Chasing Away RAts: Semantics and Evaluation for
Relaxed Atomics on Heterogeneous Systems

MATTHEW D. SINCLAIR, JONATHAN ALSOP, SARITA V. ADVE

Contents
The problem

A new Model

Implementation and Results

Contents

The problem

Introduction

Moore’s law is dead and buried, how to keep making HW
better?

» Parallelization
» Specialization

However, concurrent heterogenous systems provide a new
problem in terms of memory, consistency and coherence
models

What are Heterogenous
Systems?

From Wikipedia:

“Systems that use more than one kind of processor
or cores. These systems gain performance or energy
efficiency not just by adding the same type of processors, but
by adding dissimilar coprocessors...”

Why Does it Matter?

» Different methods for execution optimization

» Different methods for cache coherence

» Different compiler optimizations

Performance Performance
Performance!

Heterogenous systems are built to improve performance. We
want to utilize them. We need to:

» Allow as many programs as possible
» Keep programmatic model reasonably close to SC with DRF
»Don’t sacrifice compiler optimizations

»Don’t sacrifice HW memory caches

Cache Coherence is Key

GPUs:

»large number of Compute Units (CUs)

»very simplistic coherence protocols (or none at all)

Adding such coherence protocols result in significant
performance dip for target application

Coherence Limitations

» Software driven

»Invalidate the entire cache on non-relaxed synchronization
reads

»Write-through all dirty data to the shared LLC (e.g. L2) on
non-relaxed synchronization writes

»Require atomics to execute on the LLC

Mitigations

Heterogenous Race Free (HRF) introduced Scoped
synchronization — insufficient and overly complex?

DeNovo
> No scoped synchronization
o Uses ownership for writes
o Self invalidation for reads
o Ownership and execution of atomics on L1

Optimizations

Relaxed order atomics allow compiler optimizations that
prevent the need to invalidate the cache and write-through
to the LLC

Bottom Line

If every atomic operation will cause full L1 cache
invalidation, the impact on performance will be critical

The model presented in this paper attempts to allow more
cases to use relaxed atomics = no cache invalidation

Contents

A new Model

DRFO

DRFO classifies all memory variables as either data or atomic

Data-races on data variables is considered a bug

Programs are kept SC by abolishing all compiler
optimizations on atomic variables. It does not support
relaxed atomics at all and therefore doesn’t allow even
optimizations that we would consider sensible (or even

remain SC)

DRFrlx

Relaxed Atomic Category Application

Unpaired Work Queue
Commutative Event Counter
Non-Ordering Flags

Split Counter,
Quantum Reference Counter
Speculative Seqlocks

DRFrlx

Relaxed Atomic Category Application

Unpaired Work Queue
Commutative Event Counter
Non-Ordering Flags

Split Counter,
Quantum Reference Counter
Speculative Seqlocks

Unpaired Atomics — Work
Queue

struct Task:;
struct MsgQueue |
atomic<int> _occupancy = 0;

Task = dequeuwe() |
if (_occupancy. atomic_load (mem_order_seq_cst) — 0) {
return NULL:;
] else | ... }
l
int occupancy () |
return _occupancy . atomic_load (mem_order_relaxed):

}

} éjﬁbal{}ueue:

/f Thread t1 (service thread):
void periodicCheck () |
if (globalQueue. occupancy () = 0) |
Task = t = globalQueue. dequeue () ;
if (t != NULL)
t.execute ();
|
}

Unpaired Atomics — Work
Queue

»occupancy result is used to determine the flow but is
validated

» All accesses to are synchronized around the SC load in
dequeue

Unpaired Atomics — Another
example

atomic<bool> eventRaised = false;
mutex mx;

while (true) {

while (leventRaised.atomic_load(mem_order_relaxed)) {
sleep(1000);

}

mx.Lock()

if (eventRaised.atomic_load(mem_order_relaxed)) {
//do something

}

mx.Unlock()

DRF1

» Distinguishes paired from unpaired (relaxed) atomics

» Paired atomics — no optimizations, strongly consistent,
ordered access only

»Unpaired atomics — allow optimizations and reordering in
regards to non-atomic (data) operations. Keep ordering in
regards to other atomics operations

DRF1 — Formal Definition

Synchronization Order 1 (so; =): X so; = Y iff

v'X and Y conflict,

v'X is a paired synchronization write,

V'Y is a paired synchronization read,

and

v'X'is ordered before Y in the SC total order.

Happens-before-1 (hb; —): The irreflexive transitive closure of po and
so,: hb; = (po U soq) +

DRF1 — Formal Definition

Race (under DRF1): Two operations X and Y in an execution form a race
iff

v'X and Y are from different threads
v'X and Y conflict

v'They are not ordered by hb,

If X orY is distinguished as data, we refer to it as a data race

DRF1 — Formal Definition
Continued

A program is DRF1 if and only if for every SC execution of the
program, all operations can be distinguished by the system
as either data, paired atomic, or unpaired atomic, and there
are no data races (under DRF1) in the execution.

A system obeys the DRF1 memory model if and only if the
result of every execution of a DRF1 program on the system is
the result of an SC execution of the program.

A Basic Example

Xunp = 1 | while (X, '=2);
Yonp = 1 | printf(Y,,.);
Xunp = 2 |

»SC results require printf to print 1

»DRF1 compliancy guarantees that by keeping po between
unpaired operations

» By allowing reordering of unpaired operations we might
get any other result non-SC result (0)

DRF1 — conclusion

The good

DRF1 provides the benefits of relaxed atomics by removing
the ordering constraint between data and unpaired atomics
(while preserving SC)

The not good enough

DRF1 constrains unpaired atomics to respect program order
with respect to other unpaired atomics

DRFrlx

Relaxed Atomic Category Application

Unpaired Work Queue
Commutative Event Counter
Non-Ordering Flags

Split Counter,
Quantum Reference Counter
Speculative Seqlocks

Commutative Atomics — Event
Counter

atomic<int> count[NUM BINS]; 7/ all bins initialized to 0

£ Threads 1. .N:
threadNum =

chunkSize =
baselLoc = (threadNum = chunkSize);

for (1 = 0; 1 <« chunkSize; ++1) |
binNum = data|[baseLoc + 1] % NUM_BINS;
count [binNum]. atomic_inc{mem_order_relaxed);

ff Main Thread:

main{) |
launch_workers () ; 7/ launch worker threads

join_workers();
for (1 = 0; 1 < NUM_BINS: ++1) |
int rl = count[1]. atomic_load (mem_order_relaxed) ;
o ouses rl

)
I

Commutative Atomics — Event
Counter

»Racing increments are commutative

> Intermediate results are not observable

» Full paired synchronization on join

Result of an execution: the memory state at the end of the
execution

Commutative Atomics —
Formal Definition

Commutativity: Two stores to a single memory location M
are commutative with respect to each other if they can be
performed in any order and yield the same result

X and Y form a commutative race iff:
°c Xand Y form a race
o X orY is distinguished as a commutative operation
o X'and Y are not commutative with respect to each other
Or
> Loaded value is visible to other operations

DRFrix — first attempt

A program is DRFrlx iff for every SC execution of the
program:

all operations can be identified by the system as either
data or as paired, unpaired, or commutative atomics

there are no data races or commutative races in the
execution

DRFrlx

Relaxed Atomic Category Application

Unpaired Work Queue
Commutative Event Counter
Non-Ordering Flags

Split Counter,
Quantum Reference Counter
Speculative Seqlocks

Non-Ordering Atomics - Flags

atomic<bool> dirty = false , stop = false:

£ Threads 1..N:

while (!stop.atomic_load{ mem_order_relaxed)) |

if (...

dirty.atomic_store (true , mem_order_relaxed) ;

£ Main Thread:
main{) |
launch_workers(); // launch rthreads 1..N

stop.atomic_store (true , mem_order_relaxed);

join_workers () ;

if (dirty.atomic_load{mem_order_relaxed))
cleanup_dirty_stuff ();

Non-Ordering Atomics - Flags

»stop and dirty do not order any other operation

» Global barrier (join) orders any conflicts

»Operation on stop and dirty can be reordered with respect
to other relaxed operations without violating SC

Non-Ordering Atomics —
Formal Definition

Conflict Order (co —): X co — Y iff Xand Y conflict and X is
ordered beforeYinT.

Program/Conflict Graph: A directed graph where the vertices
are the operations of the execution and the edges represent
program order and conflict order

Non-Ordering Atomics —
Formal Definition

Ordering Path: A path from X to Y is called an ordering path if
it has at least one program order edge and X and Y conflict

Valid Path: An ordering path is valid if all its edges are either:
° hb,
> between atomic accesses to the same address

> between paired or (strictly) unpaired accesses

Non-Ordering Atomics —
Formal Definition

X and Y form a non-ordering race iff:

»X and Y form a race, both atomics, and at least one of
them is distinguished as a non-ordering atomic

»X co — Yison an ordering path from A to B, but there is no
valid path from A to B.

Non-Ordering Atomics —
Program/Conflict Graph

Thread 0 Thread 1 Thread 0 Thread 1
UNP X=3 UNP X=3
po ypo
NO Y=2e2rl=Y NO P £=1
co po 'LPD
=X TUNP NO Y=2—Irli"'f NO
c po
=2 P
¥ P
2=X UNP

(a) (b)

DRFrIx — second attempt

A program is DRFrlx if and only if for every SC execution
of the program:

all operations can be identified by the system as either
data or as paired, unpaired, or commutative or non-
ordering atomics

there are no data races or commutative races or non-
ordering races in the execution

DRFrlx

Relaxed Atomic Category Application

Unpaired Work Queue
Commutative Event Counter
Non-Ordering Flags

Split Counter,
Quantum Reference Counter
Speculative Seqlocks

Quantum Atomics — Reference
Counters

atomic<unsigned lomng> refcountl , refcount2;

Ff Thread |

refcountl . atomic_inc{mem_order_relaxed) ;
refcount?2 . atomic_inc{mem_order_relaxed);

lt' ({refcountl . atomic_dec({mem_order_relaxed)
mark cb_ptrl to be deleted

if (refcount?. atomic_dec{mem_order_relaxed) — 0)
mark cb_ptrl to be deleted

0}

ff Thread 2

refcountl . atomic_inc{mem_order_relaxed) ;
refcount? . atomic_inc{mem_order_relaxed);

lt' ({refcount?. atomic_dec{ mem_order_relaxed)
mark cb_ptr2 to be deleted

if (refcountl. atomic_dec({mem_order_relaxed) — 0)
mark cb_ptrl to be deleted

0}

Quantum Atomics — Split
Counter

atomic<unsigned long> myCount [NUM_THREADS];
add_split_counter(v, tID} |

val = myCount[tID]. atomic_load { mem_order_relaxed) ;
new¥Yal = val + v;
myCount [tID]. atomic_store (newVal, mem_order_relaxed);
}
read_split_counter (tID) |
sum =

for (1 = 0; 1 <« NUM_THREADS:; ++i) |
loc = ({(tID + 1) % NUM THREADS) ;
sum += myCount[loc]. atomic_load { mem_order_relaxed) ;

}

return sum;

}

add_split_counter(1, 0); /F Thread 0O
rl = read_split_counter{(1); /f Thread i
add_split_counter(2, 2); /f Thread 2
r2 = read_split_counter{(3); /f Thread 3

Quantum Atomics —
Characteristics

» Not commutative — intermediate results are observed

»Not non-ordering — Read/Add Increase/Decrease affect
other operations

»Split Counters increase concurrently, at every point, the
sum is an estimate

» Reference Counters can only reach 0 once

Quantum Atomics — Quantum
Transformation

»Replace quantum reads with a random value

> Replace quantum writes with a random value

» Receive quantum-equivalent program

Quantum Atomics — Formal

Definition
Quantum Race: Two operations, X and Y form a quantum
race iff:

v'They form a race

v'Exactly one of them is a quantum atomic

DRFriIx —third attempt

A program is DRFrlx iff for every SC execution of the
program:

all operations can be identified by the system as either
data or as paired, unpaired, commutative, non-ordering
or quantum atomics

there are no data races or commutative races, non-
ordering races, or quantum races in the execution

DRFriIx —third attempt

A system obeys the DRFrIx memory model if and only if the
result of every execution E of a DRFrIx program P on the
system is the same as the result of an SC execution Eq of the
guantum-equivalent program Pq of P. In addition, E must
obey happens-before consistency and per-location SC

DRFrlx

Relaxed Atomic Category Application

Unpaired Work Queue
Commutative Event Counter
Non-Ordering Flags

Split Counter,
Quantum Reference Counter
Speculative Seqlocks

Speculative Atomics - Seqglocks

atomic<unsigned > seq;
atomic <imt> datal . datal;

T reader() |
int rl. r2;
unsigned seqgl ., seql:
do |
seql = seq.atomic_load (mem_order_seq_cst);
rl = datal . atomic_load {mem_order_relaxed) ;
r? = data? .atomic_load {mem_order_relaxed);
seql = seq.atomic_fetch_add (0, mem_order_seq_cst);
| while ({seq0 != segl) Il (seq0 & 1)):
ff uses rl and r2

]
void writer(...) |
unsigned seq0 = seq.atomic_load { mem_order_seq_cst):
while ((seq0 & 1) 1l !seq.cmp_exchange_weak(seq0, seqO+1)) { ; |}
datal . atomic_store (..., mem_order_relaxed);
data?. atomic_store (..., mem_order_relaxed);
seq. atomic_store (seq0) + 2, mem_order_seq_cst);

Speculative Atomics - Seqglocks

» Data must be atomic

» Data Stores race with loads

» Loads discarded if race occurred = Final result is
consistent

Speculative Atomics — Formal
Definition

X and Y, form a speculative race iff:

v'They form a race
v’ X orY is a speculative atomic

v'Both operations are stores

or

v'The (speculative) result is observed by another operation

DRFrlx — fourth and final
attempt

A program is DRFrix if and only if for every SC execution of its
(quantum-equivalent) program:

all operations can be distinguished by the system as either
data or as paired, unpaired, commutative, non-ordering,
guantum, or speculative atomics

there are no data races, commutative races, non-ordering
races, quantum races, or speculative races in the execution

Contents

Implementation and Results

Model Formalization

» New keywords:
unpaired, commutative, non-ordering, quantum and
speculative

» Simulator was used to formalize the model

»Simulations successfully identified races in SC executions
or produce non-SC executions permitted by the model

Correctness Theorem

“Assume a heterogeneous system is DRF1 compliant
and enforces happens-before consistency and per-location
SC for atomics. Assume the system additionally constrains
DRFrlx’s commutative, non-ordering, quantum, and
speculative operation completion/propagation in the same
way as data operations. Such a system is DRFrix compliant”

Breaking it down

»Heterogeneous
»DRF1 compliant
»happens-before

» per-location SC (for atomics)

» DRFrlx atomics as Data

Simulation Parameters

Table 2: Simulated heterogeneous system parameters.

CFU Parameters Benchmark | Input [Atomic Types
Frequency 2 GHz Microbenchmarks
Cones 1 Hist (H)[50] 256 KB. 256 hins Commutative
GPFU Parameters Hist_global (HG)[50] 256 KB, 256 bins Commutative
Frequency 700 MHz HG-Non-Order (HG-NO) 256 KB. 256 bins Non-Ordering
Cls 15 Commutative.
Memory Hierarchy Parameters Flags[61] 90 Thread Blocks Non-Ordering
L1 size (8 banks, 8-way assoc.) 32 KB SplitCounter (SC)[44] 112 Thread Blocks Quantum
L2 size (16 banks, NUCA) 4 MB RelfCounter (RC)[61] 64 Thread Blocks Quantum
Slore buller size 128 entrics Seqlocks (SEQI[11] 512 Thread Blocks Speculative
L1 MSHRs 128 eniries Benchmarks
L1 hit latency I cycle UTS[32, 48] 16K nodes Unpaired
Remote L1 hit laiency 35—83 cycles BC[18) romedy (1), nasal824 (2), | Commutative,
L2 hil latency 2061 cycles ex33 (3), c-22 (4) Non-Ordering
Memory laten 197261 cycles c-37 (1), c-36 (2 :
ry latency cy PageRank (PR)[18] - ({3:1 T 4)3' Commutative

Table 3: Benchmarks, input sizes, and relaxed atomics vsed.

Simulation Results

Flags SEQ AVG

164 104
A0
BO%
[
0%
0%
mN/W mL2S o L1DS mScratch GPU Cores
1323
s b L)

'i‘!i‘!!‘ii‘i!‘ii‘i! EEZE35EEsE|35EEEE3558E ggE8ss ™ |
ia) Execution time so%
) || i -
SO I

N EF R EE EEEEE B EE L e EE e L L EE
(b) Dynamic energy

Simulation Results

PR-1

!i|l||iilii‘|l BREE

jleed

B
Er%
At
) |
o

(a) Execution time

i

ERiEiasde

!

EREEE

%
FAGEEE

LR I T

MW mL25 0 L1DS mScratch GPU Cora+

|l\”'|”|||‘|l |||| ““ |”‘

R EEE R TR R T R TR

ib) Dynamic energy

Simulation Results - Summary

»Micro-benchmarks — usually around 15% improvement
from DRFrlx

»Benchmarks — BC and PR show much more significant
improvements (up to 37%)

» Combined with DeNovo the impact becomes more
significant (> 50% for some cases)

Summary

New consistency model to allow further relaxing
atomic variables while keeping the program
semantically close to SC

=» Theoretically less cache invalidations

Simulation results show slight improvements, more
if combined with DeNovo, probably more work to
be done in this direction

