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Memory model (MM) is
concurrent system’s

semantics
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[x] := 1;
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[y] := 1;
b := [x];

Impossible to get a = b = 0Possible to get a = b = 0 on GCC+x86!
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Modern Compilers and СPUs
are Optimizing

Features
• reorderings
• cache
• buffers
• read-after-write elimination
• speculative execution
• fake dependency elimination
•…
Lead to concurrent behaviors

CorrectCorrect for one thread
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Realistic weak MMs are
subtle

…and different to each other
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When not to care about Weak MMs

Writing/verifing a program, which
• has immutable data only
• is single-threaded
• is properly locked multi-threaded
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When to care about Weak MMs

Writing/verifing lock-free code
(i.e., locks themselves)
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[Store Buffering in
x86-TSO

[Owens et al., 2009]]
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Load Buffering

Memory
[x]← 0; [y]← 0[x]← 1; [y]← 0[x]← 1; [y]← 1

[y]← 1a← [x] [x]← 1
b← [y][x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _Final values a = _, b = 1

Final values a = 1, b = 1
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ARM-Weak in ARMv8 POP

a = 1?

Values
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[x]← 1

b← [x]
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Java MM, [Manson et al., 2005]
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C/C++11 MM, [Batty et al., 2011]

3 3∗ 7 7

Proposed solution [Kang et al., 2017]
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• allow Efficient Compilation (x86, Power, ARM)
• validate Compiler Optimizations (merging, rearranging, etc)
• no Out-Of-Thin-Air
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Java MM, [Manson et al., 2005] 3 7 3

3

C/C++11 MM, [Batty et al., 2011] 3 3∗ 7

7

Proposed solution [Kang et al., 2017] 3 3 3

3

Promise MM, for C/C++ and Java
Requirements:
• allow Efficient Compilation (x86, Power, ARM)
• validate Compiler Optimizations (merging, rearranging, etc)
• no Out-Of-Thin-Air



30

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

[Store Buffering in Promise]
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Load Buffering in Promise

Promised

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,
⟨y : 1@1τ⟩]⟨y : 1@1τ⟩, ⟨x : 1@1τ⟩]

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1
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ARM-Weak in Promise

a = 1?

Promised

Values:

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,
⟨x : 1@2τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩,
⟨x : 1@1τ⟩]

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;
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Agenda

• Memory models. What, why, and when to care

• CPU and PL MMs. Promise MM

• Compilation correctness for Promise MM to
{x86, Power, ARM}
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Compilation Correctness

compile :

S

→ T

∀Prog ∈ S.J

compile(Prog)

KT ⊆

J

Prog

KS.

Source languageTarget language

Source MMTarget MM
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Compilation Targets

Proof status:

• x86-TSO, [Owens et al., 2009]

full

• Power, [Alglave et al., 2014]

full

• ARMv8 POP, [Flur et al., 2016]

partial

• ARMv8.3, [Pulte et al., 2018]

partial
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Compilation to x86-TSO

• x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]
• Reordering of independent write-read
• Read-after-write elimination

• Transformations are sound in Promise
[Kang et al., 2017]

• SC ⊂ Promise
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Compilation to Power

• Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]
• Reordering of independent instructions

• Transformation is sound in Promise
[Kang et al., 2017]

• StrongPower ⊆ promise-free version of Promise
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Scheme isn’t applicable to
ARM POP
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Counterexample. ARM-Weak

a := [x]; // 1
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;

Allowed in ARM POP

;
Cannot be explained by transformations
over a stronger model
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Counterexample. ARM-Weak

a := [x]; // 1
[x] := 1;

b := [x];
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c := [y];
[x] := c;

Allowed in ARM POP;
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Main Differences between
Promise and ARMv8 POP

1. Promise can execute only writes
out-of-order

2. ARMv8 POP doesn’t totally order
writes to a specific location
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Main Proof Ingredients

1. “Lagging” simulation

2. ARMv8 POP +
timestamps
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“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;…

…

Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relationI = IPromise is waiting ∪ IPromise is executing
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Main Proof Ingredients

1. “Lagging” simulation

2. ARMv8 POP +
timestamps
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ARMv8 POP

[x]← 1 [x]← 2[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!
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[x]← 2[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!

Let’s determine the order beforehand!
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Proof Structure

1. Introduce ARM+τ

2. Prove equivalence between
ARM+τ and ARMv8 POP

3. Show “lagging” simulation from
Promise to ARM+τ



46

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

How to prove correctness of
compilation?

Standard technique:
Simulation
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How to simulate graphs?
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Traverse of ARMv8.3 execution
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx1

Wy1

Ry1

Wx1

Covered

Issued
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Traversal formally
Cover step:

Issue step:

…
G ⊢ ⟨C, I⟩ → ⟨C ∪ {a}, I⟩

…
G ⊢ ⟨C, I⟩ → ⟨C, I ∪ {w}⟩

Mimics Promise
requirements!
Mimics Promise
requirements!
Mimics Promise
requirements!
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Proof Structure

1. Prove Promise simulates traversal

2. Show completeness of traversal
∀G. G ∈ Consistent(ARMv8.3)⇒
G ⊢ ⟨∅, ∅⟩ →∗ ⟨G.Events,G.Writes⟩
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Takeaway
• MMs are important and complicated, but locks help

• Problems in existing MMs, but there are solutions

• Not all MMs might be explained by reorderings

http://podkopaev.net

Thank you!

http://podkopaev.net
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