
Weak Memory

Anton Podkopaev

St. Petersburg University, JetBrains Research, Russia

13.12.2017

0



1

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

• Memory models. What, why, and when to care

• CPU and PL MMs. Promise MM

• Compilation correctness for Promise MM to
{x86, Power, ARM}



1

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

• Memory models. What, why, and when to care

• CPU and PL MMs. Promise MM

• Compilation correctness for Promise MM to
{x86, Power, ARM}



1

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

• Memory models. What, why, and when to care

• CPU and PL MMs. Promise MM

• Compilation correctness for Promise MM to
{x86, Power, ARM}



1

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

• Memory models. What, why, and when to care

• CPU and PL MMs. Promise MM

• Compilation correctness for Promise MM to
{x86, Power, ARM}



1

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

• Memory models. What, why, and when to care

• CPU and PL MMs. Promise MM

• Compilation correctness for Promise MM to
{x86, Power, ARM}



2

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

• Memory models. What, why, and when to care

• CPU and PL MMs. Promise MM

• Compilation correctness for Promise MM to
{x86, Power, ARM}



3

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory model (MM) is
concurrent system’s

semantics



4

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Sequential consistency
[Lamport, 1979]

system’s behaviors —
program interleavings



4

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Sequential consistency
[Lamport, 1979]

system’s behaviors —
program interleavings



5

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

Memory
;[x]← 0 [y]← 0

Values
;a = ⊥ b = ⊥

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Impossible to get a = b = 0Possible to get a = b = 0 on GCC+x86!



5

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

Memory
;[x]← 1 [y]← 0

Values
;a = ⊥ b = ⊥

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Impossible to get a = b = 0Possible to get a = b = 0 on GCC+x86!



5

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

Memory
;[x]← 1 [y]← 1

Values
;a = ⊥ b = ⊥

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Impossible to get a = b = 0Possible to get a = b = 0 on GCC+x86!



5

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

Memory
;[x]← 1 [y]← 1

Values
;a = ⊥ b = 1

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Impossible to get a = b = 0Possible to get a = b = 0 on GCC+x86!



5

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

Memory
;[x]← 1 [y]← 1

Values
;a = 1 b = 1

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Impossible to get a = b = 0Possible to get a = b = 0 on GCC+x86!



5

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

Memory
;[x]← 1 [y]← 1

Values
;a = 1 b = 1

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Impossible to get a = b = 0

Possible to get a = b = 0 on GCC+x86!



6

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Is it the same in reality?

Let’s check!



6

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Is it the same in reality?
Let’s check!



7

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Execution in SC

Memory
;[x]← 1 [y]← 1

Values
;a = 1 b = 1

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Impossible to get a = b = 0

Possible to get a = b = 0 on GCC+x86!



8

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Modern Compilers and СPUs
are Optimizing

Features
• reorderings
• cache
• buffers
• read-after-write elimination
• speculative execution
• fake dependency elimination
•…
Lead to concurrent behaviors

CorrectCorrect for one thread



8

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Modern Compilers and СPUs
are Optimizing

Features
• reorderings
• cache
• buffers
• read-after-write elimination
• speculative execution
• fake dependency elimination
•…

Lead to concurrent behaviors

CorrectCorrect for one thread



8

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Modern Compilers and СPUs
are Optimizing

Features
• reorderings
• cache
• buffers
• read-after-write elimination
• speculative execution
• fake dependency elimination
•…

Lead to concurrent behaviors

Correct

Correct for one thread



8

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Modern Compilers and СPUs
are Optimizing

Features
• reorderings
• cache
• buffers
• read-after-write elimination
• speculative execution
• fake dependency elimination
•…

Lead to concurrent behaviors

Correct

Correct for one thread



8

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Modern Compilers and СPUs
are Optimizing

Features
• reorderings
• cache
• buffers
• read-after-write elimination
• speculative execution
• fake dependency elimination
•…
Lead to strange concurrent behaviors

Correct

Correct for one thread



8

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Modern Compilers and СPUs
are Optimizing

Features
• reorderings
• cache
• buffers
• read-after-write elimination
• speculative execution
• fake dependency elimination
•…
Lead to weak concurrent behaviors

Correct

Correct for one thread



9

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Non-SC behaviors are called weak

Weak MMs allow weak behaviors

Real systems have weak MMs
(i.e., x86, Power, ARM, C++, Java)



9

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Non-SC behaviors are called weak

Weak MMs allow weak behaviors

Real systems have weak MMs
(i.e., x86, Power, ARM, C++, Java)



9

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Non-SC behaviors are called weak

Weak MMs allow weak behaviors

Real systems have weak MMs

(i.e., x86, Power, ARM, C++, Java)



9

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Non-SC behaviors are called weak

Weak MMs allow weak behaviors

Real systems have weak MMs
(i.e., x86, Power, ARM, C++, Java)



10

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Realistic weak MMs are
subtle

…and different to each other



11

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

But most have data race
freedom (DRF) results

:

No data races ⇒ only SC
behaviors



11

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

But most have data race
freedom (DRF) results:

No data races ⇒ only SC
behaviors



12

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

When not to care about Weak MMs

Writing/verifing a program, which
• has immutable data only
• is single-threaded
• is properly locked multi-threaded



13

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

When to care about Weak MMs

Writing/verifing lock-free code
(i.e., locks themselves)



14

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

• Memory models. What, why, and when to care

• CPU and PL MMs. Promise MM

• Compilation correctness for Promise MM to
{x86, Power, ARM}



15

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

[Store Buffering in
x86-TSO

[Owens et al., 2009]]



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering

Memory
[x]← 0; [y]← 0[x]← 1; [y]← 0[x]← 1; [y]← 1

[y]← 1a← [x] [x]← 1
b← [y][x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _Final values a = _, b = 1

Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory
[x]← 0; [y]← 0

[x]← 1; [y]← 0[x]← 1; [y]← 1

[y]← 1a← [x] [x]← 1
b← [y][x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory
[x]← 0; [y]← 0

[x]← 1; [y]← 0[x]← 1; [y]← 1

[y]← 1a← [x] [x]← 1
b← [y][x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory
[x]← 0; [y]← 0

[x]← 1; [y]← 0[x]← 1; [y]← 1

[y]← 1a← [x] [x]← 1

b← [y]

[x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory
[x]← 0; [y]← 0

[x]← 1; [y]← 0[x]← 1; [y]← 1

[y]← 1a← [x]

[x]← 1
b← [y]

[x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory
[x]← 0; [y]← 0

[x]← 1; [y]← 0[x]← 1; [y]← 1

[y]← 1a← [x]

[x]← 1
b← [y]

[x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory
[x]← 0; [y]← 0

[x]← 1; [y]← 0[x]← 1; [y]← 1

[y]← 1a← [x] [x]← 1
b← [y]

[x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory

[x]← 0; [y]← 0

[x]← 1; [y]← 0

[x]← 1; [y]← 1

[y]← 1a← [x] [x]← 1
b← [y][x]← 1

b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory

[x]← 0; [y]← 0

[x]← 1; [y]← 0

[x]← 1; [y]← 1

[y]← 1

a← [x] [x]← 1
b← [y][x]← 1

b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory

[x]← 0; [y]← 0[x]← 1; [y]← 0

[x]← 1; [y]← 1

[y]← 1a← [x] [x]← 1
b← [y][x]← 1

b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory

[x]← 0; [y]← 0[x]← 1; [y]← 0

[x]← 1; [y]← 1

[y]← 1a← [x] [x]← 1
b← [y][x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1

Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory

[x]← 0; [y]← 0[x]← 1; [y]← 0

[x]← 1; [y]← 1

[y]← 1

a← [x]

[x]← 1
b← [y][x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1

Final values a = 1, b = 1



16

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in ARMv8 POP

Memory

[x]← 0; [y]← 0[x]← 1; [y]← 0

[x]← 1; [y]← 1

[y]← 1a← [x] [x]← 1
b← [y][x]← 1
b← [y]

Independent

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _Final values a = _, b = 1

Final values a = 1, b = 1



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values

Memory
[x]← 0; [y]← 0[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]
a← [x]

[x]← 1

[x]← 1
[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = ⊥
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]
a← [x]

[x]← 1

[x]← 1
[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = ⊥
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]
a← [x]

[x]← 1

[x]← 1
[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = ⊥
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]
a← [x]

[x]← 1

[x]← 1
[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = ⊥
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1
[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = ⊥
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1
[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = ⊥
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = ⊥
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = ⊥
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = ⊥
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1

[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1

[y]← 1
[y]← 1

c← [y][x]← 1

Independent

Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1

[y]← 1

[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1

[y]← 1

[y]← 1

c← [y][x]← 1

Independent

Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1

[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1

[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = ⊥ Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1

[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y]

[x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = 1 Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1

[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = 1 Memory

[x]← 0; [y]← 0

[x]← 0; [y]← 1

[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y]

[x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = ⊥
b = 1
c = 1 Memory

[x]← 0; [y]← 0[x]← 0; [y]← 1

[x]← 1; [y]← 1

a← [x]

a← [x]

a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



17

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in ARMv8 POP

a = 1?

Values
a = 1
b = 1
c = 1 Memory

[x]← 0; [y]← 0[x]← 0; [y]← 1

[x]← 1; [y]← 1

a← [x]

a← [x]
a← [x]

[x]← 1

[x]← 1

[x]← 1

b← [x]

b← [x]

[y]← 1

[y]← 1
[y]← 1
[y]← 1

c← [y][x]← 1

Independent
Independent

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



18

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

CPU MM should:

1. describe real CPUs
2. save room for future optimizations
3. provide reasonable guarantees for PLs



18

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

CPU MM should:
1. describe real CPUs

2. save room for future optimizations
3. provide reasonable guarantees for PLs



18

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

CPU MM should:
1. describe real CPUs
2. save room for future optimizations

3. provide reasonable guarantees for PLs



18

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

CPU MM should:
1. describe real CPUs
2. save room for future optimizations
3. provide reasonable guarantees for PLs



19

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

MM for PL?

Has to satisfy 3 requirements



19

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

MM for PL?
Has to satisfy 3 requirements



20

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

1. Efficient Compilation

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Source (SC MM)

[x] := 1;
mfence;
a := [y];

[y] := 1;
mfence;
b := [x];



20

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

1. Efficient Compilation

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Source (SC MM)

[x] := 1;
mfence;
a := [y];

[y] := 1;
mfence;
b := [x];



20

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

1. Efficient Compilation

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Source (SC MM)

[x] := 1;
mfence;
a := [y];

[y] := 1;
mfence;
b := [x];



20

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

1. Efficient Compilation

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Source (SC MM)

[x] := 1;
mfence;
a := [y];

[y] := 1;
mfence;
b := [x];

Target (x86 MM)



20

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

1. Efficient Compilation

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Source (SC MM)

[x] := 1;
mfence;
a := [y];

[y] := 1;
mfence;
b := [x];

Target (x86 MM)



20

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

1. Efficient Compilation

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Source (SC MM)

[x] := 1;
mfence;
a := [y];

[y] := 1;
mfence;
b := [x];

Target (x86 MM)

Not efficient



21

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

2. Compiler Optimizations

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Original

a := [y];
[x] := 1;

[y] := 1;
b := [x];

Optimized



21

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

2. Compiler Optimizations

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Original

a := [y];
[x] := 1;

[y] := 1;
b := [x];

Optimized



21

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

2. Compiler Optimizations

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Original

a := [y];
[x] := 1;

[y] := 1;
b := [x];

Optimized



21

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

2. Compiler Optimizations

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Original

a := [y];
[x] := 1;

[y] := 1;
b := [x];

Optimized



21

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

2. Compiler Optimizations

[x] := 1;
a := [y];

[y] := 1;
b := [x];

Original

a := [y];
[x] := 1;

[y] := 1;
b := [x];

Optimized

⊆



22

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

3. No Out-Of-Thin-Air

a := [x];
[y] := a;

b := [y];
[x] := b;

C/C++11 MM allows a = b = 42



22

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

3. No Out-Of-Thin-Air

a := [x];
[y] := a;

b := [y];
[x] := b;

C/C++11 MM allows a = b = 42



22

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

3. No Out-Of-Thin-Air

a := [x];
[y] := a;

b := [y];
[x] := b;

C/C++11 MM allows a = b = 42



23

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs

EC CO No OOTA No UB

SC MM, [Lamport, 1979]

7 7 3 3

Java MM, [Manson et al., 2005]

3 7 3 3

C/C++11 MM, [Batty et al., 2011]

3 3∗ 7 7

Proposed solution [Kang et al., 2017]

3 3 3 3

Promise MM, for C/C++ and Java

Requirements:
• allow Efficient Compilation (x86, Power, ARM)
• validate Compiler Optimizations (merging, rearranging, etc)
• no Out-Of-Thin-Air



23

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs

EC CO No OOTA No UB

SC MM, [Lamport, 1979]

7 7 3 3

Java MM, [Manson et al., 2005]

3 7 3 3

C/C++11 MM, [Batty et al., 2011]

3 3∗ 7 7

Proposed solution [Kang et al., 2017]

3 3 3 3

Promise MM, for C/C++ and Java
Requirements:
• allow Efficient Compilation (x86, Power, ARM)
• validate Compiler Optimizations (merging, rearranging, etc)
• no Out-Of-Thin-Air



23

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs
EC

CO No OOTA No UB

SC MM, [Lamport, 1979] 7

7 3 3

Java MM, [Manson et al., 2005] 3

7 3 3

C/C++11 MM, [Batty et al., 2011] 3

3∗ 7 7

Proposed solution [Kang et al., 2017] 3

3 3 3

Promise MM, for C/C++ and Java

Requirements:
• allow Efficient Compilation (x86, Power, ARM)
• validate Compiler Optimizations (merging, rearranging, etc)
• no Out-Of-Thin-Air



23

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs
EC CO

No OOTA No UB

SC MM, [Lamport, 1979] 7 7

3 3

Java MM, [Manson et al., 2005] 3 7

3 3

C/C++11 MM, [Batty et al., 2011] 3 3∗

7 7

Proposed solution [Kang et al., 2017] 3 3

3 3

Promise MM, for C/C++ and Java

Requirements:
• allow Efficient Compilation (x86, Power, ARM)
• validate Compiler Optimizations (merging, rearranging, etc)
• no Out-Of-Thin-Air



23

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs
EC CO No OOTA

No UB

SC MM, [Lamport, 1979] 7 7 3

3

Java MM, [Manson et al., 2005] 3 7 3

3

C/C++11 MM, [Batty et al., 2011] 3 3∗ 7

7

Proposed solution [Kang et al., 2017] 3 3 3

3

Promise MM, for C/C++ and Java

Requirements:
• allow Efficient Compilation (x86, Power, ARM)
• validate Compiler Optimizations (merging, rearranging, etc)
• no Out-Of-Thin-Air



23

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs
EC CO No OOTA

No UB

SC MM, [Lamport, 1979] 7 7 3

3

Java MM, [Manson et al., 2005] 3 7 3

3

C/C++11 MM, [Batty et al., 2011] 3 3∗ 7

7

Proposed solution [Kang et al., 2017] 3 3 3

3

Promise MM, for C/C++ and Java

Requirements:
• allow Efficient Compilation (x86, Power, ARM)
• validate Compiler Optimizations (merging, rearranging, etc)
• no Out-Of-Thin-Air



24

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

C/C++11 MM has OOTA

.
Why?



24

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

C/C++11 MM has OOTA.
Why?



25

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

C/C++11 MM is
axiomatic MM



26

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in C/C++11
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx0

Wy1

Ry0

Wx1fr , Rx0

Wy1

Ry1

Wx1fr
rf , Rx1

Wy1

Ry0

Wx1fr
rf , Rx1

Wy1

Ry1

Wx1rf

Rx1

Wy1

Ry1

Wx1

Rx8

Wy8

Ry8

Wx8

po po
rf

Axioms:
1. hb is acyclic
…



26

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in C/C++11
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx0

Wy1

Ry0

Wx1fr , Rx0

Wy1

Ry1

Wx1fr
rf , Rx1

Wy1

Ry0

Wx1fr
rf , Rx1

Wy1

Ry1

Wx1rf

Rx1

Wy1

Ry1

Wx1

Rx8

Wy8

Ry8

Wx8

po po
rf

Axioms:
1. hb is acyclic
…



26

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in C/C++11
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx0

Wy1

Ry0

Wx1fr , Rx0

Wy1

Ry1

Wx1fr
rf , Rx1

Wy1

Ry0

Wx1fr
rf , Rx1

Wy1

Ry1

Wx1rf

Rx1

Wy1

Ry1

Wx1

Rx8

Wy8

Ry8

Wx8

po po
rf

Axioms:
1. hb is acyclic
…



26

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in C/C++11
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx0

Wy1

Ry0

Wx1fr , Rx0

Wy1

Ry1

Wx1fr
rf , Rx1

Wy1

Ry0

Wx1fr
rf , Rx1

Wy1

Ry1

Wx1rf

Rx1

Wy1

Ry1

Wx1

Rx8

Wy8

Ry8

Wx8

po po
rf

Axioms:
1. hb is acyclic
…



26

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in C/C++11
a := [x];
[y] := a;

b := [y];
[x] := b;

Rx0

Wy1

Ry0

Wx1fr , Rx0

Wy1

Ry1

Wx1fr
rf , Rx1

Wy1

Ry0

Wx1fr
rf , Rx1

Wy1

Ry1

Wx1rf

Rx1

Wy1

Ry1

Wx1

Rx8

Wy8

Ry8

Wx8

po po
rf

Axioms:
1. hb is acyclic
…



26

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in C/C++11
a := [x];
[y] := a;

b := [y];
[x] := b;

Rx0

Wy1

Ry0

Wx1fr , Rx0

Wy1

Ry1

Wx1fr
rf , Rx1

Wy1

Ry0

Wx1fr
rf , Rx1

Wy1

Ry1

Wx1rf

Rx1

Wy1

Ry1

Wx1

Rx8

Wy8

Ry8

Wx8
po po

rf

Axioms:
1. hb is acyclic
…



27

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

[OOTA-if example]



28

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Solutions

[Podkopaev et al., 2016]

[Kang et al., 2017]

[Pichon-Pharabod and Sewell, 2016]

[Jeffrey and Riely, 2016]

[?]

[?]

[?]

Promise MM,



28

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Solutions

[Podkopaev et al., 2016]

[Kang et al., 2017]

[Pichon-Pharabod and Sewell, 2016]

[Jeffrey and Riely, 2016]

[?]

[?]

[?]

Promise MM,



29

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Memory Models for PLs
EC CO No OOTA

No UB

SC MM, [Lamport, 1979] 7 7 3

3

Java MM, [Manson et al., 2005] 3 7 3

3

C/C++11 MM, [Batty et al., 2011] 3 3∗ 7

7

Proposed solution [Kang et al., 2017] 3 3 3

3

Promise MM, for C/C++ and Java
Requirements:
• allow Efficient Compilation (x86, Power, ARM)
• validate Compiler Optimizations (merging, rearranging, etc)
• no Out-Of-Thin-Air



30

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

[Store Buffering in Promise]



31

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in Promise

Promised

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,
⟨y : 1@1τ⟩]⟨y : 1@1τ⟩, ⟨x : 1@1τ⟩]

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



31

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in Promise

Promised

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,
⟨y : 1@1τ⟩]⟨y : 1@1τ⟩, ⟨x : 1@1τ⟩]

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



31

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in Promise

Promised

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,
⟨y : 1@1τ⟩]

⟨y : 1@1τ⟩, ⟨x : 1@1τ⟩]

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1Final values a = 1, b = 1



31

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in Promise

Promised

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,
⟨y : 1@1τ⟩]

⟨y : 1@1τ⟩, ⟨x : 1@1τ⟩]

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1

Final values a = 1, b = 1



31

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in Promise

Promised

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,

⟨y : 1@1τ⟩]

⟨y : 1@1τ⟩, ⟨x : 1@1τ⟩]

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _

Final values a = _, b = 1

Final values a = 1, b = 1



31

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in Promise

Promised

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,

⟨y : 1@1τ⟩]

⟨y : 1@1τ⟩, ⟨x : 1@1τ⟩]

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _Final values a = _, b = 1

Final values a = 1, b = 1



31

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Load Buffering in Promise

Promised

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,

⟨y : 1@1τ⟩]

⟨y : 1@1τ⟩, ⟨x : 1@1τ⟩]

a := [x];
[y] := 1;

b := [y];
[x] := 1;

Final values a = _, b = _Final values a = _, b = 1

Final values a = 1, b = 1



32

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

a = 1?

Promised

Values:

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,
⟨x : 1@2τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩,
⟨x : 1@1τ⟩]

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



32

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

a = 1?

Promised

Values: a = ⊥ b = ⊥ c = ⊥

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,
⟨x : 1@2τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩,
⟨x : 1@1τ⟩]

V1: [x@0τ , y@0τ ] V2: [x@0τ , y@0τ ] V3: [x@0τ , y@0τ ]

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



32

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

a = 1?

Promised

Values: a = ⊥ b = ⊥ c = ⊥

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,
⟨x : 1@2τ⟩]

⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩,
⟨x : 1@1τ⟩]

V1: [x@0τ , y@0τ ] V2: [x@0τ , y@0τ ] V3: [x@0τ , y@0τ ]

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



32

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

a = 1?

Promised

Values: a = ⊥ b = 1 c = ⊥

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,
⟨x : 1@2τ⟩]

⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩,
⟨x : 1@1τ⟩]

V1: [x@0τ , y@0τ ] V2: [x@2τ , y@0τ ] V3: [x@0τ , y@0τ ]

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



32

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

a = 1?

Promised

Values: a = ⊥ b = 1 c = ⊥

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,

⟨x : 1@2τ⟩]

⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩]

⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩,
⟨x : 1@1τ⟩]

V1: [x@0τ , y@0τ ] V2: [x@2τ , y@1τ ] V3: [x@0τ , y@0τ ]

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



32

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

a = 1?

Promised

Values: a = ⊥ b = 1 c = 1

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,

⟨x : 1@2τ⟩]

⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩]

⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩,
⟨x : 1@1τ⟩]

V1: [x@0τ , y@0τ ] V2: [x@2τ , y@1τ ] V3: [x@0τ , y@1τ ]

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



32

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

a = 1?

Promised

Values: a = ⊥ b = 1 c = 1

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,

⟨x : 1@2τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩]

⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩,
⟨x : 1@1τ⟩]

V1: [x@0τ , y@0τ ] V2: [x@2τ , y@1τ ] V3: [x@1τ , y@1τ ]

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



32

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

a = 1?

Promised

Values: a = 1 b = 1 c = 1

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,

⟨x : 1@2τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩]

⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩,
⟨x : 1@1τ⟩]

V1: [x@1τ , y@0τ ] V2: [x@2τ , y@1τ ] V3: [x@1τ , y@1τ ]

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



32

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARM-Weak in Promise

a = 1?

Promised

Values: a = 1 b = 1 c = 1

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩]

Memory: [⟨x : 0@0τ⟩, ⟨y : 0@0τ⟩,

⟨x : 1@2τ⟩]⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩]

⟨x : 1@2τ⟩, ⟨y : 1@1τ⟩,
⟨x : 1@1τ⟩]

V1: [x@2τ , y@0τ ] V2: [x@2τ , y@1τ ] V3: [x@1τ , y@1τ ]

a := [x];
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;



33

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Agenda

• Memory models. What, why, and when to care

• CPU and PL MMs. Promise MM

• Compilation correctness for Promise MM to
{x86, Power, ARM}



34

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness

compile :

S

→ T

∀Prog ∈ S.J

compile(Prog)

KT ⊆

J

Prog

KS.

Source languageTarget language

Source MMTarget MM



34

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness

compile :

S

→

T

∀Prog ∈ S.J

compile(Prog)

KT ⊆

J

Prog

KS.

Source languageTarget language

Source MMTarget MM



34

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness

compile : S→ T

∀Prog ∈ S.J

compile(Prog)

KT ⊆

J

Prog

KS.

Source languageTarget language

Source MMTarget MM



34

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness

compile : S→ T

∀Prog ∈ S.J

compile(Prog)

KT ⊆

J

Prog

KS.Source languageTarget language

Source MMTarget MM



34

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness

compile : S→ T

∀Prog ∈ S.

J

compile(Prog)

KT

⊆

J

Prog

KS.Source languageTarget language

Source MMTarget MM



34

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Correctness

compile : S→ T
∀Prog ∈ S.Jcompile(Prog)KT ⊆ JProgKS.Source languageTarget language

Source MMTarget MM



35

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation Targets

Proof status:

• x86-TSO, [Owens et al., 2009]

full

• Power, [Alglave et al., 2014]

full

• ARMv8 POP, [Flur et al., 2016]

partial

• ARMv8.3, [Pulte et al., 2018]

partial



36

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to x86-TSO

• x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]
• Reordering of independent write-read
• Read-after-write elimination

• Transformations are sound in Promise
[Kang et al., 2017]

• SC ⊂ Promise



36

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to x86-TSO

• x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]

• Reordering of independent write-read
• Read-after-write elimination

• Transformations are sound in Promise
[Kang et al., 2017]

• SC ⊂ Promise



36

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to x86-TSO

• x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]
• Reordering of independent write-read
• Read-after-write elimination

• Transformations are sound in Promise
[Kang et al., 2017]

• SC ⊂ Promise



36

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to x86-TSO

• x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]
• Reordering of independent write-read
• Read-after-write elimination

• Transformations are sound in Promise
[Kang et al., 2017]

• SC ⊂ Promise



36

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to x86-TSO

• x86-TSO = SC + transformations
[Lahav and Vafeiadis, 2016]
• Reordering of independent write-read
• Read-after-write elimination

• Transformations are sound in Promise
[Kang et al., 2017]

• SC ⊂ Promise



37

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to Power

• Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]
• Reordering of independent instructions

• Transformation is sound in Promise
[Kang et al., 2017]

• StrongPower ⊆ promise-free version of Promise



37

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to Power

• Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]

• Reordering of independent instructions

• Transformation is sound in Promise
[Kang et al., 2017]

• StrongPower ⊆ promise-free version of Promise



37

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to Power

• Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]
• Reordering of independent instructions

• Transformation is sound in Promise
[Kang et al., 2017]

• StrongPower ⊆ promise-free version of Promise



37

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to Power

• Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]
• Reordering of independent instructions

• Transformation is sound in Promise
[Kang et al., 2017]

• StrongPower ⊆ promise-free version of Promise



37

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Compilation to Power

• Power = StrongPower + transformation
[Lahav and Vafeiadis, 2016]
• Reordering of independent instructions

• Transformation is sound in Promise
[Kang et al., 2017]

• StrongPower ⊆ promise-free version of Promise



38

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Scheme isn’t applicable to
ARM POP



39

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Counterexample. ARM-Weak

a := [x]; // 1
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;

Allowed in ARM POP

;
Cannot be explained by transformations
over a stronger model



39

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Counterexample. ARM-Weak

a := [x]; // 1
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;

Allowed in ARM POP

;
Cannot be explained by transformations
over a stronger model



39

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Counterexample. ARM-Weak

a := [x]; // 1
[x] := 1;

b := [x];
[y] := b;

c := [y];
[x] := c;

Allowed in ARM POP;
Cannot be explained by transformations
over a stronger model



40

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Main Differences between
Promise and ARMv8 POP

1. Promise can execute only writes
out-of-order

2. ARMv8 POP doesn’t totally order
writes to a specific location



41

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Main Proof Ingredients

1. “Lagging” simulation

2. ARMv8 POP +
timestamps



41

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Main Proof Ingredients

1. “Lagging” simulation

2. ARMv8 POP +
timestamps



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;…

…

Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relationI = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relationI = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relationI = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…

Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relationI = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…

Fully executed by ARM

Partially executed by ARM

Not executed by ARM

I — simulation relationI = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…

Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relationI = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relationI = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



42

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

“Lagging” Simulation

Promised

Promise

Promise

Promise

Promise

a := [x];
b := [y];
c := [x];
[y] := 1;

…
…
Fully executed by ARM

Partially executed by ARM
Not executed by ARM

I — simulation relation

I = IPromise is waiting ∪ IPromise is executing



43

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Main Proof Ingredients

1. “Lagging” simulation

2. ARMv8 POP +
timestamps



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x]← 1 [x]← 2[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x]← 1 [x]← 2[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x]← 1

[x]← 2[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x]← 1 [x]← 2

[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x]← 1 [x]← 2

[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x]← 1

[x]← 2

[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1

[x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x]← 1 [x]← 2

[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x]← 1 [x]← 2

[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x]← 1

[x]← 2[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1

[x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP

[x]← 1

[x]← 2[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!

Let’s determine the order beforehand!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP + Timestamps

[x]← 1 [x]← 2[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP + Timestamps

[x]← 1 [x]← 2

[x]← 1@ 3τ

[x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP + Timestamps

[x]← 1 [x]← 2

[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from leftCannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP + Timestamps

[x]← 1 [x]← 2

[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from left

Cannot propagate from right!



44

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

ARMv8 POP + Timestamps

[x]← 1 [x]← 2

[x]← 1@ 3τ [x]← 2@ 8τ

[x]← 1 [x]← 2

[x] := 1; [x] := 2;

May propagate from left

Cannot propagate from right!



45

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Proof Structure

1. Introduce ARM+τ

2. Prove equivalence between
ARM+τ and ARMv8 POP

3. Show “lagging” simulation from
Promise to ARM+τ



46

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

How to prove correctness of
compilation?

Standard technique:
Simulation



46

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

How to prove correctness of
compilation?

Standard technique:
Simulation



47

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Simulation works for
operational semantics

How to simulate graphs?

Traverse in proper order!



47

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Simulation works for
operational semantics

How to simulate graphs?

Traverse in proper order!



47

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Simulation works for
operational semantics

How to simulate graphs?

Traverse in proper order!



48

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMv8.3 execution
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx1

Wy1

Ry1

Wx1

Covered

Issued



48

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMv8.3 execution
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx1

Wy1

Ry1

Wx1

Covered

Issued



48

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMv8.3 execution
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx1

Wy1

Ry1

Wx1

Covered

Issued



48

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMv8.3 execution
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx1

Wy1

Ry1

Wx1

Covered

Issued



48

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMv8.3 execution
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx1

Wy1

Ry1

Wx1

Covered

Issued



48

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMv8.3 execution
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx1

Wy1

Ry1

Wx1

Covered

Issued



48

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMv8.3 execution
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx1

Wy1

Ry1

Wx1

Covered

Issued



48

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traverse of ARMv8.3 execution
a := [x];
[y] := 1;

b := [y];
[x] := 1;

Rx1

Wy1

Ry1

Wx1

Covered

Issued



49

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traversal formally
Cover step:

Issue step:

…
G ⊢ ⟨C, I⟩ → ⟨C ∪ {a}, I⟩

…
G ⊢ ⟨C, I⟩ → ⟨C, I ∪ {w}⟩

Mimics Promise
requirements!
Mimics Promise
requirements!
Mimics Promise
requirements!



49

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Traversal formally
Cover step:

Issue step:

…
G ⊢ ⟨C, I⟩ → ⟨C ∪ {a}, I⟩

…
G ⊢ ⟨C, I⟩ → ⟨C, I ∪ {w}⟩

Mimics Promise
requirements!
Mimics Promise
requirements!
Mimics Promise
requirements!



50

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Proof Structure

1. Prove Promise simulates traversal

2. Show completeness of traversal
∀G. G ∈ Consistent(ARMv8.3)⇒
G ⊢ ⟨∅, ∅⟩ →∗ ⟨G.Events,G.Writes⟩



50

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Proof Structure

1. Prove Promise simulates traversal

2. Show completeness of traversal

∀G. G ∈ Consistent(ARMv8.3)⇒
G ⊢ ⟨∅, ∅⟩ →∗ ⟨G.Events,G.Writes⟩



50

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Proof Structure

1. Prove Promise simulates traversal

2. Show completeness of traversal
∀G. G ∈ Consistent(ARMv8.3)⇒
G ⊢ ⟨∅, ∅⟩ →∗ ⟨G.Events,G.Writes⟩



51

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Takeaway
• MMs are important and complicated, but locks help

• Problems in existing MMs, but there are solutions

• Not all MMs might be explained by reorderings

http://podkopaev.net

Thank you!

http://podkopaev.net


51

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Takeaway
• MMs are important and complicated, but locks help

• Problems in existing MMs, but there are solutions

• Not all MMs might be explained by reorderings

http://podkopaev.net

Thank you!

http://podkopaev.net


52

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Links I
Alglave, J., Maranget, L., and Tautschnig, M. (2014).
Herding cats: Modelling, simulation, testing, and data mining for weak memory.
ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74.
Batty, M., Owens, S., Sarkar, S., Sewell, P., and Weber, T. (2011).
Mathematizing C++ concurrency.
In POPL 2011, pages 55–66. ACM.
Flur, S., Gray, K. E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W., and
Sewell, P. (2016).
Modelling the ARMv8 architecture, operationally: Concurrency and ISA.
In POPL 2016, pages 608–621. ACM.
Jeffrey, A. and Riely, J. (2016).
On thin air reads: Towards an event structures model of relaxed memory.
In LICS 2016. IEEE.
Kang, J., Hur, C.-K., Lahav, O., Vafeiadis, V., and Dreyer, D. (2017).
A promising semantics for relaxed-memory concurrency.
In POPL 2017. ACM.
Lahav, O. and Vafeiadis, V. (2016).
Explaining relaxed memory models with program transformations.
In FM 2016. Springer.



53

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Links II

Lamport, L. (1979).
How to make a multiprocessor computer that correctly executes multiprocess
programs.
IEEE Trans. Computers, 28(9):690–691.
Manson, J., Pugh, W., and Adve, S. V. (2005).
The Java memory model.
In POPL 2005, pages 378–391. ACM.
Owens, S., Sarkar, S., and Sewell, P. (2009).
A better x86 memory model: x86-TSO.
In TPHOL 2009, pages 391–407.
Pichon-Pharabod, J. and Sewell, P. (2016).
A concurrency semantics for relaxed atomics that permits optimisation and avoids
thin-air executions.
In POPL 2016, pages 622–633. ACM.
Podkopaev, A., Sergey, I., and Nanevski, A. (2016).
Operational aspects of C/C++ concurrency.
CoRR, abs/1606.01400.



54

Memory models. What, why, and when to care CPU and PL MMs. Promise MM Compilation correctness for Promise MM

Links III

Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., and Sewell, P. (2018).
Simplifying ARM concurrency: Multicopy-atomic axiomatic and operational models
for ARMv8.


	Memory models. What, why, and when to care
	CPU and PL MMs. Promise MM
	Compilation correctness for Promise MM

