
Chasing Away RAts: Semantics and Evaluation for
Relaxed Atomics on Heterogeneous Systems

MAT THEW D. S INCLAIR, JONATHAN ALSOP, SARITA V. ADVE

1

Contents
The problem

A new Model

Implementation and Results

2

Contents
The problem

A new Model

Implementation and Results

3

Introduction
Moore’s law is dead and buried, how to keep making HW
better?

➢ Parallelization

➢ Specialization

However, concurrent heterogenous systems provide a new
problem in terms of memory, consistency and coherence
models

4

What are Heterogenous
Systems?

From Wikipedia:

“Systems that use more than one kind of processor
or cores. These systems gain performance or energy
efficiency not just by adding the same type of processors, but
by adding dissimilar coprocessors...”

5

Why Does it Matter?
➢Different methods for execution optimization

➢Different methods for cache coherence

➢Different compiler optimizations

6

Performance Performance
Performance!

Heterogenous systems are built to improve performance. We
want to utilize them. We need to:

➢Allow as many programs as possible

➢Keep programmatic model reasonably close to SC with DRF

➢Don’t sacrifice compiler optimizations

➢Don’t sacrifice HW memory caches

7

Cache Coherence is Key
GPUs:

➢large number of Compute Units (CUs)

➢very simplistic coherence protocols (or none at all)

Adding such coherence protocols result in significant
performance dip for target application

8

Coherence Limitations
➢Software driven

➢Invalidate the entire cache on non-relaxed synchronization
reads

➢Write-through all dirty data to the shared LLC (e.g. L2) on
non-relaxed synchronization writes

➢Require atomics to execute on the LLC

9

Mitigations
Heterogenous Race Free (HRF) introduced Scoped
synchronization – insufficient and overly complex?

DeNovo
◦ No scoped synchronization

◦ Uses ownership for writes

◦ Self invalidation for reads

◦ Ownership and execution of atomics on L1

10

Optimizations
Relaxed order atomics allow compiler optimizations that
prevent the need to invalidate the cache and write-through
to the LLC

11

Bottom Line
If every atomic operation will cause full L1 cache
invalidation, the impact on performance will be critical

The model presented in this paper attempts to allow more
cases to use relaxed atomics ➔ no cache invalidation

12

Contents
The problem

A new Model

Implementation and Results

13

DRF0
DRF0 classifies all memory variables as either data or atomic

Data-races on data variables is considered a bug

Programs are kept SC by abolishing all compiler
optimizations on atomic variables. It does not support
relaxed atomics at all and therefore doesn’t allow even
optimizations that we would consider sensible (or even
remain SC)

14

DRFrlx
Relaxed Atomic Category Application

Unpaired Work Queue

Commutative Event Counter

Non-Ordering Flags

Quantum
Split Counter,
Reference Counter

Speculative Seqlocks

15

DRFrlx
Relaxed Atomic Category Application

Unpaired Work Queue

Commutative Event Counter

Non-Ordering Flags

Quantum
Split Counter,
Reference Counter

Speculative Seqlocks

16

Unpaired Atomics – Work
Queue

17

Unpaired Atomics – Work
Queue
➢occupancy result is used to determine the flow but is
validated

➢All accesses to are synchronized around the SC load in
dequeue

18

Unpaired Atomics – Another
example
atomic<bool> eventRaised = false;
mutex mx;

while (true) {
while (!eventRaised.atomic_load(mem_order_relaxed)) {

sleep(1000);
}
mx.Lock()
if (eventRaised.atomic_load(mem_order_relaxed)) {

//do something
}
mx.Unlock()

}

19

DRF1
➢Distinguishes paired from unpaired (relaxed) atomics

➢Paired atomics – no optimizations, strongly consistent,
ordered access only

➢Unpaired atomics – allow optimizations and reordering in
regards to non-atomic (data) operations. Keep ordering in
regards to other atomics operations

20

DRF1 – Formal Definition
Synchronization Order 1 (𝑠𝑜1 →): X 𝑠𝑜1 → Y iff

✓X and Y conflict,

✓X is a paired synchronization write,

✓Y is a paired synchronization read,

and

✓X is ordered before Y in the SC total order.

Happens-before-1 (ℎ𝑏1 →): The irreflexive transitive closure of po and
so1: ℎ𝑏1 = 𝑝𝑜 ∪ 𝑠𝑜1 +

21

DRF1 – Formal Definition
Race (under DRF1): Two operations X and Y in an execution form a race
iff

✓X and Y are from different threads

✓X and Y conflict

✓They are not ordered by hb1

If X or Y is distinguished as data, we refer to it as a data race

22

DRF1 – Formal Definition
Continued

A program is DRF1 if and only if for every SC execution of the
program, all operations can be distinguished by the system
as either data, paired atomic, or unpaired atomic, and there
are no data races (under DRF1) in the execution.

A system obeys the DRF1 memory model if and only if the
result of every execution of a DRF1 program on the system is
the result of an SC execution of the program.

23

A Basic Example

➢SC results require printf to print 1

➢DRF1 compliancy guarantees that by keeping po between
unpaired operations

➢By allowing reordering of unpaired operations we might
get any other result non-SC result (0)

24

Xunp = 1 | while (Xunp != 2);
Yunp = 1 | printf(Yunp);
Xunp = 2 |

DRF1 – conclusion
The good

DRF1 provides the benefits of relaxed atomics by removing
the ordering constraint between data and unpaired atomics
(while preserving SC)

The not good enough

DRF1 constrains unpaired atomics to respect program order
with respect to other unpaired atomics

25

DRFrlx
Relaxed Atomic Category Application

Unpaired Work Queue

Commutative Event Counter

Non-Ordering Flags

Quantum
Split Counter,
Reference Counter

Speculative Seqlocks

26

Commutative Atomics – Event
Counter

27

Commutative Atomics – Event
Counter
➢Racing increments are commutative

➢Intermediate results are not observable

➢Full paired synchronization on join

Result of an execution: the memory state at the end of the
execution

28

Commutative Atomics –
Formal Definition

Commutativity: Two stores to a single memory location M
are commutative with respect to each other if they can be
performed in any order and yield the same result

X and Y form a commutative race iff:
◦ X and Y form a race

◦ X or Y is distinguished as a commutative operation

◦ X and Y are not commutative with respect to each other

Or

◦ Loaded value is visible to other operations

29

DRFrlx – first attempt
A program is DRFrlx iff for every SC execution of the
program:

all operations can be identified by the system as either
data or as paired, unpaired, or commutative atomics

there are no data races or commutative races in the
execution

30

DRFrlx
Relaxed Atomic Category Application

Unpaired Work Queue

Commutative Event Counter

Non-Ordering Flags

Quantum
Split Counter,
Reference Counter

Speculative Seqlocks

31

Non-Ordering Atomics - Flags

32

Non-Ordering Atomics - Flags
➢stop and dirty do not order any other operation

➢Global barrier (join) orders any conflicts

➢Operation on stop and dirty can be reordered with respect
to other relaxed operations without violating SC

33

Non-Ordering Atomics –
Formal Definition

Conflict Order (𝑐𝑜 →): X 𝑐𝑜 → Y iff X and Y conflict and X is
ordered before Y in T.

Program/Conflict Graph: A directed graph where the vertices
are the operations of the execution and the edges represent
program order and conflict order

34

Non-Ordering Atomics –
Formal Definition

Ordering Path: A path from X to Y is called an ordering path if
it has at least one program order edge and X and Y conflict

Valid Path: An ordering path is valid if all its edges are either:
◦ hb1

◦ between atomic accesses to the same address

◦ between paired or (strictly) unpaired accesses

35

Non-Ordering Atomics –
Formal Definition

X and Y form a non-ordering race iff:

➢X and Y form a race, both atomics, and at least one of
them is distinguished as a non-ordering atomic

➢X 𝑐𝑜 → Y is on an ordering path from A to B, but there is no
valid path from A to B.

36

Non-Ordering Atomics –
Program/Conflict Graph

37

DRFrlx – second attempt
A program is DRFrlx if and only if for every SC execution
of the program:

all operations can be identified by the system as either
data or as paired, unpaired, or commutative or non-
ordering atomics

there are no data races or commutative races or non-
ordering races in the execution

38

DRFrlx
Relaxed Atomic Category Application

Unpaired Work Queue

Commutative Event Counter

Non-Ordering Flags

Quantum
Split Counter,
Reference Counter

Speculative Seqlocks

39

Quantum Atomics – Reference
Counters

40

Quantum Atomics – Split
Counter

41

Quantum Atomics –
Characteristics
➢Not commutative – intermediate results are observed

➢Not non-ordering – Read/Add Increase/Decrease affect
other operations

➢Split Counters increase concurrently, at every point, the
sum is an estimate

➢Reference Counters can only reach 0 once

42

Quantum Atomics – Quantum
Transformation
➢Replace quantum reads with a random value

➢Replace quantum writes with a random value

➢Receive quantum-equivalent program

43

Quantum Atomics – Formal
Definition

Quantum Race: Two operations, X and Y form a quantum
race iff:

✓They form a race

✓Exactly one of them is a quantum atomic

44

DRFrlx – third attempt
A program is DRFrlx iff for every SC execution of the
program:

all operations can be identified by the system as either
data or as paired, unpaired, commutative, non-ordering
or quantum atomics

there are no data races or commutative races, non-
ordering races, or quantum races in the execution

45

DRFrlx – third attempt
A system obeys the DRFrlx memory model if and only if the
result of every execution E of a DRFrlx program P on the
system is the same as the result of an SC execution Eq of the
quantum-equivalent program Pq of P. In addition, E must
obey happens-before consistency and per-location SC

46

DRFrlx
Relaxed Atomic Category Application

Unpaired Work Queue

Commutative Event Counter

Non-Ordering Flags

Quantum
Split Counter,
Reference Counter

Speculative Seqlocks

47

Speculative Atomics - Seqlocks

48

Speculative Atomics - Seqlocks
➢Data must be atomic

➢Data Stores race with loads

➢Loads discarded if race occurred ➔ Final result is
consistent

49

Speculative Atomics – Formal
Definition

X and Y, form a speculative race iff:

✓They form a race

✓X or Y is a speculative atomic

✓Both operations are stores

or

✓The (speculative) result is observed by another operation

50

DRFrlx – fourth and final
attempt

A program is DRFrlx if and only if for every SC execution of its
(quantum-equivalent) program:

all operations can be distinguished by the system as either
data or as paired, unpaired, commutative, non-ordering,
quantum, or speculative atomics

there are no data races, commutative races, non-ordering
races, quantum races, or speculative races in the execution

51

Contents
The problem

A new Model

Implementation and Results

52

Model Formalization
➢New keywords:
unpaired, commutative, non-ordering, quantum and
speculative

➢Simulator was used to formalize the model

➢Simulations successfully identified races in SC executions
or produce non-SC executions permitted by the model

53

Correctness Theorem
“Assume a heterogeneous system is DRF1 compliant

and enforces happens-before consistency and per-location
SC for atomics. Assume the system additionally constrains
DRFrlx’s commutative, non-ordering, quantum, and
speculative operation completion/propagation in the same
way as data operations. Such a system is DRFrlx compliant”

54

Breaking it down
➢Heterogeneous

➢DRF1 compliant

➢happens-before

➢per-location SC (for atomics)

➢DRFrlx atomics as Data

55

Simulation Parameters

56

Simulation Results

57

Simulation Results

58

Simulation Results - Summary
➢Micro-benchmarks – usually around 15% improvement
from DRFrlx

➢Benchmarks – BC and PR show much more significant
improvements (up to 37%)

➢Combined with DeNovo the impact becomes more
significant (> 50% for some cases)

59

Summary
New consistency model to allow further relaxing
atomic variables while keeping the program
semantically close to SC

➔ Theoretically less cache invalidations

Simulation results show slight improvements, more
if combined with DeNovo, probably more work to
be done in this direction

60

