
Analyzing Snapshot Isolation

Andrea Cerone Alexey Gotsman

IMDEA Software Institute

PODC 2016

presented by Dima Kuznetsov

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 1 / 78



Agenda

1 Introduction

2 Snapshot Isolation
Definitions
Dependency Graphs
Characterization

3 Static Analysis
Transaction Chopping
Robustness

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 2 / 78



We focus on Snapshot Isolation presented in the last talk
... same context of DBMS and transactional memory systems
We won’t focus on the replicated aspect of the data-bases, but
rather on semantics of concurrent user sessions.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 3 / 78



DBMS typically offer various guarantees for transaction
management
Each mode exhibits different anomalies
Stronger modes exhibit less anomalies at expense of performance

Stronger guarantees incur more overhead on the DBMS side
Less allowed behaviors→ more concurrent transactions expected
to abort

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 4 / 78



From Wikipedia1:

A transaction executing under snapshot isolation
appears to operate on a personal snapshot of the database,
taken at the start of the transaction. When the transaction
concludes, it will successfully commit only if the values
updated by the transaction have not been changed externally
since the snapshot was taken.

1https://en.wikipedia.org/wiki/Snapshot_isolation#Definition
Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 5 / 78



We’ll focus on strong session Snapshot Isolation:

Transactions are grouped into sessions, a transaction’s snapshot is
expected to include all preceding transactions of the same session.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 6 / 78



Outline

1 Introduction

2 Snapshot Isolation
Definitions
Dependency Graphs
Characterization

3 Static Analysis
Transaction Chopping
Robustness

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 7 / 78



We’ll use a lot of notation similar to Daniel’s talk two weeks ago
Obj = {x , y , . . . } - objects in the data set
Event = {e, f , . . . } - transaction events
Op = {read(x ,n),write(x ,n) | x ∈ Obj ,n ∈ Z}
op : Event → Op

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 8 / 78



Definition
A transaction T ,S, . . . is a pair (E ,po) where E ⊆ Event is a finite,
non-empty set of events and program-order po ⊆ E × E is a total
order.

Where ...
total order is a transitive and irreflexive relation that orders all pairs

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 9 / 78



Definition
A history is a pair H = (T ,SO) where T is a finite set of transactions
with disjoint set of events and the session-order SO ⊆ T × T is a
union of total orders defined on disjoint subsets of T , which
correspond to transactions in different sessions.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 10 / 78



Definition
An abstract execution is a tuple X = (T ,SO,VIS,CO), where
(T ,SO) is a history and the visibility and commit order
VIS,CO ⊆ T × T are such that VIS ⊆ CO and CO is total.

Assumptions:
All transactions commit (aborted ones do not affect the history)
All histories are finite (no infinite computations)

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 11 / 78



Some notation:
We’ll use (T ,S) ∈ VIS and T VIS−−→ S interchangeably for VIS and
other relations.
For H = (T ,SO) we will shorten (T ,SO,VIS,CO) to (H,VIS,CO)

For H = (T ,SO) and other tuples, we’ll use TH to denote that T is
part of the tuple H

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 12 / 78



For the relations defined in abstract execution:
T VIS−−→ S means that T is included in S’s snapshot.

T CO−−→ S means that T is committed before S.
VIS ⊆ CO makes sure that snapshots include only already
committed transactions.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 13 / 78



We’ll now define snapshot isolation and serializability in terms of
consistency axioms:

Definition

ExecSI =
{X | X �INT ∧ EXT ∧ SESSION∧

PREFIX ∧ NOCONFLICT}
ExecSER = {X | X � INT ∧ EXT ∧ SESSION ∧ TOTALVIS}

HistSI = {H | ∃VIS,CO : (H,VIS,CO) ∈ ExecSI}
HistSER = {H | ∃VIS,CO : (H,VIS,CO) ∈ ExecSER}

Where ...
X � PROP means that execution does not violate property PROP

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 14 / 78



Definition (Internal consistency)
INT - ensures that a read event e on object x returns the same value a
as the last write or read on x in the same transaction.

∀(E ,po) ∈ T .∀e ∈ E .∀x ,n :

op(e) = read(x ,n) ∧ {f | op(f ) = _(x ,_) ∧ f
po−→ e} 6= ∅ ⇒

op
(

maxpo{f | op (f ) = _ (x ,_) ∧ f
po−→ e}

)
= _(x ,n)

Where ...
maxR(A) = {b | ∀b ∈ A : a = b ∨ (a,b) ∈ R}
minR(A) = {a | ∀b ∈ A : a = b ∨ (a,b) ∈ R}

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 15 / 78



Definition (External consistency)
EXT - ensures that if T ` read(x ,n) then the value is taken from the
last visible transaction that wrote to x according to commit order.

∀T ∈ T .∀x ,n :

T ` read(x ,n)⇒ maxCO

(
VIS−1 (T ) ∩WriteTxx

)
` write(x ,n)

Where ...
T ` read(x ,n) if T reads from x and n is the value of x at the first
read.
T ` write(x ,n) if T writes to x and n is the final value of x .
R−1(a) = {b | (b,a) ∈ R}
WriteTxx = {T | T ` write(x ,_)}

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 16 / 78



Definition (Session visibility)
SESSION - requires a snapshot to include all preceding transactions of
the same session.

SO ⊆ VIS

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 17 / 78



Example
T1 ordered after T2 by SO (therefore by VIS and CO), T2 must read 1
from x .

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 18 / 78



Definition (Prefix)
PREFIX - ensures that if snapshot taken by T includes S, then it
includes all transactions committed before S as well.

CO;VIS ⊆ VIS

Where ...
R1;R2 = {(a,b) | ∃c : (a, c) ∈ R1 ∧ (c,b) ∈ R2}

Stronger requirement than VIS transitivity we required from causal
consistency and parallel snapshot isolation.

VIS ⊆ CO ∧ CO;VIS ⊆ VIS ⇒ VIS;VIS ⊆ VIS

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 19 / 78



The long-fork anomaly is prevented by PREFIX axiom:

Example
Consider T1 commits before T2, then since T4’s snapshot contains T2
(due to VIS), it must include T1 as well

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 20 / 78



Definition (No conflict check)
NOCONFLICT - ensures that for any two transactions writing to the
same object, one has to be aware of the other.

∀T ,S ∈ T .∀x ,n.

(T ,S ∈WriteTxx ∧ T 6= S)⇒
(

T VIS−−→ S ∨ S VIS−−→ T
)

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 21 / 78



The lost-update anomaly is prevented by NOCONFLICT axiom:

Example

T1 and T2 concurrently increment acct object, but neither T1
VIS−−→ T2

nor T2
VIS−−→ T1.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 22 / 78



Definition (Total visibility)
TOTALVIS - requires total order on the visibility relation, giving us
serializability of transactions.

VIS = CO

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 23 / 78



The write-skew anomaly allowed by Snapshot Isolation is prevented
by TOTALVIS axiom:

Example
With TOTALVIS, either T1 or T2 would have to be aware of the other,
and we won’t be able to read stale values.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 24 / 78



Outline

1 Introduction

2 Snapshot Isolation
Definitions
Dependency Graphs
Characterization

3 Static Analysis
Transaction Chopping
Robustness

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 25 / 78



Our goal now is to characterize SI in terms of dependencies
between transactions.
Then we’ll be able to decide whether SI allows a given history by
looking for appropriate dependencies.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 26 / 78



Definition
A dependency graph is a tuple G = (T ,SO,WR,WW ,RW ), where
(T ,SO) is a history and for each x ∈ Obj we define relations
WR(x),WW (x),RW (x) that satisfy the following:

WR(x):

∀T ,S.T
WR(x)−−−−→ S ⇒ ∃n.T 6= S ∧ T ` write(x ,n) ∧ S ` read(x ,n)

∀S ∈ T .S ` read(x ,_)⇒ ∃T .T
WR(x)−−−−→ S

∀T ,T ′,S ∈ T .
(

T
WR(x)−−−−→ S ∧ T ′ WR(x)−−−−→ S

)
⇒ T = T ′

WW (x) is a total order over WriteTxx .
RW (x) is derived from WR(x) and WW (x) such that

T
RW (x)−−−−→ S ⇔ T 6= S ∧ ∃T ′.T ′ WR(x)−−−−→ T ∧ T ′

WW (x)−−−−→ S

We’ll use WW to denote
⋃

x∈Obj WW (x) for WW and the other two
relations.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 27 / 78



Informally,

T
WR(x)−−−−→ S means that S reads T ’s write to x .

We’ll call an edge in WR a read dependency

T
WW (x)−−−−→ S means that S overwrites T ’s write to x .

We’ll call an edge in WW a write dependency

T
RW (x)−−−−→ S means that S overwrites the write to x read by T .

We’ll call an edge in RW an anti dependency

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 28 / 78



Example

T3 reads acct from T2’s write⇒ T2
WR(acct)−−−−−−→ T3

T2 overwrites acct written in T1 ⇒ T1
WW (acct)−−−−−−→ T2

Both T1 and T2 overwrite acct ’s initial value read by both,

T1
RW (acct)−−−−−−→ T2 and T2

RW (acct)−−−−−−→ T1.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 29 / 78



Definition
Consider execution X = (T ,SO,VIS,CO), for x ∈ Obj we define
relations WRX ,WWX ,RWX that satisfy the following:

T
WRX (x)−−−−−→ S ⇔

S ` read(x ,n) ∧ T = maxCO
(
VIS−1(S) ∩WriteTxx

)
T

WWX (x)−−−−−→ S ⇔ T CO−−→ S ∧ T ,S ∈WriteTxx

T
RWX (x)−−−−−→ S ⇔ T 6= S ∧ ∃T ′.T ′ WRX (x)−−−−−→ T ∧ T ′

WWX (x)−−−−−→ S

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 30 / 78



Proposition
For any X ∈ ExecSI,

graph(X ) = (TX ,SOX ,WRX ,WWX ,RWX )

is a dependency graph.

Proof
By showing graph(X ) satisfies all requirements of a dependency
graph.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 31 / 78



Outline

1 Introduction

2 Snapshot Isolation
Definitions
Dependency Graphs
Characterization

3 Static Analysis
Transaction Chopping
Robustness

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 32 / 78



We’ll show that SI is characterized by dependency graphs that contain
only cycles with at least two adjacent anti-dependency edges.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 33 / 78



Theorem
Let

GraphSER = {G | (TG � INT)

((SOG ∪WRG ∪WWG ∪ RWG) is acyclic)}

Then
HistSER = {H |∃WR,WW ,RW .

(H,WR,WW ,RW ) ∈ GraphSER}

In other words, execution is serializable if it can be extended into an
acyclic dependency graph.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 34 / 78



Theorem
Let

GraphSI = {G | (TG � INT)∧((
(SOG ∪WRG ∪WWG) ;RW ?

G

)
is acyclic

)
}

Then

HistSI = {H | ∃WR,WW ,RW .(H,WR,WW ,RW ) ∈ GraphSI}

Where ...
R? = R ∪ {(a,a) | a ∈ A}

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 35 / 78



The relation
(SOG ∪WRG ∪WWG);RW ?

G

includes edges of the following form:

SO
SO;RW

WR
WR;RW

WW
WW ;RW

If there is a cycle in G, it:
cannot be composed only of SO ∪WR ∪WW edges, otherwise it
is a cycle in CO
cannot contain only non-adjacent anti-dependency, otherwise
above relation is cyclic.

⇒ any cycle has to have at least two adjacent anti dependencies.

The latter type of cycles are disallowed under SI, they allow long fork
and lost update anomalies.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 36 / 78



Prohibited under SI:

contain cycles without adjacent anti dependencies.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 37 / 78



Prohibited under serializability, and has a dependency graph
cycle T1

RW−−→ T2
RW−−→ T1.

However, allowed under SI

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 38 / 78



To prove the previous theorem we’ll show a stronger result:

Theorem
1 Soundness:

∀G ∈ GraphSI.∃X ∈ ExecSI.graph(X ) = G

2 Completeness:

∀X ∈ ExecSI.graph(X ) ∈ GraphSI

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 39 / 78



Theorem
Completeness:

∀X ∈ ExecSI.graph(X ) ∈ GraphSI

Closely follows from existing results2.

2Making Snapshot Isolation Serializable, 2005, A. Fekete et al
Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 40 / 78



Consider SI execution, if we have a cycle in the dependency graph:
then it contains at least one RW edge (other types of edges
included on the CO)
if the RW edge does not have an adjacent RW edge, it has to be
included in the CO:

red edge entailed by the CO edge from S to T ′, and VIS edge
from T ′ to T (PREFIX: CO;VIS ⊆ VIS )
it violates EXT axiom, T reads x from I though S is visible and
ordered after I in the commit order.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 41 / 78



Theorem
Soundness:

∀G ∈ GraphSI.∃X ∈ ExecSI.graph(X ) = G

Proof sketch
Construct a basic pre-execution from G
Iteratively extend it until satisfies execution definition

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 42 / 78



Definition
A tuple P = (T ,SO,VIS,CO) is a pre-execution if it satisfies all the
conditions of being an execution, except CO is a strict partial order
that may not be total.

Where ...
strict partial order is a transitive and irreflexive relation

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 43 / 78



Definition
We let PreExecSI be the set of pre-executions satisfying the SI axioms:

PreExecSI = {P | P �INT ∧ EXT ∧ SESSION∧
PREFIX ∧ NOCONFLICT}

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 44 / 78



Consider G = (H,WR,WW ,RW ), let P = (H,VIS,CO) a
respective pre-execution.
VIS,CO must hold the following to conform with G and satisfy
PreExecSI:

SO ∪WR ∪WW ⊆ VIS VIS must conform with read/write
dependecies of G and with SO to hold
SESSION axiom.

CO;VIS ⊆ VIS to ensure PREFIX axiom.
VIS ⊆ CO to conform with SI definition - only

committed transactions in snapshots.
CO;CO ⊆ CO transitivity of CO

VIS;RW ⊆ CO to ensure EXT axiom

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 45 / 78



Lemma
Let G = (T ,SO,WR,WW ,RW ) be a dependency graph, for any
relation R ⊆ T × T , the relations

VIS = (((SO ∪WR ∪WW );RW ?) ∪ R)∗;

(SO ∪WR ∪WW )

CO = (((SO ∪WR ∪WW );RW ?) ∪ R)+

are a solution to the system of inequalities in the previous slide. They
also are the smallest solution to the system for which R ⊆ CO.

Where...
R+ a transitive closure of R
R∗ a transitive and reflexive closure of R

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 46 / 78



Proof outline.
Let G = (T ,SO,WR,WW ,RW ) ∈ GraphSI

Define P0 derived from the last lemma by fixing R0 = ∅.
Construct {Pi = (T ,SO,VISi ,COi)}ni=0 series of pre-executions.
While COi is not total:

Pick arbitrary pair T ,S not ordered by COi
Ri+1 = Ri ∪ {(T ,S)}
Use the lemma with R = Ri+1 to derive VISi+1,COi+1 (and thus
Pi+1)

Let X = Pn as COn is now total.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 47 / 78



Outline

1 Introduction

2 Snapshot Isolation
Definitions
Dependency Graphs
Characterization

3 Static Analysis
Transaction Chopping
Robustness

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 48 / 78



Transaction Chopping under SI:
We’ll derive a static analysis that checks if transactions can be
chopped into smaller sessions
The analysis will suggest an optimized program provided any
execution with chopped transactions does not exhibit new
behaviors.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 49 / 78



Example
Given the top graph, can we chop the top transaction into 2 parts?

No... bottom transaction will be able to observe intermittent state.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 50 / 78



Example
What if we decouple the reads into separate sessions?

Each read is allowed to observe the transfer in any order, no new
observable behaviors.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 51 / 78



Definition
For history H, let

≈H= SOH ∪ SO−1
H ∪ {(T ,T ) | T ∈ TH}

the equivalence relation grouping transactions from same session.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 52 / 78



Definition

Let T H = (E ,po) where E = (
⋃
{ES | S ≈H T}) and

po = {(e, f ) |
(
∃S.e, f ∈ ES ∧ e

poS−−→ f ∧ S ≈H T
)
∨(

∃S,S′.e ∈ ES ∧ f ∈ ES′ ∧ S SOH−−−→ S′ ∧ S′ ≈H T
)
}

Informally, T H is the result of splicing all transactions in session of T
into the same transaction.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 53 / 78



Definition
For history H, let

splice(H) =
(
{ T H | T ∈ TH}, ∅

)
history resulting from splicing all sessions in a history.

For graph G we let ≈G=≈HG .
We’ll call G ∈ GraphSI spliceable if exists a dependency graph
G′ ∈ GraphSI such that HG′ = splice(HG).

Intuitively, if G is spliceable, then splice(HG) can be chopped into HG .

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 54 / 78



Consider graph G:

Example
The above graph is not spliceable:

T ′ VIS−−→ S′

¬T VIS−−→ S

T G
WR(acct1)−−−−−−→ S G but ¬ T G

WR(acct2)−−−−−−→ S G

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 55 / 78



Definition
Given G let dynamic chopping graph DCG(G) obtained from G by

Removing WRG ,WWG ,RWG edges between transactions related
by ≈G
Adding SO−1 edges

We’ll classify the edges as following:
SO - successor edges
SO−1 - predecessor edges
(WRG ∪WWG ∪ RWG) \ ≈G - conflict edges

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 56 / 78



Definition
A cycle in DCG(G) is critical if:

Does not contain 2 occurrences of the same vertex
Contains 3 consecutive edges in form of
conflict-predecessor-conflict
Any 2 anti dependency edges (RWG\ ≈G) are separated by at
least one read (WRG\ ≈G) or write (WWG\ ≈G) dependency edge

Intuitively, we want criteria for DCG(G) that translates into an invalid
cycle on the spliced graph.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 57 / 78



Consider G

Example
DCG(G) contains a critical cycle:

S′
SOG−−−→ S

RWG−−−→ T
SO−1
G−−−→ T ′

WRG−−−→ S′

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 58 / 78



Theorem
For G ∈ GraphSI, if DCG(G) contains no critical cycles, then G is
spliceable.

Specifically:
If G is spliceable, then the spliced graph G′ ∈ GraphSI
⇒ G′ ∈ GraphSI so it contains no cycles without adjacent
anti-dependencies
⇒ we might be able to chop G′ into G

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 59 / 78



We use the last theorem to derive the static analysis.
Assume set of programs P = {P1,P2, . . . }, each defining code of
a session resulting from chopping a single transaction.
Each Pi is composed of ki program pieces
W i

j and R i
j sets of objects written or read by j-th piece of Pi

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 60 / 78



History H can be produced by programs P if there’s 1:1
correspondence between every session in H and program Pi ∈ P,
and each transaction in the session corresponds to respective
program piece, along with its read/write sets.
Chopping is defined correct if every dependency graph
G ∈ GraphSI, where HG can be produced by P is spliceable.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 61 / 78



Example
We have 4 programs, one for each session. Each transaction is a
program piece.
For transfer session we have 2 program pieces with

T ′ : W 1
1 = R1

1 = {acct1}
T : W 1

2 = R1
2 = {acct2}

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 62 / 78



Consider program set P

Definition
Static chopping graph SCG(P) is a graph where nodes are program
pieces in form of (i , j) and the edge (i1, j1), (i2, j2) is present if:

i1 = i2 and:
j1 < j2 (a successor edge)
j1 > j2 (a predecessor edge)

i1 6= i2 and:
W i1

j1 ∩ R i2
j2 6= ∅ (a read dependency edge)

W i1
j1 ∩W i2

j2 6= ∅ (a write dependency edge)
R i1

j1 ∩W i2
j2 6= ∅ (an anti dependency edge)

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 63 / 78



The edge set of static graphs SCG(P) over-approximate the edge
sets of the dynamic graphs DCG(G) corresponding to graphs G
produced by programs P.
The chopping defined by P is correct if SCG(P) contains no
critical cycles (as defined for dynamic graphs).

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 64 / 78



Example
Fig. 5 contains a critical cycle:

(var1 = acct1) RW−−→ (acct1 = acct1− 100) S−→

(acct2 = acct2 + 100) WR−−→ (var2 = actt2) P−→ (var1 = acct1)

⇒ not a valid chopping

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 65 / 78



Example
Fig. 6 contains a single cycle, where two vertices appear twice⇒ not
a critical cycle. The above chopping is spliceable.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 66 / 78



Outline

1 Introduction

2 Snapshot Isolation
Definitions
Dependency Graphs
Characterization

3 Static Analysis
Transaction Chopping
Robustness

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 67 / 78



Robustness:
We’ll derive an analysis that check where an application behaves the
same way under a weak consistency model as it does under a strong
one.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 68 / 78



Robustness against SI towards SER

Check if a given application running under SI, behaves the same
as if it runs under serializability model.
Specifically, no histories in HistSI \ HistSER

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 69 / 78



Theorem
For any G, we have G ∈ GraphSI \GraphSER iff TG � INT, G contains a
cycle, and all its cycles have at least two adjacent anti-dependency
edges.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 70 / 78



Consider G:

Example
The above graph contains a cycle with two adjacent
anti-dependencies.
⇒ G ∈ GraphSI \GraphSER

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 71 / 78



Static analysis:
Assume code of transactions defined by set of programs P with
given read and write sets.
Based on them, derive static dependency graph,
over-approximating possible dependencies that can exist.
Check that static dependency graph contains no cycles with two
adjacent anti-dependency edges.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 72 / 78



Robustness against PSI towards SI

Check if a given application running under PSI, behaves the same
as if it runs under SI model.
Again, make sure there are no histories in HistPSI \ HistSI

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 73 / 78



Definition
Sets of executions and histories allowed by parallel SI are:

ExecPSI =
{X | X �INT ∧ EXT ∧ SESSION∧

TRANSVIS ∧ NOCONFLICT}
HistPSI = {H | ∃VIS,CO.(H,VIS,CO) ∈ ExecPSI}

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 74 / 78



Definition
TRANSVIS axiom ensures that transactions ordered by VIS are
observed by others in this order. However, allows transactions
unrelated by VIS to be observed in different orders; in particular,
allows long fork anomaly.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 75 / 78



Theorem
Let

GraphPSI = {G | (TG � INT)∧((
(SOG ∪WRG ∪WWG)+ ;RW ?

G

)
is irreflexive

)
}

Then

HistPSI = {H | ∃WR,WW ,RW .(H,WR,WW ,RW ) ∈ GraphPSI}

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 76 / 78



Theorem
For any G, we have G ∈ GraphPSI \GraphSI iff TG � INT, G contains at
least one cycle with no adjacent anti-dependency edges, and all its
cycles have at least two anti dependency edges.

Static analysis:
Similar to SI/SER case, but checks the static dependency graph
for the above criteria.

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 77 / 78



Thank you!

Andrea Cerone, Alexey Gotsman (IMDEA) Analyzing Snapshot Isolation PODC 2016 78 / 78


	Introduction
	Snapshot Isolation
	Definitions
	Dependency Graphs
	Characterization

	Static Analysis
	Transaction Chopping
	Robustness


