
Copyright

by

Scott Lasater Kilpatrick

2010

The Thesis committee for Scott Lasater Kilpatrick

Certifies that this is the approved version of the following thesis:

Ad Hoc: Overloading and Language Design

APPROVED BY

SUPERVISING COMMITTEE:

William R. Cook, Supervisor

Eric E. Allen, Supervisor

Ad Hoc: Overloading and Language Design

by

Scott Lasater Kilpatrick, B.S.

THESIS

Presented to the Faculty of the Graduate School

of The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2010

Informal, quasi-empirical mathematics does not grow through a

monotonous increase in the number of indubitably established theorems

but through the incessant improvement of guesses by speculation and

criticism, by the logic of proofs and refutations.

Proofs and Refutations

Imre Lakatos

Acknowledgments

First and foremost, I’d like to thank Greg Lavender, whose early sup-

port was instrumental for my academic career. Many thanks also go to the

infinitely patient and supportive Eric Allen, fellow intern Justin Hilburn,

and the past and present researchers of the Sun Labs Programming Lan-

guages Research Group: David Chase, Christine Flood, Victor Luchangco,

Jan-Willem Maessen, Sukyoung Ryu, and Guy Steele. Additionally, William

Cook provided useful insights and made my work on Fortress possible.

Finally, thanks to the many accommodating Austin cafés and the

background music of Dave Brubeck, Duke Ellington, and Air.

v

Ad Hoc: Overloading and Language Design

by

Scott Lasater Kilpatrick, M.S.C.S.

The University of Texas at Austin, 2010

Supervisors: William R. Cook
Eric E. Allen

The intricate concepts of ad-hoc polymorphism and overloading per-

meate the field of programming languages despite their somewhat nebu-

lous definitions. With the perspective afforded by the state of the art, object-

oriented Fortress programming language, this thesis presents a contempo-

rary account of ad-hoc polymorphism and overloading in theory and in

practice. Common language constructs are reinterpreted with a new em-

phasis on overloading as a key facility.

Furthermore, concrete problems with overloading in Fortress, en-

countered during the author’s experience in the development of the lan-

guage, are presented with an emphasis on the ad hoc nature of their solu-

tions.

vi

Table of Contents

Acknowledgments v

Abstract vi

Chapter 1. Introduction 1

Chapter 2. Overloading in general 3
2.1 Intuition and motivation . 3

2.1.1 Natural languages . 4
2.1.2 Informal mathematics . 5

2.2 From polymorphism . 7
2.2.1 Parametric polymorphism 8
2.2.2 Inclusion polymorphism 9
2.2.3 Ad-hoc polymorphism 11

2.3 Mapping names to interpretations 12
2.3.1 Overloading as binding 13
2.3.2 Dispatch in context . 14
2.3.3 Abstract and concrete overloadings 15

2.4 Parametric overloading and extensibility 16
2.5 A means to multiple ends . 17

2.5.1 Convenience . 17
2.5.2 Abstraction . 19
2.5.3 Specialization . 20

Chapter 3. Overloading in the field 23
3.1 Type classes . 23

3.1.1 Overview . 23

vii

3.1.2 Analysis of overloading features 24
3.1.3 System O . 29

3.1.4 λO . 31
3.1.5 Constraint handling rules 33

3.2 Object classes . 33
3.2.1 Overview . 34
3.2.2 Analysis of overloading features 35
3.2.3 Multiple inheritance . 39
3.2.4 Polymorphism . 40
3.2.5 Local type inference . 42

3.3 Multiple dispatch . 42
3.3.1 Overview . 43
3.3.2 Analysis of overloading features 44
3.3.3 Challenges . 44
3.3.4 Common Lisp Object System 50
3.3.5 λ& . 51
3.3.6 System M . 53
3.3.7 ML≤ . 53

3.3.8 Fortress . 54
3.3.9 Away from objects . 56

Chapter 4. Lessons learned from Fortress 57
4.1 Self-type idiom . 57

4.1.1 Using F-bounds . 58
4.1.2 Ill-typed Fortress code . 60
4.1.3 An ad hoc solution . 61

4.2 Expressive, excessive overloading 63
4.2.1 A concrete concern . 64

4.3 Nominal relations . 66

Chapter 5. Conclusion 68

viii

Bibliography 70

Vita 78

ix

Chapter 1

Introduction

Strachey [62] coined the term ad-hoc polymorphism, and Cardelli and

Wegner [15] refined it as a kind of polymorphism in which “a function

works, or appears to work, on several different types [...] and may behave

in unrelated ways for each type.” They describe overloading as a kind of

ad-hoc polymorphism in which the context surrounding a particular use

of a name determines which function it denotes. This idea of overload-

ing materializes in many programming languages today — from practical

to theoretical, from functional to object-oriented — albeit with tremendous

differences in scope, presentation, and implementation.

Along with overloading comes the paired notion of dispatch: if the

former specifies what can be phrased in the language, it is the latter that

specifies how those phrases are interpreted. One cannot easily explain over-

loading and dispatch in a particular language independently of one another,

given that the practical limitations of dispatch sometimes govern the spec-

ification of overloading in unexpected ways. For example, many object-

oriented languages exhibit this ad hoc ad-hoc polymorphism due to a fixed,

restrictive dispatch semantics, known as single dynamic dispatch (Section 3.2).

In the Fortress programming language [3], however, overloading is empha-

sized as a fundamental language concept; the cost of dispatch is then sub-

sumed as a requisite, resulting in a more consistent interpretation of over-

1

loading. With this unique interpretation Fortress poses some interesting

research problems, as well as design challenges that must be addressed.

This thesis is divided into three parts: In Chapter 2 overloading and

its related concepts are introduced, motivated, and explained with a new

perspective, including the identification of three primary language features

induced by overloading. Chapter 3 presents overloading as it exists in for-

mal calculi and more practical programming languages, with emphasis on

type classes, object classes, and multiple dispatch systems; each system is

viewed with the lens of the generalized description of overloading from

Chapter 2. In Chapter 4, concrete problems with Fortress overloading are

presented and solved, based on the author’s experience in the development

of the language. Also presented are further observations about language

design, inspired by Fortress. Finally, Chapter 5 concludes this thesis with

some final thoughts on overloading and language design.

2

Chapter 2

Overloading in general

2.1 Intuition and motivation

Overloading is a linguistic phenomenon wherein a single name can

have multiple interpretations, with a unique one implicitly determined from

the context. A name that exhibits this behavior is said to be overloaded, and

each possible interpretation is called an overloading of that name.1 Such an

informal definition unfortunately necessitates further definitions of its con-

stituents: The concept of a name seems straightforward enough, but what is

an interpretation? Is the interpretation of a name its annotated type? What

about a context? The enclosing lexical scope of the name, perhaps?

This generality actually speaks to the broad relevance of overload-

ing to language. Informally introduced to the world of programming lan-

guages as ad-hoc polymorphism, the phenomenon really existed long before

computer science. In the subsequent sections we discuss overloading in

these earlier languages2 and then its arrival in programming languages.

1Note that the word “overloading” is itself overloaded in the English language.
2For consistency, the somewhat anachronistic term overloading will be used throughout.

3

2.1.1 Natural languages

Natural human languages, which lack any deterministic, formal se-

mantics whatsoever, exhibit a phenomenon similar to overloading. A sen-

tence in natural language might involve a word with context-dependent

meaning, much like a program does. Indeed, the English word “program”

has twelve distinct senses according to the New Oxford American Dictionary,

2nd Edition, five of which are reproduced in Figure 2.1. That a word might

ambiguously denote one of many senses is known in the linguistics commu-

nity as polysemy, and the act of determining the correct sense is called word

sense disambiguation, an ubiquitous computational task in natural language

processing [38, Ch. 19].

The definition in Figure 2.1 presents five distinct senses of the word

“program” organized into an ontology: At the top level, senses are cate-

gorized by their parts of speech, here noun and transitive verb. Each bold-

face number represents a unique sense for the word when used with that

part of speech; for example, the two unique noun entries given for “pro-

gram”. Each sense might involve subsenses thereof; for example, the verb

entry given for “program” defines a base sense and two subsenses. A sub-

sense, also called a hyponym [38, §19.2.2], denotes a more specific meaning

than its parent. Later, in Section 3.3.8, one might realize a connection be-

tween polysemy and the expressive overloading of Fortress.3

3In particular, aside from the relation between hyponymy and subtyping, the partition-
ing of senses by parts of speech corresponds to the notion of exclusion in Fortress.

4

pro·gram
noun

1 a planned series of future events, items, or performances : a weekly pro-
gram of films

2 a series of coded software instructions to control the operation of a com-
puter or other machine.

verb [trans.]

1 provide (a computer or other machine) with coded instructions for the
automatic performance of a particular task : it is a simple matter to program
the computer to recognize such symbols.
• input (instructions for the automatic performance of a task) into a com-
puter or other machine : simply program in your desired volume level.
• (often be programmed) figurative cause (a person or animal) to behave
in a predetermined way : all members of a particular species are programmed
to build nests in the same way.

Figure 2.1: Excerpt of the definition of “program”.

2.1.2 Informal mathematics

Informal mathematical notation, as we know it today, has evolved

over thousands of years of human discovery and pedagogy. Statements in

this widely understood language include

(a) 2 + 2 = 4 (b) ln e = 1 (c) (e−1) e = 1,

i.e., trivial statements about (a) the sum of two integers, (b) an identity of

the natural logarithmic function, and (c) a multiplicative identity of the real

number denoted by e. Though a syntactic trick hides among the latter two:

the space between ln and e means apply the ln function to e, but the space

5

between (e−1) and e means the product of e−1 and e. That is, space — techni-

cally called juxtaposition — is usually overloaded in informal mathematical

notation.

Despite having two possible meanings, juxtaposition actually ad-

mits a straightforward interpretation through analysis of the shapes of its

operands. In (b) juxtaposition means function application because we know

that the left operand, ln, is a function over the real numbers and that the

right operand, e, is such a real number. In (c) it means multiplication be-

cause the left and right operands are elements of the structure of real num-

bers (which defines such a multiplication operator). And in the well-known

“double angle” identity

sin 2θ = 2 sinθ cosθ

the two distinct meanings coexist peacefully and unambiguously.

As another example of overloading in mathematics, consider the def-

inition of a group homomorphism in abstract algebra below.

Let G and H be groups and let f : G → H. The function f is a

group homomorphism if, for every x and y in G,

f (x · y) = f (x) · f (y) .

This definition exhibits two subtle forms of overloading: First, the names G

and H refer both to the group structures themselves and to those structures’

underlying sets. Second, a single symbol · represents each group’s operator

— with operands x and y (elements of G) it means G’s operator and with

operands f (x) and f (y) (elements of H) it means H’s.

6

This interpretation via shape analysis bears a resemblance to type

checking in a statically typed language, such as the simply typed lambda calcu-

lus. A static analyzer for a formal language based on mathematical notation

might, in the presence of juxtaposition, simultaneously type check a term

and choose its meaning (for later evaluation)4. Such a mechanism will be

explored in more detail in Section 2.3.

2.2 From polymorphism

In 1967 Strachey [62] informally characterized the ideas behind over-

loading as ad-hoc polymorphism, in contrast with parametric polymorphism,

which he considered the “more regular” kind of polymorphism. He de-

scribed polymorphic functions as those with “several forms depending on

their arguments.” Strachey’s definitions should be understood in context,

however, as they predate the seminal works on polymorphism, Girard’s

System F [29] and Reynolds’ polymorphic lambda calculus [53], by several

years.

Cardelli and Wegner [15] expanded on Strachey’s classification of

polymorphism almost two decades later. They formulated a hierarchy of

polymorphism which, at the top level, comprises the categories universal

and ad-hoc. Universal polymorphism describes those functions which op-

erate on all (possibly infinitely many) types that share a common structure;

the two subcategories are the familiar parametric polymorphism and a new

class, inclusion polymorphism, which they devised in order to model the

4Indeed, a stated goal of the Fortress programming language is to properly type check
and interpret mathematical expressions like n(n + 1) sin 3nx log log x .

7

subtyping and inheritance of the object-oriented paradigm.

In the following sections we discuss parametric, inclusion, and ad-

hoc polymorphism in more detail.

2.2.1 Parametric polymorphism

In [62] Strachey identifies a need to statically analyze the types of

polymorphic function applications. He simultaneously describes and mo-

tivates parametric polymorphism with an example: the type of the now-

standard polymorphic map function, which he writes as

(α ⇒ β, α list)⇒ β list

(“where α and β stand for any type”). Essentially, this is identical to the

contemporary presentation with universally quantified types [29, 53]

∀α∀β.(α → β)→ Listα → List β

with the key difference being the explicitly quantified type variables. Car-

delli and Wegner make clear this notion of type parameters for parametric

polymorphism in [15], further defining such functions as generic5.

According to Harper’s contemporary account [34, Ch. 24], paramet-

rically polymorphic expressions “codify generic (type-independent) behav-

iors that are shared by all instances of the pattern.” That is, a generic func-

tion has only a single implementation which can be instantiated for multiple

(if not infinitely many) types at will; for example, using the polymorphic

5We take generic functions to mean parametrically polymorphic functions, as Cardelli
and Wegner do, throughout. Other authors have used generic to describe other notions, e.g.
Section 3.3.4.

8

map function to transform a list of integers into a list of strings, or vice versa,

in a way that can be checked statically. Parametric polymorphism is not

limited to functions, however; the type of lists, List t, and the value of

the empty list, nil, are both typically defined once and used parametrically.

In this way parametric polymorphism permits code reuse, a major practical

contribution to software engineering.

A key theoretical result of parametric polymorphism is the notion

of parametricity (introduced as the abstraction theorem by Reynolds [54]): the

genericity of a polymorphic type correlates with the deducibility of an in-

habiting expression’s behavior [34, §24.3]. For example, from the polymor-

phic type ∀α .α → α, one can determine the exact behavior of any expres-

sion inhabiting this type; in fact, there is only a single expression, the poly-

morphic identity function Λα . λx :α . x. Wadler exuberantly declared this

type-based deductive power as “theorems for free!” [65] Parametric poly-

morphism therefore affords program analysis and reasoning beyond its ob-

vious application to software engineering.

2.2.2 Inclusion polymorphism

Aside from parametric, the other kind of universal polymorphism,

as defined by Cardelli and Wegner, is inclusion polymorphism. In this kind

of polymorphism, expressions are classified by a preordered family (S ,v),

and any expression in set S′ ∈ S can be used where one in set S ∈ S is ex-

pected, for any S such that S′ v S. Such an expression is polymorphic over

all the supersets of its set, S, while only having the single representation S.

Subtyping and class-based inheritance both fall into this category.

With subtyping, S is the set of all types and v is the subtyping relation

9

the classes of all living things

class LivingThing():

living things are created with an age field

def __init__(self, age):

self.age = age

the class of human beings - inherits from LivingThing

class Human(LivingThing): ...

define a function that compares ages of living things

def age_le(thing1, thing2):

return thing1.age <= thing2.age

some_plant is a LivingThing; steve_albini is a Human

... age_le(some_plant, steve_albini) ...

Figure 2.2: Examples of inclusion polymorphism with class-based inheritance in
Python. The compare_ages function works transparently on the Human object,
steve_albini.

on types. Any expression of type S′ can be used wherever S is expected,

such as in a variable binding or function application. With inheritance, S
is the set of all object classes and v is the inheritance or extension relation

on classes. Any member defined for objects of class S can be accessed on an

object of class S′ since S′ inherits the members from S. Figure 2.2 contains

sample code illustrating inclusion polymorphism in the form of class-based

inheritance in the dynamically typed language Python.

10

2.2.3 Ad-hoc polymorphism

Historically, ad-hoc polymorphism has characterized arithmetic op-

erators which have definitions on disparate types (see Figure 2.3). The term

bears the pejorative phrase ad hoc because, according to Strachey [62], with

this polymorphism “there is no single systematic way of determining the

type of the result from the type of the arguments.” Notably, Strachey de-

scribes ad-hoc polymorphism as an inherent quality of programming to be

studied; in [62] he never explains why a language should support it, ex-

cept implicitly as a convenience for programmers accustomed to informal

mathematical notation (Section 2.1.2). Strachey also recognizes the need for

“rules of limited extent which reduce the number of cases” of these multi-

ply defined operators and foretells that such rules would be “ad hoc both in

scope and content.” (Rules that do precisely this will be presented with the

Fortress programming language in Section 3.3.8.)

Whereas Strachey implies that ad-hoc polymorphism is irregular, Car-

delli and Wegner [15] assert that it is merely “apparent” polymorphism.

They explain that “ad-hoc polymorphism is obtained when a function works,

or appears to work, on several different types (which may not exhibit a com-

mon structure) and may behave in unrelated ways for each type.” Their def-

inition of overloading largely matches that presented at the beginning of Sec-

tion 2.1, with the important exception that they describe it as a “convenient

syntactic abbreviation.” They describe another kind of ad-hoc polymor-

phism, coercion, as on the contrary a semantic operation. Phrasing overload-

ing as a syntactic convenience certainly agrees with its use in mathematics,

but this unduly limits its functionality in programming. In Section 2.5 we

shall see how overloading also achieves important abstraction and special-

11

// integer addition

opr + (m: Integer, n: Integer): Integer = ...

// floating point addition

opr + (a: Real, b: Real): Real = ...

// string concatenation

opr + (s1: String, s2: String): String = ...

2 + 2 // evaluates to 4

3.14 + 2.72 // evaluates to 5.86

"foo" + "bar" // evaluates to "foobar"

Figure 2.3: Common examples of ad-hoc polymorphism via overloading in pseu-
docode: + is overloaded for addition and concatenation.

ization properties.

In this thesis, unless otherwise specified, overloading is taken to be

synonymous with ad-hoc polymorphism, while polymorphism and genericity

are taken to be synonymous with parametric polymorphism.

2.3 Mapping names to interpretations

So far we have only peripherally described the implicit mapping of

an overloaded name to a unique interpretation. However, this name res-

olution, called dispatch, plays an important role in both the specification

and the implementation of overloading: it is the mechanism by which the

implicit control flow of overloading is realized.

12

2.3.1 Overloading as binding

All programming languages, at some level, support the binding of

a name to a syntactic object. With lexical scoping a binding of name x only

exists within some lexically apparent extent, and references to x are deter-

mined statically; with dynamic scoping each bound name x has its own stack,

to which new bindings of x are pushed at run time, and from which the top

is accessed as the current value of x. In a language with dynamic scop-

ing, or with lexical scoping and shadowing, binding can be seen as a form

of overloading in which the dispatch mechanism trivially accesses the most

recently defined binding.

The means of name lookup (i.e. dispatch) varies between lexical and

dynamic scoping: the former happens statically and the latter at run time.

More than an implementation concern, this distinction affects program be-

havior. For example, the following lambda calculus expression (with let

and integers) evaluates to 1 with lexical scoping and shadowing and to 2

with dynamic scoping:

let x = 1 in

let f = λ y. x in

let x = 2 in f 0

As with name lookup in conventional binding, the dispatch semantics of a

system with overloading affects program behavior; hence the statement in

Chapter 1 that a specification of overloading is incomplete without describ-

ing dispatch.

13

2.3.2 Dispatch in context

The notion of context introduced in the definition of overloading from

the beginning of this chapter has remained largely unspecified. Up to this

point it has generally been interpreted as the argument type to which an

overloaded function is applied. (In Chapter 3 we shall see that this inter-

pretation is common in practice.) Context might also involve other type

information like the expected type of the application.

More generally, though, dispatch is not confined to statically de-

termined type information. Dispatch is not even confined to the static or

compile-time phase of execution; it can also be performed in the dynamic or

run-time phase of execution. During run time, instead of reasoning about

the context using the types of subexpressions, the dispatch mechanism can

reason about the precise values of those subexpressions. Thus the context

established dynamically is in a sense “more specific” than that established

statically.

When a system only performs dispatch in the static phase, we say

it exhibits static dispatch semantics; when it performs dispatch also in the

dynamic phase, we say it exhibits dynamic dispatch semantics. Static and

dynamic dispatch are also known, respectively, as type-based and value-based

dispatch, for obvious reasons.

14

2.3.3 Abstract and concrete overloadings

An abstract overloading specifies only the signature of an interpre-

tation6 rather than an interpretation itself; it is a fictional overloading that

only exists for static analysis. A concrete overloading specifies the signa-

ture and the definition of an interpretation; i.e. it is an overloading that may

actually be executed at run time.

For example, an abstract overloading for +might have signature ∀α ∈
Numeric . α → α → α, where α ranges over all types in the set of numeric

types, Numeric. Concrete overloadings that satisfy this abstract one include

those with signatures Int → Int → Int and Complex → Complex →
Complex, whereas the concrete overloading with signature String→ String

→ String does not satisfy it. Because an abstract overloading contains no

definition (and thus no code), a crucial invariant must be maintained: dis-

patch must have selected a concrete overloading for any overloaded name

reference before the execution of that reference.

For any abstract overloading A, there exists some (possibly empty)

set of overloadings DA that satisfy it. If every overloading in DA is con-

crete, then A is called the principal overloading of DA; moreover, if the

set of overloadings for the name f is exactly {A} ∪ DA, then A is further

called the principal overloading of f . As a helpful analogy, one can think

of abstract overloadings as types and concrete overloadings as values. Sys-

tems in which only concrete overloadings satisfy abstract ones correspond

to systems in which values inhabit only a single type, and systems in which

any overloading may satisfy an abstract one correspond to systems with

6Alternatively, an abstract overloading declares a shape, type, specification, scheme, or tem-
plate.

15

subtyping. If the name f has a principal overloading A, a reference to f

corresponds to an expression whose principal type, the most general type it

inhabits, is the type of A [23]. Continuing the analogy, when an overloaded

name f does have a principal overloading A, then the type of f can be in-

ferred as the signature of A.

2.4 Parametric overloading and extensibility

Strachey states in [62] that “polymorphism of both classes [ad-hoc

and parametric] presents a considerable challenge to the language designer,

but it is not one which we shall take up here,” and Cardelli and Wegner say

nothing about mixing ad-hoc and parametric polymorphism in [15]. Over-

loading of polymorphic functions has indeed presented some difficulty in

programming language design. For example, consider the overloaded func-

tions in Figure 2.4 with varying genericity. In Chapter 3 we shall explore

systems that support overloaded polymorphic functions, including the au-

thor’s work on Fortress.

foo
(
xs: ListJAnyK, ys: ListJAnyK

)
*� 1

fooJTK
(
xs: ListJTK, ys: ListJTK

)
*� 2

fooJT, UK
(
xs: ListJTK, ys: ListJUK

)
*� 3

Figure 2.4: An example in Fortress of three overloadings each parameterized by a
different number of type variables.

Alternatively, mixing the two classes of polymorphism might involve

parameterizing a function definition over all types for which an overloaded

name is defined, like the Haskell function

16

double :: Num a => a -> a

double x = x + x

This function is parametric over all types a that satisfy the predicate Num a

and thus have the + operator defined. This property is essential for exten-

sible overloading: without ranging over all possible types that support the

overloaded name, that name could only refer to the fixed set of interpreta-

tions known during compilation of that name. In general we consider sys-

tems with an “open world” approach in which overloadings defined modu-

larly can be augmented with those defined in client programs. For example,

we hope that the double function will work on overloadings of + defined by

some client program, such as Quaternion → Quaternion → Quaternion,

which are unknown to the program that defines double.

2.5 A means to multiple ends

There appear to be three fundamental programming language fea-

tures induced by overloading (among other means), although a literature

search yields no such exposition. These overloading raisons d’être are out-

lined below and briefly related to their realization in practice. (Chapter 3

will explore these ideas in practice in more detail.)

2.5.1 Convenience

In natural languages and informal mathematics it is simply more

convenient to overload names and operations than to uniquely refer to each

interpretation. Whether that means writing explicit dot symbols for mul-

tiplication or subscripting each use of an ambiguous word with a unique

17

identifier from a standard dictionary, precision comes with the cost of more

syntax and larger texts.

Sometimes a function is called with the same argument pattern often

enough to justify an additional overloading that is implemented in terms

of the old one. For example, println() and println(Object) overload-

ings of println(String) in place of repeated calls like println("") and

println(obj.toString), or constructor overloadings that provide default

values for certain fields. These additional overloadings provide convenient

access to semantically related behavior, but they are by no means neces-

sary. One could think of them as syntactic sugar (cf. Cardelli and Weg-

ner’s statement) for functions called println String, println void, and

println Object.7 In that case, the desugaring would necessarily be type-

directed, since println(x) could desugar to either println String(x) or

println Object(x) depending on the type of x. Further, what if the type

of x is Object at compile time and String at run time? Desugaring to

println Object would mean that the “wrong” function is called during ex-

ecution.8

Other times a function name is used so commonly for two com-

pletely different argument types that the overloadings are provided as an

abuse of notation — such as integral and floating point arithmetical opera-

tions. Standard ML offers overloading for arithmetic operators and record

types as a convenient compromise, but leaves the rest of the work of nam-

ing and abstraction to the module system [33, §8.3]. The standard library of

7Even if overloading could be desugared out of a program, it still provides a convenient
facility for programmers; let-binding is sugar for a lambda abstraction and application,
but this facility is still ubiquitous among programming languages.

8In the case of println this distinction is probably moot.

18

OCaml, on the other hand, provides distinct operators like +. and *. for

floating point operations.9

2.5.2 Abstraction

Most programming languages offer facilities for defining and using

abstract data types. Each representation type for an abstract type is defined

along with some core, axiomatic functions that designate the behavior of the

abstract type, like insert and empty for the abstract type Set. The abstract

type and its abstract functions form a contract for users: any representing

type and functions that implement the abstraction may be used in its place.

Client programs then refer to the abstraction but a specific representation is

actually used during execution.

This general notion of data abstraction is modeled with existentially

quantified types in the polymorphic lambda calculus and in System F. An

existential type comprises an abstract type variable representing each con-

crete type and a constituent type specifying the structure of the whole ab-

stract type. The existential type is inhabited by a representation pair: a

concrete type to instantiate the variable and a type for the whole structure

(defined by the abstract type structure with the concrete type substituted

for the variable). References to an abstract type (e.g. Set) must be directed

to some representation during execution (e.g. TreeSet), and in order to use

that representation, it must first be “opened” over some lexical scope; only

in that scope are its concrete definitions available (e.g. insert). Notably,

any reference to, say, insert in a client program uniquely maps to a single

9See the Pervasives module documentation: http://caml.inria.fr/pub/docs/
manual-ocaml/libref/Pervasives.html#6_Floatingpointarithmetic

19

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#6_Floatingpointarithmetic
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html#6_Floatingpointarithmetic

representation that was explicitly specified in that program. Module-based

programming languages like ML take this approach.

An alternate interpretation of data abstraction sees each concrete func-

tion existing in the same namespace — all representations are merely over-

loadings of the abstract definitions. In the Java programming language,

an interface construct declares abstract methods that must be defined by

any implementing class. Every implementation of that interface defines a

concrete overloading of each abstract method. In a client program, an in-

vocation of isEmpty on a receiver of abstract interface type Set refers to the

abstract overloading at compile time (Set.isEmpty()) and to some concrete

overloading at run time (TreeSet.isEmpty()). The overloading resolution

and inheritance mechanisms of Java guarantee that a unique, concrete over-

loading will be executed at run time, thus maintaining the aforementioned

invariant. Haskell’s system of type classes also achieves data abstraction

through overloading, albeit with some fundamental differences from Java,

as we shall see in Sections 3.1 and 3.2.

2.5.3 Specialization

When one overloading applies to a strict subset of the arguments to

which another overloading applies, we say that the former specializes the

latter, or that the former is more specific than the latter. Generally in this

case the more specific overloading’s domain (i.e. its parameter type) is a

subtype of the other’s, and knowing about the subtype’s structure affords

that overloading more information about its parameter.

For example, consider an overloaded function process with over-

loadings process1(List) and process2(ArrayList), where ArrayList is a

20

random-access subtype of List. Because process2 applies to those expres-

sions of type List which also have type ArrayList, while process1 applies

to all expressions of type List, we say that process2 is more specific than

process1. An ArrayList expression has additional structure beyond that

of List — namely, a random-access array for the list. Thus the definition

of process2 can make use of that additional structure and possibly yield

a more efficient implementation: perhaps the random-access algorithm of

process2 requires constant time in the length of the list while the sequential

algorithm of process1 requires linear time.

At first glance, specialization via overloading seems like an unneces-

sarily indirect route — why not simply refer to the specialized overloading

instead of the overloaded name? In the previous example, if a program-

mer could write the subscript on the overloadings, she could then write

process2(exp) in her programs whenever the expression exp is indeed an

ArrayList, thus circumventing overloading entirely. However, the type of

exp at run time might be different (e.g. a subtype) from that at compile

time. In this case, process1 is the only applicable overloading when the

programmer writes the code, but process2 might be applicable during ex-

ecution. The more specific — or “more appropriate” or “more efficient” or

simply “better” — overloading is selected automatically as an implementa-

tion detail.

In effect, with overloading, the compiler and/or run time environ-

ment of the language usurps control from the programmer and exploits

its knowledge of the precise values being computed. This inherent lack

of programmer control summarizes the opposition to overloading among

21

programmers. Others, including the author of this thesis, view the above

benefits of implicit control flow as outweighing that cost.

22

Chapter 3

Overloading in the field

3.1 Type classes

Originally introduced by Wadler and Blott [66] for Haskell [50], type

classes have become a popular facility for ad-hoc polymorphism. They de-

vised type classes as a means to specify type-safe definitions of equality

(thus deprecating ML’s then notion of eqtypes) and, as usual, arithmetic

operations. Since then type classes have been adapted for use in other lan-

guages, such as modular type classes for ML by Dreyer et al. [25], concepts

for C++ by Siek [56, 57], generalized interfaces for Java by Wehr et al. [67],

and, more literally, type classes for Coq by Sozeau and Oury [59].

3.1.1 Overview

Type classes encapsulate overloaded function declarations, with sep-

arate instances that define the behavior of those functions (called class meth-

ods) for any particular predicated type. Parametric polymorphism is then

augmented to express type class constraints, providing a way to quantify

a type variable — and thus a function definition — over all types that in-

stantiate the type class. Kaes, in a similar, independently discovered system

[39], dubbed the parameterization of a function over all interpretations of

its overloaded references as parametric overloading.

In the type system, a type class C acts as a predicate over types: the

23

predicate C τ is satisfied iff an implementing instance of C is provided for

type τ . Each predicated type consists of a constituent type and a set of class

constraints on type variables, Ci ai, that must be satisfied. The methods de-

clared in a class C are top-level and available in any scope, but for each ref-

erence a particular instance’s definition of that reference must be executed

at run time. The implementation chosen for a reference is located within

the current lexical scope — it is either defined in a top-level instance defini-

tion or its existence is hypothesized. For example, the double function from

Section 2.4 (reproduced in Figure 3.1) posits the existence of an instance sat-

isfying Num a which is required for the reference to +. Such an instance must

be supplied so that some interpretation of the overloaded reference will be

executed.

3.1.2 Analysis of overloading features

Abstraction Type classes exhibit abstraction through overloading exactly

as described in Section 2.5.2: a constraint C a directly corresponds to an ab-

stract data type whose type structure is given by the declared method types

in the class C. As an implementation, Wadler and Blott described a transla-

tion of a type class-based language into the polymorphic lambda calculus

(without type classes).1 This dictionary passing transformation converts type

classes into polymorphic dictionary types, instances into corresponding dic-

tionary expressions that hold the method implementations, and overloaded

references into dictionary lookups. Whereas the original code implicitly ex-

1Wadler, along with Hall, Hammond, and Peyton Jones, formalized this elaboration
semantics for Haskell [32] as part of its typing relation, which Faxén more completely (but
less concisely) defined much later in [27].

24

--------- originally compiled library code ---------

class Num a where

(+) :: a -> a -> a

(*) :: a -> a -> a

neg :: a -> a

-- The ‘prim‘ functions are primitive numeric

-- operations implemented specially.

instance Num Int where

(+) = primIntAdd

(*) = primIntMul

neg = primIntNeg

instance Num Float where

(+) = primFloatAdd

(*) = primFloatMul

neg = primFloatNeg

-- The (Num a) and (Num b) assumptions are used

-- in the implementations of the methods.

instance (Num a, Num b) => Num (a, b) where

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

(x1, x2) * (y1, y2) = (x1 * y1, x2 * y2)

neg (x1, x2) = (neg x1, neg x2)

--------- separately compiled client code ---------

instance Num Quaternion where ...

double :: Num a => a -> a

double x = x + x

Figure 3.1: An example usage of overloading in Haskell.

presses data abstraction with an overloaded function reference, the trans-

lated code explicitly opens the abstract data type for the required class and

25

accesses its concrete representation of that function. Dreyer, Harper, and

Chakravarty provide a complete account of this correspondence between

the implicit data abstraction of type classes and the explicit data abstraction

of ML modules in [25].

Convenience In systems with type classes, overloaded functions must be

contained in some type class, and their signatures must be equivalent, mod-

ulo substitution of the class parameter. (Kaes’s system also requires each

overloaded name to have a single overloading scheme.) This uniformity is

necessary for an overloaded function call to admit a principal type; with

a principal type for some function call’s context, the type checker can de-

termine the constraints under which a correct overloaded definition will be

found. Because of this requirement, type classes are ill-suited for fixed, ad

hoc sets of overloaded functions like

println(): () = println(“”)

println(s: String): () = . . .

or functions lacking uniform variance in the domain and range2 like

bar(x: Z): Boolean = (x = 0)

bar(x: Boolean): Z = if x then 1 else 2 end

bar(x: String): String = x

2With multi-parameter type classes [26], one could define functions as these. A reference
to the method bar, however, would require an explicit type annotation like :: Int ->
Bool to apply to an Int.

26

The rich type inference afforded by type classes also contributes to

convenience, as programmers may omit most (if not all) specifications of

type class constraints for parametric overloading.

Specialization In many type class systems, no two instances can “over-

lap” in which types they cover. This means that there can be no ambiguity

when choosing an interpretation and effectively rules out specialization. To

define a specialized function like process from Section 2.5.3, a single defini-

tion must be parameterized over some type class that specifies overloaded

list operations for traversal and indexed access. However, this process

function must have the exact same code for all list instances — the only al-

gorithmic variation between the instances occurs in the implementations of

the class methods. It is possible (and likely) that the class methods and the

implementations thereof do not offer the algorithms needed for this partic-

ular function, process. Then the only way a function can be specialized is if

the specialization lies entirely within the domain of the predefined methods

of the type class it concerns. Since individual instances cannot be modified

after their declaration and since no two instances can be defined on the same

types, client programmers cannot define overloaded functions on existing

types that are specialized to their needs.

Dispatch Each type class method declares a top-level function available

in any scope and uniquely determines the class that declared it, so we can

“lift” it to an abstract overloading (as in Section 2.3.3): a method f ::τ

declared in class C a lifts out to an abstract overloading named f with sig-

nature C a ⇒ τ . Furthermore, each definition of f in an instance θ ⇒ C

27

υ lifts out to a concrete overloading of f with signature [υ/a]θ ⇒ [υ/a]τ .

To resolve an overloaded reference into an interpretation, the type checker

finds a concrete overloading whose type unifies with the expected type of

the reference and whose predicate is satisfied in the calling scope.

During type checking (i.e. statically) dispatch must select some over-

loading for each reference to f. Since no two instances can overlap there

can be at most one matching overloading; this overloading may be abstract

(declared in the class itself) or concrete (defined in some instance). Dispatch

must guarantee that a concrete overloading is executed at run time. With

dynamic dispatch, a concrete overloading replaces the abstract one at run

time, but systems with type classes do not typically implement dynamic

dispatch semantics. Instead, these systems exhibit what could be described

as deferred static dispatch; for an overloaded reference in some function

definition, the dispatch choice is deferred to the calling function.3 With this

semantics, dispatch is decided statically and those static decisions are prop-

agated dynamically.

Deferred static dispatch is implemented easily with the dictionary

passing transformation: Each type class constraint on a function’s signature

becomes an explicit dictionary parameter which must be supplied when

calling this function. That dictionary contains the deferred implementation

for the overloaded references in the called function.

3Other authors describe type class dispatch semantics as “type-based.” This suggests
that the types in the context of an overloaded reference determine the chosen implementa-
tion, but since the implementation is passed in as an argument, this is not the case.

28

Extensibility When a function such as double is parameterized over in-

stances of a type class, any instance thereof can be used in the function,

even those declared in a separately compiled program. However, as men-

tioned above, only a single instance can be defined on any particular type.

The modular type classes of Dreyer et al. [25] and the named instances of

Kahl and Scheffczyk [40] provide ways to circumvent this restriction.

3.1.3 System O

Odersky, Wadler, and Wehr define a variation on type classes in [49]

called System O which actually omits type classes altogether. Instead of

specifying overloaded functions in semantically related groups, programs

in System O declare overloaded functions directly. Thus each type predi-

cate has the form m ::τ , meaning that the overloaded name m has an im-

plementation at type τ . Because overloaded names are divorced from their

interpretations, in System O one can overload + for numbers and for strings;

with type classes, + would typically belong to a numeric type class which

prevents the inclusion of strings (compare Figures 3.1 and 3.2). System O

resembles the original parametric overloading system of Kaes [39] and it

extends the Hindley-Milner style of ML more conservatively than do type

classes.

Like with type classes, System O admits a rich type inference algo-

rithm. In System O, however, that algorithm is complete: no type annota-

tions are ever required. Every program also has a dynamic semantics irre-

spective of its type. (With type classes a program might admit two different

types, and its dynamic behavior could vary depending on which type was

chosen statically.) Furthermore System O can be implemented with a very

29

--------- originally compiled library code ---------

over (+)

-- The ‘prim‘ functions are primitive numeric

-- operations implemented specially.

inst (+) :: Int -> Int -> Int

(+) = primIntAdd

inst (+) :: Float -> Float -> Float

(+) = primFloatAdd

-- Able to define string concatenation overloading now.

inst (+) :: String -> String -> String

(+) = stringConcat

-- Able to define unary plus too.

inst (+) :: Int -> Int

(+) x = x

--------- separately compiled client code ---------

inst (+) :: Quaternion -> Quaternion -> Quaternion

(+) = ...

double :: ((+) :: a -> a -> a) => a -> a

double x = x + x

Figure 3.2: An example usage of an overloaded addition operation in System O.

similar dictionary passing transformation, taking a well-typed System O

program into a well-typed System F program.

Unlike type classes and Kaes’s system [39], each concrete overload-

ing can have a unique type structure; there is no declared overloading scheme

or template that all implementations must obey. System O does enforce

30

its own restrictions on overloading types though: each overloading con-

straint’s type must start with a type variable in order to guarantee complete

type inference.

The analysis of overloading in System O varies little from that of type

classes. However, System O makes explicit the connection to abstract and

concrete overloadings in the generalized account from Chapter 2: instance

declarations directly define concrete overloadings, while local overloading

type assumptions declare abstract overloadings. These abstract overload-

ings may be used statically but obviously cannot be used dynamically. The

dictionary passing transformation guarantees that at run time a concrete

overloading is provided in place of each abstract one.

3.1.4 λO

Shields and Peyton Jones recognized the utility of ad-hoc overload-

ing and specialization typically found in object-oriented languages. To

model such languages within the context of type class overloading, they de-

vised a system called λO that incorporates these features and subtyping in

Haskell [55].

The type classes of λO resemble the overloading of System O in that

each class specifies a single overloaded name and each instance a single

interpretation. A key innovation of λO is the introduction of closed classes:

classes of which no further instances may be defined. Closed classes can be

used for simplifying type constraints. For example, the following λO -style

overloadings of an addition operation

class closed (+) a where a

31

instance (+) (Int -> Int -> Int) where primIntAdd

instance (+) (Float -> Float -> Float) where primFloatAdd

permit the simplification of the type of the client function succ from the

seemingly most general one, which involves a constraint on (+), to a much

simpler one

-- succ :: ((+) (a -> Int -> b)) => a -> b

succ :: Int -> Int

succ x = x + 1

because the only possible instance whose second parameter is an Int is that

defined above. Additionally, those closed definitions mean that the follow-

ing client function is no longer well-typed because there is no instance on

Bools:

-- f :: ((+) (a -> Bool -> b)) => a -> b

-- f x = x + True

Closed classes therefore give finer-grained control of abstraction and exten-

sibility than ordinary type classes.

Another change to type classes in λO is the inclusion of overlapping

instances, which are instances that cover non-disjoint sets of implementing

types. The main utility of overlapping instances lies in the ability to spe-

cialize type class method implementations. Virtually every object-oriented

language offers this kind of specialization (see Section 3.2), which inspired

its inclusion in type classes for λO .

32

3.1.5 Constraint handling rules

Much of the work required by the type system in order to reason

about type class-based overloading involves constraints on overloaded

names. In [64] Stuckey and Sulzmann generalize the parametric overload-

ing of type classes and System O with constraint handling rules (CHRs). The

design space of overloading does not significantly change in their system.

As the CHRs serve mainly to model the constraint logic in the type system,

the deferred static dispatch semantics and type inference are enriched to

better distinguish ambiguity and unambiguity.

The CHR system of Stuckey and Sulzmann generalizes type class ex-

tensions like constructor classes [37], multiparameter classes [26], and functional

dependencies [36]. With CHRs, however, programmers are burdened with

an additional metalanguage of constraints. In the opinion of this author,

a well-designed programming language instead provides facilities that, on

one hand, the programmer utilizes to specify an ontology of program ab-

stractions, and on the other hand, the type system utilizes to verify proper-

ties about that ontology.

3.2 Object classes

First introduced in Simula in 1967 [6], and popularized in Smalltalk

[30], C++ [63], and Java [31], object-oriented (OO) languages have domi-

nated programming practice. Whereas type classes originate from formal

presentations in the research literature, much of the body of knowledge sur-

33

rounding objects involves informal presentations and implementations.4 In

this section we describe a general OO language, taking care to address the

most salient concepts among such languages.

3.2.1 Overview

An object encapsulates data and exhibits certain behaviors or methods

that can be invoked on it in order to access its data in a functional manner;

when a method is invoked on an object, we call that object the receiver. A

method is invoked on an object exactly like an ordinary function call, with

the exception that the receiver is a syntactically distinct argument to the call.

For example, in the expression x.m(y, z), x is the receiver, m the method,

and x and y the additional arguments, of which there could be zero or more.

A class acts as a generating template for objects that share the same

behaviors albeit with possibly distinct internal data. Thus every object is an

instance of some class and respects every method defined in that class. In

statically typed OO languages each class corresponds to a type, and any in-

stance of that class has that type. Classes can be organized into an ontology

through an extension relation. If a class C is declared to extend another class D,

then C inherits each method in D and the data encapsulated by C is a superset

of that of D. However, subclasses can override inherited methods by redefin-

ing them, possibly making use of the new internal data in the subclass. In

this way overriding allows one to specialize a method’s implementation for

the subclass.

With overriding comes multiple interpretations for a single method

4Igarashi, Pierce, and Wadler devised Featherweight Java [35] as a formal calculus for
the Java type system, partly to rectify this problem.

34

name (i.e. which inherited method definition to use), so we need a kind

of dispatch mechanism to determine a unique one. Thus, although it is

not typically presented as such, overriding is a form of overloading.5 To de-

cide which interpretation to use, the dispatch mechanism determines which

ones are applicable for the invocation and then chooses the least applicable

interpretation, according to some order. An overloading is applicable for

an invocation if the argument types are all subtypes of their corresponding

parameter types (including the receiver argument/parameter).

Normally, the interpretation of a method invocation is decided stat-

ically based on the types of all the arguments (including the receiver). If

the invoked method is a virtual method, however, then the interpretation is

decided statically for type checking and again at run time: the class of the

evaluated receiver — along with only the types of the remaining arguments

— decides the interpretation. Figure 3.3 below illustrates the difference be-

tween virtual and non-virtual methods. Some languages, like C++, allow

users to specify which methods are virtual, while others, like Java, force all

methods to be virtual. Note that in dynamically typed OO languages, like

Smalltalk, one can think of all methods as virtual since there is no static

phase.

3.2.2 Analysis of overloading features

Abstraction In some languages methods can be declared abstract, which

effectively transforms the method definition into a method obligation (with

no implementation). These abstract method obligations are inherited just

5This statement is not quite correct for a system that lacks multiple dynamic dispatch
semantics, as explained in Section 3.3.1.

35

class A {

def foo(): Int = 1

virtual def bar(): Int = 2

}

class B extends A {

def foo(): Int = -1

def bar(): Int = -2

}

val b: A = new B

b.foo() // evaluates to 1

b.bar() // evaluates to -2

Figure 3.3: Example of virtual methods and overriding in OO pseudocode. Note
that the method foo is not virtual but the method bar is, and that b has type A but
is actually an instance of B at run time.

like normal methods.6 Classes which have declared or inherited abstract

methods are themselves abstract, and these classes can never exist at run

time. Thus each abstract method in a class corresponds to an abstract over-

loading, and the other methods to concrete overloadings. As usual, at run

time only a concrete overloading may be executed; this property is guaran-

teed since only concrete classes exist at run time.

As discussed in Section 2.5.2, abstract classes and methods provide

a means of data abstraction in OO languages. An expression whose type

is an abstract class is like an abstract data type, which at run time will be

6The propagation of both concrete method definitions and abstract method obligations
is a primary function of mixin modules. In the original work on the subject, Bracha and
Lindstrom called these definitions and declarations [10], respectively, while more recently
Dreyer and Rossberg called them exports and imports [24].

36

replaced with an evaluated object, an instance of a concrete class. To further

enforce the correspondence to abstract data types, Java provides interface

constructs [31, Ch. 9] which are entirely abstract entities.

Convenience Many OO languages allow direct, ad-hoc overloading of

methods, such as println(String) and println(), in addition to method

overriding. Due to phrasing overriding as a kind of overloading, dispatch

largely remains unaffected by this ad-hoc overloading: it must simply con-

sider more interpretations for a method invocation than those inherited or

overridden.

Specialization Overriding and virtual methods allow programmers to spe-

cialize methods for receiver values. For example, consider the classes List

and ArrayList, with the latter extending the former. The virtual method

get(Int) defined in List accesses the i-th element of the list; its implemen-

tation might walk the list starting from the 0-th element until the i-th is

reached — a linear-time operation. However, the random-access ArrayList

class can override this method to perform a constant-time access for the i-th

element. Any invocation of get on a receiver whose type is List but is ac-

tually an ArrayList at run time will execute the specialized, constant-time

implementation, despite the appearance of a linear-time operation during

type checking.

Unfortunately, in virtually every OO language, specialization only

occurs on the receiver argument of a (virtual) method invocation. Since

each overriding method definition only knows about its own representa-

tion, it cannot specialize according to the other arguments — Cook called

37

this principle autognosis in his discussion of abstract data types and objects

[20]. In Section 3.3 we will explore what is required of OO systems that

allow specialization on all arguments.

Dispatch The correspondence of method overriding to overloading re-

sults in a correspondence in dispatch semantics. Using the definitions from

Section 2.3, choosing an interpretation for the invocation of non-virtual meth-

ods corresponds to static dispatch. For virtual methods, however, the corre-

spondence is not so direct. We defined dynamic dispatch as the case when

dispatch determines an interpretation based on the values of all arguments

to a function, but in virtual method invocation, only the value of the re-

ceiver argument is considered. We therefore use the term single dynamic

dispatch7 to describe the choice of interpretation for virtual method invo-

cation.

Extensibility As discussed in Section 2.2.2, OO languages exhibit inclu-

sion polymorphism. Any class can be extended by another class8, possibly

in a separately compiled program, thus allowing any instance of the sub-

class to act as an instance of the superclass. Any function parameter of some

class C can be inhabited at run time by an object whose class is a subclass of

C.

Furthermore, object classes, like type classes, exhibit a form of para-

metric overloading. With object classes, a function definition in which an

7Other authors have called this semantics single dispatch, dynamic dispatch, and virtual
dispatch.

8In many OO languages a class can be declared to have no further subclasses.

38

abstract method m is invoked on an argument arg (with an abstract class

type) is, obviously, parameterized by that argument. At run time some con-

crete overloading of m will be executed, and the class of the evaluated object

which is passed in for arg provides that concrete overloading. Therefore the

argument arg itself acts as the parameter which determines the interpreta-

tion of the “overloaded” name m — like a type class constraint.

3.2.3 Multiple inheritance

We have so far only considered extension of a single class, i.e., sin-

gle inheritance. However, it is certainly useful to model classes that inherit

from multiple superclasses, particularly when each superclass represents

some fine-grained, abstract attribute like Sized or Positional. Multiple

inheritance poses tricky problems for OO language design [58]. For this

thesis, the relevant problem concerns the inheritance of concrete method

definitions of the same name from two different classes: which definition

should be executed when such a method is invoked on an instance of the

multiply inheriting subclass? (Figure 3.4 below provides a concrete exam-

ple.) With single inheritance, no such ambiguity exists.

One solution to this problem is to impose a linearization of multiple

inheritance [58] so that each class always inherits from one other, such as

in Scala [48, §5.1.2]. Another solution is to require any such subclass to

override the method in question. In this case, when the method is invoked

at run time on an object of the subclass, its own overriding definition will

be executed unambiguously.9 We shall see more of this style of preventing

9Because Java interfaces only allow abstract method declarations, any concrete class

39

class Cowboy {

def draw() = // destroy

}

class Artist {

def draw() = // create

}

class CowboyArtist extends { Cowboy, Artist } { }

marlboro_manet.draw()

Figure 3.4: Example of ambiguity caused by multiple inheritance in OO pseu-
docode. marlboro manet is an instance of class CowboyArtist, which inherits draw
from both superclasses.

overloading ambiguity in Section 3.3.

3.2.4 Polymorphism

Canning et al. introduced F-bounded polymorphism as a basis for (para-

metric) polymorphism in statically typed OO languages [13]. Like in the

second-order lambda calculus with subtyping, System F≤10 [22], the type

variables of universally quantified types can have supertype bounds; this

reinforces the notion of parametric overloading discussed previously. For

example, if a function is parameterized by a type variable α <: Num, where

Num is an abstract numeric class, then the methods of Num can be invoked on

an argument of type α.

that extends that interface must provide a definition for those methods. Consequently,
Java allows multiple inheritance of interfaces only.

10The now-standard calculus F≤ has its roots in the language Fun devised by Cardelli
and Wegner in the same essay discussed in Section 2.2 [15].

40

Polymorphism existed in C++ in the form of template classes and

template functions, which compilers expand into intermediate source code.

Following the work of Bracha et al. on GJ [11], “generics” were added to

Java. Igarashi et al. modeled GJ as part of their Featherweight Java core

calculus, calling it Featherweight GJ [35, §3]. These polymorphic languages

— and consequently any language based on the Java Virtual Machine [42],

like Scala — all make use of type erasure for execution. With type erasure, all

parametric polymorphism is compiled out of the program so that the run

time environment need not consider it. Type erasure sometimes conflicts

with overloading in unexpected ways; for example, the following over-

loaded declarations in Scala are invalid: 11

def foo[T](xs: List[T]): List[T] // general

def foo(xs: List[Int]): List[Int] // specialized #1

def foo(xs: List[String]): List[String] // #2

The Scala compiler erases the polymorphism from these declarations, re-

sulting in three overloadings with identical signatures: 12

def foo(xs: List): List

def foo(xs: List): List

def foo(xs: List): List

(Even if these overloadings were valid, the specialized ones would only

be executed when the argument is a List[Int] or List[String] statically,

11The analogous definitions in Java would similarly be invalid.
12OO languages generally prohibit overloadings with equal parameter types (including

the receiver parameter) because dispatch must distinguish between two applicable over-
loadings by their parameter types. In the more type-based approach to dispatch found in
type class languages like Haskell, this restriction is not always necessary.

41

due to the way virtual methods work. With multimethods, presented in

Section 3.3, this is not the case.)

3.2.5 Local type inference

With polymorphic methods comes type application on invocations.

Many functional languages adopt the Hindley-Milner type system which

admits complete or near-complete type inference: users never worry about

applying the types that instantiate polymorphic functions. Unfortunately,

incorporating full type inference into systems that combine subtyping and

polymorphism has mostly eluded researchers. To alleviate the burden of

explicit type application, languages like Scala (and to some extent, Java)

employ local type inference [52], a technique which infers type application

for most invocations.

Returning to the overloaded polymorphic functions in Fortress from

Figure 2.4, consider the function call foo(listOfInts, listOfStrings) . This call

could refer to the monomorphic overloading 1, or it might refer to the poly-

morphic overloadings 2 and 3 with an implicit type application of JAnyK

(2) or JZ, StringK (3) or even JAny, AnyK (3).13 The interaction of local

type inference should thus be taken into account for overloading.

3.3 Multiple dispatch

As demonstrated in the last section, object methods cannot specialize

their implementations according to their argument types. That limitation

13Assuming covariant lists, ListJZK and ListJStringK are both subtypes of ListJAnyK .
However, in the current version of Fortress this is not the case.

42

precludes the kind of specialization that was deemed an important effect of

overloading in Section 2.5.3. Some OO languages, on the other hand, pro-

vide a facility for multiple dynamic dispatch, in which any method argument

can be specialized. This semantics originated in OO variants of Common

Lisp [60] [7] [8] but has remained absent from mainstream OO languages.

In this section we describe multiple dispatch and its challenges, and briefly

summarize systems with such semantics.

3.3.1 Overview

An object method whose invocations depend on the representations

of all argument values is called a multimethod. Multimethods are a natural

extension of virtual methods: the interpretation for a multimethod invoca-

tion is decided dynamically according to the classes of all argument values,

whereas the interpretation of a virtual method depends on the class of only

the receiver value.

The uniformity with which arguments determine the executed over-

loading characterizes a more intuitive semantics for overloading and dis-

patch in OO languages. In single dispatch systems, like those presented

in Section 3.2, overriding cannot be directly considered a form of overload-

ing precisely because an overriding method definition only specializes the

receiver. Figure 3.5 presents a common bug in Java programs due to the im-

proper conflation of dynamic overriding and static overloading: The invo-

cation w1.equals(w2) dispatches to the Object.equals definition because

the static type of w2 is Object, forcing the dynamic dispatch mechanism to

43

only find interpretations with an Object parameter type.14 If Java exhib-

ited multiple dynamic dispatch semantics, then overriding would truly be

a form of overloading, and this example would behave as expected. As we

shall see in Section 3.3.3, though, multiple dynamic dispatch brings with it

some hefty obstacles.

3.3.2 Analysis of overloading features

The relation of multiple dispatch to the generalized overloading large-

ly follows that of OO languages with single dispatch (Section 3.2.2). The

main difference lies in the specializing nature of multimethods and in the

expressivity they offer. In single dispatch systems the overloading consists

of overriding (for which each overloading has a very uniform signature)

and static overloading (which can lead to unexpected run-time behavior).

In multiple dispatch systems, programmers are free to overload methods in

virtually any manner they wish, specializing any parameter.

3.3.3 Challenges

The design of a multiple dispatch system is complicated primarily

by three concerns: ambiguity, modularity, and static checking. We describe

these concerns generally and then address them in several prominent mul-

tiple dispatch systems.

14This particular example is also an instance of the binary method problem [12]. However,
the unintuitive distinction between overloading and overriding is a more general concern.

44

// implicit superclass to all Java classes

class Object {

Boolean equals(Object other) {

// check for referential equality

return this == other;

}

}

// a class defined by the programmer

class Widget {

int state;

Widget(int s) {

this.state = s;

}

Boolean equals(Widget other) {

// check for equivalent Widget state

if (this.state == other.state) return true;

else return false;

}

}

Widget w1 = new Widget(5);

Object w2 = new Widget(5);

w1.equals(w2) // false!

Figure 3.5: In this Java program, the Widget.equals definition is presumed to over-
ride the Object.equals definition but actually overloads it.

3.3.3.1 Ambiguity

In a well-typed program, dispatch should never encounter any non-

determinism or ambiguity when choosing an interpretation for a multi-

method invocation. Moreover, at run time some applicable interpretation

must be present for the invocation.

45

We saw in Section 3.2.3 how ambiguity creeps into OO languages

with single dispatch and multiple inheritance. The solutions presented in

that context — linearization of the class hierarchy, and requiring an overrid-

ing definition in the class that inherits two conflicting definitions — do not

entirely apply in the multiple dispatch context. As we shall soon see, am-

biguity occurs even when the class hierarchy is linearized, and furthermore

the ambiguity occurs at parameters other than the receiver, precluding the

straightforward overriding approach.

// B is a subtype of A

class A {}

class B extends A {}

def m(x: A, y: B): Int = 1

def m(x: B, y: A): Int = 2

m(new B, new B) // static error

Figure 3.6: Scala program with a statically ambiguous method invocation.

Even without the complications of multiple inheritance, what was

only statically ambiguous in single dispatch systems is dynamically ambigu-

ous in multiple dispatch systems: The Scala program in Figure 3.6 signals a

static error during type checking since both overloadings apply for the first

invocation, with neither being more specific than the other. The program-

mer can disambiguate the invocation by adding a static type assumption to

an argument to prevent one of the overloadings from applying, for exam-

ple, m(b, b: A), which dispatches to the second overloading. But if this

new invocation were interpreted with multiple dispatch semantics, at run

46

time the argument values would both have type B: now the same ambiguity

occurs at run time instead of compile time! Since there is no more specific

overloading, it would not be unreasonable for this hypothetical system to

preserve the static interpretation when dynamic ambiguity is encountered;

in this case, the invocation would still dispatch to the second overloading.

(We shall return to this point shortly.) The programmer could more accu-

rately disambiguate the invocation by instead providing a new overloading

that is more specific than the other two:

def m(x: B, y: B): Int = 3

Note that instead of defining an entirely new implementation, which is sim-

ply the expression 3 here, the programmer could recursively invoke the

method as above, thus choosing the second overloading.

In the early multimethod systems like CLOS [7, 60] (Section 3.3.4)

ambiguous multimethods are mere inconveniences to be automatically re-

solved ad hoc, or they produce run-time errors. Lécluse and Richard [41]

describe a means of statically checking for ambiguity in an OO language

with single dispatch.15 The Kea language of Mugridge et al. [47] provides

a specification of dynamic ambiguity but not an algorithm. Agrawal et al.

survey static type checking of multimethods but do not consider ambiguity

in [1]; instead their algorithms focus on ensuring that some interpretation for

an invocation exists at run time. Castagna et al. devised a multimethod cal-

culus that prevents ambiguity [17] (Section 3.3.5). Chambers and Leavens

15Although it is single dispatch, their system is based on “structured values” rather than
classes, so the facilities for eliminating ambiguity in the object receiver parameter are not
present.

47

more carefully consider ambiguity as part of a type system with multiple

dispatch in [18], followed later with Millstein in [45, 46, 19] (Section 3.3.6).

3.3.3.2 Modularity

A program component should be type checked given only its own

method definitions and the interfaces of those other components on which it

depends. Furthermore, the compilation tools for the system should have the

capability to compile that component separately from other components.

The main complication of modularity lies in the expansion of avail-

able method definitions and types at run time: When a component C is type

checked, it knows about some set of methods and classes. If another compo-

nent D uses C and extends those methods and classes, then execution of D

leads to execution of C, and C’s knowledge of the methods and types now

lags behind that of D. A multimethod invocation in C will then be executed

without knowing of additional definitions thereof (provided by D). For ex-

ample, consider again the program in Figure 3.6, with the aforementioned

semantics of executing the statically chosen interpretation in the presence

of dynamic ambiguity. If this program were executed due to a call from an-

other module, a module which provides the disambiguating, more specific

definition on two B parameters, then that executed interpretation would not

actually be the most specific available.

The modular extension of classes affects not only the run time dis-

patch, but also the ambiguity prevention in the presence of multiple inher-

itance. Whereas with single dispatch two method definitions (each from a

different class) clash in the receiver parameter when inherited by a common

subclass, with multiple dispatch the clash could occur in any number of pa-

48

rameters. Consider two overloaded definitions m1 and m2, between which

only the ith parameter type differs: in m1 that type is Foo and in m2 it is Bar.

In the class hierarchy visible in the current component, Foo and Bar are en-

tirely unrelated — there is no object which is an instance of both classes and

thus no ambiguity between the methods. However, another program that

uses this (statically checked) component might declare a new class Baz that

extends both Foo and Bar. An invocation of m on an expression of type Foo

now becomes troublesome: an instance of class Baz that is passed in for the

ith argument in that invocation causes dynamic ambiguity. Therefore, to

preserve the modularity of the “open world” of classes and methods, any

mechanism that prevents ambiguity must reason about what could be defined

instead of merely what is currently defined.

Modularity has been prominently investigated in the context of mul-

tiple dispatch systems by Chambers, Leavens, and Millstein [18, 45, 46, 19]

(Section 3.3.6). Earlier, the Kea language [47] provided support for sepa-

rate compilation of classes with multimethods. Other systems that have

explored the challenges of modular multiple dispatch include Half & Half

[5], JPred [28], Fortress [2, 3] (Section 3.3.8), and CZ [43].

3.3.3.3 Static checking

A multiple dispatch system should certainly admit a sound and de-

cidable algorithm16 for statically verifying the well-formedness of multi-

method definitions and invocations in programs. These checks should be

performed modularly and they should catch all ambiguous invocations —

16The verification algorithm can be incomplete iff it can detect when it cannot verify a
program.

49

in effect the multimethods themselves are type checked.

The Common Lisp-based multiple dispatch systems, being dynam-

ically typed, do not admit any static checking or compilation. All other

multiple dispatch systems mentioned thus far do specify static checking. In

the following sections, though, we shall see that not all of them verify the

same properties with the same strategies.

3.3.4 Common Lisp Object System

In the Common Lisp Object System (CLOS) [8], based heavily on

CommonLoops [7] (which originated the term multimethod), methods are

defined outside the scope of classes — a method is not owned by any partic-

ular class. Consequently methods are not distinguished syntactically from

normal functions with the “dotted” form. By convention the first argument

of a method is the object upon which the method acts; in other words, it

is semantically the receiver but not syntactically. Each method definition

with name m defines a multimethod overloading of a generic function named

m and can specify the types of any number of its parameters. Those pa-

rameters with specified types will only apply in method invocations whose

corresponding argument values have subtypes thereof; i.e. any number of

parameters may have unspecified types, so any argument would apply to

those.

CLOS multimethods are totally ordered by specificity, meaning that

for any non-empty list of applicable overloadings for an invocation, there is

always a most specific one. This is achieved by linearizing multiple inheri-

tance and by employing asymmetric multiple dispatch semantics — mul-

timethod parameter lists are ordered not by usual covariant subtyping on

50

entire tuple types (i.e. symmetric multiple dispatch), but lexicographically

by the order of the parameters.17 Consider the methods of Figure 3.6 (with-

out their implicit receiver parameters), which have domain tuple types (A,

B) and (B, A) respectively. The second tuple is not a subtype of the first tu-

ple, but its first element, B, is indeed a subtype of the other’s first element,

A, which makes the second method more specific than the first.

3.3.5 λ&

The λ& calculus of Castagna, Ghelli, and Longo [17] is the first core

calculus devised to model statically typed languages with subtyping and

multiple dispatch. Their calculus extends the simply typed lambda calcu-

lus with multimethods, i.e., functions with multiple “branches,” and appli-

cation of these multimethods to operands. More importantly, their calculus

has the distinction of the first multiple dispatch system to embed unambiguity

into the type system. In terms of overloading, the possibility of ambiguous in-

terpretations at run time is ruled out statically, not unlike the unambiguous

overloading found in type class systems.

An overloaded function f has type Tf = {Ui → Vi}i∈I , where Ui →
Vi is the arrow type of the ith overloading of f . Crucially, however, the type

Tf is only well-formed if for all i, j ∈ I,

1. if Ui ≤ U j then Vi ≤ Vj, and

2. if Ui and U j have a common (non-⊥) subtype then there exists a unique

h ∈ I such that Uh = inf{Ui, U j}.

17In CLOS one can actually change the order in which parameters are tested for speci-
ficity, per method.

51

Condition 1 states that if fi is more specific than f j, its return type must

be a subtype of f j’s — this guarantees type safety of dynamically choosing

a more specific overloading on an invocation. Condition 2 states that if

there is a common subtype of fi’s and f j’s domains, then there must be a

unique overloading fh, the domain of which is equal to the greatest common

subtype of those domains — this guarantees the existence of an overloading

that disambiguates two others, for any possible invocation.

We return again to the example in Figure 3.6. If those Scala methods

are translated to λ& as λ abstractions m1 and m2 with types T1 = (A, B) →
Int and T2 = (B, A) → Int respectively, then the overloaded function that

combines them, m = m1 & m2, has type T = {T1, T2}. However, the type

(B, B) is a subtype of both domains but no overloading with that domain

exists in T — then T is not a well-formed type! Therefore we must add

another overloading whose domain is (B, B) and whose return type is a

subtype of Int; now T = {T1, T2, (B, B)→ Int}. (Note that this overloading

has a signature identical to that of the disambiguating definition discussed

for Figure 3.6 earlier.) In this way, λ& precludes ambiguity on any possi-

ble invocation as part of the type checking process on overloaded function

definitions, without needing to check each invocation site.

As simply a core calculus, λ& lacks any facility for modularity or

abstract declarations of multimethods, but Castagna et al. described its ap-

plication to OO languages in [17]. The Fortress language [3] is such an ap-

plication, with extensions for modularity and robustness. In particular, de-

termining if two types have a common subtype is tricky with the extensible

open world of types in OO languages; Fortress provides a solution to this

problem, which will be discussed in Section 3.3.8.

52

3.3.6 System M

Millstein and Chambers [45] devised Dubious, a classless OO lan-

guage with multimethods, and later Clifton, Millstein, Leavens, and Cham-

bers [19] developed MultiJava, an extension of Java with multimethods,

based on the modularity and dispatch semantics of Dubious. Both lan-

guages rely on modularity restrictions called System M [45, §4.2] to stat-

ically curb dynamic ambiguity. In particular, multiple inheritance from

concrete classes in different modules is forbidden, and abstract (interface)

types cannot be used as multimethod specializers, i.e., as parameter types

of concrete, specialized overloadings. Additionally, whereas only multi-

method signature types must be checked for ambiguity in λ&, in Multi-

Java all possible argument (tuple) types must be checked against all multi-

method definitions, per module.

3.3.7 ML≤

Instead of extensible records, the ML≤ language of Bourdoncle and

Merz [9] uses ML-style data types as the basis for classes: a data type decla-

ration like

datatype list[α] = nil | cons of (α * list[α]);

corresponds in ML≤ to a type constructor list[α] and two data type con-

structors nil[] and cons[α] (both subtypes of list[α]), which would all

be grouped into a semantically related, extensible class List. Multimethods

are defined within classes similarly to CLOS, with the exception that each

“generic function” must have a principal type of which all overloadings’

domains are subtypes (as with the languages based on System M). In ML≤

53

multimethods generalize the pattern matching cases of function definitions

in ML, using subtyping instead of unification on types to check applicabil-

ity.

The key innovation in ML≤ lies in its (parametric) polymorphism: of

all the multiple dispatch systems discussed thus far, none have supported

polymorphism. Bourdoncle and Merz observe that the polymorphic do-

main types of functions correspond to existential types, and that the Sys-

tem F≤ style of subtyping generalizes the monomorphic subtyping needed

for an overloading to satisfy its principal type. Along with ML’s poly-

morphism, ML≤ maintains ML’s rich type inference, except in the case of

generic function signatures.

The ML≤ system does not support modularity, however, and like

MultiJava, every possible argument type must be checked for ambiguity

between all multimethods.

3.3.8 Fortress

The Fortress programming language [3] offers truly modular multi-

ple dispatch [2]. Methods may be defined in classes (known as traits when

abstract and objects when concrete) as dotted methods (dotted syntax for in-

vocation) or as functional methods (normal top-level function call syntax for

invocation); in the latter case, methods may be overloaded with similarly

named top-level functions.

Fortress extends the approach to unambiguity of λ& with a notion of

exclusion: two types exclude when they have no common subtype. Simi-

larly to how the subtyping relation in OO languages is induced by nominal

54

extension of classes, the exclusion relation is induced by nominal exclusion

of classes.

Considering the hierarchy of types as a lattice under the subtyping

order, for each pair of overloadings f1, f2 of some function f , there must be

a unique overloading of f whose domain is the meet of the domains of f1

and f2. (This interpretation is equivalent to the second condition for well-

typedness of overloaded function types in λ& from Section 3.3.5.) However,

in Fortress there is another possibility: The domains of f1 and f2 may ex-

clude instead. In that case, no ambiguous argument value for which both

overloadings apply could ever exist, so a disambiguating overloading is

unnecessary.

In Section 3.3.3.2 we saw how a modular multiple dispatch system

with multiple inheritance can produce ambiguity when two classes Foo and

Bar are both extended by a class Baz in a later module. In Fortress if Foo

and Bar exclude, then there can never exist a type like Baz that is a subtype

of both; the type checker can thus make use of this fact when type checking

the method definitions which previously caused ambiguity.

Moreover, the semantic partitioning of methods according to the num-

ber of declared parameters (as done in each of the other systems presented)

is generalized with exclusion, as any two tuple types with different num-

bers of constituent types exclude. This eliminates the requirement for all

overloadings of some function to have the same number of parameters and,

with reasonable exclusion defined between library classes like numbers and

strings, it permits convenient, overloaded definitions on disparate types

like println and bar from Section 3.1.2.

Static checking in Fortress is performed modularly, with each com-

55

ponent being checked only with knowledge of the interfaces of those it im-

ports. Unlike System M, Fortress allows multiple inheritance across module

boundaries, and unlike ML≤, Fortress supports polymorphic, overloaded

functions and methods in a very restricted manner, similar to their treat-

ment in the FGJ calculus [35].18

3.3.9 Away from objects

Although it is presented here in the context of objects and classes,

multiple dynamic dispatch semantics can be employed in other kinds of

languages. The unique specialization capability afforded by this semantics

requires a preorder on types, a framework for overloaded function defini-

tions, and run-time type information; these concepts are realized naturally

in OO languages, but they are not confined to those languages. Castagna

discusses in [16] how specialization (with multiple dynamic dispatch) is

a covariant relation on function types entirely separate from subtyping, a

contravariant relation. Additionally, Allen et al. explain how even Haskell

can adopt unambiguous multiple dynamic dispatch semantics similar to

Fortress in [4, App. A].

18Recent work by Allen et al., however, has generalized overloading in Fortress to cover
polymorphism [4].

56

Chapter 4

Lessons learned from Fortress

4.1 Self-type idiom

With type classes the method declarations always have a reference to

the instantiating type. For example, in the Num class defined in Figure 3.1,

the type variable a is instantiated with Int, Float, and so forth, within each

implementing instance. We’ve also seen the function double as an example

of a function that is parameterized by instances of Num.

In an OO language, if one were to model Num as an abstract (object)

class, one might naı̈vely declare it as

class Num {

def add(other: Num): Num

def mul(other: Num): Num

def neg(): Num

}

where the methods would be invoked on numeric objects like x.add(y) and

intFive.neg() — the object receiver is actually the left operand. This ab-

stract declaration says that for any concrete class T that extends Num, T must

implement these methods. But then T would need to be implemented where

the right operand, the other parameter, still has the abstract type Num, not

the same type T. Unlike the abstract declarations in the type class, which

57

were declared on the class parameter type a, the OO declarations do not

(and should not) require that substitution of the instantiating type for re-

cursive references to Num.

Phrased differently, the problem lies in specifying binary methods —

methods whose parameter types should vary covariantly by the extension

relation along with the receiver type — which has plagued OO languages

for decades [12]. Much work has gone into ways of specifying such meth-

ods accurately, but here we only concern ourselves with the approach of

F-bounded polymorphism, as this has been adopted not only by Fortress but

by major OO languages like Java and Scala.

4.1.1 Using F-bounds

The insight of Canning et al. [14] involved modeling such classes us-

ing polymorphic types with recursive bounds as an extension of bounded

polymorphism in Fun [15]; they called this approach F-bounded polymor-

phism. The recursive type variable would allow one to make use of the

instantiating class type by passing it as a parameter to the abstract class.

The above code would be rewritten as

class Num[T] {

def add(other: T): T

def mul(other: T): T

def neg(): T

}

and all implementations thereof would be defined like

class Int extends Num[Int]

58

The double function would then be defined as

def double[T <: Num[T]](x: T): T = x.add(x)

However, consider a default implementation1 of the mul method in

terms of the add method: there would be invocations of the form x.add(y)

where x and y both have type T. In order for this invocation to be well-typed

(for x to exhibit the add behavior), T needs to be a subtype of Num[T]. As is,

T is unbounded, so we must modify the definition of Num to read

class Num[T <: Num[T]] { ... }

as in the signature of double. This approach is taken in the standard library

of Java, e.g., the abstract superclass of all enum types,2

class Enum<E extends Enum<E>> { ... }

This convoluted manner of identifying the name of the implementing type

— the type of the concrete class that inherits from the abstract class — with

the type parameter of the abstract class is known as the self-type idiom.

This approach is still not ideal. In particular, nothing prevents pro-

grammers from writing a class like

class Foo extends Num[Int] { ... }

1i.e., defined inside the abstract class Num.
2In the Java Platform Standard Edition 6: http://download-llnw.oracle.com/

javase/6/docs/api/java/lang/Enum.html

59

http://download-llnw.oracle.com/javase/6/docs/api/java/lang/Enum.html
http://download-llnw.oracle.com/javase/6/docs/api/java/lang/Enum.html

wherein the type parameter T no longer stands in for the implementing class

type. Therefore the desired class relationships are permitted, as witnessed

above, but so too are undesired relationships like Foo and Num[Int]. This is

not disastrous but also not ideal.

4.1.2 Ill-typed Fortress code

Early in the development of Fortress, before a static type checker had

been implemented, a large portion of the library code was written under the

assumption of well-typedness. Some abstract classes (or traits, as they are

known in Fortress) had the form

trait Comparable
[[

T extends ComparableJTK
]]

lessThan(other: T): Boolean

greaterThan(other: T): Boolean = other.lessThan(self)

end

which inconspicuously introduced another typing problem. Generally in

OO languages the type of the receiver reference within a class definition,

self, is simply the class type applied to its type variables —ComparableJTK

in this case. However, the implementation of lessThan uses self where type

T is expected, but ComparableJTK is not a subtype of T. Intuitively we’ve

used the self-type idiom to identify T with the type of self, but now we

must force them to be equivalent in the type system.3

3The reverse direction of the subtyping relation is already true by the declared bound
of T.

60

4.1.3 An ad hoc solution

Previous efforts to address this problem involved an additional type

Self which would be instantiated with the implementing type during ex-

ecution and which would eliminate the need for the type parameter T.

However, in a chain of subtypes like MyInt <: Int <: TotallyOrdered4 <:

Comparable, the run time environment cannot determine that the type of

self within the definition of the leq method, Self , should be String and not

MyString or TotallyOrdered instead. The subtyping between MyString

and String and between TotallyOrdered and Comparable are fundamen-

tally different from that between String and Comparable, though; the lat-

ter relation represents an implementation, whereas the others represent nor-

mal class extensions of data and methods. An OO system might instead

provide an alternative typing relation for implementation; for example, the

JavaGI system of Wehr et al. [67] provides generalized interfaces which act

much like type classes (and thus circumvent the problem entirely).5

In Fortress, however, a different strategy has been employed to solve

the typing problem with the self type idiom [61]. The solution does not

introduce new concepts to the language but instead utilizes an existing con-

cept in a new way. Like the nominal exclusion relation explained in Sec-

tion 3.3.8, Fortress trait types can specify what traits they are extended by

in an optional comprises clause. For example, consider the definition of

ConsLists which precludes any other classes from extending it:

4The trait TotallyOrdered simply extends Comparable with further abstract declara-
tions to be implemented.

5Java provides the implements relation between classes and interfaces, but it does not
make use of an auxiliary self type.

61

trait ConsListJTK comprises
{

ConsJTK, NilJTK
}

. . . end

object ConsJTK extends ConsListJTK . . . end

object NilJTK extends ConsListJTK . . . end

The key insight of the author involved two changes to the comprises

clause, inspired by the (more restricted) explicit self types of classes in Scala

[48, §5.1]. First, the receiver self within a trait FooJT1, . . . , TmK that com-

prises types U1, . . . , Un may be given the more precise typeFooJT1, . . . , TmK∩
(U1 ∪ . . . ∪Un), where ∩ and ∪ denote intersection and union types respec-

tively. This type models the statically enforced semantics that any object

at run time that will instantiate the self parameter must also belong to

some type Ui that extends FooJT1, . . . , TmK. Second, a comprises clause may

contain a naked type variable T, as in

trait ComparableJTK comprises {T} . . . end

With this definition, the only type allowed to extend ComparableJFooK is

Foo itself, which addresses the problem of prohibiting undesired type re-

lationships. Moreover, since any type appearing in a comprises clause by

definition extends the comprising type in some declaration, we know that

T is a subtype of ComparableJTK. Now, with the more precise self type, the

type of self is ComparableJTK∩ T, which is a trivial subtype of T, and

since T is a subtype of ComparableJTK (and since T is a subtype of itself)

we have that T <:ComparableJTK∩ T <: T. Therefore the type of self and

T are now equivalent! The self-type idiom can then be employed in a well-

typed, more syntactically compact way. More examples, and the precise

semantics currently implemented in Fortress, are explained in [61].

62

The fix outlined above has transformed ill-typed code to well-typed

code with few textual changes. Although the new semantics encode the

intuition about relationships between classes, the methodology behind the

fix (using the comprises clause) is entirely ad hoc. Even worse, it is an ad hoc

workaround to an ad hoc workaround — the unintuitive use of F-bounded

polymorphism simply to reference the type of an implementation. With

type classes, and even with existential types (Section 2.5.2), the reference to

an implementing type is a fundamental part.

4.2 Expressive, excessive overloading

The permissive overloading of Fortress, especially with recent de-

velopments for polymorphism [4], embodies a new interpretation of a fa-

miliar programming environment. All functions and methods are open to

any amount of specialization or convenient overloading by satisfying a sin-

gle set of rules,6 and there need be no explicit, textual connective between

those overloaded definitions. In systems with type classes, every overload-

ing is explicitly bound to an abstract overloading that describes it, its prin-

cipal overloading; i.e. each implementation of a type class method is defined

within an explicit instantiation of that type class. In systems with multi-

ple dispatch, every multimethod overloading must specialize a single prin-

cipal overloading, so the common multimethod name explicitly connects

them. In Fortress, however, the overloadings exhibit implicit connections to

be discovered and checked as part of the type system. One might compare

the overloaded functions of Fortress to the expressions of a system with

6In Fortress the rules that must be satisfied for an overloaded set that mixes top-level
functions and functional methods are slightly more complicated.

63

inferred, principal types, or liken Fortress overloading to a system of struc-

tural rather than nominal subtyping.

In exchange for implicit, expressive overloading, the Fortress type

system imposes a burden on the programmer: the programmer7 must rea-

son about the well-formedness of overloaded functions through the satis-

faction of “overloading rules” [3, §15.6]. These rules, which boil down to the

well-formedness conditions from λ&, constitute a proof strategy to verify

the essential properties of type safety and unambiguity. This proof strategy

might be considered ad hoc since the programmer employs it independently

for each overloaded set. Other systems, however, only express overloading

through particular language constructs, which essentially prove type safety

and unambiguity “by construction.” Those constructs, like Haskell’s type

classes or even Java’s (object) classes, serve the dual purpose of structuring

data and expressing overloading in such a constrained way that guarantees

validity. Whether the implicit expressivity of λ&/Fortress overloading is

more beneficial to programmers than the explicit uniformity of type class

(and object class) overloading remains to be seen.

4.2.1 A concrete concern

We have already seen how the nominal exclusion relation assists in

verifying the validity of an overloaded set. Many convenient overloadings

that users should be able to write, like println(String) and println(Z), pre-

sume the exclusion of many trait types defined in libraries whenever such

an exclusion seems intuitive (here, no value should be simultaneously a

7Since only the overloaded function definitions are checked, this burden perhaps falls
more on library writers than on clients.

64

string and an integer). However, since exclusion between trait types can

only be specified on the declaration of one of the excluding traits, the li-

braries must define all such exclusions; the exclusion relation is not modu-

larly extensible.

In Section 3.3.8 we considered the case where two existing traits Foo

and Bar could exclude each other to allow an overloaded function to be

defined on both because, after all, it might not make sense for any trait to

extend both. But in the case where Foo and Bar are declared in completely

unrelated components, the importing component in which the overloaded

function is to be defined cannot make those two traits exclude. The exis-

tence of overloadings on these two types would necessitate a third over-

loading on their meet — but since these traits are entirely unrelated (con-

ceptually) there is no such type on which to define the overloading. In other

words, the programmer cannot modularly express the semantics of exclu-

sion within the Fortress type system. One solution to this problem would be

to allow first-class intersection types in function parameters, as such types

are precisely the “greatest common subtypes” of their constituents. Even in

this case, the programmer would need to provide a moot definition of the

meet overloading, perhaps by raising an impossible exception:8

f (Foo ∩ Bar) = throw ImpossibleCase

8The observant reader might notice the resemblance of this problem (and this ad hoc
solution) to that of guaranteeing exhaustiveness of pattern matching [44].

65

4.3 Nominal relations

A nominally declared extension relation between class types is com-

mon to virtually every class-based OO language. Extension organizes classes

into a hierarchy of inheritance while also providing essential semantics for

the type system — (nominal) subtyping. Some languages distinguish be-

tween interface inheritance and implementation inheritance, and others,

like CZ [43], provide entirely different relations for inheritance and sub-

typing.9

In the same way as extension, the exclusion and comprises relations

of Fortress serve multiple roles in the language: they act as documentation

about the ontology of traits, but they also provide additional means of de-

scribing relationships in the type system, which affords more precision and

expressivity for overloading and abstract specification (as demonstrated in

the previous two sections). In recent work on polymorphism for Fortress

overloading [4], the exclusion relation is augmented beyond the declared,

nominal exclusion between trait types by utilizing a subtle fact of OO class

tables.

Encoding ever-increasing knowledge about types by augmenting nom-

inal type relations may yield greater expressivity, but this approach lacks a

coherent, generalized core, or even a definite point of completion.10 This

approach to language design is analogous to augmenting a logical system

9Cook et al. [21] showed that in the context of OO languages, inheritance (extension) is
not the same relation as subtyping.

10The same phenomena is occuring in the constant development of Haskell. Various
ad hoc yet intuitive extensions to its type class system regularly appear in the research
literature.

66

with cursory, ad hoc exceptions instead of capturing the essence in a core set

of definitions.

67

Chapter 5

Conclusion

The underlying idea behind overloading, using a single name with

different meanings depending on context, stems from informal languages

— from the malleable, hierarchical polysemy in natural language, to the

more precise use of symbols for distinct, concrete interpretations in infor-

mal mathematical language. This precedent justifies and explains the use

of overloading in programming languages, which is known as ad-hoc poly-

morphism.

Since its early, informal definition, overloading has been understood

as an unnecessary, ad hoc convenience that models arithmetic operations.

However, through the lens of a generalized system of overloading, it can be

interpreted as providing three key features: abstraction, convenience, and

specialization. Many common programming language constructs — type

classes, object classes, and multimethods — manifest overloading as a fun-

damental aspect, albeit not explicitly. Conventionally thought to provide

those features themselves, these constructs instead serve as the means of ex-

pressing and organizing overloading in a way that satisfies well-formedness

and safety properties; i.e., overloading is the byproduct of other, more fun-

damental abstractions.

In the Fortress programming language, however, overloading — or

more accurately, multiple dynamic dispatch — has been designed as such

68

a fundamental language facility. A notion of object classes still serves to

organize overloading, but as a convenient common case of a more general

framework of overloading. This framework offers even greater abstraction,

convenience, and specialization than the overloading of other systems, as it

exports greater control to programmers to define and specialize functions as

they wish. With that control comes additional responsibility to only write

overloaded functions that maintain crucial type safety properties. While

the type checker can verify those properties using new nominal relations on

types, programmers are burdened more than with other systems in which

overloading well-formedness is ensured by construction.

The different methodologies in expressing overloading suggest a new

spectrum of language design. On one end, well-formed overloading is in-

duced from organizational type structures and is more restrictive; on the

other end, well-formed overloading is expressed and reasoned about ad hoc

by the programmer and is more permissive. It is left as an exercise to the

reader to determine which is more fitting.

69

Bibliography

[1] Rakesh Agrawal, Linda G. Demichiel, and Bruce G. Lindsay. Static
type checking of multi-methods. SIGPLAN Not., 26(11):113–128, 1991.

[2] Eric Allen, J. J. Hallett, Victor Luchangco, Sukyoung Ryu, and Guy L.
Steele, Jr. Modular multiple dispatch with multiple inheritance. In SAC
’07: Proceedings of the 2007 ACM symposium on Applied computing, pages
1117–1121, New York, NY, USA, 2007. ACM.

[3] Eric Allen, David Chase, Joe Hallet, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt.
The Fortress language specification, version 1.0. Technical report,
Sun Labs, 2008. URL http://labs.oracle.com/projects/plrg/

Publications/fortress.1.0.pdf.

[4] Eric Allen, Justin Hilburn, Scott Kilpatrick, Sukyoung Ryu, David
Chase, Victor Luchangco, and Guy L. Steele Jr. Type-checking modular
multiple dispatch with parametric polymorphism and multiple inheri-
tance. Submitted for publication, July 2010. URL http://userweb.cs.

utexas.edu/~scottk/papers/multipoly.pdf.

[5] Gerald Baumgartner, Martin Jansche, and Konstantin Läufer. Half &
Half: Multiple dispatch and retroactive abstraction for java. Technical
report, 2002.

[6] G.M. Birtwhistle, O.J. Dahl, B. Myhrhaug, and K. Nygaard. Simula
Begin. Chartwell-Bratt Ltd, 1979. ISBN 086238009X.

[7] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter,
Mark Stefik, and Frank Zdybel. CommonLoops: merging Lisp and
object-oriented programming. SIGPLAN Not., 21(11):17–29, 1986.

[8] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E.
Keene, Gregor Kiczales, and David A. Moon. Common Lisp Object
System specification. SIGPLAN Not., 23(SI):1–142, 1988.

70

http://labs.oracle.com/projects/plrg/Publications/fortress.1.0.pdf
http://labs.oracle.com/projects/plrg/Publications/fortress.1.0.pdf
http://userweb.cs.utexas.edu/~scottk/papers/multipoly.pdf
http://userweb.cs.utexas.edu/~scottk/papers/multipoly.pdf

[9] François Bourdoncle and Stephan Merz. Type checking higher-order
polymorphic multi-methods. In POPL ’97: Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 302–315, New York, NY, USA, 1997. ACM.

[10] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In
In Proc. International Conference on Computer Languages, pages 282–290.
IEEE Computer Society, 1992.

[11] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: adding genericity to the java pro-
gramming language. SIGPLAN Not., 33(10):183–200, 1998.

[12] Kim Bruce, Luca Cardelli, Giuseppe Castagna, Gary T. Leavens, and
Benjamin Pierce. On binary methods. Theor. Pract. Object Syst., 1(3):
221–242, 1995.

[13] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C.
Mitchell. F-bounded polymorphism for object-oriented programming.
In FPCA ’89: Proceedings of the fourth international conference on Func-
tional programming languages and computer architecture, pages 273–280,
New York, NY, USA, 1989. ACM.

[14] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C.
Mitchell. F-bounded polymorphism for object-oriented programming.
In FPCA ’89: Proceedings of the fourth international conference on Func-
tional programming languages and computer architecture, pages 273–280,
New York, NY, USA, 1989. ACM.

[15] Luca Cardelli and Peter Wegner. On understanding types, data ab-
straction, and polymorphism. ACM Comput. Surv., 17(4):471–523, 1985.
ISSN 0360-0300.

[16] Giuseppe Castagna. Covariance and contravariance: conflict without
a cause. ACM Trans. Program. Lang. Syst., 17(3):431–447, 1995.

[17] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus
for overloaded functions with subtyping. SIGPLAN Lisp Pointers, V(1):
182–192, 1992. ISSN 1045-3563.

71

[18] Craig Chambers and Gary T. Leavens. Typechecking and modules for
multimethods. ACM Trans. Program. Lang. Syst., 17(6):805–843, 1995.

[19] Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers.
Multijava: Design rationale, compiler implementation, and applica-
tions. ACM Trans. Program. Lang. Syst., 28(3):517–575, 2006.

[20] William R. Cook. On understanding data abstraction, revisited. In
OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference on Object
oriented programming systems languages and applications, pages 557–572,
New York, NY, USA, 2009. ACM.

[21] William R. Cook, Walter Hill, and Peter S. Canning. Inheritance is not
subtyping. In POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 125–135, New
York, NY, USA, 1990. ACM.

[22] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption.
In CAAP ’90: Proceedings of the fifteenth colloquium on CAAP’90, pages
132–146, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[23] Luis Damas and Robin Milner. Principal type-schemes for functional
programs. In POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 207–212, New
York, NY, USA, 1982. ACM.

[24] Derek Dreyer and Andreas Rossberg. Mixin’ up the ml module system.
SIGPLAN Not., 43(9):307–320, 2008.

[25] Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and Gabriele
Keller. Modular type classes. In POPL ’07: Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 63–70, New York, NY, USA, 2007. ACM.

[26] Dominic Duggan and John Ophel. Type-checking multi-parameter
type classes. J. Funct. Program., 12(2):133–158, 2002.

[27] Karl-Filip Faxén. A static semantics for Haskell. Journal of Functional
Programming, 12(4-5):295–357, 2002.

72

[28] Christopher Frost and Todd Millstein. Modularly typesafe interface
dispatch in JPred. In In FOOL/WOOD ’06: International Workshop on
Foundations and Developments of Object-Oriented Languages. ACM Press,
2006.

[29] Jean-Yves Girard. Une extension de l’interprétation de gödel à
l’analyse, et son application à l’élimination des coupures dans l’analyse
et la théorie des types. In Proceedings 2nd Scandinavian Logic Symposium,
pages 63–92, Amsterdam, 1971. North-Holland.

[30] Adele Goldberg and David Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1983. ISBN 0-201-11371-6.

[31] James Gosling, Bill Joy, Guy L. Steele Jr., and Gilad Bracha. The
JavaTM Language Specification. Addison-Wesley Professional, third edi-
tion, 2005. ISBN 0321246780.

[32] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip
Wadler. Type classes in Haskell. ACM Transactions on Programming
Languages and Systems, 18:241–256, 1996.

[33] Robert Harper. Programming in Standard ML. 2005. URL http://www.

cs.cmu.edu/~rwh/smlbook/online.pdf. Draft of August 20, 2009.

[34] Robert Harper. Practical Foundations for Programming Languages. 2008.
URL http://www.cs.cmu.edu/~rwh/plbook/book.pdf. Draft of June
13, 2010 at 23:45.

[35] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight java: a minimal core calculus for java and gj. ACM Trans. Pro-
gram. Lang. Syst., 23(3):396–450, 2001.

[36] Mark P. Jones. Type classes with functional dependencies. In
ESOP/ETA (LNCS), pages 230–244. Springer-Verlag, 2000.

[37] Mark P. Jones. A system of constructor classes: Overloading and im-
plicit higher-order polymorphism. In Journal of functional programming,
pages 52–61. ACM Press, 1995.

73

http://www.cs.cmu.edu/~rwh/smlbook/online.pdf
http://www.cs.cmu.edu/~rwh/smlbook/online.pdf
http://www.cs.cmu.edu/~rwh/plbook/book.pdf

[38] Daniel Jurafsky and James H. Martin. Speech and Language Processing
(2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2009.
ISBN 0131873210.

[39] Stefan Kaes. Parametric overloading in polymorphic programming
languages. In ESOP ’88: Proceedings of the 2nd European Symposium on
Programming, pages 131–144, London, UK, 1988. Springer-Verlag.

[40] Wolfram Kahl and Jan Scheffczyk. Named instances for Haskell type
classes. In Ralf Hinze, editor, Proc. Haskell Workshop 2001, 2001.

[41] Christophe Lécluse and Philippe Richard. Manipulation of structured
values in object-oriented databases. In Richard Hull, Ronald Morrison,
and David W. Stemple, editors, Proceedings of the Second International
Workshop on Database Programming Languages, 4-8 June, 1989, Salishan
Lodge, Gleneden Beach, Oregon, pages 113–121. Morgan Kaufmann, 1989.
ISBN 1-55860-072-8.

[42] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999. ISBN 0201432943.

[43] Donna Malayeri and Jonathan Aldrich. Cz: multiple inheritance with-
out diamonds. In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN
conference on Object oriented programming systems languages and applica-
tions, pages 21–40, New York, NY, USA, 2009. ACM.

[44] Luc Maranget. Warnings for pattern matching. Journal of Functional
Programming, 17(03):387–421, 2007.

[45] Todd D. Millstein and Craig Chambers. Modular statically typed mul-
timethods. In ECOOP ’99: Proceedings of the 13th European Confer-
ence on Object-Oriented Programming, pages 279–303, London, UK, 1999.
Springer-Verlag.

[46] Todd David Millstein. Reconciling software extensibility with modular pro-
gram reasoning. PhD thesis, 2003. Chair-Chambers, Craig.

74

[47] Warwick B. Mugridge, John Hamer, and John G. Hosking. Multi-
methods in a statically-typed programming language. In ECOOP ’91:
Proceedings of the European Conference on Object-Oriented Programming,
pages 307–324, London, UK, 1991. Springer-Verlag. ISBN 3-540-54262-
0.

[48] Martin Odersky. The Scala Language Specification, Version 2.7. EPFL Lau-
sanne, Switzerland, 2009. URL http://www.scala-lang.org/docu/

files/ScalaReference.pdf.

[49] Martin Odersky, Philip Wadler, and Martin Wehr. A second look at
overloading. In FPCA ’95: Proceedings of the seventh international con-
ference on Functional programming languages and computer architecture,
pages 135–146, New York, NY, USA, 1995. ACM.

[50] Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Re-
port. Cambridge University Press, 2003. URL http://haskell.org/

definition/haskell98-report.pdf.

[51] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cam-
bridge, MA, USA, 2002. ISBN 0-262-16209-1.

[52] Benjamin C. Pierce and David N. Turner. Local type inference. ACM
Trans. Program. Lang. Syst., 22(1):1–44, 2000.

[53] John C. Reynolds. Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque sur la Programmation, pages 408–423,
London, UK, 1974. Springer-Verlag. ISBN 3-540-06859-7.

[54] John C. Reynolds. Types, abstraction and parametric polymorphism.
In IFIP Congress, pages 513–523, 1983.

[55] Mark Shields and Simon Peyton Jones. Object-oriented style overload-
ing for Haskell. In First Workshop on Multi-language Infrastructure and
Interoperability (BABEL’01), Firenze, Italy, September 2001.

[56] Jeremy G. Siek. A language for generic programming. PhD thesis, Indiana
University, Indianapolis, IN, USA, 2005.

75

http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://haskell.org/definition/haskell98-report.pdf
http://haskell.org/definition/haskell98-report.pdf

[57] Jeremy G. Siek and Andrew Lumsdaine. A language for generic pro-
gramming in the large. Science of Computer Programming, 2008.

[58] Ghan Bir Singh. Single versus multiple inheritance in object oriented
programming. SIGPLAN OOPS Mess., 5(1):34–43, 1994.

[59] Matthieu Sozeau and Nicolas Oury. First-class type classes. In TPHOLs
’08: Proceedings of the 21st International Conference on Theorem Proving in
Higher Order Logics, pages 278–293, Berlin, Heidelberg, 2008. Springer-
Verlag.

[60] Guy L. Steele Jr. Common LISP: the language (2nd ed.). Digital Press,
Newton, MA, USA, 1990. ISBN 1-55558-041-6.

[61] Guy L. Steele Jr. New self type idiom, November 2009.
URL http://projectfortress.sun.com/Projects/Community/blog/

NewSelfTypeIdiom. Project Fortress blog.

[62] Christopher Strachey. Fundamental concepts in programming lan-
guages. Lecture Notes, International Summer School in Computer Pro-
gramming, Copenhagen, 1967. Reprinted in Higher-Order and Symbolic
Computation, 13(1/2), pp. 1–49, 2000.

[63] Bjarne Stroustrup. The C++ Programming Language: Special Edi-
tion. Addison-Wesley Professional, 3 edition, February 2000. ISBN
0201700735.

[64] Peter J. Stuckey and Martin Sulzmann. A theory of overloading. ACM
Trans. Program. Lang. Syst., 27(6):1216–1269, 2005.

[65] Philip Wadler. Theorems for free! In FPCA ’89: Proceedings of the
fourth international conference on Functional programming languages and
computer architecture, pages 347–359, New York, NY, USA, 1989. ACM.

[66] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism
less ad hoc. In POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 60–76, New
York, NY, USA, 1989. ACM.

76

http://projectfortress.sun.com/Projects/Community/blog/NewSelfTypeIdiom
http://projectfortress.sun.com/Projects/Community/blog/NewSelfTypeIdiom

[67] Stefan Wehr, Ralf Lämmel, and Peter Thiemann. JavaGI: Generalized
interfaces for Java. In ECOOP 2007, Proceedings. LNCS, Springer-Verlag
(2007) 25, pages 347–372. Springer-Verlag, 2007.

77

Vita

Scott Lasater Kilpatrick, a native Texan, was graduated from James Mar-

tin High School in Arlington, Texas with magna cum laude distinction. In

2008 he earned a B.S. in Computer Sciences and a B.S. in Mathematics with

high honors from the University of Texas at Austin, one of eighteen Dean’s

Honored Graduates for the College of Natural Sciences. Immediately af-

ter receiving his baccalaureate degrees, he entered the Graduate School at

the University of Texas at Austin in the Department of Computer Science.

After receiving his master’s degree from the University of Texas at Austin,

having completed twenty years of public education in Texas, he will enroll

in the doctoral program at the Max Planck Institute for Software Systems

in Saarbrücken, Germany under the supervision of Derek Dreyer. He will

miss eating tacos in the Austin swelter.

Email Address: scottk@cs.utexas.edu

Permanent Address: 2015 Misty Creek Dr.

Arlington, Texas 76017

This thesis was typed by the author.

78

	Acknowledgments
	Abstract
	Chapter 1. Introduction
	Chapter 2. Overloading in general
	Intuition and motivation
	Natural languages
	Informal mathematics

	From polymorphism
	Parametric polymorphism
	Inclusion polymorphism
	Ad-hoc polymorphism

	Mapping names to interpretations
	Overloading as binding
	Dispatch in context
	Abstract and concrete overloadings

	Parametric overloading and extensibility
	A means to multiple ends
	Convenience
	Abstraction
	Specialization

	Chapter 3. Overloading in the field
	Type classes
	Overview
	Analysis of overloading features
	System O
	O
	Constraint handling rules

	Object classes
	Overview
	Analysis of overloading features
	Multiple inheritance
	Polymorphism
	Local type inference

	Multiple dispatch
	Overview
	Analysis of overloading features
	Challenges
	Common Lisp Object System
	&
	System M
	MLbold0mu mumu
	Fortress
	Away from objects

	Chapter 4. Lessons learned from Fortress
	Self-type idiom
	Using F-bounds
	Ill-typed Fortress code
	An ad hoc solution

	Expressive, excessive overloading
	A concrete concern

	Nominal relations

	Chapter 5. Conclusion
	Bibliography
	Vita

