕ espc2) = allphnms(espc1)∪ allphnms(espc2).

Lemma A.78. If ˆdspc v espc and shape(dspc) 6 ˆdspc then ∃espc ′ : dspc v espc ′ 6 espc.

Lemma A.79.
• If dspc1 ∈ Φ1(ν) and Φ1 ⊕? Φ2 then ∃dspc2 : dspc1 ⊕ dspc2 ∈ (Φ1 ⊕ Φ2)(ν).
• Likewise for espc.

Lemma A.80. If dspc1 v espc2 and dspc1 ⊕? dspc2 then ∃espc2 : dspc2 v espc2.

Property A.81 (Monotonicity of spec matching).
(1) If dspc1 v espc1 and dspc2 v espc2 and dspc1 ⊕? dspc2, then espc1 ⊕? espc2 and

dspc1 ⊕ dspc2 v espc1 ⊕ espc2.
(2) If dspc =

⊕
i∈I dspci and espc =

⊕
i∈I espci and ∀i ∈ I : dspci v espci, then dspc v espc.

Property A.82 (Monotonicity of export specs).
(1) If espc1 6 espc ′1 and espc2 6 espc ′2 and espc1 ⊕? espc2, then espc ′1 ⊕? espc ′2 and espc1 ⊕

espc2 6 espc ′1 ⊕ espc ′2.
(2) If espc =

⊕
i∈I espci and espc ′ =

⊕
i∈I espc ′i and ∀i ∈ I : espci 6 espc ′i, then espc 6 espc ′.

Lemma A.83. If Φ ⊕? ν:τ
+ then Φ ⊕? ν:τ

m and (Φ ⊕ ν:τm)(ν) = τ.

Property A.84 (Substitution on singleton maps indexed by identities).
• If Φ = ν:τm@ then apply(θ;Φ) is defined and equals (θν):(θτ)m@ .
• If espcs = (espc) then apply(θ; espcs) is defined and equals (θespc).

(All proofs straightforward by the definition of substitution in terms of merging (over a
singleton index set).)

Property A.85 (Definedness of substitution over smaller worlds).
If ω1 w ω2 and apply(θ;ω1) is defined then apply(θ;ω2) is defined and θω1 w θω2. And
likewise for IL.

Property A.86 (Worlds from substituted contexts). Suppose apply(θ;Φ) is defined.
(1) If fact ∈ worldΦ(ν) then θfact ∈ worldθΦ(θν).
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(2) If ω = worldΦ(ν) defined then apply(θ;ω) defined and ω ′ = worldθΦ(θν) defined and
θω v ω ′.

(3) If ω = worldΦ(N) defined and ω ′ = worldθΦ(θN) defined, then apply(θ;ω) defined and
θω v ω ′.

(4) If fact ∈ world+Φ(ν) then θfact ∈ world+θΦ(θν).

(5) If ω = world+Φ(N) defined and ω ′ = world+θΦ(θN) defined, then apply(θ;ω) defined and
θω v ω ′. (Only used in the IL.)

And likewise for IL.
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c.1 axioms about core-level typing

Axiom A.87 (Validity of definition checking in IL). Just like Axiom A.13 but for the IL judg-
ment.
If fenv; f0; ˚eenv; ω̊ ` ˚defs : ˚dspcs

then
(a) defs = def1, . . . , defn ∧ ˚dspcs = ˚dspc1, . . . , ˚dspcn
(b) nooverlap(defs)
(c)

⋃
i∈[1..n] provs( ˚dspci) ⊆ dom(fenv)∪ {f0}

(d) ∀i ∈ [1..n] : def i v ˚dspci
(e) ∀i ∈ [1..n] s.t. def i = (instance . . . ) : ˚eenv(head(def i)) = head( ˚dspci)

Axiom A.88 (Regularity of module definition checking in IL). Just like Axiom A.15 but for
the IL judgment.

If
(i) · ` fenv wf

(ii) ˚aenv ` ˚eenv loc-wf
(iii) ˚aenv; ˚eenv ` ω̊ loc-wf
(iv) fenv; f0; ˚eenv; ω̊ ` ˚defs : ˚dspcs
(v) ftyp. ˚dspcs = ˚dspcs

(vi) fenv ⊕? fenv0

then fenv ⊕ fenv0 ` ftyp+ spcs-wf,
where ˚aenv = (fenv; f0; defs) and fenv0 = f0:ftyp+@ ω̊.

Axiom A.89 (Weakening of core definition checking in IL). Extending the file environment
does not change the semantics of Haskell typechecking. This is used in the proof of weaken-
ing for module typing.

If • fenv; f0; ˚eenv; ω̊ ` ˚defs : ˚dspcs
• fenv ⊕? fenvW

then fenv ⊕ fenvW ; f0; ˚eenv; ω̊ ` ˚defs : ˚dspcs

Axiom A.90 (Monotonicity of core definition checking in IL). Adding additional, non-overlapping
instances to a Haskell program does not change the semantics of Haskell typechecking. This
is used in the proof of weakening for module typing.

If • fenv; f0; ˚eenv; ω̊ ` ˚defs : ˚dspcs
• ω̊ ′ w ω̊

then fenv; f0; ˚eenv; ω̊ ′ ` ˚defs : ˚dspcs

215
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Axiom A.91 (Module context strengthening for typing of core bindings in IL).

If • · ` fenv wf
• fenv; f0; ˚eenv; ω̊ ` ˚defs : ˚dspcs
• F ⊇

⋃
˚espc∈ ˚eenv depends

+
fenv(ident( ˚espc))

• F ⊇ depends+fenv(provs(ω̊))

then (fenv|F); f0; ˚eenv; ω̊ ` ˚defs : ˚dspcs

Axiom A.92 (Invariance under substitution of core definition checking in IL).

If • fenv ` fenv wf
• apply(θ; fenv) defined
• fenv; f0; ˚eenv; ω̊ ` ˚defs : ˚dspcs
• avoidaliases(θ; ˚eenv)

then apply(θ; fenv); θf0; apply(θ; ˚eenv); θ ˚defs ` θ ˚dspcs : ˚dspcs

c.2 judgmental properties of il terms

c.2.1 Weakening

Lemma A.93 (Weakening of IL typing judgments). Suppose fenv ⊕? fenv ′.

(1)



If • fenv ` hsmod : ftyp @ ω̊
• ω ′ = modworldfenv ⊕ fenv ′(hsmod; ftyp) defined

then
• fenv ⊕ fenv ′ ` hsmod : ftyp @ω ′

• ω v ω ′

(2)


If • fenv; f0 ` tfexp @ ω̊

• modworldfenv ⊕ fenv ′(f0; tfexp) defined

then fenv ⊕ fenv ′; f0 ` tfexp @ ω̊

(3)


If • fenv ` dexp

• fenv ′ ⊕? bdexpc
• ∀f 7→ (hsmod : ftyp) @ω ∈ dexp :modworldfenv ⊕ fenv ′ ⊕ bdexpc(hsmod; ftyp) defined

then fenv ⊕ fenv ′ ` dexp
Weakening the file environment does not change the types of terms; rather, it leads to po-

tentially extended worlds in which those terms are judged well-typed. Of particular interest
is part (2): because the world of a typed file expression is “annotated,” we can be sure that
weakening the file environment does not actually change the world of the expression. Used
in the proof of cut on directory expression typing.

Lemma A.94 (Weakening of core construction in IL). Suppose fenv ⊕? fenv ′.

(1)

{
If fenv; f ` ˚import  ˚espc

then fenv ⊕ fenv ′; f ` ˚import  ˚espc

(2)

{
If fenv; f ` ˚impspec  ˚espcs

then fenv ⊕ fenv ′; f ` ˚impspec  ˚espcs

(3)

{
If fenv ` ˚impdecl  ˚eenv

then fenv ⊕ fenv ′ ` ˚impdecl  ˚eenv
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(4)



If • fenv; f0 ` ˚impdecls; ˚defs  ˚eenv @ ω̊imp|ω̊loc
• ω̊ ′imp = world+fenv ⊕ fenv ′(imps( ˚impdecls)) defined
• ω̊ ′imp ⊕? ω̊loc

then
(a) fenv ⊕ fenv ′; f0 ` ˚impdecls; ˚defs  ˚eenv @ ω̊ ′imp|ω̊loc
(b) ω̊imp v ω̊ ′imp

Weakening the file environment does not change the entity environment ( ˚eenv) resulting
from import resolution. It does, however, result in an extended world. Used in the proof of
weakening for module typing.

Lemma A.95 (Soundness of reinterpreted module world).

(1)


If fenv ` hsmod : ftyp @ ω̊

then
• modworldfenv(hsmod; ftyp) defined
• modworldfenv(hsmod; ftyp) = ω̊

(2)


If fenv; f0 ` tfexp @ ω̊

then
• modworldfenv(f0; tfexp) defined
• tfexp = hsmod : ftyp ⇒ modworldfenv(f0; tfexp) w ω̊

(3)

{
If fenv ` dexp

then ∀f 7→ tfexp @ ω̊ ∈ dexp : modworldfenv ⊕ bdexpc(f; tfexp) defined
Used in proof of Lemma A.93 and elsewhere.

Corollary A.96 (Well-typing implies world consistency in the IL).
If · ` dexp and dexp is entirely modules, then ∀hsmod : ftyp ∈ dexp : modworldbdexpc(hsmod; ftyp)
is defined. (Straightforward corollary of Lemma A.95(3).)

Property A.97 (Properties on world merging and extension).

(1) if ω̊1 ⊕? ω̊2 ⊕ ω̊3 then ω̊1 ⊕? ω̊2 and ω̊1 ⊕? ω̊3
(2) if ω̊1 ⊕ ω̊2 = ω̊3 ⊕ ω̊4 then ∀i, j ∈ {1, 2, 3, 4} : ω̊i ⊕? ω̊j
(3) if ω̊1 ⊕? ω̊2 and ω̊1 v ω̊ ′1 and ω̊2 v ω̊ ′2 and ω̊ ′1 ⊕? ω̊

′
2, then ω̊1 ⊕ ω̊2 v ω̊ ′1 ⊕ ω̊ ′2

Used in proof of Lemma A.93(1) and in proof of Lemma A.94(4).

Property A.98 (File worlds extend along contexts).

(1) If fenv ⊕? fenv ′ and f ∈ dom(fenv), then worldfenv(f) v worldfenv ⊕ fenv ′(f).
(2) If fenv ⊕? fenv ′ and f ∈ dom(fenv), then world+fenv(f) v world+fenv ⊕ fenv ′(f).

Used in proof of Lemma A.94 (4).

c.2.2 Merging

Lemma A.99 (Merging on IL term judgments). Suppose fenv1 ⊕? fenv2.

If • (tfexp1 @ ω̊1) ⊕? (tfexp2 @ ω̊2)
• fenv1; tfexp1 ` ω̊1 @ ω̊
• fenv2; tfexp2 ` ω̊2 @ ω̊
• modworldfenv1 ⊕ fenv2(f0; tfexp1 ⊕ tfexp2) defined

then fenv1 ⊕ fenv2; f0 ` tfexp @ ω̊tfexp1 ⊕ tfexp2
(Proof uses weakening on tfexp and merging on ftyp-wf.)
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c.2.3 Strengthening

Lemma A.100 (Preservation of well-formedness and typing under context strengthening).
Suppose F ⊆ dom(fenv) and dependsfenv(F) ⊆ F.

(1) If fenv ` hsmod : ftyp @ ω̊ and fenv(f0) = ftyp and f0 ∈ F, then fenv|F ` hsmod :

ftyp @ ω̊.
(Proof uses Corollary A.102 to show F is suitable for Axiom A.91; defn of dependsfenv(f0)

to show F suitably large for imports and Lemma A.103 for strengthening of imports.)
(2) If fenv; f0 ` tfexp @ ω̊ and fenv(f0) = typ(tfexp) and f0 ∈ F, then fenv|F; f0 ` tfexp @ ω̊.

(Proof uses Property A.54 and τ part of Lemma A.7.)
(3) If · ` dexp and fenv = mkfenv(dexp), then · ` dexp|F.

(Proof uses strengthening on fenv-wf (Lemma A.7 on Φ) and previous part to show fenv
wf; Property A.123 and tfexp part to show tfexp @ ω̊ well-typed.)

Lemma A.101 (Locally available entities come from dependencies of imports (IL)). Directly
corresponds to the analogous lemma in the EL, Lemma A.48. Suppose · ` fenv wf.

(1) If · ` fenv wf and fenv; f ` ˚import  ˚espc, then ident( ˚espc) ∈ depends+fenv(f).

(2) If · ` fenv wf and fenv; f ` ˚impspec  ˚espcs, then ident( ˚espcs) ⊆ depends+fenv(f).

(3) If fenv ` ˚impdecl  ˚eenv, then

(ident(locals( ˚eenv))∪ provs(ω̊)) ⊆ depends+fenv(imp( ˚impdecl)).

(4) If fenv; f0 ` ˚impdecls; ˚defs  ˚eenv @ ω̊, then

(ident(locals( ˚eenv))∪ provs(ω̊)) ⊆
(
{f0}∪ depends+fenv(imps( ˚impdecls))

)
.

(Proof of part (4) relies on the fact that if world+fenv(f) is defined then provs(world+fenv(f)) ⊆
depends+fenv(f).)

Corollary A.102 (Dependencies of this mod contains those of locally available entities). If
fenv ` fenv wf and fenv; f0 ` ˚impdecls; ˚defs  ˚eenv @ ω̊ and imps( ˚impdecls) = imps(fenv(f0)),
then depends+fenv(ident(locals( ˚eenv))) ⊆ depends+fenv(f0).
(Proof splits into cases whether ident(espc) = f0, using Lemma A.101 and Property A.50 in
the case that it’s not f0.)

Lemma A.103 (Strengthening of import resolution in IL).

(1) If f ∈ F and fenv; f ` ˚import  ˚espc, then fenv|F; f ` ˚import  ˚espc.
(2) If f ∈ F and fenv; f ` ˚impspec  ˚espcs, then fenv|F; f ` ˚impspec  ˚espcs.
(3) If imp( ˚impdecl) ∈ F and fenv ` ˚impdecl  ˚eenv, then fenv|F ` ˚impdecl  ˚eenv.
(4) If imps( ˚impdecls) ⊆ F and provs(ω̊) ⊆ F and fenv; f0 ` ˚impdecls; ˚defs  ˚eenv @ ω̊, then

fenv|F; f0 ` ˚impdecls; ˚defs  ˚eenv @ ω̊.
(Proof uses Lemma A.101 and Corollary A.102.)

c.2.4 Invariance under Substitution

Lemma A.104 (Invariance under substitution of IL terms).
Suppose · ` fenv wf and apply(θ; fenv).
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(1)



If • fenv ` hsmod : ftyp @ ω̊
• avoidaliases(θ; hsmod)
• apply(θ; ω̊) defined
• ∃ ω̊0 : θfenv ⊕? (θname(hsmod)):(θftyp)+@ ω̊0
• modworldθfenv(θhsmod; θftyp) defined

then
• θfenv ` θhsmod : θftyp @ ω̊ ′

• ω̊ ′ w θω̊
(Proof uses Lemma A.105 and Lemma A.110 for import resolution; Lemma A.117 for
export resolution; Axiom A.92 for definition checking.)

(2)



If • fenv; f0 ` tfexp @ ω̊
• avoidaliases(θ; tfexp)
• apply(θ; ω̊) defined
• ∃ ω̊0 : θfenv ⊕? (θf0):bθtfexpc@ ω̊0
• modworldθfenv(θf0; θtfexp) defined

then θfenv; θf0 ` θtfexp @ θω̊
(Proof uses above part and invariance for τ well-formedness Lemma A.6.)

(3)



If • fenv ` dexp
• avoidaliases(θ; dexp)
• θfenv ⊕? bθdexpc
• ∀f 7→ tfexp @ ω̊ ∈ dexp : modworldθfenv ⊕ bθdexpc(θf; θtfexp) defined

then θfenv ` θdexp
(Proof uses Lemma A.126 and invariance on fenv-wf and Lemma A.126 for wf-ness of the
dexp’s file env; Property A.122 and Lemma A.106 and invariance on tfexp and merging
on tfexp for typing of files.)

Lemma A.105 (Consistent augmented environments come from mergeable modules (IL)). If
def v ˚dspc and ˚dspc ∈ ftyp and fenv ⊕? f0:ftyp+@ [and nooverlap(def )], then consistent( ˚aenv),
where ˚aenv = (fenv; f0; defs). (Proof very straightforward; uses Lemma A.60.)

Lemma A.106. If apply(θ; fenv1) is defined and apply(θ; fenv2) is defined and apply(θ; fenv1) ⊕?
apply(θ; fenv2), then apply(θ; fenv1 ⊕ fenv2) is defined and equals apply(θ; fenv1) ⊕ apply(θ; fenv2)
and ∀f:ftypm@ ∈ fenv2 : apply(θ; fenv1) ⊕? (θf):(θftyp)m@ . (First part is just Property A.58;
second part uses the fact that substitution on contexts is just the merge of all substituted
singletons, and that merge is commutative and associative.)

Definition A.107 (Consistent augmented local environment in IL). Analogous to EL defini-
tion.

consistent((fenv; f0; defs)) def⇔


nooverlap(defs),

∀ ˚dspc ∈ fenv(f0) : ∃def ∈ defs, ˚dspc
′
:

def v ˚dspc
′
∧ ˚dspc

′
6 ˚dspc

Property A.108 (Definability and distributivity of substitution over world merging).

If • ∀i ∈ I : apply(θ;ωi)
• ∀i, j ∈ I : θωi ⊕? θωj

then
• θ
(⊕

i∈Iωi
)

defined
• θ
(⊕

i∈Iωi
)
=
⊕
i∈I (θωi)
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Definition A.109 (Valid substitutions that avoid import aliases in IL). Analogous to EL defi-
nition. Make sure that the substitution entirely avoids the logical import aliases in all files.

avoidaliases(θ; dexp) def⇔

apply(θ; dexp) defined

∀(f 7→ tfexp) ∈ dexp : avoidaliases(θ; tfexp)

avoidaliases(θ;− : ftyp) def⇔ always

avoidaliases(θ; hsmod : ftyp) def⇔ avoidaliases(θ; hsmod)

avoidaliases(θ; hsmod) def⇔

∀f ∈ aliases(hsmod) : θf = f

∀f ∈ hsmod : θf 6= f ⇒ θf 6∈ aliases(hsmod)

Lemma A.110 (Invariance under substitution of import resolution in IL).
Suppose apply(θ; fenv) is defined.

(1)

{
If fenv; f ` ˚import  ˚espc

then θfenv; θf0 ` θ ˚import  θ ˚espc

(2)


If fenv; f ` ˚impspec  ˚espcs

then
(a) apply(θ; ˚espcs) defined
(b) θfenv; θf0 ` θ ˚impspec  θ ˚espcs

Proof uses Lemma A.113 and Property A.68 for definedness.

(3)



If fenv ` ˚impdecl  ˚eenv

then
• apply(θ; ˚eenv) defined
• apply(θ; ω̊) defined
• ω̊ ′ = world+θfenv(θimp( ˚impdecl)) defined
• θfenv ` θ ˚impdecl  θ ˚eenv[ω̊ ′]

Proof uses Property A.68 and Property A.118 and Property A.26 for definedness/dis-
tributivity of substituted, merged envs.

(4)



If • fenv; f0 ` ˚impdecls; ˚defs  ˚eenv @ ω̊imp|ω̊loc
• consistent(θfenv; θf0; θ ˚defs)
• ω̊ ′imp = world+θfenv(θimps( ˚impdecls)]) defined
• ω̊ ′loc = apply(θ; ω̊loc) defined
• ω̊ ′imp ⊕? ω̊

′
loc

then
• apply(θ; ˚eenv) defined
• apply(θ; ω̊imp ⊕ ω̊loc) defined
• θfenv; θf0 ` θ ˚impdecls; θ ˚defs  θ ˚eenv @ ω̊ ′imp|ω̊

′
loc

• θ(ω̊imp ⊕ ω̊loc) v ω̊ ′imp ⊕ ω̊ ′loc

(The judgment above is a modified form of the core environment construction judg-
ment that makes explicit the distinction between the imported and local worlds, rather
than merging them together.) Proof uses Lemma A.113 and Lemma A.116(1) and Prop-
erty A.67 for definedness/distributivity of substituted, merged import envs; Property A.118

for definedness/distributivity of substituted local env; Lemma A.114 and Lemma A.116(2)
and Property A.67 for definedness/distributivity of substituted, merged import and lo-
cal env; Property A.108 throughout.

The awkward side conditions in part (4) restrict the substitution θ by prohibiting certain
kinds of world inconsistency. Premise (iii) ensures mutual consistency of the (substituted)
worlds among modules in the context that have been unified. Premise (iv) ensures consistency
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of the (substitued) local world. And premise (v) ensures mutual consistency of the whole
substituted world for this module.

c.2.5 Cut

Lemma A.111 (Cut on typing of IL terms).

If • · ` dexp1
• bdexp1c ` dexp2
• dexp1 ⊕? dexp2
• ∀f1 7→ tfexp1 @ ω̊1 ∈ dexp1 :

modworldbdexp1 ⊕ dexp2c(f1; tfexp1) defined
• ∀f2 7→ tfexp2 @ ω̊2 ∈ dexp2 :

modworldbdexp1 ⊕ dexp2c(f2; tfexp2) defined

then · ` dexp1 ⊕ dexp2
(Proof uses Property A.125 and Cut on fenv-wf to show wf-ness of bdexp1 ⊕ dexp2c, and

Lemma A.93 and Lemma A.99 to show that each tfexp is well-typed.)

c.2.6 Misc

Lemma A.112 (Well-formedness of a directory of signatures). If fenv ` fenv ′ wf and
pol(fenv ′) = − and fenv ′ = mkfenv(dexp), then fenv ` dexp. (Proof straightforward appli-
cation of Lemma A.11.)

c.3 judgmental properties of auxiliary il module machinery

c.3.1 Substitutability

Lemma A.113 (Imports produce non-overlapping espcs that match the context). Suppose
fenv ` fenv wf and ˚aenv = (fenv; f0; defs).

(1) If fenv; f ` IL
c

˚import  ˚espc, then ctxmatch( ˚aenv; ˚espc) and ∃ ˚espc ′ ∈ fenv(f) : ˚espc ′ 6 ˚espc.
(2) If fenv; f ` IL

c
˚impspec  ˚espcs, then nooverlap( ˚espcs) and ∀espc ∈ ˚espcs : ctxmatch(aenv; espc).

(3) If fenv ` IL
c

˚impdecl  ˚eenv, then nooverlap(locals( ˚eenv)) and ∀espc ∈ ˚eenv : ctxmatch(aenv; espc)
and ∀ ˚eref ∈ dom( ˚eenv) : ˚eref = χ or alias( ˚impdecl).χ. (Proof uses Property A.25 for last
result.)

Lemma A.114 (Entities in local entity environment produce local matches). ∀ ˚espc ∈ mklocaleenv(f0; defs),
locmatch((fenv; f0; defs); ˚espc).

Property A.115 (Membership of an espc in a merging of entity envs). Straightforward corol-
lary of Property A.69, by definition of ⊕ on entity envs.

(1) If ˚espc ∈ ˚eenv1 ⊕ ˚eenv2 then ∃i ∈ {1, 2}, ˚espci ∈ ˚eenvi : ˚espc ⊕? ˚espci.
(2) If ˚espc ∈

⊕
i∈[1..n] ˚eenvi then ∃i ∈ [1..n], ˚espci ∈ ˚eenvi : ˚espc ⊕? ˚espci.

Corollary A.116 (Definedness of substitution on merges of entity envs). Suppose fenv `
fenv wf and apply(θ; fenv) defined and aenv = (fenv; f0; defs).

(1) If ∀espc1 ∈ ˚eenv1 : ctxmatch(aenv; espc1) and ∀espc2 ∈ ˚eenv2 : ctxmatch(aenv; espc2), then
apply(θ; ˚eenv1) defined and apply(θ; ˚eenv2) defined and apply(θ; ˚eenv1) ⊕? apply(θ; ˚eenv2).

(2) If consistent(apply(θ; aenv)) and ∀espc1 ∈ ˚eenv1 : ctxmatch(aenv; espc1) and ∀espc2 ∈
˚eenv2 : locmatch(aenv; espc2), then apply(θ; ˚eenv1) defined and apply(θ; ˚eenv2) defined

and apply(θ; ˚eenv1) ⊕? apply(θ; ˚eenv2).

Lemma A.117 (Invariance under substitution of IL export resolution). Suppose avoidaliases(θ; ˚eenv).
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(1) If f0; ˚eenv ` IL
c ˚export  ˚espc, then θf0; apply(θ; ˚eenv) ` IL

c θ ˚export  θ ˚espc. (Proof uses
Property A.75.)

(2) If f0; ˚eenv ` IL
c

˚expdecl  ˚espcs, then apply(θ; ˚espcs) defined and θf0; apply(θ; ˚eenv) `
IL
c θ

˚expdecl  apply(θ; ˚espcs). (Proof uses Property A.68 for definedness of specs; Prop-
erty A.67 for definedness/distributivity of substituted specs.)

Property A.118 (Distributivity of substitution over entity environment operations).
• If apply(θ; ˚espcs) is defined then apply(θ;mkeenv( ˚espcs)) is defined and equals mkeenv(apply(θ; ˚espcs)).
• If apply(θ; ˚espcs) is defined then apply(θ;mklocaleenv(f0; defs)) is defined and equals

mklocaleenv(θf0; θdefs).
• If apply(θ; ˚eenv) is defined then apply(θ; qualify(f; ˚eenv)) is defined and equals qualify(θf; apply(θ; ˚eenv)).

Lemma A.119 (Definedness of substitution on merges of contextual and local espc-sets). Sup-
pose fenv ` fenv wf and apply(θ; fenv) defined and aenv = (fenv; f0; defs).

(1) If ∀espc1 ∈ espcs1 : ctxmatch(aenv; espc1) and ∀espc2 ∈ espcs2 : ctxmatch(aenv; espc2), then
apply(θ; espcs1) defined and apply(θ; espcs2) defined and apply(θ; espcs1) ⊕? apply(θ; espcs2).

(2) If consistent(apply(θ; aenv)) and ∀espc1 ∈ espcs1 : ctxmatch(aenv; espc1) and ∀espc2 ∈
espcs2 : locmatch(aenv; espc2), then apply(θ; espcs1) defined and apply(θ; espcs2) defined
and apply(θ; espcs1) ⊕? apply(θ; espcs2).

Definition A.120 (Valid substitutions for an entity environment). The substitution preserves
lookup in the entity environment.

avoidaliases(θ; ˚eenv) def⇔


apply(θ; ˚eenv) defined

∀ ˚eref , ˚phnm s.t. ˚eenv( ˚eref ) = ˚phnm :

apply(θ; ˚eenv)(θ ˚eref ) = θ ˚phnm

Lemma A.121 (Definedness of substituted local world creation).

(1)



If • avoidaliases(θ̊; ˚eenv)
• ω = ˚mklocalworld(f0; ˚defs; ˚eenv)
• ω ′ = ˚mklocalworld(θ̊f0; θ̊ ˚defs; θ̊ ˚eenv)

then
• apply(θ̊; ω̊)
• θ̊ω̊ = ω̊ ′

(2)


If • ω̊ = extworld(f0; ftyp)

• ω̊ ′ = extworld(θ̊f0; θ̊ftyp)

then
• apply(θ̊; ω̊)
• θ̊ω̊ = ω̊ ′

c.4 algebraic properties of il terms

Property A.122 (Structure of sums of directory expressions).
• If

⊕
i∈[1..n] dexpi is fully defined and (f 7→ tfexp) ∈ (

⊕
i∈[1..n] dexpi) and I = {i ∈

[1..n] | f ∈ dom(dexpi)} and {tfexpi}i∈I = {tfexp ′ | f 7→ tfexp ′ ∈ Φi}i∈I, then tfexp =⊕
i∈I tfexpi.

Property A.123 (Projections from directory environments). If fenv = mkfenv(dexp) and dexp(f) =
tfexp, then fenv(f) = typ(tfexp).

Property A.124 (Typed file expressions are mergeable when their polarized types are merge-
able).
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(1) tfexp1 ⊕? tfexp2 if and only if typ(tfexp1)
pol(tfexp1) ⊕? typ(tfexp2)

pol(tfexp2).
(2)

⊕
i∈[1..n] tfexpi is defined if and only if

⊕
i∈[1..n] typ(tfexpi)

pol(tfexpi) is defined.

(Proofs straightforward from definition of tfexp merging.)

Property A.125 (Merging of directories commutes with file environment creation).
(1) dexp1 ⊕? dexp2 if and only if mkfenv(dexp1) ⊕? mkfenv(dexp2), and if so, then mkfenv(dexp1) ⊕

mkfenv(dexp2) = mkfenv(dexp1 ⊕ dexp2).
(2)

⊕
i∈[1..n] dexpi is defined if and only if

⊕
i∈[1..n]mkfenv(dexpi) is defined, and if so,

then (
⊕
i∈[1..n]mkfenv(dexpi)) = mkfenv(

⊕
i∈[1..n] dexpi).

(Proofs straightforward from Property A.124.)

Property A.126 (Substitution on dexp commutes with mkfenv(−)). apply(θ;mkfenv(dexp)) is de-
fined if and only if apply(θ; dexp) is defined, and if so, then apply(θ;mkfenv(dexp)) = mkfenv(apply(θ; dexp)).
(Proof straightforward from Property A.125.)

Property A.127 (Distributivity of merging and substitution over tfexp attributes).
• If tfexp1 ⊕? tfexp2 then typ(tfexp1 ⊕ tfexp2) = typ(tfexp1) ⊕ typ(tfexp2).
• If tfexp1 ⊕? tfexp2 then pol(tfexp1 ⊕ tfexp2) = pol(tfexp1) ⊕ pol(tfexp2).
• Likewise for n-ary merges over a non-empty index set I.
• typ(θtfexp) = θtyp(tfexp)

Property A.128 (Substitution on singleton directory expressions). If dexp = {f 7→ tfexp}
then apply(θ; dexp) is defined and equals {(θf) 7→ (θtfexp)}. (Proofs straightforward by the
definition of substitution in terms of merging (over a singleton index set).)
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d.1 invariants needed for elaboration soundness

d.1.1 Import resolution

Lemma A.129 (Elaboration of imports produces translations of original entity envs). Suppose
· ` Γ wf and Γ = (Φ;L).

(1)

{
If shape(Γ); ` 
 import  espc

then Φ?; L(`)? ` mkentimp(espc)  espc?

(2)

{
If shape(Γ); ` 
 impspec  espcs

then Φ?; L(`)? ` mkimpspec(L; `; impspec)  espcs?

(3)


If shape(Γ) 
 impdecl  eenv

then
• eenv? defined
• Φ? ` mkimpdecl(Γ ; impdecl)  eenv?

(Proof uses Property A.130. In general, eenv? could be undefined if any eref in it were of
the form Local.χ, as there’s no way to translate Local into the IL via (−)?; that’s what
refs?ν0(eenv) does. In this case, however, because the eenv results from import resolution,
then by the definition of import resolution there will be no eref with Local.)

(4)



If • Γ ` impdecls; (ν0, . . . ,ν0 | defs)  eenv @ ω
• world+Φ(L(imps(impdecls))) defined
• world+Φ(L(imps(impdecls))) ⊕? ω

then
• Φ?; ν?0 ` mkimpdecls(L; impdecls); refs?ν0(defs)  
refs?ν0(eenv) @ w ′

• w ′ w ω?

(Proof uses previous part and Property A.130, Property A.144, and Property A.131. The
latter two premises are needed in order to construct the hsmod : τ? IL derivation, and
this is the point where we go from the EL’s semantics of “use the worlds of my direct
imports” to the IL’s semantics of “use the worlds of all my transitive imports.”)

Property A.130 (Distributivity of translation over entity env operations).
• mkeenv(espcs)? is defined and equals mkeenv(espcs?).
• If qualify(p; eenv) is defined, then eenv? is defined, and qualify(p; eenv)? is defined and

equals qualify(p; eenv?).
• refs?ν0(mkloceenv((ν0, . . . ,ν0 | defs))) = ˚mklocaleenv(ν?0; refs?ν0(defs)).
• locals(eenv)? = locals(eenv?).
• If eenv1 ⊕? eenv2, then refs?ν0(eenv1) ⊕ refs?ν0(eenv2) is defined and equals refs?ν0(eenv1 ⊕

eenv2).
• If ∀i, j ∈ [1..n] : eenvi ⊕? eenvj, then

⊕
i∈[1..n] refs

?
ν0

(eenvi) is defined and equals
refs?ν0(

⊕
i∈[1..n] eenvi).

Property A.131 (Distributivity of translation over world operations).
• If ν ∈ dom(Φ) then worldΦ(ν)? = worldΦ?(ν?).
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• If ω = mklocworld((ν0, . . . ,ν0 | defs); eenv) is defined, then

˚mklocalworld(ν?0; refs?ν0(defs); refs?ν0(eenv))

is defined and equals ω?. (Proof uses Property A.137.)

d.1.2 Core definition checking

Axiom A.132 (Translation preserves well-typedness of core definitions).
If Φ; ν0; eenv; ω ` defs : dspcs then Φ?; ν?0; refs?ν0(eenv); ω? ` refs?ν0(defs) : dspcs?.

Lemma A.133 (Translated substitution is always valid on elaborations).
If hsmod = mkmod(Γ ;ν0; eenv; impdecls; defs; espcs) is defined, then avoidaliases(θ?; hsmod). (θ?

maps file names in the image of (−)? to other file names in the image of (−)?. In hsmod each
alias is in ModNames (i.e., EL logical module names), rather than the image of (−)?, so θ? is
the identity on these and never maps anything into them.)

d.1.3 Export resolution

Lemma A.134 (Elaboration of exports produces translations of exports).
(1) If eenv(eref ) = phnm : espc ′ and espc ′ 6 espc v phnm, then refs?ν0(eenv) ` mkexp(eenv; espc)  

espc?. (Proof uses Property A.137 to show that the translated export reference is well-
formed.)

(2) If eenv 
 expdecl  espcs then refs?ν0(eenv) ` mkexpdecl(espcs; eenv)  espcs?. (Proof
uses Lemma A.136 to prove existence of a syntactic reference that identifies each export
(for mkexpdecl(−;−)); and previous part.)

Lemma A.135 (Identifiability of local entities in EL). If Local.χ ∈ dom(eenv) and haslocaleenv(eenv;ν0; defs)
then eenv(Local.χ) = [ν0]χ. (Proof from definition of mkloceenv((ν0, . . . ,ν0 | defs)).)

Lemma A.136 (Identifiability of exported entities).
(1) If eenv 
 export  espc then ∀espc ∈ espcs : ∃eref ∈ dom(eenv), espc ′ ∈ eenv :

(eenv(eref ) = ` : espc ′)∧ espc ′ 6 espc v `. (Proof clear in all cases but ExpModAll; in
that case, follows by defn of filterespcs(−;−) and filterespc(−;−).)

(2) If ˚eenv ` ˚expdecl  ˚espcs then ∀espc ∈ espcs : ∃eref ∈ dom(eenv), espc ′ ∈ eenv :

(eenv(eref ) = ` : espc ′)∧ espc ′ 6 espc v `. (Proof uses Lemma A.135 in ExpLocal case;
in ExpList, need to show that all individual lookup results combine to a single one; use
previous part and Property A.69 to get some initial eref to use; then Property A.138 and
Property A.70 to combine those results and relate them to the initial eref .)

Property A.137 (Preservation of entity environment lookup by translation).
(1) If eenv(eref ) = phnm then refs?ν0(eenv)(refs?ν0(eref )) = `?. (Proof uses injectivity of refs?ν0(−)

(Property A.140).)
(2) If eenv(eref ) = phnm : espc then refs?ν0(eenv)(refs?ν0(eref )) = `? : espc?. (Proof uses Prop-

erty A.144 and Property A.130.)

Property A.138 (Uniqueness of entities looked up in environment). If eenv(eref ) = phnm : espc
and eenv(eref ′) = phnm : espc ′ then espc = espc ′. (Proof by name uniqueness in an espc-set,
locals(eenv).)

d.1.4 Misc

Corollary A.139 (Package-level consistency in the elaboration). Suppose F ⊆ModIdent?.
(1) worldΦ?(F) defined for any context Φ.

(2) If Φ1 ⊕? Φ2 then worldΦ?
1
(F) ⊕ worldΦ?

2
(F) is defined and equals world(Φ1 ⊕Φ2)?(F).
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(3) world+Φ?(F) defined for any context Φ.

(4) If Φ1 ⊕? Φ2 then world+Φ?
1
(F) ⊕ world+Φ?

2
(F) is defined and equals world+

(Φ1 ⊕Φ2)?
(F).

(This is a corollary to Property A.3. Uses Property A.145.)

d.2 algebraic properties of translation

Property A.140 (Injectivity of entity translation).
• If refs?ν0(eref1) = refs?ν0(eref2) then eref1 = eref2.
• If refs?ν0(eenv1) = refs?ν0(eenv2) then eenv1 = eenv2.

Property A.141 (Translation distributes over (total) substitutions). (θν)? = θ?ν?. Likewise for
typ, dspc, dspcs, phnm, espc, espcs, τ.

Property A.142 (Physical context well-formed implies translation well-formed). If Φ1 `
Φ2 wf then Φ?

1 ` Φ
?
2 wf.

(Obvious from structure of judgments and objects. The only change in the definition of well-
formedness from EL to IL lies in that of Φ: in the EL there’s an additional stipulation on
Φ objects in that they must satisfy Package-Level Consistency. That doesn’t complicate the
proof of this property, however, since the proof simply drops that stipulation when proving
Φ? well-formed.)

Property A.143 (Translation distributes over merging).
• If Φ1 ⊕ Φ2 defined, then (Φ1 ⊕ Φ2)

? = Φ?
1 ⊕ Φ?

2, which is itself defined.
• If τm11 ⊕ τ

m2
2 defined, then (τm11 ⊕ τ

m2
2 )

?
= (τ1

?)m1 ⊕ (τ2
?)m2 , which is itself

defined.
• If τ1 ⊕ τ2 defined, then (τ1 ⊕ τ2)

? = τ?1 ⊕ τ?2, which is itself defined.
• If dspcs1 ⊕ dspcs2 defined, then (dspcs1 ⊕ dspcs2)

? = dspcs?1 ⊕ dspcs?2, which is itself
defined.

• If espcs1 ⊕ espcs2 defined, then (espcs1 ⊕ espcs2)
? = espcs?1 ⊕ espcs?2, which is itself

defined.
• If dspc1 ⊕ dspc2 defined, then (dspc1 ⊕ dspc2)

? = dspc?1 ⊕ dspc?2, which is itself
defined.

• If espc1 ⊕ espc2 defined, then (espc1 ⊕ espc2)
? = espc?1 ⊕ espc?2, which is itself defined.

• If ω1 ⊕ ω2 defined, then (ω1 ⊕ ω2)
? = ω?

1 ⊕ ω?
2 is defined.

• Likewise for all n-ary merges over a non-empty index set I.

Property A.144 (Distributivity of translation over semantic object operations).
• (ν1:τ1

m1@ , . . . ,νn:τnmn@ )? = (ν?1:τ
?
1
m1@ , . . . ,ν?n:τ?n

mn@ ).
• If τ = Φ(ν) then τ? = Φ?(ν?).
• If espc ∈ Φ(ν) then espc? ∈ Φ?(ν?).
• If dspc ∈ Φ(ν) then dspc? ∈ Φ?(ν?).
• allphnms(espc)? = allphnms(espc?).
• allphnms(espcs)? = allphnms(espcs?).

Property A.145 (Properties of translation on worlds).

(1) If ω1 ⊕? ω2 then ω?
1 ⊕ ω?

2 is defined and equals (ω1 ⊕ ω2)
?.

(2) If ν ∈ dom(Φ) then worldΦ(ν)? = worldΦ?(ν?).

(3) If ν ∈ dom(Φ) then world+Φ(ν)
?
= world+Φ?(ν?).

Lemma A.146 (Kind extraction ignores translation). mkknd(dspc?) is defined if and only if
mkknd(dspc) is defined, and if so, mkknd(dspc?) = mkknd(dspc).

Property A.147 (Substitution commutes with translation on contexts). If apply(θ;Φ) is defined
then apply(θ?;Φ?) is defined and equals apply(θ;Φ)?. (Proof relies on injectivity of (−)? and
Property A.143.)
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d.3 properties of the soundness relation

Lemma A.148 (Definition of the members of substitutions of corresponding contexts). Sup-
pose Φ = (νi:τi

mi@ωi | i ∈ [1..n]) and dexp = (fi 7→ tfexpi @ωi | i ∈ [1..n]) and ∀i ∈ [1..n] :
νi

? = fi and apply(θ;Φ) and apply(θ; dexp). Then
(1) dom(apply(θ;Φ))? = dom(apply(θ?; dexp)), and
(2) ∀ν:τm@ω ∈ apply(θ;Φ) :

a) I = {i ∈ [1..n] | ν = θνi} and τm =
⊕
i∈I(θτi)

mi and ω =
⊕
i∈I θωi, and

b) (f 7→ tfexp @ ω̊) ∈ apply(θ?; dexp), where f = ν? and tfexp =
⊕
i∈I θ

?tfexpi and
ω̊ =

⊕
i∈I θ

?ω̊i.

Proof of (1) uses Property A.69 and injectivity of (−)? and Property A.141; proof of (2) follows
from definitions of substitution and the same properties.)

Lemma A.149 (Related packages form a bijection). If Ξ ∼ dexp then
• Ξ.Φ = (νi:τi

mi@ωi | i ∈ [1..n]),
• dexp = {fi 7→ tfexpi @ ω̊i | i ∈ [1..n]}, and
• ∀i ∈ [1..n] : ν?i = fi ∧ τ?i = typ(tfexpi) ∧ mi = pol(tfexpi) ∧ ω?

i = ω̊i.

(Clear by definition of soundness relation since (−)? is injective and the two mappings have
the same size.)

Lemma A.150 (A negative EL context is related to its IL stub file translation). If · ` Φ wf
and pol(Φ) = −, then Ξ ∼ mkstubs(Φ). (Proof uses Property A.142 and Lemma A.112.)

Lemma A.151 (EL contexts translate to the environment of related terms). If Φ ∼ dexp then
mkfenv(dexp) = Φ?. (Proof straightforward by Lemma A.149 and Property A.144.)

d.3.1 Strengthening

Lemma A.152 (Relatedness of packages is preserved under filtering). IfΦ ∼ dexp and dependsΦ(N) ⊆
N, then Φ|N ∼ (dexp|N?). (Proof uses Property A.153; Lemma A.7 and Lemma A.100 for well-
formedness of filtered context and directory.)

Property A.153 (Dependencies are preserved by translation). If ν ∈ dom(Φ) then dependsΦ(ν)? =

dependsΦ?(ν?).

d.3.2 Substitutability

Lemma A.154 (Relatedness of packages is preserved under substitution). If Φ ∼ dexp and
apply(θ;Φ) defined, then apply(θ?; dexp) is defined and apply(θ;Φ) ∼ apply(θ?; dexp). (Proof
uses Lemma A.151 and Lemma A.126 for definability of substitution on dexp; Lemma A.155

and Lemma A.104 for well-typedness of θ?dexp; Lemma A.6 for well-formedness of θΦ;
Lemma A.148 for gathering substituted pieces; and Lemma A.156 and Lemma A.157 for
preserving the relations.)

Lemma A.155 (Translated substitution is always valid on related dexps). If Ξ ∼ dexp then
avoidaliases(θ?; dexp). (Every hsmod ∈ dexp is the result of elaboration, by definition of the
soundness relation.)

Lemma A.156 (Relatedness of single module types is preserved under substitution). If (ν:τm@

ω) ∼ (f 7→ tfexp @ ω̊) then ((θν):(θτ)m@ (θω)) ∼ ((θ?f) 7→ (θ?tfexp) @ θ?ω̊). (Proof straightfor-
ward by Property A.127.)
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d.3.3 Merging

Lemma A.157 (Relatedness of single module types is preserved under merging).
(1) If (ν:τ1m1@ω1) ∼ (f 7→ tfexp1 @ ω̊1) and (ν:τ2

m2@ω2) ∼ (f 7→ tfexp2 @ ω̊2) and τm11 ⊕?

τ
m2
2 and tfexp1 ⊕? tfexp2 and ω1 ⊕? ω2 and ω̊1 ⊕? ω̊2, then (ν:(τ1 ⊕ τ2)

(m1 ⊕m2)@

(ω1 ⊕ ω2)) ∼ (f 7→ (tfexp1 ⊕ tfexp2) @ (ω̊1 ⊕ ω̊2)). (Proof straightforward by Prop-
erty A.127.)

(2) Likewise for n-ary merges over a non-empty index set I.
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