Weak Memory

Anton Podkopaev
St. Petersburg University, JetBrains Research, Russia

13.12.2017

Agenda

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

« Memory models. What, why, and when to care

Agenda

« Memory models. What, why, and when to care

« CPU and PL MMs. Promise MM

Agenda

« Memory models. What, why, and when to care
« CPU and PL MMs. Promise MM

« Compilation correctness for Promise MM to
{x86, Power, ARM}

Agenda

« Memory models. What, why, and when to care
« CPU and PL MMs. Promise MM

« Compilation correctness for Promise MM to
{x86, Power, ARM}

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

o Memory models. What, why, and when to care
e CPU and PL MMs. Promise MM

« Compilation correctness for Promise MM to
{x86, Power, ARM}

Memory models. What, why, and when to care

Memory model (MM) is
concurrent system's
semantics

Memory models. What, why, and when to care

Sequential consistency
[Lamport, 1979]

Memory models. What, why, and when to care

Sequential consistency
[Lamport, 1979]

system's behaviors —
program interleavings

Memory models. What, why, and when to care

Execution in SC

Values Memory
a=1l:b=1 ||[«0;[y]«0

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

—_—

v =1
b = [x;

Values
a=1:b=_1

Memory
[x] < 1:[y] <O

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

Values
a=1:b=_1

Memory
[x] < 1;[y] « 1

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

Values
a=1:b=1

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

a = ly; b = [x;
—_— —_—
Values Memory

a=Lib=1 [yl

Memory models. What, why, and when to care

Execution in SC

a = [yf;

b = [x;

‘ Impossible to get a= b = O’

Values Memory
a=Lib=1 [yl

Memory models. What, why, and when to care

Is it the same in reality?

Memory models. What, why, and when to care

Is it the same in reality?
Let's check!

Memory models. What, why, and when to care

Execution in SC

K= 1 || mo=
2= || b= ¥

Possible to get a = b =0 on GCC+x86!

Values Memory
a=lib=1 ||[de el

Memory models. What, why, and when to CPU and PL MMs. Pr e MM Compilation correctness for Promise MM

I\/Iodern Compllers and CPUs
are Optimizing

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Modern Compilers and CPUs
are Optimizing

Features
e reorderings
e cache
buffers
read-after-write elimination

speculative execution

fake dependency elimination

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Modern Compilers and CPUs
are Optimizing

Features
e reorderings \
e cache

buffers

read-after-write elimination > Correct

speculative execution

fake dependency elimination

¢ ... /

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Modern Compilers and CPUs
are Optimizing

Features
e reorderings \

e cache
buffers

read-after-write elimination > Correct for one thread
speculative execution

fake dependency elimination
/
® L.

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatiol ectness for Promise MM

Modern Compilers and CPUs
are Optimizing

Features
reorderings \

cache
buffers

read-after-write elimination > Correct for one thread
speculative execution

fake dependency elimination
¢ ... /

L ead to strange concurrent behaviors

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatiol ectness for Promise MM

Modern Compilers and CPUs
are Optimizing

Features
reorderings \

cache
buffers

read-after-write elimination > Correct for one thread
speculative execution

fake dependency elimination
¢ ... /

Lead to weak concurrent behaviors

Memory models. What, why, and when to care

Non-SC behaviors are called weak

Memory models. What, why, and when to care

Non-SC behaviors are called weak

Weak MMs allow weak behaviors

Memory models. What, why, and when to care

Non-SC behaviors are called weak

Weak MMs allow weak behaviors

Real systems have weak MMs

Memory models. What, why, and when to care

Non-SC behaviors are called weak

Weak MMs allow weak behaviors

Real systems have weak MMs
(i.e., x86, Power, ARM, C++, Java)

Memory models. What, why, and when to care

Realistic weak MMs are
subtle
...and different to each other

Memory models. What, why, and when to care

But most have data race
freedom (DRF) results

Memory models. What, why, and when to care

But most have data race
freedom (DRF) results:

No data races = only SC
behaviors

Memory models. What, why, and when to care

When not to care about Weak MMs

Writing /verifing a program, which
. has immutable data only
. is single-threaded
. is properly locked multi-threaded

Memory models. What, why, and when to CPU and PL MMs. Promise MM Compilatio ectness for Promise MM

When to care about Weak MMs

Writing /verifing lock-free code
(i.e., locks themselves)

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

o Memory models. What, why, and when to care
« CPU and PL MMs. Promise MM

« Compilation correctness for Promise MM to
{x86, Power, ARM}

14

[Store Buffering in
x86-TSO
[Owens et al., 2009]]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correc

Load Buffering

E)
i
X
Z oy
i i
-

Final valuesa=1, b=1

tne:

ss for

Promise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness for

Load Buffering in ARMv8 POP

Memory
5 < 0;[y] < 0

Final values a= |, b=

P

omise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness fol

Load Buffering in ARMv8 POP

Memory
5 < 0;[y] < 0

Final values a= |, b=

r Pr

omise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness fol

Load Buffering in ARMv8 POP

b+ |y

Memory
5 < 0;[y] < 0

Final values a= |, b=

r Pr

omise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness fol

Load Buffering in ARMv8 POP

[x] « 1
b+ |y

[
Memory

[x] <~ 0;[y] <O

Final values a= |, b=

r Pr

omise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness for

Load Buffering in ARMv8 POP

[x] « 1
b+ |y

Independent#

[
Memory

[x] <~ 0;[y] <O

Final values a= |, b=

P

omise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness fol

Load Buffering in ARMv8 POP

b+ |y
[x] « 1

[
Memory

[x] <~ 0;[y] <O

Final values a= |, b=

r Pr

omise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness fol

Load Buffering in ARMv8 POP

b+ |y

Memory
b« 1y < 0

Final values a= |, b=

or Prom

ise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness fol

Load Buffering in ARMv8 POP

b+ |y

Memory
b« 1y < 0

Final values a= |, b=

r Pr

omise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness fol

Load Buffering in ARMv8 POP

b+ |y

Memory
e« 1

Final values a= |, b=

or Prom

ise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness for

Load Buffering in ARMv8 POP

Memory
e« 1

Final valuesa= ,b=1

P

omise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness fol

Load Buffering in ARMv8 POP

Memory
e« 1

Final valuesa= ,b=1

or Prom

ise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness fol

Load Buffering in ARMv8 POP

Memory
e« 1

Final valuesa=1, b=1

or Prom

ise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rrectness for Promise MM

ARM- Weak in ARMv8 POP

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio ectness for Promise MM

ARM-Weak in ARMv8 POP

Values
a=_1
b= _1 |
c— | Memory
5 < 0;[y] + 0

CPU an

d PL M

ARM-Weak in ARMv8 POP

b = [x;
v = b;

Memory
5 < 0;[y] + 0

CPU an

d PL M

ARM-Weak in ARMv8 POP

x|

a <+ [x

Values
a=1
b= 1
c=_1

.

[

Memory
5 < 0;[y] + 0

Memory models. W 1d when to care CPU and PL MMs. Promise MM Compilatior ess for Promisc V

ARM-Weak in ARMv8 POP

a = [x]; b := [x]; c = [y
[x] = 1; ly] == b; X = ¢
Values
a=_1
b— | a <+ [x] |
c— | Memory
[x] < 0;[y] «< 0O

Memory models. W 1d when to care CPU and PL MMs. Promise MM Compilatio ess for Promisc V

ARM-Weak in ARMv8 POP

a = b || b= i || e =
=Ll M=5b|l H:=c¢
W 1
Values
a=_1
b— | a <+ [x] |
c— | Memory
[x] < 0;[y] «< 0O

Memory models. W 1d when to care CPU and PL MMs. Promise MM Compilatio ess for Promisc V

ARM-Weak in ARMv8 POP

a = [x]; b := [x]; c = [y
[x] = 1; ly] == b; x| = ¢
Values
3= | [X] +—1
b— | a <+ [x] |
c— | Memory
[x] < 0;[y] «< 0O

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio ectness for Promise MV

ARM-Weak in ARMv8 POP

b [
Values
a=_1 X <1
b— | a < [¥ |
c— | Memory
< 0; [¢ 0

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio ectness for Promise MV

ARM-Weak in ARMv8 POP

Values b <+ [X
a=_1 x] <1
b— | a < [¥ |
c— | Memory
X 0;)] 0

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness for Promise MM

ARM-Weak in ARMv8 POP

Values b+ [X]
a=_1 x] <1
b— | a < [x |
c— | Memory
X 0;)] 0

1d when to car CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

a:=[x; || b X |l ¢ = s
=1 [l M:=b || K :=c¢

Values

3= | [X] +—1

b1 a <+ [x] |

c=1 X s 0[] ¢ 0

1d when to car CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

a =M || b= || e= I
[X] =1 [Y] = b [X] = G
y) 1
Values
a=_1 X <1
b1 a <+ [x] |
=+ L

1d when to car CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

a:=[x; || b X |l ¢ = s
x| = 1 v = b; X = ¢
Values M1
3= | [X] +—1
b1 a <+ [x] |
c=1 X e 0: [y 0

odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

[X]; b [X]; ¢ [y]’
g=1 || b=t | 6=
:/azluj_s ﬁj : 1)Independent
b1 a < [x |
o Memory

[x] < 0;[y] «< 0O

ectness for Promise

1d when to car CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

a:=[x; || b X |l ¢ = s
x| = 1 v = b; X = ¢
Values X 1
b1 a <+ [x] |
c=1 X e 0: [y 0

odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio

ARM\N&WlnARNNSPOP

M |l b= s || e = s
X =1 Y = b; X = ¢
Values [x] 1
a=1 V1
Independen
b=1 a*ﬁﬂ) P ‘t
c— | Memory

[x] < 0;[y] «< 0O

ectness for Promise

1d when to car CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

a:=[x; || b X |l ¢ = s
=1 [l M:=b || K :=c¢
Values X <1
3= | a<— [X]
b—1 V1 |
c— | Memory
[x] < 0;[y] «< 0O

odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

s || b= [|| €= s
[x] = 1; ly] == b; [x] = ¢
Values [x] 1
a=1 a < [
b=1 |
c— | Memory

[x] < 0;[y] « 1

ectness for Promise

odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

M; | b= I || €= bk
M =L [M:=25 | H:=c¢
¢y
Values [x] 1
a=1 a+ [X
b=1 |
c— | Memory

[x] < 0;[y] « 1

ectness for Promise

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

a = [x; b = [x; c = [y
M =L [M:=25 | H:=c¢
Values [x] 1
a= 1 a+ [X
b=1 |
c=1 Memory

[x] < 0;[y] « 1

ectness for Promise

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

a = [x; b = [x; c = [y
=1 [l W=25b | K :=c¢
X 1
Values [x] 1
a=1 a < [
b=1 |
c=1 Memory

[x] < 0;[y] « 1

ectness for Promise

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio

ARM-Weak in ARMv8 POP

a = [x; b = [x; c = [y
=L [M:=25b | H=c¢
Values [x] 1
a= 1 a+ [X
b=1 |
c=1 Memory

[x] < L;[y] « 1

ectness for Promise

ARM-Weak in ARMv8 POP

Values [x] 1

a=1

b=1 |

c=1 Memory
e [« 1

ry models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio ectness for Promise MM

CPU and PL MMs. Promise MM

CPU MM should:

CPU and PL MMs. Promise MM

CPU MM should:
1. describe real CPUs

CPU and PL MMs. Promise MM

CPU MM should:
1. describe real CPUs

2. save room for future optimizations

CPU and PL MMs. Promise MM

CPU MM should:
1. describe real CPUs

2. save room for future optimizations

3. provide reasonable guarantees for PLs

CPU and PL MMs. Promise MM

MM for PL?

MM for PL?
Has to satisfy 3 requirements

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

1. Efficient Compilation

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

1. Efficient Compilation

Mem

ory models. What

why, and when to care CPU and PL MMs. Promise MM Compilation correc

1. Efficient Compilation

Source (SC MM)

tness

for

Promise MM

Memo

ry models. What

why, and when to care CPU and PL MMs. Promise MM Compilation correctness

1. Efficient Compilation

Source (SC MM)

Target (x86 MM)

for

Promise MM

1. Efficient Compilation

Source (SC MM)

Target (x86 MM) mfence; mfence;

emory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

1. Efficient Compilation

Source (SC MM)

Target (x86 MM) mfence; mfence;

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

2. Compiler Optimizations

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

2. Compiler Optimizations

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatiol rectness for Promise MM

2. Compiler Optlmlzatlons

Original

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

2. Compiler Optimizations

Original

Optimized

emory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

2. Compiler Optimizations

Original

Optimized

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

3. No Out-Of-Thin-Air

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

3. No Out-Of-Thin-Air

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

3. No Out- Of—Thln Air

C/C++11 MM allows a= b =42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs

SC MM, [Lamport, 1979]
Java MM, [Manson et al., 2005]
C/C++11 MM, [Batty et al., 2011]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs

EC
SC MM, [Lamport, 1979] X
Java MM, [Manson et al., 2005] v
C/C++11 MM, [Batty et al., 2011] v

Requirements:
e allow Efficient Compilation (x86, Power, ARM)
e validate Compiler Optimizations (merging, rearranging, etc)
e no Out-Of-Thin-Air

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs

EC | CO
SC MM, [Lamport, 1979] X X
Java MM, [Manson et al., 2005] X
C/C++11 MM, [Batty et al., 2011] o v

Requirements:
e allow Efficient Compilation (x86, Power, ARM)
e validate Compiler Optimizations (merging, rearranging, etc)
e no Out-Of-Thin-Air

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs

EC | CO | No OOTA

SC MM, [Lamport, 1979] X | X v
Java MM, [Manson et al., 2005] X v
C/C++11 MM, [Batty et al., 2011] oV X

Requirements:
e allow Efficient Compilation (x86, Power, ARM)
e validate Compiler Optimizations (merging, rearranging, etc)
e no Out-Of-Thin-Air

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs

EC | CO | No OOTA

SC MM, [Lamport, 1979] X | X v
Java MM, [Manson et al., 2005] X v
C/C++11 MM, [Batty et al., 2011] ol

Requirements:
e allow Efficient Compilation (x86, Power, ARM)
e validate Compiler Optimizations (merging, rearranging, etc)
e no Out-Of-Thin-Air

C/C++11 MM has OOTA

C/C++11 MM has OOTA.
Why?

C/C++11 MM is
axiomatic MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rrectness for Promise MM

Load Bufferlng in C/C—l——l—ll

Rx0 Ry0 Rx0 Ryl Rx1 Ry0 Rxl Ryl

YD T

Wyl wxl Wyl " wxl Wyl " wxl ! Wyl wxl

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rrectness for Promise MM

Load BufFermg in C/C—l——l—ll

Rx0 Ry0 Rx0 Ryl Rx1 Ry0 Rxl Ryl

DY) T I Wy

Wyl wxl Wyl " wxl Wyl " wxl ! Wylr Wxl

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rrectness

Load BufFermg in C/C—l——l—ll

for

Prom

ise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rrectn

Load Buffering in C/C—l——l—ll

Axioms: Rxl Ryl
po] 7 |
Wyl wWxl

1. hb is acyclic

ness for

Pron

1ise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness

Load Buffering in C/C—l——l—ll

a = [x;

] ;
Y = a || = b

Axioms: Rxl Ryl
po] 7 |
Wyl wWxl

1. hb is acyclic

for

Prom

ise MM

Memo odels. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rectness

Load Buffering in C/C—l——l—ll

a = [x;

] ;
Y = a || = b

Axioms: Rx8 Ry8
1. hb is acyclic

for

Prom

ise MM

[OOTA-if example]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Solutions

[7]
[?]
[7]
[Jeffrey and Riely, 2016]
[Kang et al., 2017]
[Pichon-Pharabod and Sewell, 2016]

[Podkopaev et al., 2016]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Solutions

7]
[?]
[7]

[Jeffrey and Riely, 2016]

Promise MM, [Kang et al., 2017]

[Pichon-Pharabod and Sewell, 2016]

[Podkopaev et al., 2016]

CPU and PL MMs. Promise MM

Memory Models for PLs

EC | CO | No OOTA

SC MM, [Lamport, 1979] X | X v
Java MM, [Manson et al., 2005] X v
C/C++11 MM, [Batty et al., 2011] oV X
Proposed solution [Kang et al., 2017] v ‘ v ‘ v

Promise MM, for C/C++ and Java
Requirements:
e allow Efficient Compilation (x86, Power, ARM)

e validate Compiler Optimizations (merging, rearranging, etc)
e no Out-Of-Thin-Air

CPU and PL MMs. Promise MM

[Store Buffering in Promise]

Memory models. What, why, and when to care

Load Buffering in Promise

Memory: [(x:0@0.), (y: 0Q0,)]

Final values a= |, b=

CPU and PL MMs. Promise MM Compilation correc

tne:

ss for

Pron

rise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness

Load Buffering in Promise

Memory: [(x:0@0.), (y: 0Q0,)]

Final values a= |, b=

for

Promise MM

Memory models. What, why, and when to care

Load Buffering in Promise

Promised |[[¥] == 1; X = 1;

Memory: [(x:0Q0,), (y: 0Q0,),
(y:1@l;)]

Final values a= |, b=

CPU and PL MMs. Promise MM Compilation correc

tne:

ss for

Pron

rise MM

Memory models. What, why, and when to care

Load Buffering in Promise

Promised [[y] = 1; X -

Memory: [(x:0Q0,), (y: 0Q0,),
(y:1@l;)]

Final valuesa= ,b=1

CPU and PL MMs. Promise MM Compilation correc

tne:

ss for

Pron

rise MM

Memory models. What, why, and when to care

Load Buffering in Promise

Promised [[y] = 1; X -

Memory: [(x:0Q0,), (y: 0Q0,),
(y:1Q1,), (x:1Q1,)]

Final valuesa= ,b=1

CPU and PL MMs. Promise MM Compilation correc

tne:

ss for

Pron

rise MM

Memory models. What, why, and when to care

Load Buffering in Promise

Promised |[y] = 1; x| -

Memory: [(x:0Q0,), (y: 0Q0,),
(y:1Q1,), (x:1Q1,)]

Final values a=1, b=1

CPU and PL MMs. Promise MM Compilation correc

tne:

ss for

Pron

rise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness

Load Buffering in Promise

Memory: [(x:0Q0,), (y: 0Q0,),
(y:1Q1,), (x:1Q1,)]

Final values a=1, b=1

for

Promise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio rrectness for

ARM-Weak in Promise

Pron

rise MM

ry models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio ectness for Promise MMV

ARM-Weak in Promise

V1: [xQ0,,y@0,] V2: [x@0,,yQ0,] V3: [x@0,,y@0,]
Memory: [(x:0@0,), (y: 0Q0,)]

Men

ory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

B b || B e || e
[x] == 1;
Promised

<
I
&
=3
I
0

V1: [x@0,,y@0,] V2: [x@0,,y@0,] V3: [x@0,,y@0,]

Memory: [(x:0@0,), (y: 0@0,),
(x:1Q@2,)]

Values: a=_1 b= 1 c= 1

ory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctnes

ARM-Weak in Promise

Men

2= b || b= || ek
=1 || T =& || K=«
Promised

V3: [x@0,, yQ0,]

V1 [xQ0,,yQ0,] V2: [x@2,,y@0,]
Memory: [(x:0@0,), (y: 0@0,),
(x:1Q@2,)]

Values: a= 1

Men

ory models. What, why, and when to care

CPU and PL MMs. Promise MM

Compilation correctnes

ARM-Weak in Promise
a = [x; b = [x]; ;
K =L M-

’

Promised "

V1: [x@0,,y@0,] V2: [x@2,,y@l,] V3: [xQ0,,y@0,]

Memory: [(x:0@0,), (y: 0@0,),
(x:1Q@2,), (y:1Q1,)]

Values: a=_1 b=1

Men

ory models. What, why, and when to care

CPU and PL MMs. Promise MM

Compilation correctnes

ARM-Weak in Promise

—_—

a = [x;

) b = [x];
X = L[] M

’

Promised "

V1: [x@0,,y@0,] V2: [x@2,,y@l,] V3: [x@0,,yal,]

Memory: [(x:0@0,), (y: 0@0,),
(x:1Q@2,), (y:1Q1,)]

Values: a=_1 b=1

Men

ory models. What, why, and when to care

CPU and PL MMs. Promise MM

Compilation correctnes

ARM-Weak in Promise

—_—

a = [x; b = [x]; ;
M = L W= b || X =

Promised "

V1: [x@0,,y@0,] V2: [x@2,,y@l,] V3: [x@l,,yal,]

Memory: [(x:0@0,), (y: 0@0,),

(x:1@2,), (y:1Q1,),
(x:1Q@1,)]

Values: a=_1 b=1

models. What, why, and when to care CPU and PL MMs. Promise MM Compilatio

ARM-Weak in Promise

a = [x;

Dl b=] c= D
X = L[| M = b X

Promised "

V1: [x@1,,y@0,] V2: [x@2,,y@l,] V3: [x@l,,yal,]

Memory: [(x:0@0,), (y: 0Q0,)

(x:1@2,), (y: 1@1:>’7
(x:1Q1,)]

Values: a=1 b=1

mory models. What and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

a:=[X; || b= || c = v
X =1 || WM = b X = ¢

—_ s — || —

V1 [x@2,,yQ0,] V2: [x@2,,yal.] V3: [x@l,,y@l]
Memory: [(x:0@0,), (y: 0@0,),

(x:1Q@Q2.), (y: 1Q1,),
(x:1Q@1,)]

Values: a=1 b=1 c=1

Compilation correctness for Promise MM

Agenda

« Compilation correctness for Promise MM to
{x86, Power, ARM}

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness

S

)

‘ Source language ’

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness

S T

)

‘ Target language ’

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness

compile : S — T

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness
compile : S — T

[A]]s-

[Source MM}

Memory models. What, why, and when to care

Compilation Correctness

compile : S — T

Ir 1 s
|

[Target MM}

[

CPU and PL MMs. Promise MM Compilation correctness

for

Prom

ise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness

compile : S — T
VProg € S.
[compile(Prog)|+ C [Prog]s.

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Targets

x86-TSO, [Owens et al., 2009]
Power, [Alglave et al., 2014]
ARMv8 POP, [Flur et al., 2016]
ARMV8.3, [Pulte et al., 2018]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to x86-TSO

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to x86-TSO

» x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to x86-TSO

» x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]

 Reordering of independent write-read
o Read-after-write elimination

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to x86-TSO

» x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]

 Reordering of independent write-read
o Read-after-write elimination

« Transformations are sound in Promise
[Kang et al., 2017]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to x86-TSO

» x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]

 Reordering of independent write-read
o Read-after-write elimination

« Transformations are sound in Promise
[Kang et al., 2017]

o SC C Promise

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to Power

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to Power

« Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to Power

« Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]

o Reordering of independent instructions

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to Power

« Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]

o Reordering of independent instructions

o Transformation is sound in Promise
[Kang et al., 2017]

Compilation correctness for Promise MM

Compilation to Power

« Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]

o Reordering of independent instructions

o Transformation is sound in Promise
[Kang et al., 2017]

« StrongPower C promise-free version of Promise

Compilation correctness for Prom

Scheme isn't applicable to
ARM POP

ise MM

Mem nodels. What, why, and w o care CPU and PL MMs. Pr > MM Compilatiol ectness for Promise MM

Cou nterexample ARI\/I Weak

a=I[x; /1||b:=
4 =

K =c

Mer odels. What, why, and whe care CPU and PL MMs. Pro M Compilation ectness for Promise MM

Cou nterexample ARI\/I Weak

a=\x; /1| b:=
4 =

K =c

Allowed in ARM POP

Compilation correctness for Promise MM

Counterexample. ARM-Weak

c:= [y:
K =c

a=d /1]|b= [
=1 ||b:=b

Allowed in ARM POP;
Cannot be explained by transformations
over a stronger model

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Main Differences between
Promise and ARMv8 POP

1. Promise can execute only writes
out-of-order

2. ARMv8 POP doesn't totally order
writes to a specific location

Compilation ectness for Promise MM

Main Proof Ingredients

1. “Lagging’ simulation

2. ARMv8 POP +
timestamps

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Main Proof Ingredients

1. “Lagging”’ simulation

2. ARMv8 POP +
timestamps

41

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

X <X

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

O O L
X <X

=
I
\.I—‘

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

0o T L

Memo

ry models. What

why, ar

—

=,

0o T L

nd when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

= [x]; «— Fully executed by ARM
= [y};

= [x;
= 1;

X, <

vhy, and when to care CPU and PL MMs. Px

omise MM Compilation correctness for Promise MM

“Lagging’ Simulation

<

0o T L

= [x]; «— Fully

= [y;

=<

)

—_

executed by ARM

= [x]; «— Partially executed by ARM

—

1en to care

CPU and PL MMs. Pron

1ise M

M Compilation correctness for Promn

“Lagging’ Simulation

y]

= |

a
b =
c

Ly
[x]; «— Partially executed by ARM

X

]
]

«— Fully

Y
I
Y

1; «<— Not

executed by ARM

executed by ARM

nise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

Promise
—_—

a
b =
c

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

Promise
—_—

a
b =
c

7 — simulation relation

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

Promise cl = [X];
b := [y}
c = [X;

1= IPromise Is waiting U IPromise Is executing

Compilation correctness for Promise MM

“Lagging’ Simulation

Promise,_ @ = [X];
b=y}
c = [x;
M =1

1= IPromise Is waiting U IPromise Is executing

Compilation correctness for Promise MM

“Lagging’ Simulation

Promise
—_—

a
b =
C

X <X

—_

Y =

1= IPromise Is waiting U IPromise Is executing

Compilation correctness for Promise MM

“Lagging’ Simulation

Promise
_—

a
b =
c

X <X,

—_

Y =

7 = IPromise Is waiting U

IPromise Is executing

Compilation correctness for Promise MM

“Lagging’ Simulation

a
Promise
C

X <X,

—_

Y =

7 = IPromise Is waiting

U IPromise Is executing

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

a = [x;
Promise b = M’
c = [x];

—

v =1,

1= IPromise is waiting U IPromise Is executing

Memory models. What, why, and when to care

CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

a = [x;
Promise b = M’
c = [x];

—_

] =

Promised

1= IPromise is waiting U IPromise Is executing

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

a = [x;
Promise b = M’
c = [x];

—_

y] = Promised

1= IPromise Is waiting U IPromise Is executing

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging’ Simulation

a = [x;
b = [y;
Promise> C [X];

=
I
\.I—\

Promised

1= IPromise Is waiting U IPromise Is executing

Compilation correctness for Promise MM

“Lagging’ Simulation

a = [x;
b = [y;
c = [X;
Promise. Y = L

7 = IPromise Is waiting

U IPromise Is executing

Compilation correctness for Prom

2. ARMv8 POP +
timestamps

ise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x] == 1; || [x] = 2;

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

K= 1 || =2

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

K= 1 || =2

1

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

K= 1 || =2

N 1 X 2

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

K= 1 || =2

[x] <1 [x] <2

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

K= 1 || =2

1

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

K= 1 || =2

N 1 X 2

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

K= 1 || =2

1 2

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

K= 1 || =2

1

[x] < 2

Let's determine the order beforehand!

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP + Timestamps

K= 1 || =2

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP + Timestamps

nodels. What, why, and when to care CPU and PL MMs. Px e MM Compilatiof

ARMv8 POP + Tlmestamps

ss for Promise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP + Timestamps

K= 1 || =2
X« 1@3, X < 2@8,

—

[May propagate from Ieft]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP + Timestamps

'Cannot propagate from right!|

Compilation correctness for Promise MM

Proof Structure

1. Introduce ARM+7

2. Prove equivalence between
ARM+7 and ARMv8 POP

3. Show “lagging” simulation from
Promise to ARM+7

Compilation correctness for Prom

How to prove correctness of
compilation?

ise MM

Compilation correctness for Prom

How to prove correctness of
compilation?

Standard technique:
Simulation

ise MM

Compilation correctness for Prom

Simulation works for
operational semantics

ise MM

Compilation correctness for Prom

Simulation works for
operational semantics

How to simulate graphs?

ise MM

Compilation correctness for Prom

Simulation works for
operational semantics

How to simulate graphs?

Traverse in proper order!

ise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMvS8.3 execution

Rxl Ryl
| %]

Wyl wxl

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMvS8.3 execution

2= 5 || b=
ly] == 1; [x] = 1;

Rx1 R’-y 1 [Covered]
| 5|

Wyl wxl

| issued |

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMvS8.3 execution

2= 5 || b=
ly] == 1; [x] = 1;

Rx1 R’-y 1 [Covered]

Yx A
o'(‘

Wyl wxl

| issued |

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilatiol s for Promise MM

Traverse of ARMV8 3 execution

a= [|| b= I
|

R'X]- @ Covered]

=,

Wxl Issued]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for

Traverse of ARMvS8.3 execution

2= 5 || b=
ly] == 1; [x] = 1;

Rx1 R’-y 1 [Covered]

N

~

-
)

Wyl A‘/T)Z [Issued]

L4

Prom

ise MM

Compilation correctness for Promise MM

Traverse of ARMvS8.3 execution

s = s || b= b
ly] == 1; [x] = 1;

Rx1 R’-y 1 [Covered]

m' ﬁ(ﬂ [Issued]

Compilation correctness for Promise MM

Traverse of ARMvS8.3 execution

b = [y
[=1

{ Rx1 R’-y]' | [Covered]

{Wy].]/[@ [Issued]

Compilation correctness for Promise MM

Traverse of ARMvS8.3 execution

b = [y
[=1

| Rx1 R’-y]' | [Covered]

m' \WX]. [Issued]

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traversal formally

Cover step:

G (C.l) — (Cu{a},])

Issue step:

GF (C1) — (C1U{w})

Compilation correctness for Prom

Traversal formally

Cover step:

G (C) ;.(CU {a}, 1)

Mimics Promlse
requirements!

Issue step:

= (C, 1) —->”<C, U {w})

ise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Proof Structure

1. Prove Promise simulates traversal

Compilation correctness for Promise MM

Proof Structure

1. Prove Promise simulates traversal

2. Show completeness of traversal

Compilation correctness for

Proof Structure

1. Prove Promise simulates traversal

2. Show completeness of traversal
VG. G € Consistent(ARMv8.3) =
Gt (0,0) —* (G.Events, G.Writes)

Prom

ise MM

Memory models. What, why, and when to care CPU and PL MMs. Promise MM

Takeaway

Compilation correctness for Promise MM

e MMs are important and complicated, but locks help
e Problems in existing MMs, but there are solutions

e Not all MMs might be explained by reorderings

http://podkopaev.net

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Takeaway

e MMs are important and complicated, but locks help
e Problems in existing MMs, but there are solutions

e Not all MMs might be explained by reorderings

http://podkopaev.net

Thank you!

http://podkopaev.net

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Links |

@ Alglave, J., Maranget, L., and Tautschnig, M. (2014).
Herding cats: Modelling, simulation, testing, and data mining for weak memory.
ACM Trans. Program. Lang. Syst., 36(2):7:1-7:74.

ﬁ Batty, M., Owens, S., Sarkar, S., Sewell, P., and Weber, T. (2011).
Mathematizing C++ concurrency.
In POPL 2011, pages 55-66. ACM.

@ Flur, S., Gray, K. E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W., and
Sewell, P. (2016).
Modelling the ARMv8 architecture, operationally: Concurrency and ISA.
In POPL 2016, pages 608-621. ACM.

ﬁ Jeffrey, A. and Riely, J. (2016).
On thin air reads: Towards an event structures model of relaxed memory.
In LICS 2016. IEEE.

ﬁ Kang, J., Hur, C.-K., Lahav, O., Vafeiadis, V., and Dreyer, D. (2017).
A promising semantics for relaxed-memory concurrency.
In POPL 2017. ACM.

a Lahav, O. and Vafeiadis, V. (2016).

Explaining relaxed memory models with program transformations.
In FM 2016. Springer.

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Links Il

@ Lamport, L. (1979).
How to make a multiprocessor computer that correctly executes multiprocess
programs.
IEEE Trans. Computers, 28(9):690-691.

[d Manson, J., Pugh, W., and Adve, S. V. (2005).
The Java memory model.
In POPL 2005, pages 378-391. ACM.

@ Owens, S., Sarkar, S., and Sewell, P. (2009).
A better x86 memory model: x86-TSO.
In TPHOL 2009, pages 391-407.

ﬁ Pichon-Pharabod, J. and Sewell, P. (2016).
A concurrency semantics for relaxed atomics that permits optimisation and avoids
thin-air executions.
In POPL 2016, pages 622-633. ACM.

ﬁ Podkopaev, A., Sergey, I., and Nanevski, A. (2016).
Operational aspects of C/C++ concurrency.
CoRR, abs/1606.01400.

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Links 11

@ Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., and Sewell, P. (2018).
Simplifying ARM concurrency: Multicopy-atomic axiomatic and operational models
for ARMVvS.

	Memory models. What, why, and when to care
	CPU and PL MMs. Promise MM
	Compilation correctness for Promise MM

