
CAUSAL MEMORY:
DEFINITION, IMPLEMENTATION AND

PROGRAMMING

Presented by Yoav Kaempfer

DEFINITIONS

DEFINITIONS

Memory – A finite set of locations

Operations on memory:
Read Operation – 𝑟𝑖 𝑥 𝑣
Write Operation - 𝑤𝑖 𝑥 𝑣

System – A finite set of processes 𝒫 = 𝑝1, … , 𝑝𝑛
interacting via shared memory

DEFINITIONS – CONT.

Local history of a process 𝑝𝑖 – A sequence of operations
denoted 𝐿𝑖.

History – A collection of local histories denoted
𝐻 =< 𝐿1, … , 𝐿𝑛 >

If operation 𝑜1 precedes operation 𝑜2 in 𝐿𝑖, we write:

𝑜1→
𝑖
𝑜2

DEFINITIONS – CONT. 2

A serialization 𝑆 of a set of operations 𝐴:

A linear sequence

Containing exactly the operations of 𝐴

 Each read operation returns the most recent value written to the location
(initial value ⊥)

𝑆 respects order → if 𝑜1 → 𝑜2 implies 𝑜1 precedes 𝑜2 in 𝑆

𝐴𝑖+𝑤
𝐻 is the set of all operations in 𝐿𝑖 and all write operations in 𝐻

DEFINITIONS – EXAMPLE

Formally:

𝑳𝟏 = 𝒘𝟏 𝒙 𝟎, 𝒓𝟏 𝒙 𝟎 , 𝒘𝟏 𝒙 𝟎→
𝟏
𝒓𝟏 𝒙 𝟎, 𝑨𝟏+𝒘

𝑯 = {𝒘𝟏 𝒙 𝟎, 𝒓𝟏 𝒙 𝟎,𝒘𝟐 𝒙 𝟏}

𝑳𝟐 = 𝒘𝟐 𝒙 𝟏, 𝒓𝟐 𝒙 𝟎 , 𝒘𝟐 𝒙 𝟏→
𝟐
𝒓𝟐 𝒙 𝟎, 𝑨𝟐+𝒘

𝑯 = 𝒘𝟏 𝒙 𝟎,𝒘𝟐 𝒙 𝟏, 𝒓𝟐 𝒙 𝟎

A possible serialization of 𝑯:

𝑺 = 𝒘𝟐 𝒙 𝟏,𝒘𝟏 𝒙 𝟎, 𝒓𝟏 𝒙 𝟎, 𝒓𝟐 𝒙 𝟎

𝑝2𝑝1

𝑤2 𝑥 1𝑤1 𝑥 0

𝑟2 𝑥 0𝑟1 𝑥 0

CONSISTENT MEMORY

A memory is said to be 𝑋 consistent if all histories permitted by it
are 𝑋 consistent

Thus, a program execution on an 𝑋 consistent memory can always
be described by some 𝑋 consistent history 𝐻

SEQUENTIAL CONSISTENCY (SC)

Definition: There is a serialization 𝑆 of the history 𝐻 that respects all program
orders →

𝑖

The processes cannot tell they are not using a single memory

Example:

𝑆 = 𝑟2 𝑥 ⊥,𝑤2 𝑥 1,
𝑤1 𝑥 0, 𝑟2 𝑥 0, 𝑟1 𝑥 0

Costly to implement

𝑝2𝑝1

𝑟2 𝑥 ⊥𝑤1 𝑥 0

𝑤2 𝑥 1𝑟1 𝑥 0

𝑟2 𝑥 0

PIPELINED RAM (PRAM)

Definition: For each process 𝑝𝑖 there is a serialization 𝑆𝑖 of 𝐴𝑖+𝑤
𝐻 that respects

all program orders →
𝑗

Each process sees only the writes of other processes in program order

Example:

Hard to code

𝑝2𝑝1

𝑤2 𝑥 1𝑤1 𝑥 0

𝑟2 𝑥 0𝑟1 𝑥 1

𝑆2 = 𝑤2 𝑥 1, 𝑤1 𝑥 0, 𝑟2 𝑥 0𝑆1 = 𝑤1 𝑥 0, 𝑤2 𝑥 1, 𝑟1 𝑥 1

CAUSAL MEMORY

WRITE-INTO ORDER

Associates a write operation with each read operation
(except reads of initial value ⊥)

Formally, a write-into order ↦ on a history 𝐻 is a relation such
that:

 If 𝑜1 ↦ 𝑜2, then there are 𝑥 and 𝑣 s.t. 𝑜1 = 𝑤 𝑥 𝑣 and 𝑜2 = 𝑟 𝑥 𝑣

 For any operation 𝑜2, there is at most one 𝑜1 s.t. 𝑜1 ↦ 𝑜2
 If 𝑜2 = 𝑟 𝑥 𝑣 and there is no 𝑜1 s.t. 𝑜1 ↦ 𝑜2, then 𝑣 =⊥

A history 𝐻 may have more than one write-into orders

CAUSALITY ORDER

The transitive closure of the union of all →
𝑖

and ↦

Alternatively, 𝑜1 ⇝ 𝑜2 if and only if at least one of the cases holds:

 𝑜1 →
𝑖
𝑜2

 𝑜1 ↦ 𝑜2
 There exists 𝑜′ s.t. 𝑜1 ⇝ 𝑜′ ⇝ 𝑜2

If ⇝ is cyclic, then it is not a causality order

A history 𝐻 may have more than one causality orders

EXAMPLE

There are two possible write-into orders, each corresponding to a causality order:

𝑝2𝑝1

𝑤2 𝑥 1𝑤1 𝑥 1

𝑟2 𝑦 ⊥𝑟1 𝑥 1

CAUSAL MEMORY (CM)

A history 𝐻 is causal if there exists a causality order ⇝ such that:

For each process 𝑝𝑖 , there is a serialization 𝑆𝑖 of 𝐴𝑖+𝑤
𝐻 that

respects ⇝

Each process sees the writes of the other processes in the same
causality order

Strictly weaker than SC but strictly stronger than PRAM

CM < SC

The history is not SC, but it is CM:

𝑆1 = 𝑤1 𝑥 0,𝑤2 𝑥 1, 𝑟1 𝑥 1

𝑆2 = 𝑤2 𝑥 1,𝑤1 𝑥 0, 𝑟2 𝑥 0

𝑝2𝑝1

𝑤2 𝑥 1𝑤1 𝑥 0

𝑟2 𝑥 0𝑟1 𝑥 1

Causality order: Serializations:

PRAM < CM

The history is PRAM, but it is not CM; There is only one possible causality order:

And there is no possible serialization for 𝑝3

𝑝3𝑝2𝑝1

𝑟3 𝑦 2𝑟2 𝑥 1𝑤1 𝑥 0

𝑟3 𝑥 0𝑤2 𝑦 2𝑤1 𝑥 1

MORE CM EXAMPLES

𝑝4𝑝3𝑝2𝑝1

𝑟4 𝑦 1𝑤3 𝑦 1𝑟2 𝑥 1𝑤1 𝑥 1

𝑟4 𝑥 ⊥𝑟2 𝑦 ⊥

Serializations:Causality order:

𝑆1 = 𝑤1 𝑥 1, 𝑤3 𝑦 1
𝑆2 = 𝑤1 𝑥 1, 𝑟2 𝑥 1, 𝑟2 𝑦 ⊥,𝑤3 𝑦 1
𝑆3 = 𝑤1 𝑥 1, 𝑤3 𝑦 1
𝑆4 = 𝑤3 𝑦 1, 𝑟4 𝑦 1, 𝑟4 𝑥 ⊥,𝑤1 𝑥 1

MORE CM EXAMPLES – CONT.

𝑝2𝑝1

𝑤2 𝑦 1𝑤1 𝑥 1

𝑤2 𝑥 2𝑤1 𝑦 2

𝑟2 𝑥 1𝑟1 𝑥 1

𝑟2 𝑦 1𝑟1 𝑦 1

Serializations:

Causality order:

𝑆1 = 𝑤1 𝑥 1, 𝑤1 𝑦 2, 𝑟1 𝑥 1, 𝑤2 𝑦 1, 𝑟1 𝑦 1,𝑤2 𝑥 2
𝑆2 = 𝑤2 𝑦 1, 𝑤2 𝑥 2, 𝑤1 𝑥 1, 𝑟2 𝑥 1, 𝑟2 𝑦 1, 𝑤1 𝑦 2

IMPLEMENTATION

DATA STRUCTURES

Each process holds:
𝑀 – A private copy of the shared memory ℳ
 𝑡 – A vector clock (an integer array of size 𝑛)

𝑂𝑢𝑡𝑄𝑢𝑒𝑢𝑒 – a FIFO queue of outgoing messages

 𝐼𝑛𝑄𝑢𝑒𝑢𝑒 – a priority queue of incoming messages, ordered by “timestamp”

Two vector clocks (timestamps) can be compared element wise:
 If each element in 𝑡1 is less or equal to its correspondence in 𝑡2 then 𝑡1 ≼ 𝑡2
 If 𝑡1 ≼ 𝑡2 and 𝑡1 ≠ 𝑡2 then 𝑡1 ≺ 𝑡2

≼ is transitive

IMPLEMENTATION

IMPLEMENTATION – CONT.

EXAMPLES

Positive example:

Negative example:

Reminder: Data structures are 𝑀, 𝑡, 𝐼𝑛𝑄𝑢𝑒𝑢𝑒, 𝑂𝑢𝑡𝑄𝑢𝑒𝑢𝑒

Write-tuple is < 𝑖, 𝑥, 𝑣, 𝑡 >

𝑝2𝑝1

𝑤2 𝑥 1𝑤1 𝑥 0

𝑟2 𝑥 0𝑟1 𝑥 1

𝑝3𝑝2𝑝1

𝑟3 𝑦 2𝑟2 𝑥 1𝑤1 𝑥 0

𝑟3 𝑥 0𝑤2 𝑦 2𝑤1 𝑥 1

IMPLEMENTATION NOTES

Correctness is proved in the paper

Assuming that local computation is negligible with respect to message
delays, 𝑑 is the worst-case message delay, 𝑅 is the worst-case time for a
read and 𝑊 is the worst-case time for a write:
 In SC: 𝑅 +𝑊 ≥ 𝑑
 In CM: 𝑅 = 𝑊 = 0

Implementation requires reliability, which can be dropped in exchange
for inefficiency

PROGRAMMING

PROGRAMMING

Two classes of programs are shown, which can be written assuming
SC and run correctly on CM

The above statement is proven rigorously in the paper, we will
sketch a proof for a special case

This implies improved performance with little coding hassle

CONCURRENT-WRITE FREE PROGRAMS

If neither 𝑜1 ⇝ 𝑜2 nor 𝑜2 ⇝ 𝑜1 hold, 𝑜1 and 𝑜2 are said to be
concurrent with respect to ⇝

A program Π is concurrent-write free, if for all histories 𝐻 of Π:

 For all causality orders ⇝ of 𝐻:

 If 𝐻 has a serialization that respects ⇝ (𝐻 is SC), then it has no two
concurrent write operations with respect to ⇝

“No two writes can occur interchangeably assuming SC”

CONCURRENT-WRITE FREE PROGRAM EXAMPLE

PROOF SKETCH

Theorem (4): If Π is concurrent-write free, then all histories of Π
with causal memory are sequentially consistent

Proof sketch (finite case):

Let 𝐻 be a finite causal history of Π and ⇝ its causality order

Using structural induction, prove that 𝐻 is concurrent-write free
with respect to ⇝ and has a serialization that respects ⇝

PROOF SKETCH – CONT.

Let 𝐻 be a finite causal history of Π

Assume towards contradiction concurrent writes 𝑤1, 𝑤2
Let 𝐻′ be the (proper) prefix of 𝐻 excluding 𝑤1, 𝑤2
𝐻′ has serialization 𝑆′ because of induction assumption

Let ෡𝐻 be 𝐻′ where 𝑤1 and 𝑤2 are added to the right processes

𝑆′𝑤1𝑤2 is a serialization of ෡𝐻, but Π is concurrent-write free –
CONTRADICTION

=> 𝑯 is concurrent-write free with respect to ⇝

PROOF SKETCH – CONT. 2

Let 𝐻 be a finite causal history of Π

Let 𝑆𝑖 be the serialization of 𝐴𝑖+𝑤
𝐻 that respects ⇝

Let ⟹ be the transitive closure of ⇝ union with:

𝑜1 ⇒ 𝑜2 if 𝑜1 is a read by 𝑝𝑖 , 𝑜2 is a write and 𝑜1 precedes 𝑜2
in 𝑆𝑖

⇒ is acyclic, so choose 𝑜 s.t. there is no 𝑜′ s.t. 𝑜 ⇒ 𝑜′

 ҧ𝑆 is a serialization of 𝐻 − 𝑜 because of induction
assumption

ത𝑺; 𝒐 is a serialization of 𝑯 ∎

DATA-RACE FREE PROGRAMS

A program Π is data-race free, if for all histories 𝐻 of Π:

 For all causality orders ⇝ of 𝐻:

 If 𝐻 has a serialization that respects ⇝ (𝐻 is SC), then it has no two
operations that:

 Both access the same location

At least one is a write

 They are concurrent with respect to ⇝

“No two operations (which are not both reads) can access the same
location interchangeably assuming SC”

DATA-RACE FREE PROGRAM EXAMPLE

Data-Race Free but

Not Concurrent-Write Free!

DATA-RACE FREE PROGRAM NEGATIVE EXAMPLE

Concurrent-Write Free But

Not Data-Race Free!

CM SYNCHRONIZATION

CM can improve performance for DRF programs with
synchronization, e.g. busy-wait await statements

Mutual exclusion cannot be realized with CM without cooperation,
thus semaphores can be added

Although blocking, CM with synchronization primitives can be faster
in practice than SC

SUMMARY

We have seen:

General consistency related definitions

The definition of Causal Memory

Two classes of programs which can be programmed for SC and run
on CM

CM is faster than SC, but more easily programmable than PRAM

THE END Thank You!

