Safe Optimisations for Shared-Memory Concurrent Programs

Tomer Raz

Plan

- Motivation
- Transformations
- Semantic Transformations
- Safety of Transformations
- Syntactic Transformations

Motivation

We prove that the largest classes of compiler optimisations are safe in the DRF guarantee, i.e.

- any execution of the transformed traceset has the same behavior as some execution of the original traceset, provided that the original program was data race free
- the transformations preserve data race freedom
- the transformations cannot introduce values out-of-thin-air.

Transformations

Transformations

- Trace preserving transformations
- Eliminations
- Reordering
- Memory Access Introduction

Eliminations

Thread 0	Thread 1	Thread 0	Thread 1
x:=2 y:=1 x:=1	r1:=y print r1 r1:=x r2:=x print r2	y:=1 x:=1	r1:=y print r1 r1:=x r2:=r1 print r2
(original)		(transformed)	

Reorderings

Thread 0		Thread 0	Thread 1	
r1:=x y:=r1	r2:=y x:=1 print r2	r1:=x y:=r1	x:=1 r2:=y print r2	
(original)		(tran	(transformed)	

Memory Access Introduction

lock m	lock m	r1 := y	r2 := x
x := 1	y := 1	lock m	lock m
print y	print x	x := 1	y := 1
unlock m	unlock m	print y	print x
UNITOCK III	UNITOCK III	unlock m	unlock m

(a) original

(b) with introduced reads

r1 := y lock m x := 1	r2 := x lock m
x := 1	y := 1
print r1	print r2
unlock m	unlock m

(c) after read elimination

Actions

- \bullet R[l=v] is a read from location I with value v
- W[l=v] a write to I with value v
- L[m] lock of monitor m
- U[m] an unlock of m
- X(v) an external action (input or output) with value v
- S(i) is a thread start action of thread i

Traces

- A sequence of memory actions of a single thread
- A program is represented as a set of traces a traceset with requirements:
 - Prefix closed
 - ➤ Well locked
 - Properly started

Interleaving

- Interleaving is a sequence of pairs $p = \langle \theta, a \rangle$, A(p) = a, $T(p) = \theta$
- Interleaving *I* of traceset *T*:
 - > For thread-identifier θ the trace of θ is in T

$$\succ A(I_i) = \mathbf{S}(\theta) \longrightarrow T(I_i) = \theta$$

 $\geq A(I_i) = L[m] \longrightarrow \forall \theta \neq T(I_i) \qquad |\{j \mid j < i_{\Lambda} T(I_j) = \theta_{\Lambda} A(I_j) = L[m]\}| =$

$$|\{j \mid j < i \land T(I_j) = \theta \land A(I_j) = U[m]\}|$$

• Sequentially consistent interleavings of *T* are called *executions of T*.

Example

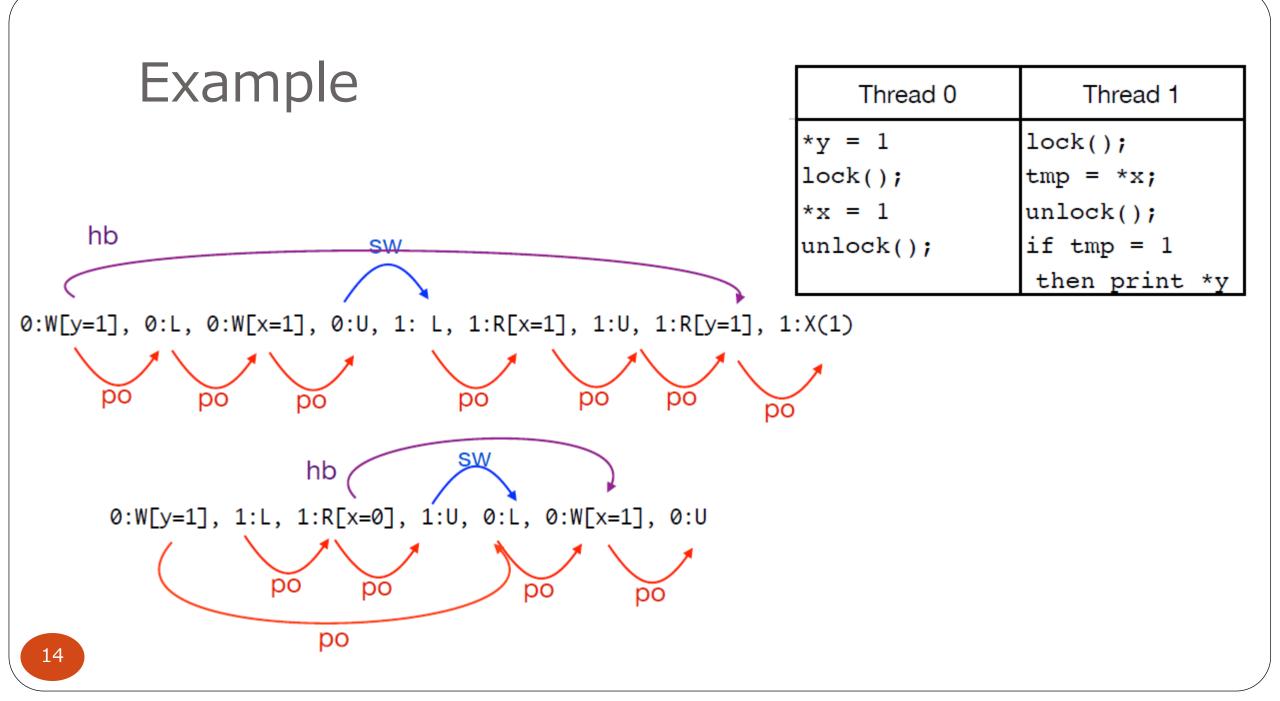
• Trace:

- [S(0),R[x=v],W[y=v]]
- [S(1),R[y=u],W[x=1],X(u)]
- Traceset:
 - Prefix closure {[S(0),R[x=v],W[y=v]] | v ∈ V } ∪
 {[S(1),R[y=v],W[x=1],X(v)] | v∈V}
- Interleaving:
 - [<0, S(0)>, <0, R[x=v]>, <1,S(1)>, <0,W[y=v]>, <1, R[y=v]>, <1, W[x=1]>, <1, X(v)>]

Thread 0		Thread 0	
r1:=x y:=r1	r2:=y x:=1 print r2	r1:=x y:=r1	x:=1 r2:=y print r2
(original)		(transformed)	

Orders

- ▶ Program order $-\leq_{po}^{I} = \{(i, j) | 0 \le i \le j < |I| \land T(I_i) = T(I_j)\}$
- Synchronize with $-\leq_{sw}^{I} = \{(i, j) | 0 \le i < j < |I| \land A(I_i), A(I_j) \text{ are release } -acquire\}$
- ► Happens before transitive closure of *po* and *sw*



Data Race Freedom

- Actions are conflicting if they access the same non-volatile location and at least one of them is a write
- An interleaving is DRF if all conflicting accesses are ordered by the happens before relation
- A traceset is *data race free if* none of its executions has a data race

Semantic Transformations

Semantics - Eliminations

- Wildcard trace a trace with wildcard reads R[x=*]
- A wildcard trace belongs-to traceset T if T contains all instances of the trace
- An instance of a wildcard interleaving is achieved by replacing each wildcard read by a read of the same location with the value of the most recent write to the same location

Example

- Wildcard Trace:
 - [S(0),W[y=1],R[x=*]] and [S(1),R[y=*],W[x=1]]
 - [S(0),W[y=1],R[x=*],X(1)]
- Wildcard Interleaving:
 - [<0,S(0)>, <1,S(1)>, <1,R[y=0]>, <0,W[y=1]>, <1,W[x=1]>, <0,R[x=*]>, <0,X(1)>]

Eliminable

Given trace t we say that $i \in dom(t)$ (for non-volatile l, j < i):

- Redundant read after read if $t_i = t_j = R[l=v]$ for some v and there is no release-acquire pair or write to l between j and i
- Redundant read after write if $t_i = R[l=v]$, $t_j = W[l=v]$ for some v and there is no release-acquire pair or write to l between j and i
- Irrelevant read if t_i is a wildcard non-volatile read
- Redundant write after read if $t_i = W[l=v]$, $t_j = R[l=v]$ for some v and there is no release-acquire pair or other access to l between j and i
- Overwritten write if $t_i = W[l=v]$, $t_j = W[l=v']$ for some v, v', and there is no release-acquire pair or other access to l between j and i

Eliminable

Given trace *t* we say that $i \in dom(t)$:

- *Redundant last write if t_i is a normal write and there is no later release action or memory access to the same location*
- Redundant release if t_i is a release and there are no later synchronization or external action
- *Redundant external action if t_i is an external action and there are no later synchronization or external actions*

Example – read after read

- Original:
 - 2 cannot be printed
- Eliminated (r2:= xvol turns into r2:=r1):
 - 2 can be printed

Thread 0Thread 1r1:=xvollock()lock()xvol:=1r2:=xvoly:=2if(r2==0)unlock()print yelseprint 5unlock()

Non volatile x doesn't solve issue, it creates DRF

Example – read after write

- Original:
 - 1 cannot be printed
- Eliminated (r1:=x turns into r1:=1):
 - if x:=2 is written after x:=1 then 1 is printed

```
Thread 0
              Thread 1
lock()
               lock()
               x:=2
x:=1
r2:=3
               unlock()
unlock()
lock()
r1:=x
if x = 1
    print r2
else
    print r1
unlock
```

 Removing release-acquire pair between the write and the read makes it so only 3 can be printed which is sound

Example – last write

- Eliminated:
 - 0 can be printed

Thread 0	Thread 1
x:=1 r1:=x print r1	y:=1

Eliminable

- An index *i* is eliminable in *t* if *i* satisfies one of the conditions
- t' is eliminations of t if there's S ⊆ dom(t) s.t. t'=t/S and all indices in dom(t)\S are eliminable
- A traceset T' is an elimination of a set of traces T if each trace $t' \in T'$ is an elimination of some wildcard trace that belongs-to T.

t/S – subsequence of t with only indices from S

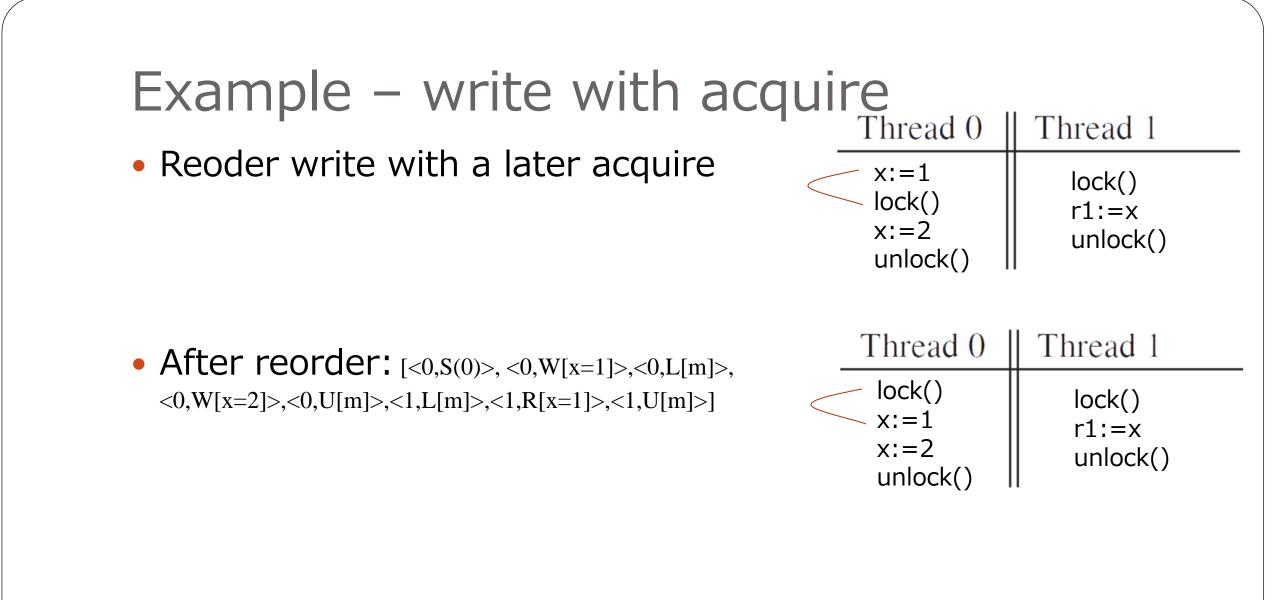
Semantics - Reorderings

- a is a non-volatile memory access, and b is a non conflicting non-volatile memory access, or an acquire action, or an external action;
- b is a non-volatile memory access, and b is a non conflicting non-volatile memory access, or an release action, or an external action

a b	W[x=v _x]	$R[x=v_y]$	Acquire	Release	External
W[y=v _y]	$x \neq y$	$x \neq y$	V	x	
$R[y=v_y]$	$x \neq y$	$\overline{\checkmark}$	V	x	
Acquire	x	x	x	x	x
Release	V	V	x	x	x
External	\checkmark	\checkmark	x	x	x

• Original: [<0,S(0)><1,S(1)>, <0,L[m]>,<0,W[x=1]>,<0,W[x=2]>,<0,U[m]>,<1,L[m]>,<1,R[x=2]>,<1,U[m]>]

- Transformed: [<0,S(0)><1,S(1)>, <0,L[m]>,<0,W[x=2]>,<0,W[x=1]>,<0,U[m]>,<1,L[m]>,<1,R[x=1]>,<1,U[m]>]
- $x \neq y$ Not possible



Semantics - Reorderings

A traceset T' is a reordering of a traceset T if each trace t' in T'

is a permutation of some trace *t* from *T* with conditions:

- Only swap reorderable actions
- Applying the permutation to any prefix of t', that is, if we leave out from t all the actions that are not in the prefix, then

the resulting trace belongs to T.

Notations

- $[a \leftarrow t. P(a)]$ actions a in sequence t that satisfy condition P
- $[f(a) | a \leftarrow t. P(a)] [a \leftarrow t. P(a)]$ with each element transformed by function f

Semantics - Reorderings

• A bijection f is a reordering function if

 $f: dom(t) \rightarrow dom(t')$. $i < j, f(j) < f(i) \rightarrow t_j$ is reordable with t_i

- De-permutation of a prefix of trace t $f_{\leq n}^{\rightarrow}(t) = [t_{f^{-1}(i)}|i \leftarrow ldom(t).f^{-1}(i) < n]$
- f de-permutes t to T if f is a reordering function t and for $n \le |t'| \rightarrow f^{\rightarrow}(t) \in T$
- set of traces T' is a reordering of a set of traces T if for each t' in T' there is a function that de-permutes t' into T

Safety of Transformations

Safety of Transformations

- any execution of the transformed traceset has the same behavior as some execution of the original traceset, provided that the original program was data race free
- the transformations preserve data race freedom
- the transformations cannot introduce values out-of-thin-air.

Example

- We've seen examples of transformations breaking the first two safety constraits
- Transformation causing out of thin air value :

Safety of Eliminations - Unelimination

Matching f f: dom(I) \rightarrow dom(I') s.t. I_i = I'_{f(i)} where dom(t) = {0, ..., |t| - 1}

Unelimination function is a complete matching between *I*, *I*' s.t.:

- $i < j \in dom(I') \land T(I_i') = T(I_j') \rightarrow f(i) < f(j)$
- $i < j \in dom(I') \land A(I_i'), A(I_j')$ are synchronization or external actions $\rightarrow f(i) < f(j)$
- $i \in range(f), j \in dom(I) \setminus range(f)$

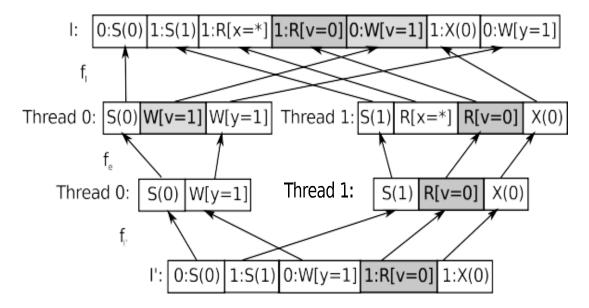
 $\land A(I_i), A(I_j)$ are synchronization or external actions $\rightarrow i < j$

• $i \in dom(I) \setminus range(f) \rightarrow is eliminable$

Unelimination

- Let traceset T' be an elimination of traceset T and I' an interleaving of T'. Then there is a wildcard interleaving I belonging-to T and an unelimination function f from I' to I
- Let traceset T' be an elimination of a data free traceset T. Then T' is data race free and any execution of T' has the same behaviour as some execution of T.

Unelimination Example



Unelimination construction

Safety of Reorderings

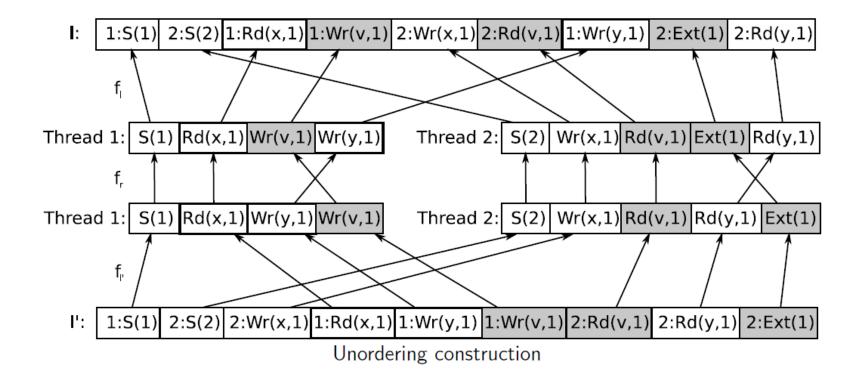
Unordering function is a complete matching between *I*, *I*' s.t.:

- $i < j \in dom(I') \land T(I_i') = T(I_j') \land A(I_i'), A(I_j') \text{ not reordable} \to f(i)$ < f(j)
- $i < j \in dom(I') \land A(I_i'), A(I_j')$ are synchronization or external actions $\rightarrow f(i) < f(j)$
- for each thread θ , the permutation f restricted to actions of θ de - permutes the trace of θ in I' into T

Unordering

Suppose that traceset T' is a reordering of a data race free traceset T. Then any execution of T' has the same behaviour as some execution of T. Moreover, T' is data race free.

Unordering Example



Out-of-thin-air

- Origin t is an origin for v if there is i∈dom(t) s.t. t_i is a write of v or an external action with value v and there is no j<i s.t. t_i is a read of v
- Let traceset T' be a reordering or an elimination of traceset T and suppose that no trace in T is an origin for v, then no trace in T' is an origin for v.
- If T does not contain an origin for a value, no execution of T can output that value

Syntactic Transformations

The syntax

A simple concurrent language – syntax.

Notations

- A thread local configuration is . C>::
 - $\succ \Lambda$ is a function that maps monitor names to the nesting level of locks \succ local state σ maps register names to values
 - $\succ C$ is a code fragment, which is either S or L or P from the syntax
- The step relation $<\Lambda$, σ , $C > \rightarrow^a <\Lambda'$, σ' , C' > for action a
- < Λ , σ , C> $\Rightarrow_n^t < \Lambda'$, σ' , C'> for a sequence of *n* transitions
- $<\Lambda, \sigma, C > \Downarrow t$ if there exists $<\Lambda', \sigma', C' > s.t. <\Lambda, \sigma, C > \Rightarrow_n^t <\Lambda', \sigma', C' >$
- $[c]_{\Lambda,\sigma} = \{t \mid < \Lambda, \sigma, C > \Downarrow t\}$

$\langle \Lambda, \sigma, r := ri; \rangle$	$\xrightarrow{\tau} \langle \Lambda, \sigma[r \mapsto \operatorname{Val}(\sigma, ri)], \mathtt{skip}; \rangle$		(Regs)
$\langle \Lambda, \sigma, x := r; \rangle$	$\xrightarrow{\mathrm{W}[x=\sigma(r)]} \langle \Lambda, \sigma, \mathtt{skip}; \rangle$		(WRITE)
$\langle \Lambda, \sigma, r := x; \rangle$	$\xrightarrow{\mathbf{R}[x=v]} \langle \Lambda, \sigma[r \mapsto v], \texttt{skip;} \rangle$	where $v \in \tau(x)$	(Read)
$\langle \Lambda, \sigma, \texttt{lock} \; m ; angle$	$\xrightarrow{\mathrm{L}[m]} \langle \Lambda[m \mapsto \Lambda(m) + 1], \sigma, \mathtt{skip}; \rangle$		(Lock)
$\langle \Lambda, \sigma, \texttt{unlock}\; m ; angle$	$\xrightarrow{\mathrm{U}[m]} \langle \Lambda[m \mapsto \Lambda(m) - 1], \sigma, \mathtt{skip}; \rangle$	where $\Lambda(m) > 0$	(Ulk)
$\langle \Lambda, \sigma, \texttt{unlock}\; m ; angle$	$\xrightarrow{\tau}$ $\langle \Lambda, \sigma, \texttt{skip}; \rangle$	where $\Lambda(m) = 0$	(E-Ulk)
$\langle \Lambda, \sigma, \texttt{print} \; r ; angle$	$\xrightarrow{\mathbf{X}(\sigma(r))} \langle \Lambda, \sigma, \mathtt{skip}; \rangle$		(EXT)
$\langle \Lambda, \sigma, \texttt{if}$ (T) S_1 else $S_2 angle$	$\xrightarrow{\tau} \langle \Lambda, \sigma, S_1 \rangle$	$\operatorname{if}\operatorname{Val}(\sigma,T)=\operatorname{tt}$	(Cond-T)
$\langle \Lambda, \sigma, \texttt{if}$ (T) S_1 else $S_2 angle$	$\xrightarrow{\tau} \langle \Lambda, \sigma, S_2 \rangle$	$\operatorname{if}\operatorname{Val}(\sigma,T)=\operatorname{ff}$	(Cond-F)
$\langle \Lambda, \sigma, \texttt{while}$ (T) $S angle$	$\xrightarrow{\tau}$ $\langle \Lambda, \sigma, S;$ while (T) $S \rangle$	$\operatorname{if}\operatorname{Val}(\sigma,T)=\operatorname{tt}$	(LOOP-T)
$\langle \Lambda, \sigma, \texttt{while}$ (T) $S angle$	$\xrightarrow{\tau} \langle \Lambda, \sigma, \texttt{skip}; \rangle$	$\operatorname{if}\operatorname{Val}(\sigma,T)=\operatorname{ff}$	(LOOP-F)
$\langle \Lambda, \sigma, \texttt{skip}; L angle$	$\xrightarrow{\tau} \langle \Lambda, \sigma, L \rangle$		(Seq)
$\langle \Lambda, \sigma, \{\texttt{skip};\} \rangle$	$\xrightarrow{\tau}$ $\langle \Lambda, \sigma, \texttt{skip}; \rangle$		(Block)
$\langle \Lambda, \sigma, L_0 \mid \mid \ldots \mid \mid L_n \rangle$	$\xrightarrow{\mathbf{S}(i)} \langle \Lambda, \sigma, L_i \rangle$	where $0 \le i \le n$	(Par)

$$\frac{\langle \Lambda, \sigma, S \rangle \xrightarrow{a} \langle \Lambda', \sigma', S' \rangle}{\langle \Lambda, \sigma, S L \rangle \xrightarrow{a} \langle \Lambda', \sigma', S'L \rangle} (\text{Ev-Seq}) \qquad \frac{\Lambda, \sigma, L \xrightarrow{a} \Lambda', \sigma', L'}{\langle \Lambda, \sigma, \{L\} \rangle \xrightarrow{a} \langle \Lambda', \sigma', \{L'\} \rangle} (\text{Ev-BLOCK})$$

Figure 7. Small-step Trace Semantics.

$$\frac{\langle \Lambda, \sigma, C \rangle \xrightarrow{\pi} \langle \Lambda'', \sigma'', C'' \rangle \quad \langle \Lambda'', \sigma'', C'' \rangle \xrightarrow{\alpha} \langle \Lambda', \sigma', C' \rangle}{\langle \Lambda, \sigma, C \rangle \xrightarrow{\pi} \langle \Lambda', \sigma, C \rangle} (\text{TR-SEQT})$$

$$\frac{\langle \Lambda, \sigma, C \rangle \xrightarrow{a} \langle \Lambda'', \sigma'', C'' \rangle \quad a \neq \tau \quad \langle \Lambda'', \sigma'', C'' \rangle \xrightarrow{\alpha} \langle \Lambda', \sigma', C' \rangle}{\langle \Lambda, \sigma, C \rangle \xrightarrow{a::\alpha} n+1} \langle \Lambda', \sigma', C' \rangle} (\text{TR-SEQA})$$

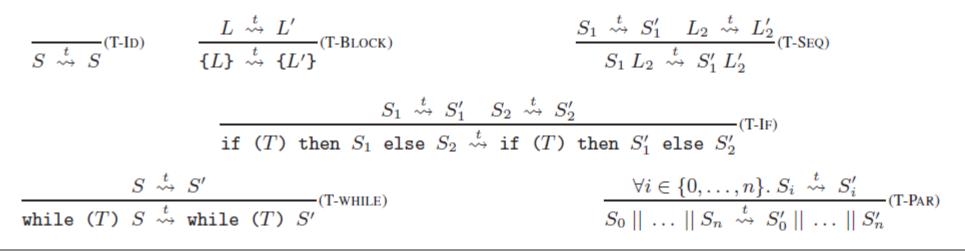


Figure 9. Transformation template.

Sytactic Eliminations

Lemma 4. Let C be a code fragment and $C \stackrel{e}{\rightsquigarrow} C'$. Then for any monitor states Λ, Λ' , register states σ, σ' and trace t' we have:

- If $\langle \Lambda, \sigma, C' \rangle \Downarrow t'$ then there is a wildcard trace t such that $t \to_e t'$ and for any instance \hat{t} of t we have $\langle \Lambda, \sigma, C \rangle \Downarrow \hat{t}$.
- If $\langle \Lambda, \sigma, C' \rangle \stackrel{t'}{\Longrightarrow} \langle \Lambda', \sigma', skip; \rangle$ then there is a wildcard trace t such that $t \to_e t'$ and for any instance \hat{t} of t we have $\langle \Lambda, \sigma, C \rangle \stackrel{\hat{t}}{\Longrightarrow} \langle \Lambda', \sigma', skip; \rangle$.

Theorem 3. Suppose that $P \stackrel{e}{\leadsto} P'$ and $\llbracket P \rrbracket$ is data race free. Then $\llbracket P' \rrbracket$ is data race free, and any execution of $\llbracket P' \rrbracket$ has the same behaviour as some execution of $\llbracket P \rrbracket$.

x not volatile $r_1, r_2, x \notin fv(S)$ S sync-free	$\frac{x \text{ not volatile } r_1, r_2, x \notin \text{fv}(S) S \text{ sync-free}}{x := r_1; S; r_2 := x \stackrel{e}{\rightsquigarrow} x := r_1; S; r_2 := r_1} (\text{E-RAW})$			
$\frac{x \text{ not volatile } r_1, r_2, x \notin \text{fv}(S) S \text{ sync-free}}{r_1 := x; S; r_2 := x \stackrel{e}{\rightsquigarrow} r_1 := x; S; r_2 := r_1} (\text{E-RAR})$	$x:=r_1; S; r_2:=x \stackrel{e}{\rightsquigarrow} x:=r_1; S; r_2:=r_1$			
$\frac{x \text{ not volatile } r, x \notin \text{fv}(S) S \text{ sync-free}}{r := x; S; x := r \stackrel{e}{\rightsquigarrow} r := x; S;} (\text{E-WAR})$	$\frac{x \text{ not volatile } r_1, r_2, x \notin \text{fv}(S) S \text{ sync-free}}{x := r_1; S; x := r_2 \stackrel{e}{\rightsquigarrow} S; x := r_2} (\text{E-WBW})$			
$\frac{x \text{ not volatile}}{r := x; r := i \stackrel{e}{\leadsto} r := i} (\text{E-IR})$				

Figure 10. Additional rules for syntactic elimination.

Syntactic Reorderings

Lemma 5. Assume that $C \xrightarrow{r} C'$. Then for each Λ and σ there is a prefix closed set of traces T satisfying these conditions: (i) the set of traces $[\![C]\!]_{\Lambda,\sigma}$ is a subset of T, (ii) each trace from T is an elimination of some wildcard trace that belongs-to $[\![C]\!]_{\Lambda,\sigma}$, (iii) for each trace t', if $\langle \Lambda, \sigma, C' \rangle \Downarrow t'$ holds then there is a function that

Theorem 4. Suppose that $P \xrightarrow{r} P'$ and $\llbracket P \rrbracket$ is data race free. Then $\llbracket P' \rrbracket$ is data race free, and any execution of $\llbracket P' \rrbracket$ has the same behaviour as some execution of $\llbracket P \rrbracket$.

n (n not volatila	
$r_1 \neq r_2 x \text{ not volatile} \tag{R-RR}$	$x \neq z$
$r_1:=x; r_2:=y; \stackrel{r}{\rightsquigarrow} r_2:=y; r_1:=x;$	$x := r_1; y :=$
$r_1 \neq r_2$ $x \neq y$ x or y not volatile (R-WR)	$r_1 \neq r_2$
$x:=r_1; r_2:=y; \stackrel{r}{\rightsquigarrow} r_2:=y; x:=r_1;$	$r_1:=x; y:=$
x not volatile (R-WL)	
$x:=r$; lock m ; $\stackrel{r}{\rightsquigarrow}$ lock m ; $x:=r$;	r:=x; lock
x not volatile (R-UW)	
unlock $m; x:=r; \stackrel{r}{\leadsto} x:=r;$ unlock $m;$	unlock m;r;
$r_1 \neq r_2$ x not volatile (R-XR)	
print $r_1; r_2:=x; \stackrel{r}{\longleftrightarrow} r_2:=x;$ print $r_1;$	print $r_1; x:=$

 $\frac{x \neq y \quad y \text{ not volatile}}{x:=r_1; \ y:=r_2; \ \stackrel{r}{\rightsquigarrow} \ y:=r_2; \ x:=r_1;} (R-WW)$ $\frac{r_1 \neq r_2 \quad x \neq y \quad x, y \text{ not volatile}}{r_1:=x; \ y:=r_2; \ \stackrel{r}{\rightsquigarrow} \ y:=r_2; \ r_1:=x;;} (R-RW)$ $\frac{x \text{ not volatile}}{r:=x; \ \log m; \ \stackrel{r}{\rightsquigarrow} \ \log m; \ r:=x;} (R-RL)$ $\frac{x \text{ not volatile}}{unlock \ m;r:=x; \ \stackrel{r}{\rightsquigarrow} \ r:=x; unlock \ m;} (R-UR)$ $\frac{x \text{ not volatile}}{r_1:=r_2; \ \stackrel{r}{\longleftrightarrow} \ x:=r_2; print \ r_1;} (R-XW)$

Figure 11. Additional rules for syntactic reordering.

Out-of-thin-air

Lemma 6. Let v be a value such that v is not a default value for any location, i.e., $v \neq 0$. Let P be a program without any statement of the form r := v, where r is a register name. Then no trace in the traceset of P is an origin for the value v.

Theorem 5. Suppose that c is a constant different from 0, and P a program that does not contain a statement of the form r := c, where r is a register. Let P' be a program obtained from P by any composition of syntactic reorderings or eliminations. Then P' cannot output c.