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Memory models. What, why, and when to care

Memory model (MM) is
concurrent system's
semantics
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Sequential consistency
[Lamport, 1979]

system's behaviors —
program interleavings
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Execution in SC

a = [yf;

b = [x;

‘ Impossible to get a= b = O’

Values Memory
a=Lib=1 [yl
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Is it the same in reality?
Let's check!



Memory models. What, why, and when to care

Execution in SC

K= 1 || mo=
2= || b= ¥

Possible to get a = b =0 on GCC+x86!

Values Memory
a=lib=1 ||[de el
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Modern Compilers and CPUs
are Optimizing

Features
reorderings \

cache
buffers

read-after-write elimination > Correct for one thread
speculative execution

fake dependency elimination
¢ ... /

Lead to weak concurrent behaviors
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Non-SC behaviors are called weak

Weak MMs allow weak behaviors

Real systems have weak MMs
(i.e., x86, Power, ARM, C++, Java)
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Realistic weak MMs are
subtle
...and different to each other
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Memory models. What, why, and when to care

But most have data race
freedom (DRF) results:

No data races = only SC
behaviors
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When not to care about Weak MMs

Writing /verifing a program, which
. has immutable data only
. is single-threaded
. is properly locked multi-threaded
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When to care about Weak MMs

Writing /verifing lock-free code
(i.e., locks themselves)
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[Store Buffering in
x86-TSO
[Owens et al., 2009]]
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ARM-Weak in ARMv8 POP
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a=_1
b= _1 |
c— | Memory
5 < 0;[y] + 0
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ARM-Weak in ARMv8 POP
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ARM-Weak in ARMv8 POP

Values b+ [X]
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CPU and PL MMs. Promise MM

CPU MM should:
1. describe real CPUs

2. save room for future optimizations

3. provide reasonable guarantees for PLs
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MM for PL?
Has to satisfy 3 requirements
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Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

3. No Out- Of—Thln Air

C/C++11 MM allows a= b =42
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C/C++11 MM has OOTA.
Why?



C/C++11 MM is
axiomatic MM
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a = [x;

] ;
Y = a || = b

Axioms: Rx8 Ry8
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Solutions

7]
[?]
[7]

[Jeffrey and Riely, 2016]

Promise MM, [Kang et al., 2017]

[Pichon-Pharabod and Sewell, 2016]

[Podkopaev et al., 2016]
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Memory Models for PLs

EC | CO | No OOTA

SC MM, [Lamport, 1979] X | X v
Java MM, [Manson et al., 2005] X v
C/C++11 MM, [Batty et al., 2011] oV X
Proposed solution [Kang et al., 2017] v ‘ v ‘ v

Promise MM, for C/C++ and Java
Requirements:
e allow Efficient Compilation (x86, Power, ARM)

e validate Compiler Optimizations (merging, rearranging, etc)
e no Out-Of-Thin-Air
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[Store Buffering in Promise]
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ARM-Weak in Promise
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Memory: [(x:0@0,), (y: 0Q0,)]
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ARM-Weak in Promise

B b || B e || e
[x] == 1;
Promised

<
I
&
=3
I
0

V1: [x@0,,y@0,] V2: [x@0,,y@0,] V3: [x@0,,y@0,]

Memory: [(x:0@0,), (y: 0@0,),
(x:1Q@2,)]

Values: a=_1 b= 1 c= 1
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ARM-Weak in Promise

Men

2= b || b= || ek
=1 || T =& || K=«
Promised

V3: [x@0,, yQ0,]

V1 [xQ0,,yQ0,] V2: [x@2,,y@0,]
Memory: [(x:0@0,), (y: 0@0,),
(x:1Q@2,)]

Values: a= 1
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a = [x; b = [x]; ;
K =L M-

’

Promised "

V1: [x@0,,y@0,] V2: [x@2,,y@l,] V3: [xQ0,,y@0,]

Memory: [(x:0@0,), (y: 0@0,),
(x:1Q@2,), (y:1Q1,)]

Values: a=_1 b=1
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ARM-Weak in Promise

—_—

a = [x;

) b = [x];
X = L[] M

’

Promised "

V1: [x@0,,y@0,] V2: [x@2,,y@l,] V3: [x@0,,yal,]

Memory: [(x:0@0,), (y: 0@0,),
(x:1Q@2,), (y:1Q1,)]

Values: a=_1 b=1
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—_—

a = [x; b = [x]; ;
M = L W= b || X =

Promised "

V1: [x@0,,y@0,] V2: [x@2,,y@l,] V3: [x@l,,yal,]

Memory: [(x:0@0,), (y: 0@0,),

(x:1@2,), (y:1Q1,),
(x:1Q@1,)]

Values: a=_1 b=1
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ARM-Weak in Promise

a = [x;

Dl b= ] c= D
X = L[| M = b X

Promised "

V1: [x@1,,y@0,] V2: [x@2,,y@l,] V3: [x@l,,yal,]

Memory: [(x:0@0,), (y: 0Q0,)

(x:1@2,), (y: 1@1:>’7
(x:1Q1,)]

Values: a=1 b=1
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ARM-Weak in Promise

a:=[X; || b= || c = v
X =1 || WM = b X = ¢

—_ s — || —

V1 [x@2,,yQ0,] V2: [x@2,,yal.] V3: [x@l,,y@l]
Memory: [(x:0@0,), (y: 0@0,),

(x:1Q@Q2.), (y: 1Q1,),
(x:1Q@1,)]

Values: a=1 b=1 c=1
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Agenda

« Compilation correctness for Promise MM to
{x86, Power, ARM}
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Compilation Correctness
compile : S — T

[ A]]s-

[Source MM}
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Compilation Correctness

compile : S — T
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|

[Target MM}
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Compilation Correctness

compile : S — T
VProg € S.
[compile(Prog)|+ C [Prog]s.
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Compilation Targets

x86-TSO, [Owens et al., 2009]
Power, [Alglave et al., 2014]
ARMv8 POP, [Flur et al., 2016]
ARMV8.3, [Pulte et al., 2018]
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Compilation to x86-TSO

» x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]

 Reordering of independent write-read
o Read-after-write elimination

« Transformations are sound in Promise
[Kang et al., 2017]

o SC C Promise
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Compilation to Power

« Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]

o Reordering of independent instructions

o Transformation is sound in Promise
[Kang et al., 2017]

« StrongPower C promise-free version of Promise
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Scheme isn't applicable to
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ise MM
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K =c
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Cou nterexample ARI\/I Weak

a=\x; /1| b:=
4 =

K =c

Allowed in ARM POP
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Counterexample. ARM-Weak

c:= [y:
K =c

a=d /1]|b= [
=1 ||b:=b

Allowed in ARM POP;
Cannot be explained by transformations
over a stronger model
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Main Differences between
Promise and ARMv8 POP

1. Promise can execute only writes
out-of-order

2. ARMv8 POP doesn't totally order
writes to a specific location
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Main Proof Ingredients

1. “Lagging”’ simulation

2. ARMv8 POP +
timestamps
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“Lagging’ Simulation

= [x]; «— Fully executed by ARM
= [y};

= [x;
= 1;

X, <
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“Lagging’ Simulation

<

0o T L

= [x]; «— Fully

= [y;

=<

)

—_

executed by ARM

= [x]; «— Partially executed by ARM



—

1en to care

CPU and PL MMs. Pron
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M Compilation correctness for Promn

“Lagging’ Simulation

y]

= |

a
b =
c

Ly
[x]; «— Partially executed by ARM

X

]
]

«— Fully

Y
I
Y

1; «<— Not

executed by ARM

executed by ARM

nise MM
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“Lagging’ Simulation

Promise
—_—

a
b =
c

7 — simulation relation
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“Lagging’ Simulation

Promise cl = [X];
b := [y}
c = [X;

1= IPromise Is waiting U IPromise Is executing
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“Lagging’ Simulation

Promise,_ @ = [X];
b=y}
c = [x;
M =1

1= IPromise Is waiting U IPromise Is executing
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“Lagging’ Simulation

Promise
—_—

a
b =
C

X <X

—_

Y =

1= IPromise Is waiting U IPromise Is executing
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“Lagging’ Simulation

Promise
_—

a
b =
c

X <X,

—_

Y =

7 = IPromise Is waiting U

IPromise Is executing
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“Lagging’ Simulation

a
Promise
C

X <X,

—_

Y =

7 = IPromise Is waiting

U IPromise Is executing
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“Lagging’ Simulation

a = [x;
Promise b = M’
c = [x];

—

v =1,

1= IPromise is waiting U IPromise Is executing
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“Lagging’ Simulation

a = [x;
Promise b = M’
c = [x];

—_

] =

Promised

1= IPromise is waiting U IPromise Is executing
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“Lagging’ Simulation

a = [x;
Promise b = M’
c = [x];

—_

y] = Promised

1= IPromise Is waiting U IPromise Is executing
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“Lagging’ Simulation

a = [x;
b = [y;
Promise> C [X];

=
I
\.I—\

Promised

1= IPromise Is waiting U IPromise Is executing
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“Lagging’ Simulation

a = [x;
b = [y;
c = [X;
Promise. Y = L

7 = IPromise Is waiting

U IPromise Is executing
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ARMv8 POP

[x] == 1; || [x] = 2;
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ARMv8 POP

K= 1 || =2

1

[x] < 2



Let's determine the order beforehand!
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K= 1 || =2
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ARMv8 POP + Timestamps

K= 1 || =2
X« 1@3, X < 2@8,

—

[May propagate from Ieft]
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ARMv8 POP + Timestamps

'Cannot propagate from right!|
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Proof Structure

1. Introduce ARM+7

2. Prove equivalence between
ARM+7 and ARMv8 POP

3. Show “lagging” simulation from
Promise to ARM+7
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How to prove correctness of
compilation?

Standard technique:
Simulation

ise MM
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Compilation correctness for Prom

Simulation works for
operational semantics

How to simulate graphs?

Traverse in proper order!

ise MM
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Traverse of ARMvS8.3 execution

2= 5 || b=
ly] == 1; [x] = 1;

Rx1 R’-y 1 [ Covered ]

Yx A
o'(‘

Wyl wxl

| issued |
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Traverse of ARMV8 3 execution

a= [ || b= I
|

R'X]- @ Covered ]
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Wxl Issued ]
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Traverse of ARMvS8.3 execution

2= 5 || b=
ly] == 1; [x] = 1;

Rx1 R’-y 1 [ Covered ]

N

~

-
)

Wyl A‘/T)Z [ Issued ]
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Traverse of ARMvS8.3 execution

s = s || b= b
ly] == 1; [x] = 1;

Rx1 R’-y 1 [ Covered ]

m' ﬁ(ﬂ [ Issued ]
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Traverse of ARMvS8.3 execution

b = [y
[ =1

{ Rx1 R’-y]' | [ Covered ]

{Wy].]/[@ [ Issued ]
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Traverse of ARMvS8.3 execution

b = [y
[ =1

| Rx1 R’-y]' | [ Covered ]

m' \WX]. [ Issued ]
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Traversal formally

Cover step:

G (C.l) — (Cu{a},])

Issue step:

GF (C1) — (C1U{w})
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Traversal formally

Cover step:

G (C ) ;.(CU {a}, 1)

Mimics Promlse
requirements!

Issue step:

= (C, 1) —->”<C, U {w})

ise MM
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Proof Structure

1. Prove Promise simulates traversal

2. Show completeness of traversal
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Proof Structure

1. Prove Promise simulates traversal

2. Show completeness of traversal
VG. G € Consistent(ARMv8.3) =
Gt (0,0) —* (G.Events, G.Writes)

Prom

ise MM
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e MMs are important and complicated, but locks help
e Problems in existing MMs, but there are solutions

e Not all MMs might be explained by reorderings


http://podkopaev.net
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Takeaway

e MMs are important and complicated, but locks help
e Problems in existing MMs, but there are solutions

e Not all MMs might be explained by reorderings

http://podkopaev.net

Thank you!


http://podkopaev.net
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