
Efficient and Correct
Execution of Parallel
Programs

DENNIS SHASHA & MARC SNIR

1988

CONTENTS
Introduction

Preliminaries

Systems With No Atomic Constraints

Delays in General Systems

Large Atomic Operations & Locks

From Abstract Code to Real Programs

Summary

Introduction

Preliminaries

Systems With No Atomic Constraints

Delays in General Systems

Large Atomic Operations & Locks

From Abstract Code to Real Programs

Summary

INTRODUCTION
- Programming paradigm for serial computers is well-established and easy to describe.

- Not the case for parallel machines (multiple processors computers with a shared memory).

- Sequential Consistency is introduced in 1979, and we shall use it.

- SC in a nutshell:

Sequential Consistency – a Reminder Ex.

Not SC:

reset1(LOCK) and write1(x) executed out of order

Our Goals
Our model uses code delays and locks in order to achieve concurrency. Under the constraints of
SC we state our goals:

◦ 1. Determine the minimal set of delays that enforce correctness.

◦ 2. Minimize the number of locks & delays required to allow “high-level” atomic operations on parallel
instruction-based machines (e.g. array access).

We do these by taking advantage of insight gathered in compile time.

Introduction

Preliminaries

Systems With No Atomic Constraints

Delays in General Systems

Large Atomic Operations & Locks

From Abstract Code to Real Programs

Summary

Basic Notions & Informal Definitions
1. Our program consists of instructions.

2. Instructions specify/compose operations.

3. Every operation accesses one or more storage locations, called variables.

4. An access is a either a write or a read. Operations communicate solely via accesses.

5. Two accesses conflict if they access the same variable and at least one of them is a write
(unless they commute).

6. The execution order specifies the order of conflicting accesses.

7. The program order is a fixed ordering of the instructions. The execution order must respect it.

8. A computation is correct if operations appear to execute atomically, in the order specified by
the program order.

A Glimpse at a Program

Full arrows – Program Order Boxes - Operations

Broken lines – Conflict Edges Directed Broken Lines – Execution Order

Diving into Formalism
Before presenting our model we would need a few basic definitions:

1. An order is an irreflexive, asymmetric, transitive relation. (e.g. >)

2. Let C be a symmetric relation. The relation E is a proper orientation of C if whenever uCv then
either uEv or vEu.

3. Two relations P and R are consistent if P∪R can be extended to a total order (their graph has
no cycles).

Definitions – Cont.
Another basic definition, as is from the the paper:

Our Model
A code is a tuple <V, A, P, C>.

1. V – The set of variable accesses.

2. A – An equivalence relation on V, each equivalence class represents some atomic operation.

3. P – The program order. It is a partial order on V. P is close under A:

4. C – The conflict relation on V. Symmetric, irreflexive, but not necessarily transitive.

The Execution Order
In addition to <V, A, P, C>, we introduce E – The execution order.

E represents the execution order. It is a proper orientation of C, meaning uEv implies access u
occurs in storage before access v, for any u,v that conflict (uCv).

An execution order E is correct if it is consistent with P and A:

- E can be extended to a total order on C that respects P (P∪E has no cycles).

- Accesses that belong to one operation (contained in a class of A) execute indivisibly.

Example

Full arrows – Program Order Boxes - Operations

Broken lines – Conflict Edges Directed Broken Lines – Execution Order

Example - Cont.

X, Y are shared variables (initially X=Y=0).

x, y are registers.

No interleaving of operations can yield x = 0 and y = 1 and be SC, since it will imply the
order of occurrences: b2 -> a1 -> a2 -> b1.

Example – Cont. 2

The illegal result in our terminology: an E that leads to x=0, y=1 is not consistent with P and
A, namely since no total order of E and P can be achieved (we have a cycle in E∪P):

Full arrows – Program Order Boxes - Operations

Broken lines – Conflict Edges Directed Broken Lines – Execution
Order

Delays
We introduce the delay relation D: for every two accesses u,v∈ V, uDv implies v is delayed
until access u is executed.

Since for every u,v∈V, uEv also implies that u is executed before v, it is immediate that for
every execution, E is consistent with D.

In other words the relation graph of D∪E is acyclic (this is called the Delay Lemma).

Delays Cont.
Delays can be used to enforce correctness of concurrent programs.

We say that D enforces correctness if any execution E that is consistent with D is correct.

We can always use trivial mass of delays to enforce correctness at the expanse of complete
loss of concurrency (the program deteriorates to a serial execution).

Delays Cont. 2
We will mostly be interested in delays that enforce correctness and fulfil D⊆P.

This has two advantages:

1. if D⊆P any computation order consistent with P is also consistent with D, and D
does not prohibit computations that could occur within the limits of P.

2. If we allow delays outside of P, we then require delays between different
processors operations, which might be complicated to implement.

However…

A delay D⊆P enforcing correctness does not always exists.

Even if we enforce a correct order of execution (consistent with P), we still might violate

the atomicity constraint.

Which leads us to the next section..

Introduction

Preliminaries

Systems With No Atomic Constraints

Delays in General Systems

Large Atomic Operations & Locks

From Abstract Code to Real Programs

Summary

Systems with no Atomic Constraints

In this section we examine code in which A contains singletons only.

Namely, every operation contains a single instruction, and in fact A is the equality relation.

Since we moved the atomicity issue out of the picture, E is now correct iff it is consistent
with P.

Systems with no Atomic Constraints

In this special case, a D⊆P always exists – simply take D = P.

This however is obviously not the best solution.

We will try to find a minimal D⊆P (subset of P) that enforces correctness.

It turns out that under the assumption of A being =, such a subset can always be found.

Towards Finding a Minimal D⊆P
We note the following logic about cycles in our relations, which lead to incorrect
executions:

1. E is correct if E ∪ P has no cycles.

2. All cycles of P ∪ E are cycles of P ∪ C.

3. Suppose we impose uDv on every edge uv in such a cycle, whenever uPv.

4. Then every cycle of P ∪ C is a cycle of D ∪ C.

5. Therefore every cycle of P ∪ E is a cycle of D ∪ E.

6. However, D ∪ E is acyclic by the Delay Lemma, so we eliminated all cycles.

Such cycles will interest us when constructing the relation D⊆P.

Example

There are no cycles in P ∪ C, therefore no delays are required (can be no cycles in P ∪ E).

Example 2

P ∪ C has a cycle (a1, b1, a2, b2, a1), therefore we need delays. We choose (a1, b1), (a2, b2)
according to our construction.

Note that this cycle implies a possible incorrect execution (a cycle in P ∪ E):

E = {(b1, a2), (b2, a1)}.

Minimal Inconsistent Executions
In order to construct D, it is sufficient (but not necessary) to take under consideration all

cycles in P∪C. We would like to do better, and include only “necessary” cycles so D enforces

correctness.

We define 𝜙 to be the family of acyclic subsets of C that are not consistent with P:

S∈ 𝜙 if S⊆C is acyclic and P ∪ S contains a cycle.

A minimal element of 𝜙 is called a minimal inconsistent execution (minimality by set
containment).

Theorem 3.1

Theorem 3.1 :

Let D be a delay relation. Then D enforces correctness iff, for every minimal

inconsistent execution S, D ∪ S has a cycle.

Theorem 3.1 – Partial Proof
⟸:

Suppose that for every S, D ∪ S has a cycle. Now assume D does not enforce correctness.

Then there exists an E which is inconsistent. E contains a minimal inconsistent execution

S’ (acyclic subset of C, that together with edges from P, closes a cycle), and so by

assumption D∪ S’ has a cycle. But then E ∪ D must have a cycle, which contradicts the

Delay Lemma.

⟹ : A bit messy, but not very interesting, see paper for proof.

Critical Pairs

Definitions:

1. A set 𝜎 is a critical cycle of (P, C) if it is a simple cycle of P ∪ C and has no chords in P.

2. An edge uv ∈ P is a critical pair (of (P, C)) if it occurs in a critical cycle.

Example 1

Critical cycles and pairs in a single processor code.

(a, d, a) and (b, c, b) are critical cycles.

ad and bc are critical pairs.

Example 2

We have 4 simple cycle in P ∪ C:

Note that (i) is not a critical cycle (P is transitive!)

Critical Pairs: {(a1,b1), (a1,c1), (a1, d1), (a2, d2), (b2, d2), (c2, d2)}.

Lemma 3.3

Let S be a minimal inconsistent execution (minimal in number of edges in C), and 𝜎 be a shortest
cycle in P ∪ S (fewest number of edges). Then 𝜎 is a critical cycle (simple cycle in P ∪ C).

Straightforward proof from the paper (we simply show 𝜎 can have no P chords, and is simple):

Conclusion (corollary 3.4)

Let D be a delay relation consisting of all the critical pairs. If E is an execution order that is
consistent with D, then E is consistent with P.

Proof:

According to the previous Lemma, each minimal inconsistent execution is contained

inside a critical cycle. Making D consists of all critical pairs, together with Theorem 3.1,

ensures correctness (make sure all the MIEs are inside some cycle of D ∪ C).

Sanity Check
So what have we achieved?

Our goal was finding the exact edges P of all cycles in P ∪ C, which delaying them ensures correctness.

We showed which cycles of those interest us (critical cycles, Lemma 3.3).

And we showed why including the P edges in those cycles in our D relation actually works to enforce
correctness (Theorem 3.1).

No minimality shown yet…

Example 2 - Revisited
The cycles listed below, displayed in full.

Note that (i) is still not a critical cycle due to

its (a1, c1) edge in P.

A Word About Minimality
We showed that every minimal inconsistent execution is contained in a critical cycle.

We now show that the converse also holds: The edges C – P of a critical cycle are a minimal
inconsistent execution.

Therefore a D relation containing all the critical pairs is both sufficient and necessary to enforce
correctness.

Lemma 3.5

Let 𝜎 be a critical cycle in (P, C), let S = 𝜎 – P. Then any arbitrary simple cycle 𝜋 in P ∪ S is
obtained by replacing the P edges in 𝜎 by a simple path edges of P, and all S edges in 𝜎 are in 𝜋.

Conclusion
Let 𝜎 be a critical cycle in (P, C), let S = 𝜎 – P. Then S is a minimal inconsistent execution, and

𝜎 is the unique critical cycle in S ∪ P.

Proof:

By the previous lemma, S is contained in all cycles in P ∪ S, thus is MIE. If π is a different critical cycle
under P ∪ S, then 𝜋 is obtained by replacing some P edges paths of 𝜎, but 𝜎 has no chords, so all its paths
are of length 1, and thus 𝝈 = 𝝅.

Bottom Line: By fixing D to be the “critical pairs” relation, we do not cover superfluous P edges.

Simplified Definition of Critical Cycles

We can define critical cycles in a more restricted way, without losing any critical pairs.

First, we can ignore cycles in C ∪ P that have no P edges (do not contribute critical pairs).

Secondly, we can require that critical cycles have no C chords. Under certain conditions,
this we’ll lose no critical pairs.

Thus we are able to ignore superfluous cycles and simplify our analysis.

Illustration

We lose no P edges (no critical pairs).

Example

Immediate critical cycles: (a1, b1, a2, b2, a1), (a1, b1, a2, a1), (a1, a2, b2, a1).

We can lose the first one, since it has a C chord (a1, a2), and still keep the same

Set of critical pairs: (a1, b1), (a2, b2).

Example – Where It Fails

Immediate critical cycles: (a1, b1, a2, b2, a1), (a2, b2, a2).

The first one has a C chord, (a2, b2), however it cannot be ignored since (a2, b2) is a trivial C-
chord, that is it consists of the reversal of and edge on a cycle (in our case – (a2, b2, a2)).

Ignoring it we lose the essential critical pair (a1, b2).

A Sufficient Condition

We’ll require that all accesses to variables are ordinary read and write operations.

Then under this condition, the following Theorem holds:

Example (positive)

No C chords since we maintain the requirements of the Theorem.

Simple Negative Example

If we violate the requirement that each access to the same variable is consecutive we get a C

chord.

Introduction

Preliminaries

Systems With No Atomic Constraints

Delays in General Systems

Large Atomic Operations & Locks

From Abstract Code to Real Programs

Summary

Delays in General Systems

We now consider general systems <V, A, P, C>. A is an equivalence relation, but not the equality
relation.

We again show existence of a minimal D that enforces correctness (E now needs be consistent
with P and A). D is now a subset of P ∪ A.

Proofs in this section are very similar to those in the previous section, and we shall skip most of
them.

E consistent with P and A – a reminder

In the context of our world, E will be consistent with P and A if it respects both the program
order and the atomicity of variable accesses inside each operation.

Minimal Consistent Executions

We extend our previous definition. S ⊆ C is now a minimal consistent execution if:

(1) S is inconsistent with P and A.

(2) S is minimal (any subset of S is consistent with P and A).

It also turns out that Theorem 3.1 still holds:

D enforces correctness iff D ∪ S has a cycle, for every minimal consistent execution S.

Possible Issues with our Program

Note that now C edges may be present both inside atomic operations, and between them.

Wrong execution order within an atomic operation can be handled with delays in the same way
as in the past.

Possible Issues with our Program

In order to handle the second type of inconsistencies (wrong execution order across operations),

we consider how critical cycles of operations are related to critical cycles of accesses.

P/A – Definition
Let P be an irreflexive relation and A be an equivalence relation on the same set U. Then [u]P/A[v] if u≠v and there
exists u, v such that uPv.

Visually, in our context, P/A edges would be P edges between operations:

P/A – Same with a cycle
For example, a cycle under (P/A, C/A):

A cycle in P∪C, under relations P, C. A cycle under relations P/A, P/C.

P/A – Same with a cycle

Also called the projection of the cycle under A.

Example

(P ∩ A, C ∩ A) has the critical cycle (a3, b3, a3).

(P ∪ A, C – A) has the cycle (a1, b1, a2, b2, a1).

Lemma 4.1

What does it mean? That every critical cycle on the “big” graph (P∪A, C – A), which
includes all operations and their sub-accesses, can be “minimized” to a critical cycle on the
equivalent graph under A, (P/A, C/A), and vice versa.

“minimized” – has a projection

Theorem 4.2

Let Da be the set of all critical pairs in (P ∩ A, C ∩ A), and 𝐷𝑎 the set of all critical pairs in

(P ∪ A, C – A). And define D0 = Da ∪ Da. Then D0 ∪ S contains every minimal inconsistent

execution S, and D0 enforces correctness.

Proof Idea:

(P ∩ A, C ∩ A) takes care of all inconsistencies inside operations (constructed like in the previous
section).

(P ∪ A, C – A) takes care of all inconsistencies across operations (constructed using Lemma 4.1).

Example

(P ∩ A, C ∩ A) has the critical cycle (a3, b3, a3), Da = {(a3, b3)}.

(P ∪ A, C – A) has the cycle (a1, b1, a2, b2, a1), 𝐷𝑎 = {(a1, b1), (a2, b2)}.

D0 = {(a3, b3), (a1, b1), (a2, b2)}. These delays assure atomicity and program order. D⊆ P.

Example

(P ∩ A, C ∩ A) has no critical cycles.

(P ∪ A, C – A) has the same cycle (a1, b1, a2, b2, a1), 𝐷𝑎 = {(a1, b1), (a2, b2)} = D0.

Note that there is no program order between a1 and b1, yet atomicity requires a delay
between them.

Delays Have their Limit

(P ∪ A, C – A) has two critical cycles: (a1, b1, b2, a2, a1), (a1, a2, b2, b1, a1).

One contradicts each other, D0 has a cycle. This is impossible to enforce.

When D0 has cycles delays are not sufficient to enforce correctness (locks or other mechanisms are

required).

Can We Avoid the Failure?

D0 in this case is a subset of P ∪ A, and not only P.

This is the only case where it can have cycles (edges exclusively in A).

We’ll look for a sufficient condition which prevents it.

Systems where Delays Enforce
Correctness

Definition: An access u is external if there exists another access v, such that:

¬uAv, uCv, but neither uPv nor uPu.

That is, an access is external iff it conflicts with an access of another operation, and there is no
program order between them.

Represents a nondeterministic interaction with another operation (e.g. from a parallel segment of
code).

The Sufficient Property

Definition: A has the single external access property if each operation contains at most one
external access.

Code with this property can use delays to enforce correctness, since D0 has no edges in A,

so D0 ⊆ P (and acyclic).

Example

Operations “interfere non-deterministically ” with each other only “once”. No cycles in D0 = {(a1,
b1), (a1, e1), (c1, d1), a2, b2)}.

Summary + A Word about Minimality

We showed the cases in which a delay relation D (actually D0) that enforces correctness exists.

It can be shown that D is indeed minimal.

Proof is very similar to what we saw in the previous section, so we skip it.

Introduction

Preliminaries

Systems With No Atomic Constraints

Delays in General Systems

Large Atomic Operations & Locks

From Abstract Code to Real Programs

Summary

Large Atomic Operations & Locks

As we saw there are cases where delays do not suffice to enforce correct executions.

We add to our arsenal a locking protocol :

A partition of the accesses in the code into disjoint locking sets.

The protocol protects the execution of accesses in each set.

The partition is represented by an equivalence relation L.

Locking sets are the equivalence classes of L.

Locks
The locking protocol can be obtained by using locks.

We distinguish between two kinds:

A read lock – multiple of which can be set simultaneously on the same variable.

A write lock – exclusive of any other lock.

The Locking Protocol

Let u be a locking set.

A lock by u is set on all variables accessed by u prior to the actual access’ execution.

A read lock is secured for each read access. A write lock is secured only for update accesses.

If we cannot secure locks for all the accesses in u, we release those we secured, and try again

(so no deadlock).

Locks and Delays

We can combine the use of delays with locks.

Let D and L be a delay relation and a locking relation respectively.

If uD\Lv, then all locks on behalf of v are secured after locks on behalf of u are released.

We assume D and D\L are acyclic.

Delays and Locking Lemma

Using our locking protocol, every execution E is consistent with D and L.

Our Formal Problem Revisited

As before, every program is represented by the tuple <V, A, P, C>. E is correct if it is
consistent with P and A.

We can trivially enforce such consistency, by using a locking set for every atomic set, and
delaying every two accesses related by program order: (D, L) = (P, A).

We’ll try to do better.

Our Formal Problem Revisited

Following the spirit of the previous sections, we look for (D, L) such that L⊆ A, (i) D ⊆ P,

or (ii) D⊆ P ∪ 𝐀.

In (i) we do not lose any legal executions, but might not always be feasible.

In (ii) we might lose some legal executions, but we enforce correctness.

Reminder

D0 = Da ∪ Da ⊆ (P ∩ A, C ∩ A) ∪ (P ∪ A, C – A), the set of critical pairs.

First Case

Then we take L to be the symmetric, transitive closure of D0 - P.

Suppose it is possible to achieve non-trivial L and D such that L⊆ A and D ⊆ P.

Given D0 (can always be computed regardless of correctness), we define:

First Case - Example

D0 = ((a1, b1), (a2, b2)).

The locking sets are, L = (D0– P)+ = {{a1, b1}, {a2}, {b2}}.

And D(L) is (a2, b2).

Second Case

Suppose it is possible to achieve non-trivial L and D such that L⊆ A and D ⊆ P ∪ A.

Given D0 (can always be computed regardless of correctness), we define:

And we take L to be the strongly connected components of D0.

Second Case - Example

D0 = ((a1, b1), (a2, b2)).

The locking sets are, L = {{a1}, {a2}, {a3}, {a4}}. (D0 is acyclic)

And D(L) = {(a1, b1), (a2, b2)}. Note that we lose a legal execution: a2, b2, b1, a1.

Introduction

Preliminaries

Systems With No Atomic Constraints

Delays in General Systems

Large Atomic Operations & Locks

From Abstract Code to Real Programs

Summary

The Mechanism of Delays
How do we decide which delays will actual take part in the code?

Useful to notice: For a relation D that enforces correctness, if uDv, vDw and uDw,
it is not necessary to explicitly enforce the delay uDw, since it is implicit in the
first two.

Using this logic, we conclude that the transitive reduction of D is enough: the
smallest R relation with the property that R⊆D⊆ R+.

R consists of all pairs uv∈D such that the longest path from u to v in the graph of
D is of length 1.

The Mechanism of Delays
How do we actually impose delay in the hardware?

In some machines, the hardware itself is capable of delaying some of its
“atomic” operations. In this case we can directly enforce the delays necessary by
the R relation.

In others cases we use “fences”.

Fences
A fence instruction delays the execution of the next memory access until all
preceding accesses have been executed.

We wish, of course, to minimize the number of fences.

Fences divide the code to S0, S1, .. S𝑖 such that all operations in a given
processor in S𝑖 are executed before all operations in S𝑗, for i<j. Say level(u) is the
longest path in D to u. Then set S𝑖 to be the set of all nodes in level i.

Fences - Example
u𝑖 ∈ 𝐃

Level(0) = {u0, u2, u4}. Level(1) = {u1, u3, u5}.

u0 u1 u2 u3 u4 u5

Level(0) = {u0, u3}, level(1) = {u1, u4}, level(2) = {u2, u5}.

u0 u1 u2 u3 u4 u5

And so on…

Only 1 fence, multiple Delays- Example

Introduction

Preliminaries

Systems With No Atomic Constraints

Delays in General Systems

Large Atomic Operations & Locks

From Abstract Code to Real Programs

Summary

Summary
We presented a method of enforcing efficient and sequentially consisted
execution of concurrent process on a shared-memory multiprocessor.

Note that we haven’t seen how to find data dependencies (conflicts), this
problem can be hard, and the methods of discovering them are out of the scope
of this paper.

Similarly, we did not present a way of finding the various minimal cycles.

THE END

