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Introduction
Moore’s law is dead and buried,  how  to keep making HW 
better? 

➢ Parallelization

➢ Specialization

However, concurrent heterogenous systems provide a new 
problem in terms of memory, consistency and coherence 
models
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What are Heterogenous 
Systems?

From Wikipedia:

“Systems that use more than one kind of processor 
or cores. These systems gain performance or energy 
efficiency not just by adding the same type of processors, but 
by adding dissimilar coprocessors...”
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Why Does it Matter?
➢Different methods for execution optimization

➢Different methods for cache coherence

➢Different compiler optimizations
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Performance Performance
Performance!

Heterogenous systems are built to improve performance. We 
want to utilize them. We need to: 

➢Allow as many programs as possible

➢Keep programmatic model reasonably close to SC with DRF

➢Don’t sacrifice compiler optimizations

➢Don’t sacrifice HW memory caches
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Cache Coherence is Key
GPUs:

➢large number of Compute Units (CUs) 

➢very simplistic coherence protocols (or none at all)

Adding such coherence protocols result in significant 
performance dip for target application
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Coherence Limitations
➢Software driven

➢Invalidate the entire cache on non-relaxed synchronization 
reads

➢Write-through all dirty data to the shared LLC (e.g. L2) on 
non-relaxed synchronization writes

➢Require atomics to execute on the LLC
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Mitigations
Heterogenous Race Free (HRF) introduced Scoped 
synchronization – insufficient and overly complex?

DeNovo
◦ No scoped synchronization

◦ Uses ownership for writes

◦ Self invalidation for reads

◦ Ownership and execution of atomics on L1
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Optimizations
Relaxed order atomics allow compiler optimizations that 
prevent the need to invalidate the cache and write-through 
to the LLC
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Bottom Line
If every atomic operation will cause full L1 cache 
invalidation, the impact on performance will be critical

The model presented in this paper attempts to allow more 
cases to use relaxed atomics ➔ no cache invalidation
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DRF0
DRF0 classifies all memory variables as either data or atomic

Data-races on data variables is considered a bug

Programs are kept SC by abolishing all compiler 
optimizations on atomic variables. It does not support 
relaxed atomics at all and therefore doesn’t allow even 
optimizations that we would consider sensible (or even 
remain SC)
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DRFrlx
Relaxed Atomic Category Application

Unpaired Work Queue

Commutative Event Counter

Non-Ordering Flags

Quantum
Split Counter, 
Reference Counter

Speculative Seqlocks
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Unpaired Atomics – Work 
Queue
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Unpaired Atomics – Work 
Queue
➢occupancy result is used to determine the flow but is 
validated

➢All accesses to are synchronized around the SC load in 
dequeue
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Unpaired Atomics – Another 
example
atomic<bool> eventRaised = false;
mutex mx;

while (true) {
while (!eventRaised.atomic_load(mem_order_relaxed)) {

sleep(1000);
}
mx.Lock()
if (eventRaised.atomic_load(mem_order_relaxed)) {

//do something
}
mx.Unlock()

}
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DRF1
➢Distinguishes paired from unpaired (relaxed) atomics

➢Paired atomics – no optimizations, strongly consistent, 
ordered access only

➢Unpaired atomics – allow optimizations and reordering in 
regards to non-atomic (data) operations. Keep ordering in 
regards to other atomics operations

20



DRF1 – Formal Definition
Synchronization Order 1 (𝑠𝑜1 →): X 𝑠𝑜1 → Y iff

✓X and Y conflict, 

✓X is a paired synchronization write, 

✓Y is a paired synchronization read, 

and

✓X is ordered before Y in the SC total order.

Happens-before-1 (ℎ𝑏1 →): The irreflexive transitive closure of po and 
so1: ℎ𝑏1 = 𝑝𝑜 ∪ 𝑠𝑜1 +
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DRF1 – Formal Definition
Race (under DRF1): Two operations X and Y in an execution form a race 
iff

✓X and Y are from different threads

✓X and Y conflict

✓They are not ordered by hb1

If X or Y is distinguished as data, we refer to it as a data race
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DRF1 – Formal Definition 
Continued

A program is DRF1 if and only if for every SC execution of the 
program, all operations can be distinguished by the system 
as either data, paired atomic, or unpaired atomic, and there 
are no data races (under DRF1) in the execution.

A system obeys the DRF1 memory model if and only if the 
result of every execution of a DRF1 program on the system is 
the result of an SC execution of the program.
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A Basic Example

➢SC results require printf to print 1

➢DRF1 compliancy guarantees that by keeping po between 
unpaired operations

➢By allowing reordering of unpaired operations we might 
get any other result non-SC result (0)
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Xunp = 1 | while (Xunp != 2);
Yunp = 1 | printf(Yunp);
Xunp = 2 |



DRF1 – conclusion
The good

DRF1 provides the benefits of relaxed atomics by removing 
the ordering constraint between data and unpaired atomics 
(while preserving SC)

The not good enough

DRF1 constrains unpaired atomics to respect program order 
with respect to other unpaired atomics
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Commutative Atomics – Event 
Counter
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Commutative Atomics – Event 
Counter
➢Racing increments are commutative

➢Intermediate results are not observable

➢Full paired synchronization on join

Result of an execution: the memory state at the end of the 
execution
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Commutative Atomics –
Formal Definition

Commutativity: Two stores to a single memory location M 
are commutative with respect to each other if they can be 
performed in any order and yield the same result

X and Y form a commutative race iff:
◦ X and Y form a race

◦ X or Y is distinguished as a commutative operation

◦ X and Y are not commutative with respect to each other 

Or

◦ Loaded value is visible to other operations
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DRFrlx – first attempt
A program is DRFrlx iff for every SC execution of the 
program:

all operations can be identified by the system as either 
data or as paired, unpaired, or commutative atomics

there are no data races or commutative races in the 
execution

30



DRFrlx
Relaxed Atomic Category Application

Unpaired Work Queue

Commutative Event Counter

Non-Ordering Flags

Quantum
Split Counter, 
Reference Counter

Speculative Seqlocks

31



Non-Ordering Atomics - Flags
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Non-Ordering Atomics - Flags
➢stop and dirty do not order any other operation

➢Global barrier (join) orders any conflicts

➢Operation on stop and dirty can be reordered with respect 
to other relaxed operations without violating SC
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Non-Ordering Atomics –
Formal Definition

Conflict Order (𝑐𝑜 →): X 𝑐𝑜 → Y iff X and Y conflict and X is 
ordered before Y in T.

Program/Conflict Graph: A directed graph where the vertices 
are the operations of the execution and the edges represent 
program order and conflict order
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Non-Ordering Atomics –
Formal Definition

Ordering Path: A path from X to Y is called an ordering path if 
it has at least one program order edge and X and Y conflict

Valid Path: An ordering path is valid if all its edges are either:
◦ hb1

◦ between atomic accesses to the same address

◦ between paired or (strictly) unpaired accesses
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Non-Ordering Atomics –
Formal Definition

X and Y form a non-ordering race iff:

➢X and Y form a race, both atomics, and at least one of 
them is distinguished as a non-ordering atomic

➢X 𝑐𝑜 → Y is on an ordering path from A to B, but there is no 
valid path from A to B.
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Non-Ordering Atomics –
Program/Conflict Graph
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DRFrlx – second attempt
A program is DRFrlx if and only if for every SC execution 
of the program:

all operations can be identified by the system as either 
data or as paired, unpaired, or commutative or non-
ordering atomics

there are no data races or commutative races or non-
ordering races in the execution
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Quantum Atomics – Reference 
Counters
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Quantum Atomics – Split 
Counter
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Quantum Atomics –
Characteristics
➢Not commutative – intermediate results are observed

➢Not non-ordering – Read/Add Increase/Decrease affect 
other operations

➢Split Counters increase concurrently, at every point, the 
sum is an estimate

➢Reference Counters can only reach 0 once
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Quantum Atomics – Quantum 
Transformation
➢Replace quantum reads with a random value

➢Replace quantum writes with a random value

➢Receive quantum-equivalent program
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Quantum Atomics – Formal 
Definition

Quantum Race: Two operations, X and Y form a quantum 
race iff:

✓They form a race

✓Exactly one of them is a quantum atomic
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DRFrlx – third attempt
A program is DRFrlx iff for every SC execution of the 
program:

all operations can be identified by the system as either 
data or as paired, unpaired, commutative, non-ordering 
or quantum atomics

there are no data races or commutative races, non-
ordering races, or quantum races in the execution
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DRFrlx – third attempt
A system obeys the DRFrlx memory model if and only if the 
result of every execution E of a DRFrlx program P on the 
system is the same as the result of an SC execution Eq of the 
quantum-equivalent program Pq of P. In addition, E must 
obey happens-before consistency and per-location SC
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Speculative Atomics - Seqlocks
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Speculative Atomics - Seqlocks
➢Data must be atomic

➢Data Stores race with loads

➢Loads discarded if race occurred ➔ Final result is 
consistent
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Speculative Atomics – Formal 
Definition

X and Y, form a speculative race iff:

✓They form a race

✓X or Y is a speculative atomic

✓Both operations are stores

or

✓The (speculative) result is observed by another operation
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DRFrlx – fourth and final 
attempt

A program is DRFrlx if and only if for every SC execution of its 
(quantum-equivalent) program:

all operations can be distinguished by the system as either 
data or as paired, unpaired, commutative, non-ordering, 
quantum, or speculative atomics

there are no data races, commutative races, non-ordering 
races, quantum races, or speculative races in the execution
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Model Formalization
➢New keywords: 
unpaired, commutative, non-ordering, quantum and 
speculative 

➢Simulator was used to formalize the model

➢Simulations successfully identified races in SC executions 
or produce non-SC executions permitted by the model
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Correctness Theorem
“Assume a heterogeneous system is DRF1 compliant 

and enforces happens-before consistency and per-location 
SC for atomics. Assume the system additionally constrains 
DRFrlx’s commutative, non-ordering, quantum, and 
speculative operation completion/propagation in the same 
way as data operations. Such a system is DRFrlx compliant”
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Breaking it down
➢Heterogeneous

➢DRF1 compliant

➢happens-before

➢per-location SC (for atomics)

➢DRFrlx atomics as Data
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Simulation Parameters
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Simulation Results
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Simulation Results
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Simulation Results - Summary
➢Micro-benchmarks – usually around 15% improvement 
from DRFrlx

➢Benchmarks – BC and PR show much more significant 
improvements (up to 37%)

➢Combined with DeNovo the impact becomes more 
significant (> 50% for some cases)
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Summary
New consistency model to allow further relaxing 
atomic variables while keeping the program 
semantically close to SC 

➔ Theoretically less cache invalidations

Simulation results show slight improvements, more 
if combined with DeNovo, probably more work to 
be done in this direction
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