
A Framework for Transactional 
Consistency Models with 

Atomic Visibility
Daniel Solomon

30/05/18



Overview

▪ Introduction

▪ Notations and Definitions

▪ Transactional Consistency Models

▪ Models Relationship

▪ Optimizations

▪ Operational Model Equivalence

2



Overview

▪ Introduction

▪ Notations and Definitions

▪ Transactional Consistency Models

▪ Models Relationship

▪ Optimizations

▪ Operational Model Equivalence

3



Introduction

▪ Our main focus is databases

▪ What is a database?

▪ Database is a organized collection of data

▪ There are many types of databases

▪ We will talk about replicated databases

4



Introduction – Cont.

▪ Replicated database maintains shared data between several 
replicas

▪ A client may perform transaction in any replica

▪ Updates will propagate between all replicas

▪ Why replicated database?

▪ Availability

▪ Low latency

▪ Offline purpose

5



Introduction – Cont.

▪ Ideally, we would like that the use of replicas will be transparent

▪ Formally, serializability

▪ The database behaves as if it executed transactions serially on a non-
replicated copy of the data

▪ Inefficient!

▪ Low latency and Availability properties may be affected

6



Transactions

▪ Transaction is a sequence of events, each event is a read or write
operation

▪ Transaction may be committed or aborted

▪ Atomic Visibility

▪ We will use:

▪ 𝑥, 𝑦 as database objects

▪ 𝑢, 𝑣, 𝑤 as local variables

▪ 𝑡𝑥𝑛 is a transaction

7



Anomalies

▪ In weaker consistency model than 𝑆𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑎𝑏𝑖𝑙𝑖𝑡𝑦, non-serial 
behavior might appear, we will call them anomalies

▪ For example,

▪ 𝑡𝑥𝑛1 = 𝑥.𝑤𝑟𝑖𝑡𝑒 𝑝𝑜𝑠𝑡 ; 𝑦. 𝑤𝑟𝑖𝑡𝑒 𝑒𝑚𝑝𝑡𝑦 | |

▪ 𝑡𝑥𝑛2 = 𝑢 = 𝑥. 𝑟𝑒𝑎𝑑 ; 𝑦. 𝑤𝑟𝑖𝑡𝑒 𝑐𝑜𝑚𝑚𝑒𝑛𝑡

▪ 𝑡𝑥𝑛3 = {𝑣 = 𝑥. 𝑟𝑒𝑎𝑑 ;𝑤 = 𝑦. 𝑟𝑒𝑎𝑑 }

▪ Under specific assumptions, 𝑢 = 𝑝𝑜𝑠𝑡, 𝑣 = 𝑒𝑚𝑝𝑡𝑦,𝑤 = 𝑐𝑜𝑚𝑚𝑒𝑛𝑡

8



Anomalies – Cont.

▪ The consistency model defines which anomalies might appear

▪ Different types of anomalies affects directly the semantic of the 
software that interacting with the database

▪ Up until now, the current consistency models are coupled with the 
internal implementation of the database

▪ Lack of generalization or rules when deciding which model to use

9



Declarative Models

▪ To deal with this problem, we propose a framework that is used to 
specify six different consistency models for replicated databases

▪ Specifications are declarative – do not refer to the db internals

▪ Allow reasoning at higher abstraction level

10



Atomic Visibility

▪ Usually atomic visibility is guaranteed, causing that for any 
transaction 𝑇:

▪ All 𝑇 events are visible at once

▪ None of 𝑇 events are visible

▪ Thanks to atomic visibility, transactions become our atomic unit so 
we may talk about relations on whole transactions

11



Overview

▪ Introduction

▪ Notations and Definitions

▪ Transactional Consistency Models

▪ Models Relationship

▪ Optimizations

▪ Operational Model Equivalence

12



Notations

▪ 𝑂𝑏𝑗 = 𝑥, 𝑦, … , all of them integers

▪ 𝑂𝑝 = 𝑟𝑒𝑎𝑑 𝑥, 𝑛 , 𝑤𝑟𝑖𝑡𝑒 𝑥, 𝑛 𝑥 ∈ 𝑂𝑏𝑗, 𝑛 ∈ ℤ

▪ 𝐸𝑣𝑒𝑛𝑡𝐼𝑑 – a set of infinite indexes

▪ ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑒𝑣𝑒𝑛𝑡 = (𝑖, 𝑜), 𝑖 ∈ 𝐸𝑣𝑒𝑛𝑡𝐼𝑑, 𝑜 ∈ 𝑂𝑝

▪ 𝑊𝐸𝑣𝑒𝑛𝑡𝑥 = { 𝑖, 𝑤𝑟𝑖𝑡𝑒 𝑥, 𝑛 𝑖 ∈ 𝐸𝑣𝑒𝑛𝑡𝐼𝑑, 𝑛 ∈ ℤ, 𝑥 ∈ 𝑂𝑏𝑗}

▪ 𝑅𝐸𝑣𝑒𝑛𝑡𝑥 = { 𝑖, 𝑟𝑒𝑎𝑑 𝑥, 𝑛 𝑖 ∈ 𝐸𝑣𝑒𝑛𝑡𝐼𝑑, 𝑛 ∈ ℤ 𝑥 ∈ 𝑂𝑏𝑗}

▪ 𝐻𝐸𝑣𝑒𝑛𝑡𝑥 = 𝑊𝐸𝑣𝑒𝑛𝑡𝑥 ∪ 𝑅𝐸𝑣𝑒𝑛𝑡𝑥

13



Definition 1 – Transaction & History

▪ A transaction 𝑇 is a pair 𝐸, 𝑝𝑜 , where 𝐸 ⊆ 𝐻𝐸𝑣𝑒𝑛𝑡 is a finite, non-
empty set of events with distinct identifier. The program order 𝑝𝑜 is 
a total order over 𝐸.

▪ A history 𝐻 is a (finite or infinite) set of transactions with disjoint sets 
of event identifiers. 

▪ All transactions in a history are assumed to be committed.

14



Definitions

▪ Prefix-finite:

▪ Relation is prefix-finite if every element has finitely many predecessors in the 
transitive closure of the relation ( 𝑎 𝑎, 𝑏 𝜖𝑇𝑟𝑎𝑛𝑠 𝑅 is finite)

▪ 𝑉𝐼𝑆:

▪ 𝑇1
𝑉𝐼𝑆

𝑇2 or (𝑇1, 𝑇2) ∈ 𝑉𝐼𝑆, if the transaction 𝑇2 is aware of the updates made by 
transaction 𝑇1

▪ 𝐴𝑅:

▪ 𝑇1
𝐴𝑅
𝑇2 or (𝑇1, 𝑇2) ∈ 𝐴𝑅, means that the version of objects written by 𝑇2 supersede 

those written by 𝑇1

▪ 𝐴𝑅 is a completion of 𝑉𝐼𝑆 into a total order relation 

15



Definition 2 – Abstract Execution

▪ An abstract execution is a triple 𝐴 = 𝐻, 𝑉𝐼𝑆, 𝐴𝑅 where:

▪ 𝐻 is a history

▪ Visibility: 𝑉𝐼𝑆 ⊆ 𝐻 × 𝐻

▪ Arbitration: 𝐴𝑅 ⊆ 𝐻 × 𝐻 is a prefix-finite, total order relation

▪ 𝐴𝑅 ⊇ 𝑉𝐼𝑆 (⇒ 𝑉𝐼𝑆 is a prefix-finite, acyclic relation) 

16



Example

▪ Causality Violation anomaly

17



Consistency Model

▪ A consistency model specification is a set of consistency axioms 𝜙
constraining executions.

▪ The model allows those histories for which there exists an execution 
that satisfies the axioms:

▪ 𝐻𝑖𝑠𝑡𝜙 = {𝐻|∃𝑉𝐼𝑆, 𝐴𝑅. (𝐻, 𝑉𝐼𝑆, 𝐴𝑅) ⊨ 𝜙}

▪ This set (or its complement) defines the anomalies in the consistency 
model 𝜙

18



Overview

▪ Introduction

▪ Notations and Definitions

▪ Transactional Consistency Models

▪ Models Relationship

▪ Optimizations

▪ Operational Model Equivalence

19



Transactional Consistency Models

▪ We now describe 6 different consistency models

▪ Each model will be described by its axioms

▪ We start from the weakest model and we will strength them from 
one to another

20



(I) Read Atomic

▪ 𝜙 = 𝐼𝑛𝑡, 𝐸𝑥𝑡

▪ The weakest model we will see today

21



More Notations

▪ For a total order 𝑅 ⊆ 𝐴 × 𝐴 and a set 𝐴, we let max
𝑅
(𝐴) be the 

element 𝑢 ∈ 𝐴 such that ∀𝑣 ∈ 𝐴. 𝑣 = 𝑢 ∨ (𝑣, 𝑢) ∈ 𝑅

▪ 𝑅−1 𝑢 = 𝑣 𝑣, 𝑢 ∈ 𝑅

▪ _ will be used for an irrelevant value

22



Internal Consistency

▪ Within the transaction, the database provides sequential semantics:

▪ A read from an object returns the same value as the last write or read in 
this very transaction

▪ Unrepeatable reads is disallowed as well:

▪ if a transaction reads an object twice without writing to it in-between, it 
will read the same value in both cases

23



External Consistency

▪ We let 𝑇 ⊢ 𝑊𝑟𝑖𝑡𝑒 𝑥: 𝑛 if 𝑇 writes to 𝑥 and the last value written is 𝑛:
max
𝑝𝑜

𝐸 ∩𝑊𝐸𝑣𝑒𝑛𝑡𝑥 = (_, 𝑤𝑟𝑖𝑡𝑒 𝑥, 𝑛 )

▪ We let 𝑇 ⊢ 𝑅𝑒𝑎𝑑 𝑥: 𝑛 if 𝑇 makes an external read from 𝑥, before writing to 
𝑥 and 𝑛 is the first value returned:

m𝑖𝑛
𝑝𝑜

𝐸 ∩ 𝑅𝐸𝑣𝑒𝑛𝑡𝑥 = (_, 𝑟𝑒𝑎𝑑 𝑥, 𝑛 )

▪ The value returned by an external read in 𝑇 is determined by the 
transactions 𝑉𝐼𝑆-preceding 𝑇 that write to 𝑥

▪ If none exists, 𝑇 reads the initial value 0

24



Example – Internal Consistency

25

𝑊𝑟𝑖𝑡𝑒(𝑥, 1)
𝑝𝑜
𝑅𝑒𝑎𝑑(𝑥, 1) 𝑅𝑒𝑎𝑑(𝑥, 0)

𝑝𝑜
𝑅𝑒𝑎𝑑(𝑥, 0)

𝐴𝑅



Example – External Consistency

26



External Consistency – Cont.

▪ 𝐸𝑥𝑡 implies two more properties:

▪ No Dirty reads: 

▪ A committed transaction cannot read a value written by an aborted or an 
ongoing transaction

▪ A transaction cannot read a value that was overwritten by the transaction that 
wrote it

▪ Atomic Visibility:

▪ Either all or none of the transaction writes can be visible to another 
transaction

27



Read Atomic – Use Case

▪ Symmetric relation

▪ Fractured Reads anomaly

28



(II) Causal Consistency

▪ 𝜙 = 𝐼𝑛𝑡, 𝐸𝑥𝑡, 𝑇𝑟𝑎𝑛𝑠𝑉𝑖𝑠

▪ TransVis:

▪ Requiring VIS to be transitive

29



Read Atomic & Causal Consistency

▪ Both can be implemented without requiring any coordination among 
replicas:

▪ A replica can decide to commit a transaction without consulting others

▪ Advantage: availability

▪ Lost Update:
An anomaly they both
can’t prevent

30



(III) Parallel Snapshot Isolation

▪ 𝜙 = 𝐼𝑛𝑡, 𝐸𝑥𝑡, 𝑇𝑟𝑎𝑛𝑠𝑉𝑖𝑠, 𝑁𝑜𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡

▪ NoConflict:

▪ Disallows different transactions writing to the same object to be 
concurrent (prohibits Lost Update anomaly)

▪ If two transactions write concurrently to an object, there must be a 𝑉𝐼𝑆
relation between them

31



RA & CC & PSI

▪ Two concurrent transactions may be observed in different orders

▪ Long Fork:

32



(IV) Prefix Consistency

▪ 𝜙 = 𝐼𝑛𝑡, 𝐸𝑥𝑡, 𝑇𝑟𝑎𝑛𝑠𝑉𝑖𝑠, 𝑃𝑟𝑒𝑓𝑖𝑥

▪ Prefix:

▪ If 𝑇 observes 𝑆, then it also observes all 𝐴𝑅-predecessors of 𝑆

▪ 𝐴𝑅; 𝑉𝐼𝑆 ⊆ 𝑉𝐼𝑆

33



(V) Snapshot Isolation

▪ 𝜙 = 𝐼𝑛𝑡, 𝐸𝑥𝑡, 𝑇𝑟𝑎𝑛𝑠𝑉𝑖𝑠, 𝑁𝑜𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑃𝑟𝑒𝑓𝑖𝑥

▪ Prevents Long Fork & Lost Update anomalies

▪ Adopted by some major DB systems such as MongoDB, 
PostgreSQL, Oracle, MSSQL and many others.

▪ Write Skew anomaly:

34



(VI) Serializability

▪ 𝜙 = 𝐼𝑛𝑡, 𝐸𝑥𝑡, 𝑇𝑜𝑡𝑎𝑙𝑉𝑖𝑠

▪ TotalVis:

▪ 𝑉𝐼𝑆 relation must be total

35



Overview

▪ Introduction

▪ Notations and Definitions

▪ Transactional Consistency Models

▪ Models Relationship

▪ Optimizations

▪ Operational Model Equivalence

36



Models Relationship

37



Framework Benefits

▪ Declarative specifications

▪ High level relations

▪ Strengthening consistency is easy

38



Overview

▪ Introduction

▪ Notations and Definitions

▪ Transactional Consistency Models

▪ Models Relationship

▪ Optimizations

▪ Operational Model Equivalence

39



Optimizations

▪ Can we optimize an abstract execution?

▪ Since we speak about transactions and not low-level events, two 
different transactions may cause the same external behaviour

▪ Observationally Refines:

▪ 𝑇 observationally refines 𝑆, if we can replace 𝑇 with 𝑆 in the execution 
without invalidating the consistency axioms

40



Observationally Refines – Cont.

▪ Context:

▪ Abstract execution with a “hole”

▪ 𝜒 = 𝐻 ∪ , 𝑉𝐼𝑆, 𝐴𝑅 , 𝑉𝐼𝑆, 𝐴𝑅 ⊆ 𝐻 ∪ × 𝐻 ∪

▪ 𝜒 𝑇 = 𝐻 ∪ 𝑇 , 𝑉𝐼𝑆[ → 𝑇], 𝐴𝑅[ → 𝑇]

▪ Formal definition:

▪ 𝑇1 observationally refines 𝑇2 on the consistency model 𝜙 (𝑇1 ⊑𝜙 𝑇2) if

∀𝜒. 𝜒[𝑇1] ⊨ 𝜙 ⟹ 𝜒[𝑇2] ⊨ 𝜙

41



Optimizations – Cont.

▪ Theorem 4: Let 𝑇1, 𝑇2 be such that ( 𝑇1, 𝑇2 , ∅, ∅) ⊨ Int

▪ RA: We have T1 ⊑𝑹𝑨 𝑇2 if and only if for all 𝑥, 𝑛:
¬ 𝑇1 ⊢ 𝑅𝑒𝑎𝑑 𝑥: 𝑛 ⟹ ¬ 𝑇2 ⊢ 𝑅𝑒𝑎𝑑 𝑥: 𝑛 ∧
(𝑇1 ⊢ 𝑊𝑟𝑖𝑡𝑒 𝑥: 𝑛 ⟺ 𝑇2 ⊢ 𝑊𝑟𝑖𝑡𝑒 𝑥: 𝑛)

▪ CC/PC/SER: We have T1 ⊑𝝓 𝑇2 if and only if for all 𝑥, 𝑛,𝑚, 𝑙:

¬ 𝑇1 ⊢ 𝑅𝑒𝑎𝑑 𝑥: 𝑛 ⟹ ¬ 𝑇2 ⊢ 𝑅𝑒𝑎𝑑 𝑥: 𝑛 ∧ 𝑇1 ⊢ 𝑊𝑟𝑖𝑡𝑒 𝑥: 𝑛 ⟺ 𝑇2 ⊢ 𝑊𝑟𝑖𝑡𝑒 𝑥: 𝑛

∧ 𝑇1 ⊢ 𝑅𝑒𝑎𝑑 𝑥: 𝑛 ∧ 𝑇1 ⊢ 𝑊𝑟𝑖𝑡𝑒 𝑥:𝑚 ⟹ 𝑚 = 𝑛 ⟹ (𝑇2 ⊢ 𝑊𝑟𝑖𝑡𝑒 𝑥: 𝑙 ⟹ 𝑙 = 𝑛))

▪ SI/PSI: We have T1 ⊑𝝓 𝑇2 if and only if for all 𝑥, 𝑛:
T1 ⊑𝑪𝑪 𝑇2 ∧ ¬ 𝑇1 ⊢ 𝑊𝑟𝑖𝑡𝑒 𝑥: 𝑛 ⟹ ¬ 𝑇2 ⊢ 𝑊𝑟𝑖𝑡𝑒 𝑥: 𝑛

42



Optimizations – Cont.

▪ Notice that since we defined external reads by T ⊢ 𝑅𝑒𝑎𝑑 𝑥:… and   
T ⊢ 𝑊𝑟𝑖𝑡𝑒 𝑥:…, two transactions that have the same last writes and 
the same initial reads are considered as equivalent since their 
external behavior is exactly the same 

43



Overview

▪ Introduction

▪ Notations and Definitions

▪ Transactional Consistency Models

▪ Models Relationship

▪ Optimizations

▪ Operational Model Equivalence

44



Operational Models Equivalence

▪ Without any practical implementation, our axiomatic specifications 
may not describe a real database behavior

▪ We now prove that our abstract models are equivalent to 
operational ones

▪ It will be done by showing algorithms that are very close to actual 
implementations

45



The System

▪ The database consists of a set of replicas, 𝑅𝐼𝑑 = 𝑟0, 𝑟1, …

▪ We assume that the system is fully connected

▪ All client operations in the same transaction are being executed in a 
specific replica

▪ Any transaction eventually terminates

▪ Then the replica decides to abort or commit it

▪ On commit, a transaction log broadcast message with the updates will 
be sent by the replica

46



Transaction Log

▪ 𝑡: 𝜌

▪ 𝜌 ∈ 𝑤𝑟𝑖𝑡𝑒 𝑥, 𝑛 𝑥 ∈ 𝑂𝑏𝑗, 𝑛 ∈ ℤ ∗ ≜ 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡

▪ 𝑡 ∈ ℕ is the unique timestamp

▪ 𝐿𝑜𝑔𝑆𝑒𝑡 ≜ 𝑢𝑛𝑖𝑞𝑢𝑒ڂ 𝑡 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐿𝑜𝑔𝑡

47



Replica State

▪ 𝑅𝑆𝑡𝑎𝑡𝑒 ≜ 𝐿𝑜𝑔𝑆𝑒𝑡 × 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 ⊎ 𝑖𝑑𝑙𝑒

▪ The replica state is a pair 𝐷, 𝑙

▪ 𝐷 is the database copy of 𝑟, represented by the set of logs of committed 
transactions

▪ 𝑙 is either the sequence of updates done so far by a single running 
transaction or idle

48



System Configuration

▪ 𝐶𝑜𝑛𝑓𝑖𝑔 ≜ (𝑅𝐼𝑑 → 𝑅𝑆𝑡𝑎𝑡𝑒) × 𝐿𝑜𝑔𝑆𝑒𝑡

▪ The configuration of the whole system is (𝑅,𝑀) ∈ 𝐶𝑜𝑛𝑓𝑖𝑔

▪ 𝑅(𝑟) is the state of replica 𝑟

▪ 𝑀 is the pool of messages which are in transit among the replicas

▪ → transition relation is defined by 𝐶𝑜𝑛𝑓𝑖𝑔 × 𝐿𝐸𝑣𝑒𝑛𝑡 × 𝐶𝑜𝑛𝑓𝑖𝑔

▪ 𝐿𝐸𝑣𝑒𝑛𝑡 consists triples (𝑖, 𝑟, 𝑜) 𝑖 ∈ 𝐸𝑣𝑒𝑛𝑡𝐼𝑑, 𝑟 ∈ 𝑅𝐼𝑑, 𝑜 ∈ 𝐶𝑂𝑝

▪ 𝐶𝑂𝑝 is the set of all low level operations:

▪ 𝐶𝑂𝑝 = {𝑠𝑡𝑎𝑟𝑡, 𝑟𝑒𝑎𝑑 𝑥, 𝑛 , 𝑤𝑟𝑖𝑡𝑒 𝑥, 𝑛 , 𝑐𝑜𝑚𝑚𝑖𝑡 𝑡 , 𝑎𝑏𝑜𝑟𝑡, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑡: 𝜌)|𝑥 ∈ 𝑂𝑏𝑗, 𝑛
∈ ℤ, 𝑡 ∈ ℕ, 𝜌 ∈ 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡}

49



System Configuration – Transitions

▪ We now describe how each low-level operations changes the 
system configuration

▪ Start

▪ Start may be operated only if the transaction is in idle state

▪ In order to signify that the replica is executing a transaction we change 
idle to 

50



System Configuration – Transitions

▪ Write

▪ The record 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑛) is appended to the current sequence of updates

51



System Configuration – Transitions

▪ Read

▪ The returned value is determined by a lastval function

▪ lastval function is based on the maintained database copy or replica 𝑟
and the current 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡

▪ Search in 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 for 𝑤𝑟𝑖𝑡𝑒(𝑥, _) in reverse order

▪ Search in 𝐷 for 𝑤𝑟𝑖𝑡𝑒(𝑥, _) by descending order of the timestamps

▪ If no such 𝑤𝑟𝑖𝑡𝑒, a value 0 is returned

52



System Configuration – Transitions

▪ Abort

▪ If a transaction aborts at replica 𝑟, the current sequence of updates is in 
𝑟 is cleared

53



System Configuration – Transitions

▪ Commit

▪ If a transaction commits, it gets assigned a timestamp 𝑡 and its 
transaction log is added to the message pool

▪ 𝑡 must be a distinct timestamp and must be greater than all timestamps 
that 𝑟 is aware of

▪ A single message is sent for each commit, which ensures atomic 
visibility property

54



System Configuration – Transitions

▪ Receive

▪ A replica 𝑟 may receive a transaction log from the message pool, only if 
it is in idle state

▪ The received transaction log is added to the database copy

55



System Configuration – Transitions – Cont.

▪ We define the semantics of the operational model by considering all 
sequences of transitions generated by → starting from an initial 
configuration

▪ Log sets of all replicas are empty

▪ The message pool is empty

56



Concrete Execution

▪ Concrete execution:

▪ Let 𝑅0, 𝑀0 = (∀𝑟. ∅, 𝑖𝑑𝑙𝑒 , ∅). A concrete execution is a pair 𝐶 = (𝐸,≺)

▪ 𝐸 ⊆ 𝐿𝐸𝑣𝑒𝑛𝑡, ≺ is a prefix-finite, total order over 𝐸

▪ let 𝑒1, 𝑒2, … events in 𝐸 ordered by ≺, then for some configurations 
𝑅1, 𝑀1 , 𝑅2, 𝑀2 , … ∈ 𝐶𝑜𝑛𝑓𝑖𝑔, we have

▪ (𝑅0, 𝑀0)→
𝑒1
(𝑅1, 𝑀1)→

𝑒2
(𝑅2, 𝑀2)→

𝑒3
…

57



Equivalence – Read Atomic

▪ We want to show that the operational model defined by the 
transition function indeed defines the semantics of Read Atomic
model

▪ 𝑇𝑆𝐶:

▪ Function that maps read/write event to its committed transaction 

58



History

▪ We first map concrete execution into a history

▪ The history of 𝐶 = (𝐸,≺) is defined as follows:

▪ ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝐶 = 𝑇𝑡 𝑒 ∈ 𝐸 𝑇𝑆𝐶 𝑒 = 𝑡 ≠ ∅ 𝑤ℎ𝑒𝑟𝑒 𝑇𝑡 = 𝐸𝑡 , 𝑝𝑜𝑡

▪ 𝐸𝑡 = 𝑖, 𝑜 ∃𝑒 ∈ 𝐸. 𝑒 = 𝑖, _, 𝑜 ∧ 𝑇𝑆𝐶 𝑒 = 𝑡}

▪ 𝑝𝑜𝑡 = { 𝑖1, 𝑜1 , (𝑖2, 𝑜2)| 𝑖1, 𝑜1 , 𝑖2, 𝑜2 ∈ 𝐸𝑡 ∧ 𝑖1, _, 𝑜1 ≺ 𝑖2, _, 𝑜2 }

59



Equivalence – Read Atomic – Cont.

▪ ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝐶𝑜𝑛𝑐𝐸𝑥𝑒𝑐𝑅𝐴 = 𝐻𝑖𝑠𝑡𝑅𝐴

▪ 𝐶𝑜𝑛𝑐𝐸𝑥𝑒𝑐𝑅𝐴 is the set of concrete executions satisfying the Read 
Atomic model constraints

60



Equivalence – Read Atomic – Proof Outline

▪ ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝐶𝑜𝑛𝑐𝐸𝑥𝑒𝑐𝑅𝐴 ⊆ 𝐻𝑖𝑠𝑡𝑅𝐴

▪ Let 𝐶 = (𝐸,≺) ∈ 𝐶𝑜𝑛𝑐𝐸𝑥𝑒𝑐𝑅𝐴, our goal is to show that ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝐶
∈ 𝐻𝑖𝑠𝑡𝑅𝐴

▪ We build an abstract execution from 𝐶:

▪ 𝐴 = (ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝐶 , 𝑉𝐼𝑆, 𝐴𝑅)

▪ 𝐴𝑅 = 𝑇𝑡1 , 𝑇𝑡2 𝑡1 < 𝑡2

▪ 𝑉𝐼𝑆 =

𝑇𝑡1 , 𝑇𝑡2
∃𝑒1, 𝑒2 ∈ 𝐸. ∃𝑟.

𝑒1 ∈ _, 𝑟, 𝑐𝑜𝑚𝑚𝑖𝑡 𝑡1 , _, 𝑟, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑡1: _ ∧ 𝑒2 = _, 𝑟, 𝑐𝑜𝑚𝑚𝑖𝑡 𝑡2 ∧ 𝑒1 ≺ 𝑒2

61



Equivalence – Read Atomic – Proof Outline – Cont.

▪ This construction provides:

▪ 𝐴𝑅 – lifts the order of timestamps to transactions

▪ 𝑉𝐼𝑆 – reflects message delivery

▪ We can show that any abstract execution constructed from a 
concrete execution as above, satisfies 𝐼𝑛𝑡, 𝐸𝑥𝑡 and hence ∈ 𝐻𝑖𝑠𝑡𝑅𝐴

62



Example – Read Atomic

63



Stronger Operational Models – Causal 
Consistency

▪ For the stronger models, we will explain how to fulfill the axioms by constraining 
the communication protocol between the replicas

▪ CausalDeliv:

▪ Implies TransVis, ensures that the message delivery is causal

▪ If a replica 𝑟 sends the transaction log of 𝑡2 after it sends or receives the 
transaction log of 𝑡1, then every other replica 𝑟′ will receive the log 𝑡2 only after 
it receives or sends the log 𝑡1

64



Example – Causal Consistency

65



Stronger Operational Models – Prefix 
Consistency

▪ MonTS:

▪ Timestamps must agree with the order in which transactions commit

▪ TotalDeliv

▪ Each transaction access a database snapshot that is closed under adding 
transactions with timestamps smaller than the ones already present in the 
snapshot

▪ Both can be implemented via a central server

▪ Together guarantee Prefix

66



Example – Prefix Consistency

67



Stronger Operational Models – Parallel 
Snapshot Isolation

▪ ConfictCheck:

▪ Allows transaction 𝑇1 to commit at replica 𝑟 only if it passes a conflict detection 
check: 

▪ if 𝑇1 updates an object 𝑥 that is also updated by a transaction 𝑇2 committed at 
replica 𝑟′, then the replica 𝑟 must have received the log of 𝑇2

▪ If the check fails, 𝑟 must abort the transaction

▪ May be implemented by requiring replica to coordinate with others 
before a commit

68



Example – Parallel Snapshot Isolation

69



Stronger Operational Models

70



Conclusion

▪ We have proposed a framework for specifying transactional consistency models of 
replicated databases

▪ We derived 6 different models using the framework

▪ The models are declarative which gives us a better understanding (?) of the 
database behaviour and allows us to discuss about the relations between the 
transactions

▪ The declarative framework may be used to prove correctness and specify 
optimizations in a more elegant and simpler way

▪ Using this framework we may create some new consistency models

▪ For database architecture designer, the framework helps to determine which model 
to use for maximum efficiency

71



Thank You!


