
By Scott Owens,

 University of Cambridge.

Reasoning About The Implementations Of

Concurrency Abstractions On x86-TSO

Plan

 Intro
 Data Races And Triangular Races

 Examples

2

sequential consistency

 The result of any execution is the same as if the operations of

all the processors were executed in some sequential order,

and the operations of each individual processor appear in this

sequence in the order specified by its program

3

Simple Example

4

Data Races

 Intuitively – 2 threads that access the same memory address,

and at least one of them is writing.

 If none of a program execution can encounter a data race,

then the program is data-race free

 The fundamental property of memory model: DRF programs

have no observable non SC behaviors.

5

Triangular Races

 Triangular race – a data race between a read and a write

operation, where the read is preceded by another write

operation on the same thread, and there are no intervening

hardware synchronization primitives.

 TRF – Triangular Race Free programs

 Main Result - TRF programs running on TSO memory model

has only SC observable behaviors.

6

Example

7

Events

8

X86-SC

 A simple model of SC memory behavior

 Same as x86-TSO, but every write is immediately flushed to

shared memory, and every read consults main storage

 Each event must be immediately followed by

a event

[]i

pW x v 

[]i

p x v 

9

resultSC

 A program is resultSC iff for every x86-TSO execution there

exists an x86-SC execution with the same result.

 TRF is not powerful enough to detect resultSC programs

10

Memory equivalence

 Two memory equivalent traces must have the same memory

writes in the same order

 Corresponding read events must have the same value and the

values must have been put in place by the same write event

 Reads From – a read event reads from the last write event

11

MemorySC

 A program is memory SC iff for each of its possible

execution on x86-TSO, there exists a memory equivalent

execution on x86-SC

12

Plan

 Intro

Data Races And Triangular Races
 Examples

13

Data Race

 A data race is a prefix of an x86-SC execution with either of

the following shapes:

where p ≠ q and none of the f are unlocks

 DRF Theorem – every DRF x86 program is memorySC

(follows from the main theorem)

14

Triangular Races

 A triangular race is a prefix of an x86-SC execution with

either one of the 2 shapes:

where x ≠ y and p ≠ q and x ∉ { ,…, } and none of the f

are unlocks

 TRF Theorem – An x86 program is memorySC iff it is TRF

15

1z nz

Example

Consider the following sequence of actions on an x86-TSO.

Can we find a memory equivalent x86-SC trace?

16

Example Continued

17

Plan

 Intro

 Data Races And Triangular Races

Examples

18

Back To The SpinLock

 We say a program is Spinlock well-synchronized iff for every

x86-SC execution, and for every pair of competing events

that are not on a spinlock, there is a spinlock that is released

and then acquired between them

 Lemma – In a Spinlock well-synchronized program any data

race is on a spinlock address.

19

Back To The SpinLock
 Theorem – if an x86 program is Spinlock well-synchronized

and the locations of the spinlocks ae only accessed by the

spinlock code, then it is memorySC.

20

Ticketed Spinlock

21

Correctly Locked

 A program is correctly locked if each of its x86-SC execution

traces satisfies:

1. The locations of the spinlocks are only accessed by the

spinlock code

2. Threads only release lock they hold.

22

Spinlock mutual exclusion

 Lemma – In a correctly locked x86 program, if a hardware

thread reaches the enter line of a spinlock, no other thread

can reach the enter line until the first thread completes the

increment from release.

23

Ticketed Spinlock Is SC

 Theorem – if a correctly locked x86 program is spinlock

well-synchronized with respect to the ticketed spinlock then

it is memorySC

24

Proof

 Analyze the possible data races:

 3 possible races:

 Reading y in acquire

 Reading x in acquire

 Reading x in release

25

Non Blocking Write Protocol

26

Non Blocking Write Protocol
 If the reader also writes to memory, then the code is not TRF and

therefor not memorySC, but it can be resultSC

27

Double Checekd Locking
 An object x is never accessed without first ensuring it has been

initialized using ensureinit

28

unlock

Double Checked Locking

 On x86-SC, one of 3 things can happen while ensuring

initaliazition:

1. Read x, find it initialized, use x

2. Read x, find it uninitialized, lock, read x, find it initialized,

unlock, use x

3. Read x, find it uninitialized, lock, read x, find it

uninitialized, init x, unlock, use x

29

A JVM Bug Due To TRF

 A concurrency bug in jvm implementation of blocking

sychronization.

 A cretain excutaion using Parker::park could lose a wake-up

call due to a missing mfence

30

31

Usage Example

 Thread p want to wait for condition x==0

 Thread q wants to signal the first thread the condition is met

32

Parker Is Not TRF

 P events:

 Q events:

 If all of q events happens after all of p events we get a

triangular race

33

The Bug In Action

 T1 check the condition, calls park, fetches _counter=1, set

_counter=0 (in local buffer) and returns

 T1 checks the condition, calls park again

 T2 satisfies the condition, calls unpark, set _counter=1 (in

shared memory) and returns

 T1 flushes _counter=0 to memory

 T1 fetches _counter=0, and blocks

 T1 hangs

34

Proof Sketch 1

 Triangular race causes non memorySC behaviour:

 Suppose we have

 If read returns old value, happened before
happened, we conclude happened before

 In TSO this is not the case, and we cannot conclude this.

[]i

pW y v  []i

qW x z []i

pR x u 

[]i

pR x u  []i

qW x z 

[]i

pW y v  []i

qW x z 

35

Proof Sketch 2

 No triangular race guarantees memorySC

 Suppose our program is TRF, take a trace and move all

events immediately after the corresponding write event.

 Suppose the new trace is not an equivalent SC trace then there

was a race between a read and a and

 Since the program is TRF we can move the read event

before\after the write event

[]i

p x v 

36

[]i

p x v []i

pW x v 

