Reasoning About The Implementations Of

Concurrency Abstractions On x86-TSO

By Scott Owens,
University of Cambridge.

° Intro

Plan

® Data Races And Triangular Races

o Examples

sequential consistency

® The result of any execution is the same as if the operations of
all the processors were executed in some sequential order,
and the operations of each individual processor appear in this

sequence in the order specified by its program

Simple Example

Initial: [z] =0A [yl =0Az #y

p q
la: mov [z]+1 le: mov [y]«1
1b: mov eax«[y] (0)|1d: mov ebx<«[z] (0)
Allow: eax = 0 Aebx =0

Data Races

® Intuitively — 2 threads that access the same memory address,

and at least one of them is writing.

® [f none of a program execution can encounter a data race,

then the program is data-race free

® The fundamental property of memory model: DRF programs

have no observable non SC behaviors.

Triangular Races

® Triangular race — a data race between a read and a write
operation, where the read is preceded by another write
operation on the same thread, and there are no intervening

hardware synchronization primitives.
e TRF —Triangular Race Free programs

® Main Result - TRF programs running on TSO memor model

has only SC observable behaviors.

. The address of spinlock, z, is stored in register eax, and
; the value of the spinlock ([z]) is 1 iff it is unlocked.
acquire: lock dec [eax] ; atomic (tmp := [z] —1
; [z] := tmp
: flag := tmp > 0
; flush local write buffer)

jns enter ; if flag then goto enter
spin: cmp [eax],0 ;flag := [z] <0
jle spin . if flag then goto spin
jmp acquire ; goto acquire
enter: : the critical section starts here
release: mov [eax]«1 ;[z] =1

Fig. 2. An x86 spinlock from Linux v2.6.24.7 (pseudocode to the right of ;)

Events

event (e, f) == {W; [z]v) (a write of value v to address = by thread p)
(Rp[z]v) (a read of v from z by p)

|

| (B}) (an mfence memory barrier by p)

| (L) (the start of an instruction with lock prefix by p)

| (U;) (the end of an instruction with lock prefix by p)

| (7p[z]v) (an internal action of the storage subsystem, moving v

from the write buffer on p to = in shared memory)
where 7 and j are issue indices, p and ¢ identify hardware threads, x and y are memory

addresses, and v and w are machine words.

Fig. 4. Events

X86-SC

* A simple model of SC memory behavior

® Same as x86-TSO, but every write is immediately flushed to

shared memory, and every read consults main storage

e Each<W,[x]v> event must be immediately followed by

a <T;[x]v> event

resultSC

® A program is resultSC iff for every x86-TSO execution there

exists an x86-SC execution with the same result.

* TRF is not powertful enough to detect resultSC programs

Memory equivalence

® Two memory equivalent traces must have the same memory

writes in the same order

° Corresponding read events must have the same value and the

values must have been put in place by the same write event

® Reads From — a read event reads from the last write event

MemorySC

* A program is memory SC iff for each of its possible
execution on x86-TSO, there exists a memory equivalent

execution on x86-SC

Plan

® Intro

® Data Races And Triangular Races

o Examples

Data Race

e A dataraceisa prefix of an x86-SC execution with either of

the following shapes:

e1. . .e.n_{Rq z]v) (W, [r]w) or e1...en(Ry[z|v)(Ly) f1. .. frm (W, [z]w)

where p # q and none of the f are unlocks

¢ DRFTheorem — every DRF x86 program is memorySC

(follows from the main theorem)

Triangular Races

o A triangular race is a prefix of an x86-SC execution with

either one of the 2 shapes:

e1. ..em(W,[ylv1)(R, [z_l]wl}_. (R, [,a;.;l]wn)(Rq_[:n]*uz){Wp [z]vs) or
e1...em(W, [fy]*ul_}{Rq [zl]wl_}. (R, [E-n]ﬂ»’-n2<Rq [IFT]'L‘Q}<LP Ji---fo {WP[J;]_vg)_

where x Zyand p#Zqand x € {Z,,..., Z,} and none of the f

are unlocks

e TRFTheorem — An x86 program is memorySC iff it is TRF

(-

Example
Initial: [x] =0A [yl =0Az #y
p dq

6a: mov [z]«-1 |6b: mov [y]«1
6c: mov eax<+[z] (0)

Fig. 6. A simple triangular race

Consider the following sequence of actions on an x86-TSO.

Can we find a memory equivalent x86-SC trace?

1. (W, [y]1) buffer the write of 1 to y (6b)

2. (RZ[]0) read x from main memory (6c)

3. (W, [z]1) buffer the write of 1 to x (6a)

4. (7,[z]1) write 1 to = in shared memory (6a)
5. (,ly]1) write 1 to y in shared memory (6b)

(-

Example Continued

Tnitial: [z] = 0A[y]=0Ax £ y

!

P q q

7a: mov [z]«1 |7b: mov [y]«1 7d: mov ecx+[x]
7. mov ebx+[z] (D)|7e: mov edx+[y]

(1)
(0)

Allow: ebx =0 MAecx =1 nedx =0 ecx=1redx =10

Fig. 7. Observing write ordering leads to relaxed behavior

® Intro

Plan

® Data Races And Triangular Races

o Examples

Back To The SpinLock

® We say a program is Spinlock well-synchronized itf for every
x86-5C execution, and for every pair of competing events
that are not on a spinlock, there is a spinlock that is released

and then acquired between them

® Lemma — In a Spinlock Well—synchronized program any data
race is on a spinlock address.

Back To The SpinLock

® Theorem — if an x86 program is Spinlock Well—synchronized
and the locations of the spinlocks ae only accessed by the

spinlock code, then it is memorySC.

; The address of spinlock, x, is stored in register eax, and
; the value of the spinlock ([x]) is 1 iff it is unlocked.
acquire: lock dec [eax] ; atomic (tmp := [z] — 1
; [z] := tmp
: flag := tmp > 0
: flush local write buffer)

jns enter ; if flag then goto enter
spin: cmp [eax],0 ;flag :=[2] <0
jle spin ; if flag then goto spin
jmp acquire ; goto acquire
enter: ; the critical section starts here
release: mov [eax]«1 ;[z] :=1

@ Fig. 2. An x86 spinlock from Linux v2.6.24.7 (pseudocode to the right of ;)

Ticketed Spinlock

. The address of the next ticket to give out, y, is stored in register ebx, and
. the address of the ticket currently being served, x, is stored in register eax.

acquire: mov ecx+—1 ctht =1
lock xadd [ebx]+—ecx ; atomic (tkt := [y]
: ly] := tkt + 1
: flush local write buffer)
spin: cmp [eax]ecx . flag := ([z] = tkt)
je enter . if flag then goto enter
jmp spin : goto spin
enter: . the critical section starts here
release: inc [eax] cx] = x] +1

Fig. 8. A ticketed x86 spinlock inspired by Linux v2.6.31

Correctly Locked

® A program is correctly locked if each of its x86-SC execution

traces satisfies:

1. The locations of the spinlocks are only accessed by the

spinlock code

2. Threads only release lock they hold.

Spinlock mutual exclusion

® Lemma — In a correctly locked x86 program, if a hardware
thread reaches the enter line of a spinlock, no other thread

can reach the enter line until the first thread Completes the

increment from release.

Ticketed Spinlock Is SC

® Theorem —if a correctly locked x86 program is spinlock
Well—synchronized with respect to the ticketed spinlock then

it is memorySC

Proof

® Analyze the possible data races:

acquire: (L) (R, [y]w1) (W, [y|w2){U,) (R, [z]v1) ... (R,[x]vn)
release: (R [z]vy)(W [z]vs)

e 3 possible races:
° Reading y in acquire
° Reading x in acquire

° Reading X in release

Non Blocking Write Protocol

; The address of the current version x is stored in register eax, and
; its contents at y; and ys.
; The version, [z], is odd while the writer is writing, and even otherwise.

Writer: mov ebx+1 ; tmp =1
xadd [eax]<—ebx ; tmp := [z]
; [z] == tmp 4+ 1
mov [y1]<u : 1] == n
mov [yz2]+v2 s [y2] := ve
inc ebx s tmp ;= tmp + 1

mov [eax]«—ebx ; [r] := tmp

Reader: mov ebx+[eax] ; tmp := [z]

mov ecx<—ebx ; tmp2 ;= tmp

and ecx+1 ; tmp2 1= tmp2&1

cmp ecx,0 - flag := (tmp2 £ 0)

jne read ; if flag then goto Reader
mov ecx<[y1] ; resultl := [y1]

mov edx¢—[y2] ; result2 = [y2]

cmp [eax],ebx ; flag := ([z] # tmp)

jne read : if flag then goto Reader

Fig. 9. A versioning non-blocking write protocol

Non Blocking Write Protocol

® If the reader also writes to memory, then the code is not TRF and

therefor not memorySC, but it can be resultSC

FEp]

a2

73

Viriter

acquire spinlock
mowv [x]+—eax
release spinlock
Reader

Reader

acquire spinlock
mowv ebx +«[x]
release spinlock

Writer writes and Hushes

acquire spinlock y

write to r put into buffer
spinlock release y into buf.

Reader gets old value

Beader read new value

start acquire spinlock y

Double Checekd Locking

® An object x is never accessed without first ensuring it has been

initialized using ensureinit

; The address of the object = is stored in memory at location [eax].
- An uninitialized object is represented by the address 0.

ensureinit: cmp [eax],0 : flag := = is initialized
jne initialized : if flag then goto initialized
: acquire a spinlock
cmp [eax],0 : flag := = is initialized
jne unlock : if flag then goto unlock

: writes to initialize the object,
: leaving its address in ebx

mov [eax]+ebx ; r := initialized value
unlock: : release the spinlock
initialized: : Now the object can be used

@ Fig. 10. Double-checked Locking

Double Checked Locking

® On x86-SC, one of 3 things can happen while ensuring
initaliazition:
1. Read x, find it initialized, use x
2. Read x, find it uninitialized, lock, read x, find it initialized,
unlock, use x

3. Read x, find it uninitialized, lock, read x, find it

uninitialized, init x, unlock, use x

A JVM Bug Due To TRF

® A concurrency bug in jvm implementation of blocking

sychronization.

® A cretain excutaion using Parker: :park could lose a Wake—up

call due to a missing mfence

class Parker {
volatile int _counter = 0;
pthread_mutex_t _mutex [1]; pthread_cond_t _cond [1];
s

void Parker::park() {
if (_counter > Q) {
_counter = 0;
/f mfence needed here
return;

¥
if (pthread_mutex_tryleock(_mutex) != 0) return;

if (_counter > 0) { // no wait needed
_counter = 0,
pthread _mutex_unlock(_mutex);
return;

¥

pthread_cond_wait(_cond, _mutex);
_counter = 0;
pthread_mutex_unlock(_mutex);

void Parker::unpark() {
pthread mutex_lock(_mutex);
int 8 = _counter;
_counter = 1;
pthread_mutex_unlock(_mutex);
if (= € 1) pthread_cond_=ignal (_cond)

e Fig. 11. A simplified Parker from HotSpot (written in C++) taken from [12]

Usage Example

® Thread p want to wait for condition x==0

while !(x == 0) pk.park();

® Thread q wants to signal the first thread the condition is met

x = 0; mfence(); pk.unpark();

Parker Is Not TRF
* Pevents: (RiI2]1)(R [y]1) (W, y]0)(R2[z]L).

* Q events: (W, [2[0)(B,)..

e If all of q events happens after all of p events we geta

triangular race

The Bug In Action

T1 check the condition, calls park, fetches _counter=1, set

_counter=0 (in local bufter) and returns

T1 checks the condition, calls park again

T2 satisties the condition, calls unpark, set _counter=1 (in

shared memory) and returns

T1 tlushes _counter=0 to memory

T1 fetches _counter=0, and blocks

T1 hangs

Proof Sketch 1

o Triangular race causes non memorySC behaviour:
® Suppose we have < W;[y]v > < R; [x]u> < VK;[)C]Z >

® [f read returns old value, < R]i, [x]Ju > happened before < W;[X]Z >
happened, we conclude< le [¥]v > happened before < VK;[X]Z >

® InTSO this is not the case, and we cannot conclude this.

Proof Sketch 2

® No triangular race guarantees memorySC

® Suppose our program is TRF, take a trace and move all < z-; [x]v >

events immediately after the corresponding write event.

® Suppose the new trace is not an equivalent SC trace then there

was a race between a read and a <W,[x]v> and <7,[x]v>

® Since the program is TRF we can move the read event

before\after the write event

