A Framework for Transactional Consistency Models with Atomic Visibility

Daniel Solomon 30/05/18

Overview

- Introduction
- Notations and Definitions
- Transactional Consistency Models
- Models Relationship
- Optimizations
- Operational Model Equivalence

Overview

Introduction

- Notations and Definitions
- Transactional Consistency Models
- Models Relationship
- Optimizations
- Operational Model Equivalence

Introduction

- Our main focus is databases
- What is a *database*?
 - Database is a organized collection of data
- There are many types of databases
 - We will talk about *replicated databases*

Introduction – Cont.

- Replicated database maintains shared data between several replicas
- A client may perform *transaction* in any replica
- Updates will propagate between all replicas
- Why replicated database?
 - Availability
 - Low latency
 - Offline purpose

Introduction – Cont.

- Ideally, we would like that the use of replicas will be transparent
- Formally, serializability
 - The database behaves as if it executed transactions serially on a nonreplicated copy of the data
- Inefficient!
- Low latency and Availability properties may be affected

Transactions

- Transaction is a sequence of *events*, each event is a *read* or *write* operation
- Transaction may be committed or aborted
- Atomic Visibility
- We will use:
 - x, y as database objects
 - u, v, w as local variables
 - txn is a transaction

Anomalies

 In weaker consistency model than Serializability, non-serial behavior might appear, we will call them anomalies

For example,

- txn₁ = {x.write(post); y.write(empty)} | |
- txn₂ = {u = x.read(); y.write(comment)} | |
- $txn_3 = \{v = x.read(); w = y.read()\}$
- Under specific assumptions, u = post, v = empty, w = comment

Anomalies – Cont.

- The consistency model defines which anomalies might appear
- Different types of anomalies affects directly the semantic of the software that interacting with the database
- Up until now, the current consistency models are coupled with the internal implementation of the database
- Lack of generalization or rules when deciding which model to use

Declarative Models

- To deal with this problem, we propose a framework that is used to specify six different consistency models for replicated databases
- Specifications are *declarative* do not refer to the db internals
- Allow reasoning at higher abstraction level

Atomic Visibility

- Usually atomic visibility is guaranteed, causing that for any transaction T:
 - All T events are visible at once
 - None of *T* events are visible
- Thanks to atomic visibility, transactions become our atomic unit so we may talk about relations on whole transactions

Overview

- Introduction
- Notations and Definitions
- Transactional Consistency Models
- Models Relationship
- Optimizations
- Operational Model Equivalence

Notations

- $Obj = \{x, y, ...\}$, all of them integers
- $Op = \{read(x, n), write(x, n) | x \in Obj, n \in \mathbb{Z}\}$
- EventId a set of infinite indexes
- $historyevent = (i, o), i \in EventId, o \in Op$
- $WEvent_x = \{(i, write(x, n) | i \in EventId, n \in \mathbb{Z}, x \in Obj\}$
- $REvent_x = \{(i, read(x, n) | i \in EventId, n \in \mathbb{Z} \ x \in Obj\}$
- $HEvent_x = WEvent_x \cup REvent_x$

Definition 1 – Transaction & History

- A transaction T is a pair (E, po), where $E \subseteq HEvent$ is a finite, nonempty set of events with distinct identifier. The program order po is a total order over E.
- A history H is a (finite or infinite) set of transactions with disjoint sets of event identifiers.
- All transactions in a history are assumed to be committed.

Definitions

- Prefix-finite:
 - Relation is *prefix-finite* if every element has finitely many predecessors in the transitive closure of the relation $(\{a|(a,b)\in Trans(R)\}\)$ is finite)
- *VIS*:
 - $T_1 \xrightarrow{VIS} T_2$ or $(T_1, T_2) \in VIS$, if the transaction T_2 is aware of the updates made by transaction T_1
- *AR*:
 - $T_1 \xrightarrow{AR} T_2$ or $(T_1, T_2) \in AR$, means that the version of objects written by T_2 supersede those written by T_1
- *AR* is a completion of *VIS* into a total order relation

Definition 2 – Abstract Execution

- An abstract execution is a triple A = (H, VIS, AR) where:
 - *H* is a history
 - Visibility: $VIS \subseteq H \times H$
 - Arbitration: $AR \subseteq H \times H$ is a prefix-finite, total order relation
 - $AR \supseteq VIS$ ($\Rightarrow VIS$ is a prefix-finite, acyclic relation)

Example

Causality Violation anomaly



Consistency Model

- A consistency model specification is a set of *consistency axioms* φ constraining executions.
- The model allows those histories for which there exists an execution that satisfies the axioms:
 - $Hist_{\phi} = \{H | \exists VIS, AR. (H, VIS, AR) \vDash \phi\}$
 - This set (or its complement) defines the anomalies in the consistency model ϕ

Overview

- Introduction
- Notations and Definitions
- Transactional Consistency Models
- Models Relationship
- Optimizations
- Operational Model Equivalence

Transactional Consistency Models

- We now describe 6 different consistency models
- Each model will be described by its axioms
- We start from the weakest model and we will strength them from one to another

(I) Read Atomic

- $\phi = \{Int, Ext\}$
- The weakest model we will see today

More Notations

- For a total order $R \subseteq A \times A$ and a set A, we let $\max_{R}(A)$ be the element $u \in A$ such that $\forall v \in A$. $v = u \lor (v, u) \in R$
- $R^{-1}(u) = \{v | (v, u) \in R\}$
- will be used for an irrelevant value

Internal Consistency

- Within the transaction, the database provides sequential semantics:
 - A read from an object returns the same value as the last write or read in this very transaction

 $\forall (E, \mathsf{po}) \in \mathcal{H}. \forall e \in E. \forall x, n. (e = (_, \mathsf{read}(x, n)) \land (\mathsf{po}^{-1}(e) \cap \mathsf{HEvent}_x \neq \emptyset)) \\ \implies \max_{\mathsf{po}}(\mathsf{po}^{-1}(e) \cap \mathsf{HEvent}_x) = (_, _(x, n))$ (INT)

- Unrepeatable reads is disallowed as well:
 - if a transaction reads an object twice without writing to it in-between, it will read the same value in both cases

External Consistency

- We let $T \vdash Write x: n$ if T writes to x and the last value written is n: $\max_{po}(E \cap WEvent_x) = (_, write(x, n))$
- We let T ⊢ Read x: n if T makes an external read from x, before writing to x and n is the first value returned:

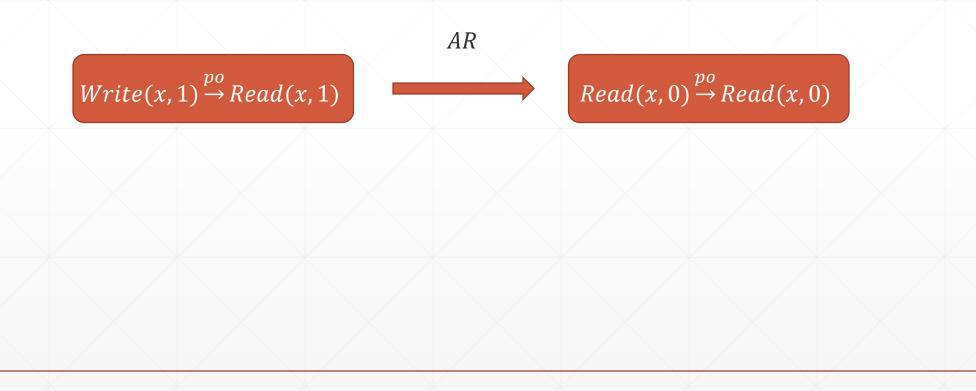
 $\min_{po}(E \cap REvent_x) = (_, read(x, n))$

- The value returned by an external read in T is determined by the transactions VIS-preceding T that write to x
 - If none exists, T reads the initial value 0

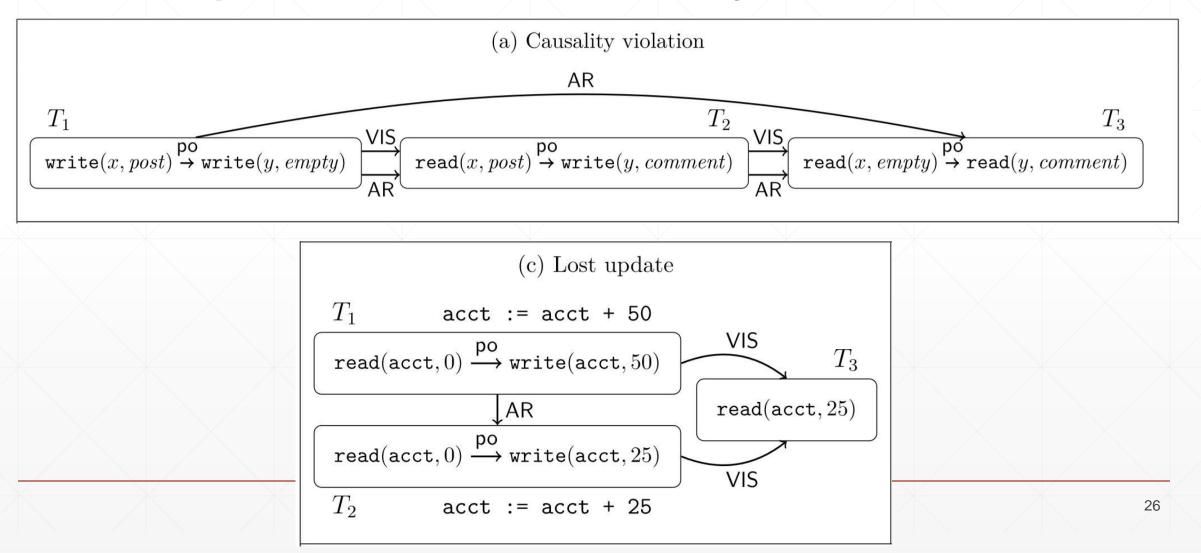
 $\forall T \in \mathcal{H}. \forall x, n. T \vdash \mathsf{Read} \ x : n \Longrightarrow$ $((\mathsf{VIS}^{-1}(T) \cap \{S \mid S \vdash \mathsf{Write} \ x : _\} = \emptyset \land n = 0) \lor$ $\max_{\mathsf{AR}}(\mathsf{VIS}^{-1}(T) \cap \{S \mid S \vdash \mathsf{Write} \ x : _\}) \vdash \mathsf{Write} \ x : n)$

(EXT)

Example – Internal Consistency



Example – External Consistency

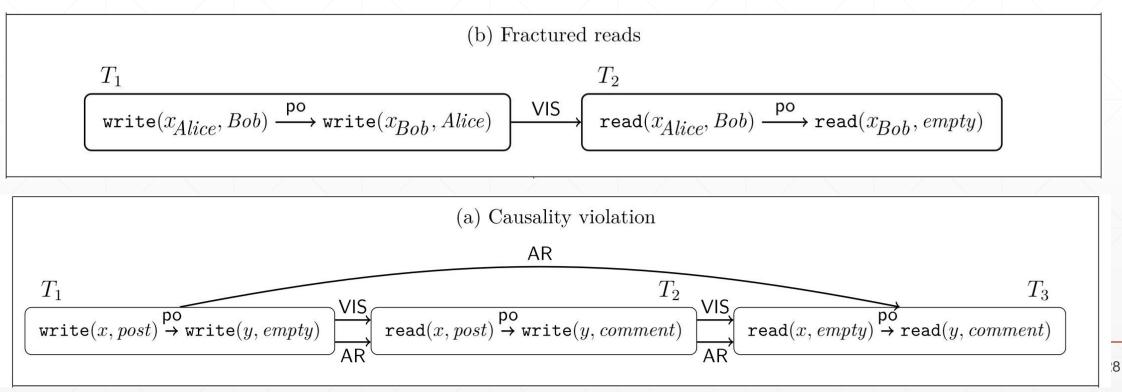


External Consistency – Cont.

- *Ext* implies two more properties:
 - No Dirty reads:
 - A committed transaction cannot read a value written by an aborted or an ongoing transaction
 - A transaction cannot read a value that was overwritten by the transaction that wrote it
 - Atomic Visibility:
 - Either all or none of the transaction writes can be visible to another transaction

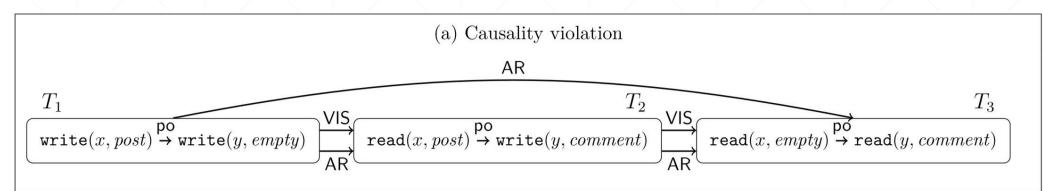
Read Atomic – Use Case

- Symmetric relation
- Fractured Reads anomaly



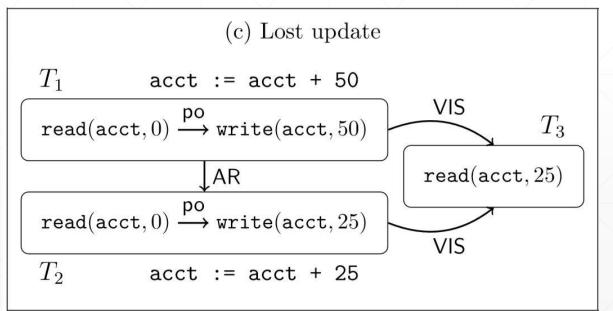
(II) Causal Consistency

- $\phi = \{Int, Ext, TransVis\}$
- TransVis:
 - Requiring VIS to be transitive



Read Atomic & Causal Consistency

- Both can be implemented without requiring any coordination among replicas:
 - A replica can decide to commit a transaction without consulting others
 - Advantage: availability
- Lost Update: An anomaly they both can't prevent



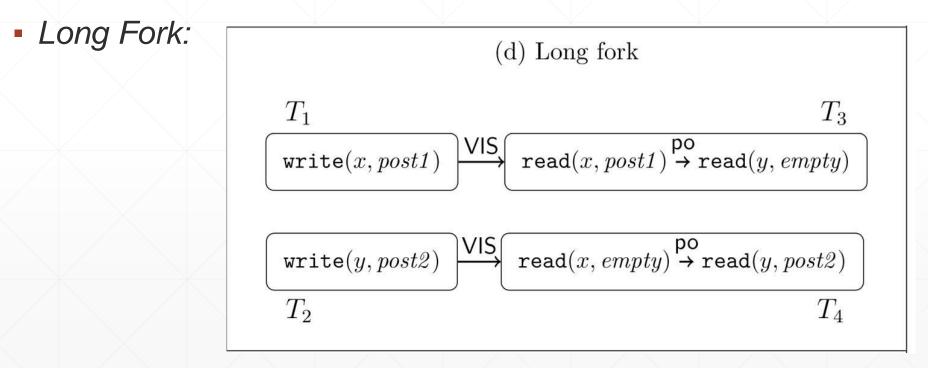
(III) Parallel Snapshot Isolation

- $\phi = \{Int, Ext, TransVis, NoConflict\}$
- NoConflict:
 - Disallows different transactions writing to the same object to be concurrent (prohibits Lost Update anomaly)
 - If two transactions write concurrently to an object, there must be a VIS relation between them

 $\forall T, S \in \mathcal{H}. (T \neq S \land T \vdash \mathsf{Write} \ x : _ \land S \vdash \mathsf{Write} \ x : _) \Longrightarrow (T \xrightarrow{\mathsf{VIS}} S \lor S \xrightarrow{\mathsf{VIS}} T) \quad (\mathsf{NOCONFLICT})$

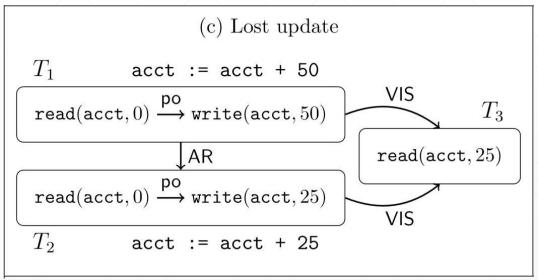
RA & CC & PSI

Two concurrent transactions may be observed in different orders



(IV) Prefix Consistency

- $\phi = \{Int, Ext, TransVis, Prefix\}$
- Prefix:
 - If T observes S, then it also observes all AR-predecessors of S
 - $AR; VIS \subseteq VIS$



(V) Snapshot Isolation

- φ = {Int, Ext, TransVis, NoConflict, Prefix}
- Prevents Long Fork & Lost Update anomalies
- Adopted by some major DB systems such as MongoDB, PostgreSQL, Oracle, MSSQL and many others.
- Write Skew anomaly:

(e) Write skew. Initially acct1 = acct2 = 60.

- if (acct1 + acct2 > 100)
 - acct1 := acct1 100
- if (acct1 + acct2 > 100) acct2 := acct2 - 100

$$\texttt{read}(\texttt{acct1}, 60) \xrightarrow{\texttt{po}} \texttt{read}(\texttt{acct2}, 60) \xrightarrow{\texttt{po}} \texttt{write}(\texttt{acct1}, -40) \quad T_1$$

$$\texttt{read}(\texttt{acct1}, 60) \xrightarrow{\texttt{po}} \texttt{read}(\texttt{acct2}, 60) \xrightarrow{\texttt{po}} \texttt{write}(\texttt{acct2}, -40) \quad T_2$$

(VI) Serializability

- $\phi = \{Int, Ext, TotalVis\}$
- TotalVis:
 - VIS relation must be total

(e) Write skew. Initially acct1 = acct2 = 60.

$$\texttt{read}(\texttt{acct1}, 60) \xrightarrow{\texttt{po}} \texttt{read}(\texttt{acct2}, 60) \xrightarrow{\texttt{po}} \texttt{write}(\texttt{acct1}, -40) \quad T_1$$

$$\texttt{read}(\texttt{acct1}, 60) \xrightarrow{\texttt{po}} \texttt{read}(\texttt{acct2}, 60) \xrightarrow{\texttt{po}} \texttt{write}(\texttt{acct2}, -40) \quad T_2$$

- if (acct1 + acct2 > 100) acct1 := acct1 - 100
- if (acct1 + acct2 > 100) acct2 := acct2 - 100

Overview

- Introduction
- Notations and Definitions
- Transactional Consistency Models
- Models Relationship
- Optimizations
- Operational Model Equivalence

Models Relationship

Φ	Consistency model	Axioms (Figure 2)	Fractured	Causality	Lost	Long	Write	
			reads	violation	update	fork	skew	
RA	Read Atomic [6]	Int, Ext	×	\checkmark	\checkmark	\checkmark	\checkmark	$\mathbf{R}\mathbf{A}$
CC	Causal	INT, EXT, TRANSVIS	×	×	\checkmark	✓	\checkmark	\cap
	consistency $[19, 12]$							CC
PSI	Parallel snapshot	INT, EXT, TRANSVIS,	×	×	×	~	\checkmark	
	isolation $[24, 21]$	NoConflict						$\begin{array}{c} \mathbf{PC} \mathbf{PSI} \\ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
PC	Prefix consistency [13]	INT, EXT, PREFIX	×	×	\checkmark	×	\checkmark	SI
SI	Snapshot isolation [8]	INT, EXT, PREFIX,	×	×	×	×	\checkmark	\cap
	1	NoConflict						\mathbf{SER}
SER	Serialisability [20]	INT, EXT, TOTALVIS	×	×	×	×	×	

Figure 1 Consistency model definitions, anomalies and relationships.

Framework Benefits

- Declarative specifications
- High level relations
- Strengthening consistency is easy

Overview

- Introduction
- Notations and Definitions
- Transactional Consistency Models
- Models Relationship
- Optimizations
- Operational Model Equivalence

Optimizations

- Can we optimize an *abstract execution*?
- Since we speak about transactions and not low-level events, two different transactions may cause the same external behaviour
- Observationally Refines:
 - T observationally refines S, if we can replace T with S in the execution without invalidating the consistency axioms

Observationally Refines – Cont.

- Context:
 - Abstract execution with a "hole"
 - $\chi = (H \cup \{[]\}, VIS, AR), VIS, AR \subseteq (H \cup \{[]\}) \times (H \cup \{[]\})$
 - $\chi[T] = (H \cup \{[T]\}, VIS[[] \rightarrow T], AR[[] \rightarrow T])$
- Formal definition:
 - T_1 observationally refines T_2 on the consistency model ϕ ($T_1 \sqsubseteq_{\phi} T_2$) if $\forall \chi. \chi[T_1] \vDash \phi \Rightarrow \chi[T_2] \vDash \phi$

Optimizations – Cont.

- Theorem 4: Let T_1, T_2 be such that $(\{T_1, T_2\}, \emptyset, \emptyset) \models Int$
 - *RA:* We have $T_1 \sqsubseteq_{RA} T_2$ if and only if for all x, n: $(\neg(T_1 \vdash Read x: n) \Longrightarrow \neg(T_2 \vdash Read x: n)) \land$ $(T_1 \vdash Write x: n \Leftrightarrow T_2 \vdash Write x: n)$
 - CC/PC/SER: We have $T_1 \sqsubseteq_{\phi} T_2$ if and only if for all x, n, m, l: $\left(\neg(T_1 \vdash Read x: n) \Rightarrow \left(\neg(T_2 \vdash Read x: n) \land (T_1 \vdash Write x: n \Leftrightarrow T_2 \vdash Write x: n)\right)\right)$ $\land \left((T_1 \vdash Read x: n) \land (T_1 \vdash Write x: m \Rightarrow m = n)\right) \Rightarrow (T_2 \vdash Write x: l \Rightarrow l = n))$
 - *SI/PSI:* We have $T_1 \sqsubseteq_{\phi} T_2$ if and only if for all x, n: $T_1 \sqsubseteq_{cc} T_2 \land (\neg (T_1 \vdash Write x: n) \Rightarrow (\neg (T_2 \vdash Write x: n)))$

Optimizations – Cont.

 Notice that since we defined *external reads* by T ⊢ *Read x*: ... and T ⊢ Write x: ..., two transactions that have the same *last writes* and the same *initial reads* are considered as equivalent since their *external behavior* is exactly the same

Overview

- Introduction
- Notations and Definitions
- Transactional Consistency Models
- Models Relationship
- Optimizations
- Operational Model Equivalence

Operational Models Equivalence

- Without any practical implementation, our axiomatic specifications may not describe a real database behavior
- We now prove that our abstract models are equivalent to operational ones
- It will be done by showing algorithms that are very close to actual implementations

The System

- The database consists of a set of *replicas*, $RId = \{r_0, r_1, ...\}$
- We assume that the system is fully connected
- All client operations in the same transaction are being executed in a specific replica
- Any transaction eventually terminates
 - Then the replica decides to abort or commit it
 - On commit, a *transaction log* broadcast message with the updates will be sent by the replica

Transaction Log

- t: ρ
 - $\rho \in \{write(x,n) | x \in Obj, n \in \mathbb{Z}\}^* \triangleq UpdateList$
 - $t \in \mathbb{N}$ is the unique *timestamp*
- LogSet $\triangleq \bigcup_{unique t} TransactionLog_t$

Replica State

- $RState \triangleq LogSet \times (UpdateList \uplus \{idle\})$
- The replica state is a pair (*D*, *l*)
 - D is the database copy of r, represented by the set of logs of committed transactions
 - *l* is either the sequence of updates done so far by a single running transaction or *idle*

System Configuration

- Config \triangleq (RId \rightarrow RState) \times LogSet
- The configuration of the whole system is $(R, M) \in Config$
 - R(r) is the state of replica r
 - *M* is the pool of messages which are in transit among the replicas
- \rightarrow transition relation is defined by *Config* × *LEvent* × *Config*
- LEvent consists triples (i, r, o) $i \in EventId, r \in RId, o \in COp$
- *COp* is the set of all low level operations:
 - $COp = \{start, read(x, n), write(x, n), commit(t), abort, receive(t: \rho) | x \in Obj, n \in \mathbb{Z}, t \in \mathbb{N}, \rho \in UpdateList\}$

- We now describe how each low-level operations changes the system configuration
- Start
 - Start may be operated only if the transaction is in *idle* state
 - In order to signify that the replica is executing a transaction we change idle to { }

(Start)
$$\begin{array}{c} \mathbf{e} = (_, r, \mathtt{start}) \\ \hline (R[r \mapsto (D, \mathsf{idle})], M) \xrightarrow{\mathbf{e}} (R[r \mapsto (D, \varepsilon)], M) \end{array}$$

• Write

• The record write(x, n) is appended to the current sequence of updates

 $\mathbf{e} = (_, r, \texttt{write}(x, n))$

(Write)

 $\overline{(R[r\mapsto (D,\rho)],M)} \overset{\mathbf{e}}{\twoheadrightarrow} (R[r\mapsto (D,\rho\cdot\mathtt{write}(x,n))],M)$

Read

(Read)

- The returned value is determined by a lastval function
- *lastval* function is based on the maintained database copy or replica r and the current *UpdateList*
 - Search in *UpdateList* for *write(x,_)* in reverse order
 - Search in D for write(x,_) by descending order of the timestamps
 - If no such *write*, a value 0 is returned

$$\frac{\mathbf{e} = (_, r, \mathtt{read}(x, n)) \qquad n = \mathtt{lastval}(x, D \cup \{\infty : \rho\})}{(R[r \mapsto (D, \rho)], M) \xrightarrow{\mathbf{e}} (R[r \mapsto (D, \rho)], M)}$$

52

- Abort
 - If a transaction aborts at replica r, the current sequence of updates is in r is cleared

$$\mathbf{e} = (_, r, \texttt{abort})$$

(Abort)

 $(R[r\mapsto (D,\rho)],M) \stackrel{\mathbf{e}}{\twoheadrightarrow} (R[r\mapsto (D,\mathsf{idle})],M)$

- Commit
 - If a transaction commits, it gets assigned a *timestamp t* and its transaction log is added to the message pool
 - t must be a distinct timestamp and must be greater than all timestamps that r is aware of
 - A single message is sent for each commit, which ensures atomic visibility property

 $\mathbf{e} = (_, r, \texttt{commit}(t))$

(Commit) $(\forall r', D', R(r') = (D', _) \implies (t : _) \notin D') \quad (\forall t', (t' : _) \in D \implies t > t')$

 $(R[r\mapsto (D,\rho)],M) \stackrel{\mathbf{e}}{\twoheadrightarrow} (R[r\mapsto (D\cup\{t:\rho\},\mathsf{idle})],M\cup\{t:\rho\})$

- Receive
 - A replica r may receive a transaction log from the message pool, only if it is in *idle* state
 - The received transaction log is added to the database copy

$$\mathbf{e} = (_, r, \texttt{receive}(t:\rho))$$

(Receive)

 $(R[r\mapsto (D,\mathsf{idle})], M\cup \{(t:\rho)\}) \stackrel{\mathbf{e}}{\twoheadrightarrow} (R[r\mapsto (D\cup \{(t:\rho)\},\mathsf{idle})], M\cup \{t:\rho\})$

System Configuration – Transitions – Cont.

- We define the semantics of the operational model by considering all sequences of transitions generated by → starting from an initial configuration
 - Log sets of all replicas are empty
 - The message pool is empty

Concrete Execution

- Concrete execution:
 - Let $(R_0, M_0) = (\forall r. (\emptyset, idle), \emptyset)$. A concrete execution is a pair $C = (E, \prec)$
 - $E \subseteq LEvent$, \prec is a prefix-finite, total order over E
 - let $(e_1, e_2, ...)$ events in *E* ordered by \prec , then for some configurations $(R_1, M_1), (R_2, M_2), ... \in Config$, we have

•
$$(R_0, M_0) \xrightarrow{e_1} (R_1, M_1) \xrightarrow{e_2} (R_2, M_2) \xrightarrow{e_3} \dots$$

Equivalence – Read Atomic

 We want to show that the operational model defined by the transition function indeed defines the semantics of Read Atomic model

• *TS_C*:

Function that maps read/write event to its committed transaction

$$\mathsf{TS}_{\mathcal{C}}(\mathbf{e}) = \begin{cases} t, & \text{if } \exists r. \mathbf{e} \in \{(_, r, \mathtt{read}(_, _)), (_, r, \mathtt{write}(_, _))\} \land \\ \exists \mathbf{g} \in \mathbf{E}. \mathbf{g} = (_, r, \mathtt{commit}(t)) \land \\ \neg(\exists \mathbf{f} \in \{(_, r, \mathtt{commit}(_)), (_, r, \mathtt{abort})\}. (\mathbf{e} \prec \mathbf{f} \prec \mathbf{g})) \\ \text{undefined. otherwise} \end{cases}$$

History

- We first map *concrete execution* into a history
- The history of $C = (E, \prec)$ is defined as follows:
 - $history(C) = \{T_t | \{e \in E | TS_C(e) = t\} \neq \emptyset\}$ where $T_t = (E_t, po_t)$

•
$$E_t = \{(i, o) | \exists e \in E. e = (i, _, o) \land TS_C(e) = t\}$$

• $po_t = \{(i_1, o_1), (i_2, o_2) | (i_1, o_1), (i_2, o_2) \in E_t \land (i_1, _, o_1) \prec (i_2, _, o_2)\}$

Equivalence – Read Atomic – Cont.

- $history(ConcExec_{RA}) = Hist_{RA}$
- ConcExec_{RA} is the set of concrete executions satisfying the Read Atomic model constraints

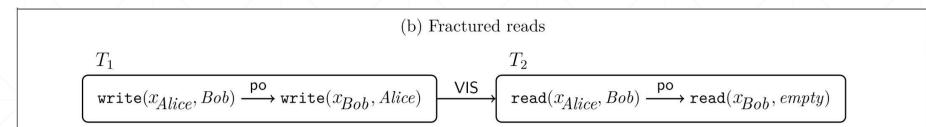
Equivalence – Read Atomic – Proof Outline

- $history(ConcExec_{RA}) \subseteq Hist_{RA}$
- Let $C = (E, \prec) \in ConcExec_{RA}$, our goal is to show that $history(C) \in Hist_{RA}$
- We build an *abstract execution* from C:
 - A = (history(C), VIS, AR)
 - $AR = \{ (T_{t_1}, T_{t_2}) | t_1 < t_2 \}$
 - $VIS = \exists e_1, e_2 \in E. \exists r.$ $\begin{cases} (T_{t_1}, T_{t_2}) \\ e_1 \in \{(_, r, commit(t_1)), (_, r, receive(t_1:_))\} \land e_2 = (_, r, commit(t_2)) \land e_1 \prec e_2 \end{cases}$

Equivalence – Read Atomic – Proof Outline – Cont.

- This construction provides:
 - AR lifts the order of timestamps to transactions
 - VIS reflects message delivery
- We can show that any *abstract execution* constructed from a *concrete execution* as above, satisfies Int, Ext and hence $\in Hist_{RA}$

Example – Read Atomic



	(Start)		, <i>r</i> , start)				
		$(R[r\mapsto (D,idle)], I$	$M) \stackrel{\mathbf{e}}{\twoheadrightarrow} (R[r \mapsto (D, \varepsilon)], M)$				
	(Write)	<u></u>	$=(_,r,\texttt{write}(x,n))$				
		$(R[r\mapsto (D,\rho)],M)$	$) \stackrel{\mathbf{e}}{\twoheadrightarrow} (R[r \mapsto (D, \rho \cdot \texttt{write})))$	(x,n))],M)			
	(Read)		$n)) \qquad n = lastval(x, D \cup x)$				
		$(R[r\mapsto (D,\rho$	$[0], M) \xrightarrow{\mathbf{e}} (R[r \mapsto (D, \rho)],$	M)			
(Abort	(Abort)		$(_, r, \texttt{abort})$				
	()	$(R[r\mapsto (D,\rho)],M)$	$) \stackrel{\mathbf{e}}{\twoheadrightarrow} (R[r \mapsto (D, idle)], M)$				
		$\mathbf{e} = (_, r, \texttt{commit}(t$,,				
	(Commit)	<u> </u>	$D',_) \implies (t:_) \notin D')$				
	_	$(R[r\mapsto (D$	$(\rho,\rho)],M) \stackrel{\mathbf{e}}{\twoheadrightarrow} (R[r\mapsto (D\cup$	$\{t: \rho\}, idle)], M \cup$	$\{t: ho\})$		
	(Receive)	$\mathbf{e} = (_, r, \texttt{receive}(t:\rho))$					
		$(R[r\mapsto (D,idle)],l$	$M \cup \{(t:\rho)\}) \stackrel{\mathbf{e}}{\twoheadrightarrow} (R[r \mapsto 0])$	$(D \cup \{(t: \rho)\}, idle)$	$)], M \cup \{t: \rho\})$		

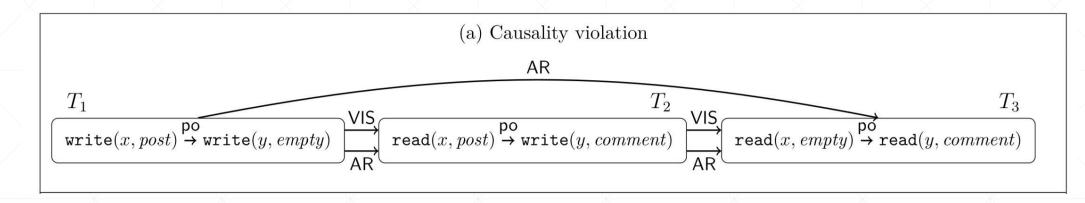
Stronger Operational Models – Causal Consistency

- For the stronger models, we will explain how to fulfill the axioms by constraining the communication protocol between the replicas
- CausalDeliv:
 - Implies TransVis, ensures that the message delivery is causal
 - If a replica r sends the transaction log of t₂ after it sends or receives the transaction log of t₁, then every other replica r' will receive the log t₂ only after it receives or sends the log t₁

$$\left(\mathbf{e}_1 \in \{(_, r, \texttt{receive}(t_1 : _)), (_, r, \texttt{commit}(t_1)) \} \land \mathbf{e}_2 = (_, r, \texttt{commit}(t_2)) \land \mathbf{e}_1 \prec \mathbf{e}_2 \land r \neq r' \land \mathbf{f}_2 = (_, r', \texttt{receive}(t_2 : _)) \right) \Longrightarrow \left(\exists \mathbf{f}_1 \in \{(_, r', \texttt{receive}(t_1 : _)), (_, r', \texttt{commit}(t_1)) \}. \mathbf{f}_1 \prec \mathbf{f}_2 \right)$$

$$(CausalDeliv)$$

Example – Causal Consistency



 $\left(\mathbf{e}_1 \in \{(_, r, \texttt{receive}(t_1 : _)), (_, r, \texttt{commit}(t_1)) \} \land \mathbf{e}_2 = (_, r, \texttt{commit}(t_2)) \land \mathbf{e}_1 \prec \mathbf{e}_2 \land r \neq r' \land \mathbf{f}_2 = (_, r', \texttt{receive}(t_2 : _)) \right) \Longrightarrow \left(\exists \mathbf{f}_1 \in \{(_, r', \texttt{receive}(t_1 : _)), (_, r', \texttt{commit}(t_1)) \}, \mathbf{f}_1 \prec \mathbf{f}_2 \right)$ (CausalDeliv)

Stronger Operational Models – Prefix Consistency

- MonTS:
 - Timestamps must agree with the order in which transactions commit

 $\left(\mathbf{e}_1 = (_,_,\mathsf{commit}(t_1)) \land \mathbf{e}_2 = (_,_,\mathsf{commit}(t_2)) \land \mathbf{e}_1 \prec \mathbf{e}_2\right) \implies t_1 < t_2$ (MonTS)

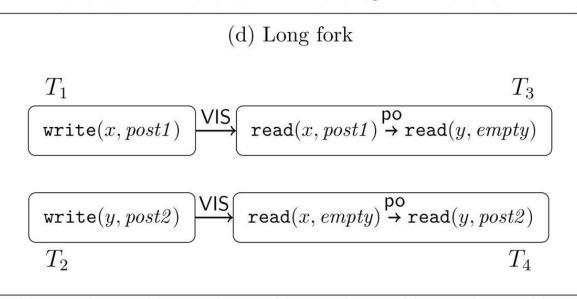
- TotalDeliv
 - Each transaction access a database snapshot that is closed under adding transactions with timestamps smaller than the ones already present in the snapshot

$$\begin{pmatrix} \mathbf{g} = (_, r, \mathtt{start}) \land \mathbf{e}_2 \in \{(_, r, \mathtt{commit}(t_2)), (_, r, \mathtt{receive}(t_2 : _))\} \land \mathbf{f} = (_, _, \mathtt{commit}(t_1)) \\ \land t_1 < t_2 \land \mathbf{e}_2 \prec \mathbf{g} \end{pmatrix} \implies (\exists \mathbf{e}_1 \in \{(_, r, \mathtt{commit}(t_1)), (_, r, \mathtt{receive}(t_1 : _))\}, \mathbf{e}_1 \prec \mathbf{g})$$

(TotalDeliv)

- Both can be implemented via a central server
- Together guarantee Prefix

Example – Prefix Consistency



$$\begin{pmatrix} \mathbf{e}_1 = (_,_, \mathsf{commit}(t_1)) \land \mathbf{e}_2 = (_,_, \mathsf{commit}(t_2)) \land \mathbf{e}_1 \prec \mathbf{e}_2 \end{pmatrix} \implies t_1 < t_2 \qquad (MonTS) \\ \begin{pmatrix} \mathbf{g} = (_, r, \mathtt{start}) \land \mathbf{e}_2 \in \{(_, r, \mathtt{commit}(t_2)), (_, r, \mathtt{receive}(t_2 : _))\} \land \mathbf{f} = (_,_, \mathtt{commit}(t_1)) \\ \land t_1 < t_2 \land \mathbf{e}_2 \prec \mathbf{g} \end{pmatrix} \implies (\exists \mathbf{e}_1 \in \{(_, r, \mathtt{commit}(t_1)), (_, r, \mathtt{receive}(t_1 : _))\}, \mathbf{e}_1 \prec \mathbf{g}) \\ (\text{TotalDeliv})$$

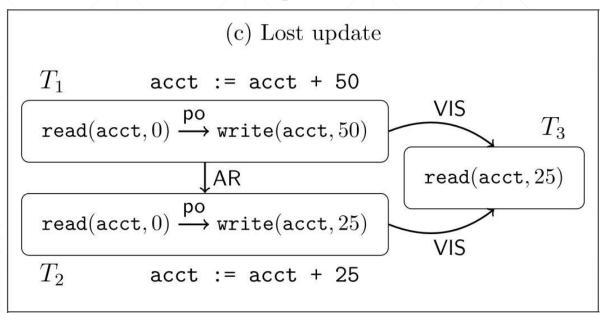
Stronger Operational Models – Parallel Snapshot Isolation

- ConfictCheck:
 - Allows transaction T₁ to commit at replica r only if it passes a conflict detection check:
 - if T_1 updates an object x that is also updated by a transaction T_2 committed at replica r', then the replica r must have received the log of T_2

• If the check fails,
$$r$$
 must abort the transaction
 $(\mathbf{e}_1 = (_, r, \mathtt{write}(x, _)) \land \mathbf{f}_1 = (_, r, \mathtt{commit}(t_1)) \land \mathsf{TS}_{\mathcal{C}}(\mathbf{e}_1) = t_1 \land$
 $\mathbf{e}_2 = (_, r', \mathtt{write}(x, _)) \land \mathbf{f}_2 = (_, r', \mathtt{commit}(t_2)) \land \mathsf{TS}_{\mathcal{C}}(\mathbf{e}_2) = t_2 \land \mathbf{f}_2 \prec \mathbf{f}_1 \land r \neq r')$
 $\implies (\exists \mathbf{g} \in \mathbf{E}, \mathbf{g} = (_, r, \mathtt{receive}(t_2 : _)) \land \mathbf{g} \prec \mathbf{f}_1),$ (ConflictCheck)

 May be implemented by requiring replica to coordinate with others before a commit

Example – Parallel Snapshot Isolation



$$\begin{aligned} \left(\mathbf{e}_{1} = (_, r, \mathtt{write}(x, _)) \land \mathbf{f}_{1} = (_, r, \mathtt{commit}(t_{1})) \land \mathsf{TS}_{\mathcal{C}}(\mathbf{e}_{1}) = t_{1} \land \\ \mathbf{e}_{2} = (_, r', \mathtt{write}(x, _)) \land \mathbf{f}_{2} = (_, r', \mathtt{commit}(t_{2})) \land \mathsf{TS}_{\mathcal{C}}(\mathbf{e}_{2}) = t_{2} \land \mathbf{f}_{2} \prec \mathbf{f}_{1} \land r \neq r' \right) \\ \implies \left(\exists \mathbf{g} \in \mathbf{E}, \mathbf{g} = (_, r, \mathtt{receive}(t_{2} : _)) \land \mathbf{g} \prec \mathbf{f}_{1}\right), \end{aligned}$$
(ConflictCheck)

69

Stronger Operational Models

Φ	Constraints	Φ	Constraints		Constraints
RA	None	PSI	(CausalDeliv), (ConflictCheck)	SI	(MonTS), (TotalDeliv),
CC	(CausalDeliv)	PC	(MonTS), (TotalDeliv)	51	(ConflictCheck)

Conclusion

- We have proposed a framework for specifying transactional consistency models of replicated databases
- We derived 6 different models using the framework
- The models are declarative which gives us a better understanding (?) of the database behaviour and allows us to discuss about the relations between the transactions
- The declarative framework may be used to prove correctness and specify optimizations in a more elegant and simpler way
- Using this framework we may create some new consistency models
- For database architecture designer, the framework helps to determine which model to use for maximum efficiency

Thank You!