
Tomer Raz

Safe Optimisations for Shared-Memory
Concurrent Programs

Plan
 Motivation

 Transformations

 Semantic Transformations

 Safety of Transformations

 Syntactic Transformations

2

Motivation
We prove that the largest classes of compiler optimisations are safe
in the DRF guarantee, i.e.

 any execution of the transformed traceset has the same behavior as some
execution of the original traceset, provided that the original program was
data race free

 the transformations preserve data race freedom

 the transformations cannot introduce values out-of-thin-air.

3

4

Transformations
 Trace preserving transformations

 Eliminations

 Reordering

 Memory Access Introduction

5

Eliminations

6

Reorderings

7

Memory Access Introduction

8

Actions

 R[l=v] is a read from location l with value v

 W[l=v] a write to l with value v

 L[m] lock of monitor m

 U[m] an unlock of m

 X(v) an external action (input or output) with value v

 S(i) is a thread start action of thread i

9

Traces
 A sequence of memory actions of a single thread

 A program is represented as a set of traces – a traceset –
with requirements:

Prefix closed

Well locked

Properly started

10

Interleaving

 Interleaving is a sequence of pairs p = <θ, a>, A(p) = a, T(p)= θ

 Interleaving I of traceset T:

For thread-identifier θ - the trace of θ is in T

A(Ii) = S(θ) → T(Ii) = θ

A(Ii)= L[m] →

 Sequentially consistent interleavings of T are called executions of
T.

∀𝜃 ≠ 𝑇(𝐼𝑖) |{j | j < i ∧ T (I
j

) = θ ∧ A(I
j

) = L[m]}| =

|{j | j < i ∧ T (I
j

) = θ ∧ A(I
j

) = U[m]}|

11

Example
 Trace:

 [S(0),R[x=v],W[y=v]]

 [S(1),R[y=u],W[x=1],X(u)]

 Traceset:

 Prefix closure -

{[S(0),R[x=v],W[y=v]] | v ∈ V } ∪

{[S(1),R[y=v],W[x=1],X(v)] | v∈ V}

 Interleaving:

 [<0, S(0)>, <0, R[x=v]>, <1,S(1)>,

<0,W[y=v]>, <1, R[y=v]>,

<1, W[x=1]>, <1, X(v)>]

12

Orders

≤po
I = {(i, j)|0 ≤ i ≤ j < I ∧ T Ii = T Ij }

 ≤sw
I = {(i, j)|0 ≤ i < j < I ∧ A Ii , A Ij are 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 − 𝑎𝑐𝑞𝑢𝑖𝑟𝑒}

 Program order -

 Synchronize with -

 Happens before – transitive closure of po and sw

13

Example

14

Data Race Freedom
 Actions are conflicting if they access the same non-volatile

location and at least one of them is a write

 An interleaving is DRF if all conflicting accesses are ordered
by the happens before relation

 A traceset is data race free if none of its executions has a
data race

15

16

Semantics - Eliminations

 Wildcard trace – a trace with wildcard reads R[x=*]

 A wildcard trace belongs-to traceset T if T contains all
instances of the trace

 An instance of a wildcard interleaving is achieved by
replacing each wildcard read by a read of the same location
with the value of the most recent write to the same location

17

Example

 Wildcard Trace:

 [S(0),W[y=1],R[x=*]] and [S(1),R[y=*],W[x=1]]

 [S(0),W[y=1],R[x=*],X(1)]

 Wildcard Interleaving:
 [<0,S(0)>, <1,S(1)>, <1,R[y=0]>, <0,W[y=1]>, <1,W[x=1]>,

<0,R[x=*]>, <0,X(1)>]

18

Eliminable
Given trace t we say that i∈dom(t) (for non-volatile l, j<i):

 Redundant read after read if ti = tj = R[l=v] for some v and there is no release-acquire pair or write to

l between j and i

 Redundant read after write if ti = R[l=v], tj = W[l=v] for some v and there is no release-acquire pair or
write to l between j and i

 Irrelevant read if ti is a wildcard non-volatile read

 Redundant write after read if ti = W[l=v], tj = R[l=v] for some v and there is no release-acquire pair
or other access to l between j and i

 Overwritten write if ti = W[l=v], tj = W[l=v’] for some v, v’, and there is no release-acquire pair or
other access to l between j and i

19

Eliminable
Given trace t we say that i∈dom(t):

 Redundant last write if ti is a normal write and there is no later release action or memory access to the

same location

 Redundant release if ti is a release and there are no later synchronization or external action

 Redundant external action if ti is an external action and there are no later synchronization or external
actions

20

Example – read after read
 Original:

 2 cannot be printed

 Eliminated (r2:= xvol turns into r2:=r1):

 2 can be printed

 Non volatile x doesn’t solve issue, it
creates DRF

r1:=xvol

lock()
r2:= xvol

if(r2==0)
 print y
else
 print 5
unlock()

lock()
xvol:=1
y:=2
unlock()

21

Example – read after write

22

 Original:
 1 cannot be printed

 Eliminated (r1:=x turns into r1:=1):

 if x:=2 is written after x:=1 then 1 is printed

 Removing release-acquire pair between the write and the read
makes it so only 3 can be printed which is sound

lock()
x:=1
r2:=3
unlock()
lock()
r1:=x
if x==1
 print r2
else
 print r1
unlock

lock()
x:=2
unlock()

Example – last write
 Eliminated:

 0 can be printed

x:=1
r1:=x
print r1

y:=1

23

Eliminable

 An index i is eliminable in t if i satisfies one of the conditions

 t’ is eliminations of t if there’s S ⊆ dom(t) s.t. t’=t|S and all indices
in dom(t)\S are eliminable

 A traceset T ′ is an elimination of a set of traces T if each
trace t′ ∈ T ′ is an elimination of some wildcard trace that
belongs-to T .

t|S – subsequence of t with only

indices from S

24

Semantics - Reorderings

a b W[x=vx] R[x=vy] Acquire Release External

W[y=vy] x

R[y=vy] x

Acquire x x x x x

Release x x x

External x x x

 a is a non-volatile memory access, and b is a non conflicting non-volatile memory access, or an acquire

action, or an external action;

 b is a non-volatile memory access, and b is a non conflicting non-volatile memory access, or an release

action, or an external action

25

Example – write with write

 x = y – New behavior
 Original: [<0,S(0)><1,S(1)>,

<0,L[m]>,<0,W[x=1]>,<0,W[x=2]>,<0,U[m]>,<1,L[m]>,<1,R[x=2]>,<1,U[m]>]

 Transformed: [<0,S(0)><1,S(1)>,

<0,L[m]>,<0,W[x=2]>,<0,W[x=1]>,<0,U[m]>,<1,L[m]>,<1,R[x=1]>,<1,U[m]>]

 x ≠ y – Not possible

lock()
x:=1
y:=2
unlock()

lock()
r2 := x
unlock()

26

Example – write with acquire
 Reoder write with a later acquire

 After reorder: [<0,S(0)>, <0,W[x=1]>,<0,L[m]>,

<0,W[x=2]>,<0,U[m]>,<1,L[m]>,<1,R[x=1]>,<1,U[m]>]

x:=1
lock()
x:=2
unlock()

lock()
r1:=x
unlock()

lock()
x:=1
x:=2
unlock()

lock()
r1:=x
unlock()

27

Semantics - Reorderings

A traceset T’ is a reordering of a traceset T if each trace t’ in T’

is a permutation of some trace t from T with conditions:

 Only swap reorderable actions

 Applying the permutation to any prefix of t’ , that is,

 if we leave out from t all the actions that are not in the prefix,
then

 the resulting trace belongs to T.

28

Notations

 [a ← t. P (a)] – actions a in sequence t that satisfy condition P

 [f (a) | a ← t. P (a)] – [a ← t. P (a)] with each element transformed by

function f

29

Semantics - Reorderings
 A bijection f is a reordering function if

 De-permutation of a prefix of trace t

 f de-permutes t’ to T if f is a reordering function t’ and for n ≤ |t′| ->
f → (t)∈ T

 set of traces T’ is a reordering of a set of traces T if for each t’ in T’ there
is a function that de-permutes t’ into T

f: dom t → dom t′ . i < j, f j < f i → tj is reordable with ti

𝑓<𝑛
→ 𝑡 = [𝑡𝑓−1 𝑖 |𝑖 ← 𝑙𝑑𝑜𝑚 𝑡 . 𝑓−1 𝑖 < 𝑛]

30

31

Safety of Transformations
 any execution of the transformed traceset has the same

behavior as some execution of the original traceset, provided
that the original program was data race free

 the transformations preserve data race freedom

 the transformations cannot introduce values out-of-thin-air.

32

Example
 We’ve seen examples of transformations breaking the first

two safety constraits

 Transformation causing out of thin air value :

33

Safety of Eliminations - Unelimination

Unelimination function is a complete matching between I, I’
s.t.:

 .

 .

 .

 .

𝑖 < 𝑗 ∈ 𝑑𝑜𝑚 𝐼′ ∧ 𝑇 𝐼𝑖 ′ = 𝑇 𝐼𝑗 ′ → 𝑓 𝑖 < 𝑓(𝑗)

𝑖 < 𝑗 ∈ 𝑑𝑜𝑚 𝐼′ ∧ 𝐴 𝐼𝑖 ′ , 𝐴 𝐼𝑗 ′ 𝑎𝑟𝑒 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

→ 𝑓 𝑖 < 𝑓(𝑗)

 𝑖 ∈ 𝑟𝑎𝑛𝑔𝑒 𝑓 , 𝑗 ∈ 𝑑𝑜𝑚 𝐼 \𝑟𝑎𝑛𝑔𝑒 𝑓

 ∧ 𝐴 𝐼𝑖 , 𝐴 𝐼𝑗 𝑎𝑟𝑒 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 → 𝑖 < 𝑗

𝑖 ∈ 𝑑𝑜𝑚 𝐼 \𝑟𝑎𝑛𝑔𝑒 𝑓 → 𝑖𝑠 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑏𝑙𝑒

Matching f where dom(t) = {0, . . . , |t| − 1} f: dom I → dom I′ s. t. Ii = I′
f i

34

Unelimination

 Let traceset T ′ be an elimination of traceset T and I ′ an interleaving of T ′.

Then there is a wildcard interleaving I belonging-to T and an

unelimination function f from I ′ to I

 Let traceset T ′ be an elimination of a data free traceset T . Then T ′ is data

race free and any execution of T ′ has the same behaviour as some
execution of T .

35

Unelimination Example

Unelimination construction

36

Safety of Reorderings

Unordering function is a complete matching between I, I’ s.t.:

 .

 .

 .

𝑖 < 𝑗 ∈ 𝑑𝑜𝑚 𝐼′ ∧ 𝑇 𝐼𝑖 ′ = 𝑇 𝐼𝑗 ′ ∧ 𝐴 𝐼𝑖 ′ , 𝐴 𝐼𝑗
′ 𝑛𝑜𝑡 𝑟𝑒𝑜𝑟𝑑𝑎𝑏𝑙𝑒 → 𝑓 𝑖

< 𝑓(𝑗)

𝑖 < 𝑗 ∈ 𝑑𝑜𝑚 𝐼′ ∧ 𝐴 𝐼𝑖 ′ , 𝐴 𝐼𝑗

′ 𝑎𝑟𝑒 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

→ 𝑓 𝑖 < 𝑓(𝑗)

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡ℎ𝑟𝑒𝑎𝑑 𝜃, 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑓 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝜃 𝑑𝑒

− 𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝜃 𝑖𝑛 𝐼′ 𝑖𝑛𝑡𝑜 𝑇

37

Unordering

Suppose that traceset T ′ is a reordering of a data race free traceset T . Then

any execution of T ′ has the same behaviour as some execution of T .
Moreover, T ′ is data race free.

38

Unordering Example

39

Out-of-thin-air

 Origin – t is an origin for v if there is i∈dom(t) s.t. ti is a write of v or an

external action with value v and there is no j<i s.t. tj is a read of v

 Let traceset T’ be a reordering or an elimination of traceset T and suppose

that no trace in T is an origin for v, then no trace in T’ is an origin for v.

 If T does not contain an origin for a value, no execution of T can output

that value

40

41

The syntax

42

Notations

 A thread local configuration is <Λ, σ, C>:

Λ is a function that maps monitor names to the nesting level of locks

local state σ maps register names to values

C is a code fragment, which is either S or L or P from the syntax

 The step relation <Λ, σ, C> <Λ’, σ’, C’> for action a

 <Λ, σ, C> <Λ’, σ’, C’> for a sequence of n transitions

 <Λ, σ, C> if there exists <Λ’, σ’, C’> s.t. <Λ, σ, C>

<Λ’, σ’, C’>

 .

43

44

45

Sytactic Eliminations

46

47

Syntactic Reorderings

48

49

Out-of-thin-air

50

