(Non-deterministic) Semantics as a Tool for Analyzing Proof Systems

Ori Lahav

Tel Aviv University

Researcher's Seminar of the Theory and Logic Group Vienna University of Technology April 25, 2012

"Logic"

- **1** A formal language \mathcal{L} , based on which \mathcal{L} -formulas are constructed.
- **2** A relation \vdash between sets of \mathcal{L} -formulas and \mathcal{L} -formulas, satisfying:

Reflexivity: if $\psi \in \mathcal{T}$ then $\mathcal{T} \vdash \psi$.

Monotonicity: if $\mathcal{T} \vdash \psi$ and $\mathcal{T} \subseteq \mathcal{T}'$, then $\mathcal{T}' \vdash \psi$.

Transitivity: if $\mathcal{T} \vdash \psi$ and $\mathcal{T}', \psi \vdash \varphi$ then $\mathcal{T}, \mathcal{T}' \vdash \varphi$.

"Logic"

- **1** A formal language \mathcal{L} , based on which \mathcal{L} -formulas are constructed.
- **2** A relation \vdash between sets of \mathcal{L} -formulas and \mathcal{L} -formulas, satisfying:

Reflexivity: if $\psi \in \mathcal{T}$ then $\mathcal{T} \vdash \psi$. Monotonicity: if $\mathcal{T} \vdash \psi$ and $\mathcal{T} \subseteq \mathcal{T}'$, then $\mathcal{T}' \vdash \psi$. Transitivity: if $\mathcal{T} \vdash \psi$ and $\mathcal{T}', \psi \vdash \varphi$ then $\mathcal{T}, \mathcal{T}' \vdash \varphi$.

We can define logics:

- Semantically: $\mathcal{T} \vdash \psi$ if every "model" of \mathcal{T} is a "model" of ψ .
- Syntactically: $\mathcal{T} \vdash \psi$ if ψ has a derivation from \mathcal{T} in a given proof system.

Motivation

Use semantics to:

- understand logics defined by new proof systems.
- (co-semi) decide such logics.
- prove (or disprove) proof-theoretic properties of (families of) proof systems.
 - Proof-theoretic methods are sometimes tedious and error-prone.

Motivation

Use semantics to:

- understand logics defined by new proof systems.
- (co-semi) decide such logics.
- prove (or disprove) *proof-theoretic properties* of (families of) proof systems.
 - Proof-theoretic methods are sometimes tedious and error-prone.

• Sequents (here and now) are objects of the form $\Gamma \Rightarrow \Delta$, where Γ and Δ are finite *sets* of formulas.

- Sequents (here and now) are objects of the form $\Gamma \Rightarrow \Delta$, where Γ and Δ are finite *sets* of formulas.
- Semantic intuition:

$$\varphi_1, \dots, \varphi_n \Rightarrow \psi_1, \dots, \psi_m \quad \Longleftrightarrow \quad \varphi_1 \wedge \dots \wedge \varphi_n \supset \psi_1 \vee \dots \vee \psi_m$$

- Sequents (here and now) are objects of the form $\Gamma \Rightarrow \Delta$, where Γ and Δ are finite *sets* of formulas.
- Semantic intuition:

$$\varphi_1, \dots, \varphi_n \Rightarrow \psi_1, \dots, \psi_m \quad \Longleftrightarrow \quad \varphi_1 \wedge \dots \wedge \varphi_n \supset \psi_1 \vee \dots \vee \psi_m$$

Tarskian consequence relations (logics) can obtained by:

$$\begin{array}{lll} \mathsf{V}: \ \mathcal{T} \vdash^\mathit{frm}_{\mathbf{G}} \varphi & \iff & \{\ \Rightarrow \psi \mid \psi \in \mathcal{T}\} \vdash_{\mathbf{G}} \Rightarrow \varphi \\ \mathsf{T}: \ \mathcal{T} \vdash^\mathit{frm}_{\mathbf{G}} \varphi & \iff & \vdash_{\mathbf{G}} \Gamma \Rightarrow \varphi \ \textit{ for some } \Gamma \subseteq \mathcal{T} \end{array}$$

- Sequents (here and now) are objects of the form $\Gamma \Rightarrow \Delta$, where Γ and Δ are finite *sets* of formulas.
- Semantic intuition:

$$\varphi_1, \dots, \varphi_n \Rightarrow \psi_1, \dots, \psi_m \quad \Longleftrightarrow \quad \varphi_1 \wedge \dots \wedge \varphi_n \supset \psi_1 \vee \dots \vee \psi_m$$

Tarskian consequence relations (logics) can obtained by:

We choose V because of its robustness.

LK

Axioms:

(id)
$$\varphi \Rightarrow \varphi$$

Structural Rules:

$$(W \Rightarrow) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma, \varphi \Rightarrow \Delta} \qquad (\Rightarrow W) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \varphi, \Delta}$$
$$(cut) \quad \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$

Logical Rules:

$$(\supset \Rightarrow) \quad \frac{\Gamma \Rightarrow \varphi_1, \Delta \quad \Gamma, \varphi_2 \Rightarrow \Delta}{\Gamma, \varphi_1 \supset \varphi_2 \Rightarrow \Delta} \qquad (\Rightarrow \supset) \quad \frac{\Gamma, \varphi_1 \Rightarrow \varphi_2, \Delta}{\Gamma \Rightarrow \varphi_1 \supset \varphi_2, \Delta}$$
$$(\land \Rightarrow) \quad \frac{\Gamma, \varphi_1, \varphi_2 \Rightarrow \Delta}{\Gamma \bowtie_1 \land \varphi_2 \Rightarrow \Delta} \qquad (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow \varphi_1, \Delta \quad \Gamma \Rightarrow \varphi_2, \Delta}{\Gamma \Rightarrow \varphi_1 \land \varphi_2, \Delta}$$

Classical Logic

The "Matrix" MIK

- Truth-values: {T, F}
- Truth-tables:

$\tilde{\supset}$	Т	F	_	$\widetilde{\wedge}$	Т	F
Т	Т	F		Т	Т	F
F	Т	Т		F	F	F

• An \mathbf{M}_{LK} -valuation is a *model* of a sequent $\Gamma \Rightarrow \Delta$ iff $v(\psi) = F$ for some $\psi \in \Gamma$ or $v(\psi) = T$ for some $\psi \in \Delta$.

Soundness and Completeness

 $\Omega \vdash_{\mathsf{LK}} s$ iff every M_{LK} -valuation which is a model of every sequent in Ω is also a model of s.

Subformula Property

Notation: $\Omega \vdash_{\mathbf{G}}^{\mathcal{E}} s$ iff there exists a derivation of s from Ω in \mathbf{G} consisting solely of \mathcal{E} -sequents (i.e. sequents consisting solely of formulas from \mathcal{E}).

Subformula Property

$$\Omega \vdash_{\mathbf{G}} s \implies \Omega \vdash_{\mathbf{G}}^{sub[\Omega,s]} s$$

Subformula Property

Notation: $\Omega \vdash_{\mathbf{G}}^{\mathcal{E}} s$ iff there exists a derivation of s from Ω in \mathbf{G} consisting solely of \mathcal{E} -sequents (i.e. sequents consisting solely of formulas from \mathcal{E}).

Subformula Property

$$\Omega \vdash_{\mathbf{G}} s \implies \Omega \vdash_{\mathbf{G}}^{sub[\Omega,s]} s$$

Q: Can we find "semantics" for $\vdash_{LK}^{\mathcal{E}}$?

"Semantics" for $\vdash_{\mathbf{G}}^{\mathcal{E}}$

(Stronger) Soundness and Completeness

For every closed set \mathcal{E} of formulas, and set $\Omega \cup \{s\}$ of \mathcal{E} -sequents: $\Omega \vdash_{\iota}^{\mathcal{E}} s$ iff every partial $\mathbf{M}_{\iota} s$ -valuation, defined on \mathcal{E} , which is a model of

 $\Omega \vdash_{\mathsf{LK}}^{\mathcal{E}} s$ iff every partial M_{LK} -valuation, defined on \mathcal{E} , which is a model of every sequent in Ω is also a model of s.

"Semantics" for $\vdash_{\mathbf{G}}^{\mathcal{E}}$

(Stronger) Soundness and Completeness

For every closed set \mathcal{E} of formulas, and set $\Omega \cup \{s\}$ of \mathcal{E} -sequents: $\Omega \vdash_{\mathsf{LK}}^{\mathcal{E}} s$ iff every partial M_{LK} -valuation, defined on \mathcal{E} , which is a model of every sequent in Ω is also a model of s.

Now, proving the subformula property for LK reduces to proving that every partial M_{LK} -valuation (defined on a closed set of formulas) can be extended to a (full) M_{LK} -valuation.

"Semantics" for $\vdash_{\mathbf{G}}^{\mathcal{E}}$

(Stronger) Soundness and Completeness

For every closed set \mathcal{E} of formulas, and set $\Omega \cup \{s\}$ of \mathcal{E} -sequents: $\Omega \vdash_{\mathsf{LK}}^{\mathcal{E}} s$ iff every partial M_{LK} -valuation, defined on \mathcal{E} , which is a model of every sequent in Ω is also a model of s.

Now, proving the subformula property for LK reduces to proving that every partial M_{LK} -valuation (defined on a closed set of formulas) can be extended to a (full) M_{LK} -valuation.

This is trivial.

Cut-Admissibility

 $\vdash_{\mathbf{G}} s \implies \vdash_{\mathbf{G}-(cut)} s$

Cut-Admissibility

$$\vdash_{\mathbf{G}} s \implies \vdash_{\mathbf{G}-(cut)} s$$

• Holds for **LK** (Gentzen, 1934).

Cut-Admissibility

$$\vdash_{\mathbf{G}} s \implies \vdash_{\mathbf{G}-(cut)} s$$

• Holds for **LK** (Gentzen, 1934).

Q: Can we find semantics for LK - (cut)?

Cut-Admissibility

$$\vdash_{\mathbf{G}} s \implies \vdash_{\mathbf{G}-(cut)} s$$

- Holds for LK (Gentzen, 1934).
- Q: Can we find semantics for LK (cut)?
 - Does not hold in the presence of assumptions, e.g.

$$\Rightarrow p_1 \supset p_2 \vdash_{\mathsf{LK}} \Rightarrow p_1 \supset (p_3 \supset p_2)$$

$$\Rightarrow p_1 \supset p_2 \not\vdash_{\mathsf{LK}-(cut)} \Rightarrow p_1 \supset (p_3 \supset p_2)$$

Cut-Admissibility

$$\vdash_{\mathbf{G}} s \implies \vdash_{\mathbf{G}-(cut)} s$$

- Holds for LK (Gentzen, 1934).
- Q: Can we find semantics for LK (cut)?
 - Does not hold in the presence of assumptions, e.g.

$$\Rightarrow p_1 \supset p_2 \vdash_{\mathsf{LK}} \Rightarrow p_1 \supset (p_3 \supset p_2)$$

$$\Rightarrow p_1 \supset p_2 \not\vdash_{\mathsf{LK}-(cut)} \Rightarrow p_1 \supset (p_3 \supset p_2)$$

Theorem

 $\vdash_{\mathbf{LK}-(cut)}^{\mathit{frm}}$ does not have a finite characteristic matrix.

- Truth-tables assign non-empty sets of truth-values.
- $v(\diamond(\psi_1,\ldots,\psi_n)) \in \widetilde{\diamond}(v(\psi_1),\ldots,v(\psi_n))$ instead of $v(\diamond(\psi_1,\ldots,\psi_n)) = \widetilde{\diamond}(v(\psi_1),\ldots,v(\psi_n)).$

- Truth-tables assign non-empty sets of truth-values.
- $v(\diamond(\psi_1,\ldots,\psi_n)) \in \widetilde{\diamond}(v(\psi_1),\ldots,v(\psi_n))$ instead of $v(\diamond(\psi_1,\ldots,\psi_n)) = \widetilde{\diamond}(v(\psi_1),\ldots,v(\psi_n)).$

$\widetilde{\Lambda}$	Т	F	$\widetilde{\wedge}$	Т	F
Т	Т	F	Т	{T}	{F}
F	F	F	F	{F}	{F}

- Truth-tables assign non-empty sets of truth-values.
- $v(\diamond(\psi_1,\ldots,\psi_n)) \in \widetilde{\diamond}(v(\psi_1),\ldots,v(\psi_n))$ instead of $v(\diamond(\psi_1,\ldots,\psi_n)) = \widetilde{\diamond}(v(\psi_1),\ldots,v(\psi_n)).$
- Particularly useful to handle syntactic underspecification.

$\widetilde{\wedge}$	Т	F	 $\widetilde{\wedge}$	Т	F
Т	Т	F	 Т	{T}	{F}
F	F	F	F	{F}	{F}

- Truth-tables assign non-empty sets of truth-values.
- $v(\diamond(\psi_1,\ldots,\psi_n)) \in \widetilde{\diamond}(v(\psi_1),\ldots,v(\psi_n))$ instead of $v(\diamond(\psi_1,\ldots,\psi_n)) = \widetilde{\diamond}(v(\psi_1),\ldots,v(\psi_n)).$
- Particularly useful to handle syntactic underspecification.

$$(\land \Rightarrow) \quad \frac{\Gamma, \varphi_1, \varphi_2 \Rightarrow \Delta}{\Gamma, \varphi_1 \land \varphi_2 \Rightarrow \Delta} \qquad (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow \varphi_1, \Delta \quad \Gamma \Rightarrow \varphi_2, \Delta}{\Gamma \Rightarrow \varphi_1 \land \varphi_2, \Delta}$$

- Truth-tables assign non-empty sets of truth-values.
- $v(\diamond(\psi_1,\ldots,\psi_n)) \in \widetilde{\diamond}(v(\psi_1),\ldots,v(\psi_n))$ instead of $v(\diamond(\psi_1,\ldots,\psi_n)) = \widetilde{\diamond}(v(\psi_1),\ldots,v(\psi_n)).$
- Particularly useful to handle syntactic underspecification.

$$(\land \Rightarrow) \quad \frac{\Gamma, \varphi_1, \varphi_2 \Rightarrow \Delta}{\Gamma, \varphi_1 \land \varphi_2 \Rightarrow \Delta} \qquad (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow \varphi_1, \Delta \quad \Gamma \Rightarrow \varphi_2, \Delta}{\Gamma \Rightarrow \varphi_1 \land \varphi_2, \Delta}$$

Semantics for LK - (cut)

$$(cut) \quad \xrightarrow{\varphi \Rightarrow \qquad \Rightarrow \varphi}$$

Semantics for LK - (cut)

$$(cut) \quad \xrightarrow{\varphi \Rightarrow \qquad \Rightarrow \varphi}$$

The "NMatrix" M_{LK}-(cut)

- Truth-values: $\{\langle F, F \rangle, \langle T, T \rangle, \langle F, T \rangle\}$
- Truth-tables:

$\widetilde{\wedge}$	$\langle \mathrm{T}, \mathrm{T} \rangle$	$\langle { ilde { m F}}, { ilde { m F}} angle$	$\langle \mathrm{F}, \mathrm{T} angle$
$\langle \mathrm{T}, \mathrm{T} \rangle$	$\{\langle T, T \rangle, \langle F, T \rangle\}$	$\{\langle F, F \rangle, \langle F, T \rangle\}$	$\{\langle F, T \rangle \}$
$\langle \mathrm{F}, \mathrm{F} angle$	$\{\langle F, F \rangle, \langle F, T \rangle\}$	$\{\langle F, F \rangle, \langle F, T \rangle\}$	$\{\langle F, F \rangle, \langle F, T \rangle\}$
$\langle F, T \rangle$	$\{\langle F, T \rangle\}$	$\{\langle F, F \rangle, \langle F, T \rangle\}$	$\{\langle \mathrm{F}, \mathrm{T} \rangle \}$

• An $\mathbf{M}_{\mathsf{LK}-(\mathit{cut})}$ -valuation is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $\mathbf{v}_{\mathsf{I}}(\psi) = F$ for some $\psi \in \Gamma$ or $\mathbf{v}_{\mathsf{r}}(\psi) = T$ for some $\psi \in \Delta$.

The "NMatrix" $\mathbf{M}_{\mathsf{LK}-(\mathit{cut})}$

$$\begin{array}{c|c} (\wedge \Rightarrow) & \frac{\Gamma, \varphi_1, \varphi_2 \Rightarrow \Delta}{\Gamma, \varphi_1 \wedge \varphi_2 \Rightarrow \Delta} & (\Rightarrow \wedge) & \frac{\Gamma \Rightarrow \varphi_1, \Delta}{\Gamma \Rightarrow \varphi_1, \Delta} \xrightarrow{\Gamma \Rightarrow \varphi_2, \Delta} \\ \\ & \frac{\widetilde{\wedge} & \langle T, T \rangle & \langle F, F \rangle & \langle F, T \rangle}{\overline{\langle T, T \rangle} & \{\langle T, T \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, T \rangle\}} \\ \hline & \frac{\langle F, F \rangle & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\}}{\overline{\langle F, T \rangle} & \{\langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, T \rangle\} \\ \hline \hline & \langle F, T \rangle & \{\langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, T \rangle\} \\ \hline \end{array}$$

The "NMatrix" $M_{LK-(cut)}$

$$\begin{array}{c|c} (\wedge \Rightarrow) & \frac{\Gamma, \varphi_1, \varphi_2 \Rightarrow \Delta}{\Gamma, \varphi_1 \wedge \varphi_2 \Rightarrow \Delta} & (\Rightarrow \wedge) & \frac{\Gamma \Rightarrow \varphi_1, \Delta}{\Gamma \Rightarrow \varphi_1, \Delta} \xrightarrow{\Gamma \Rightarrow \varphi_2, \Delta} \\ \hline \tilde{\wedge} & \langle T, T \rangle & \langle F, F \rangle & \langle F, T \rangle \\ \hline \frac{\langle T, T \rangle}{\langle T, T \rangle} & \{\langle T, T \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, T \rangle\} \\ \hline \frac{\langle F, F \rangle}{\langle F, F \rangle} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} \\ \hline \langle F, T \rangle & \{\langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, T \rangle\} \\ \hline \end{array}$$

The "NMatrix" $M_{LK-(cut)}$

$$\begin{array}{c|c} (\wedge \Rightarrow) & \frac{\Gamma, \varphi_1, \varphi_2 \Rightarrow \Delta}{\Gamma, \varphi_1 \wedge \varphi_2 \Rightarrow \Delta} & (\Rightarrow \wedge) & \frac{\Gamma \Rightarrow \varphi_1, \Delta}{\Gamma \Rightarrow \varphi_1, \Delta} \xrightarrow{\Gamma \Rightarrow \varphi_2, \Delta} \\ \\ & \frac{\widetilde{\wedge} & \langle T, T \rangle & \langle F, F \rangle & \langle F, T \rangle}{\overline{\langle T, T \rangle} & \{\langle T, T \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, T \rangle\}} \\ \hline & \frac{\langle F, F \rangle}{\langle F, F \rangle} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, F \rangle, \langle F, T \rangle\} & \{\langle F, T \rangle\} &$$

The "NMatrix" $\mathbf{M}_{\mathsf{LK}-(cut)}$

$$(\land\Rightarrow) \frac{\Gamma, \varphi_{1}, \varphi_{2} \Rightarrow \Delta}{\Gamma, \varphi_{1} \land \varphi_{2} \Rightarrow \Delta} \qquad (\Rightarrow\land) \frac{\Gamma \Rightarrow \varphi_{1}, \Delta \quad \Gamma \Rightarrow \varphi_{2}, \Delta}{\Gamma \Rightarrow \varphi_{1} \land \varphi_{2}, \Delta}$$

$$\frac{\tilde{\land} \qquad \langle T, T \rangle \qquad \langle F, F \rangle \qquad \langle F, T \rangle}{\langle T, T \rangle \qquad \{\langle T, T \rangle, \langle F, T \rangle\} \qquad \{\langle F, F \rangle, \langle F, T \rangle\} \qquad \{\langle F, F \rangle, \langle F, T \rangle\}}{\langle F, F \rangle \qquad \{\langle F, F \rangle, \langle F, T \rangle\} \qquad \{\langle F, F \rangle, \langle F, T \rangle\}} \qquad (\Rightarrow\land) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \qquad \langle F, F \rangle}$$

$$(\Rightarrow\Rightarrow) \frac{\Gamma \Rightarrow \varphi_{1}, \Delta \qquad \Gamma, \varphi_{2} \Rightarrow \Delta}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\Gamma \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow) \frac{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta}{\langle F, F \rangle \Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{1} \Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2}, \Delta}$$

$$\frac{\tilde{\Rightarrow}}{\Gamma, \varphi_{1} \Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2}, \Delta} \qquad (\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow\Rightarrow \varphi_{2},$$

Semantics for LK - (cut)

Soundness and Completeness

 $\Omega \vdash_{\mathsf{LK}-(cut)} s$ iff every $\mathsf{M}_{\mathsf{LK}-(cut)}$ -valuation which is a model of every sequent in Ω is also a model of s.

 \hookrightarrow New formulation of results of Schütte (1960) and Girard (1987).

Proving Cut-Admissibility for **LK**

Cut-Admissibility for **LK**

$$\vdash_{\mathsf{LK}} s \implies \vdash_{\mathsf{LK}-(cut)} s$$

Proving Cut-Admissibility for **LK**

Cut-Admissibility for **LK**

$$\vdash_{\mathsf{LK}} s \implies \vdash_{\mathsf{LK}-(cut)} s$$

- Reduces to proving that for every $\mathbf{M_{LK-}}(cut)$ -valuation which is not a model of some sequent s, there exists an $\mathbf{M_{LK-}}$ -valuation which is not a model of s.
- Simply, by induction on the build-up of formulas.

(Non-deterministic) Semantics as a Tool for Analyzing Proof Systems

Similar ideas can be used to study:

- Systems without (*id*) (in fact, any rule except for weakening, contraction and exchange).
- Concrete *proof-specifications*, specifying which formulas:
 - Are allowed to appear in derivations on each side of the sequent.
 - Are allowed to serve as active formulas of each derivation rule.

(Non-deterministic) Semantics as a Tool for Analyzing Proof Systems

These methods can be applied in broad families of proof systems:

Canonical Systems
$$\frac{\Gamma \Rightarrow \varphi_2, \Delta}{\Gamma \Rightarrow \varphi_1 \sim \varphi_2, \Delta}$$

Labelled Systems
$$\frac{s \cup \{a : \varphi_1\} \quad s \cup \{b : \varphi_2\}}{s \cup \{c : \varphi_1 \star \varphi_2\}}$$

Basic Systems
$$\frac{\Gamma, \varphi_1 \Rightarrow \varphi_2}{\Gamma \Rightarrow \varphi_1 \supset \varphi_2} \qquad \frac{\Gamma \Rightarrow \varphi}{\Box \Gamma \Rightarrow \Box \varphi}$$

Canonical Gödel Systems

The System HIF

Manipulates single-conclusion hypersequents.

Axioms:

$$\varphi \Rightarrow \varphi$$

Structural Rules:

$$(IW \Rightarrow) \quad \frac{H \mid \Gamma \Rightarrow E}{H \mid \Gamma, \varphi \Rightarrow E} \qquad (\Rightarrow IW) \quad \frac{H \mid \Gamma \Rightarrow}{H \mid \Gamma \Rightarrow \varphi} \qquad (EW) \quad \frac{H}{H \mid \Gamma \Rightarrow E}$$

$$(com) \quad \frac{H \mid \Gamma_{1}, \Gamma'_{1} \Rightarrow E_{1} \quad H \mid \Gamma_{2}, \Gamma'_{2} \Rightarrow E_{2}}{H \mid \Gamma_{1}, \Gamma'_{2} \Rightarrow E_{1} \mid \Gamma_{2}, \Gamma'_{1} \Rightarrow E_{2}} \qquad (cut) \quad \frac{H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma, \varphi \Rightarrow E}{H \mid \Gamma \Rightarrow E}$$

Logical Rules:

$$(\supset \Rightarrow) \quad \frac{H \mid \Gamma \Rightarrow \varphi_1 \quad H \mid \Gamma, \varphi_2 \Rightarrow E}{H \mid \Gamma, \varphi_1 \supset \varphi_2 \Rightarrow E} \qquad (\Rightarrow \supset) \quad \frac{H \mid \Gamma, \varphi_1 \Rightarrow \varphi_2}{H \mid \Gamma \Rightarrow \varphi_1 \supset \varphi_2}$$

$$(\land \Rightarrow) \quad \frac{H \mid \Gamma, \varphi_1, \varphi_2 \Rightarrow E}{H \mid \Gamma, \varphi_1 \land \varphi_2 \Rightarrow E} \qquad (\Rightarrow \land) \quad \frac{H \mid \Gamma \Rightarrow \varphi_1 \quad H \mid \Gamma \Rightarrow \varphi_2}{H \mid \Gamma \Rightarrow \varphi_1 \land \varphi_2}$$

Semantics - Gödel logic

The "Matrix" M_{HIF}

- Truth-values: [0, 1]
- Truth-tables:

$$\widetilde{\supset}(x,y) = \begin{cases} 1 & x \leq y \\ y & x > y \end{cases} \qquad \widetilde{\wedge}(x,y) = \min(x,y)$$

- An M_{HIF}-valuation is a model:
 - of a sequent $\Gamma \Rightarrow E$ iff $\min\{v(\psi) \mid \psi \in \Gamma\} \leq \max\{v(\psi) \mid \psi \in E\}$.
 - of a hypersequent H iff it is a model of some $s \in H$.

Soundness and Completeness

 $\mathcal{H} \vdash_{\mathbf{HIF}} H$ iff every $\mathbf{M}_{\mathbf{HIF}}$ -valuation which is a model of every hypersequent in \mathcal{H} is also a model of H.

Semantics for HIF - (cut)

$$(cut) \quad \xrightarrow{\varphi \Rightarrow \qquad \Rightarrow \varphi}$$

Semantics for HIF - (cut)

$$(cut) \quad \xrightarrow{\varphi \Rightarrow \qquad \Rightarrow \varphi}$$

The "NMatrix" M_{HIF-(cut)}

- Truth-values: $\{\langle x,y\rangle\in[0,1]\times[0,1]\mid x\leq y\}$
- Truth-tables:

$$\widetilde{\supset}(\langle x_1,y_1\rangle,\langle x_2,y_2\rangle) = \begin{bmatrix} 0, \begin{cases} 1 & y_1 \leq x_2 \\ x_2 & y_1 > x_2 \end{bmatrix} \times \begin{bmatrix} \begin{cases} 1 & x_1 \leq y_2 \\ y_2 & x_1 > y_2 \end{cases}, 1 \end{bmatrix}$$

$$\widetilde{\wedge}(\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle) = [0, \min(x_1, x_2)] \times [\min(y_1, y_2), 1]$$

- An M_{HIF-(cut)}-valuation is a model:
 - of a sequent $\Gamma \Rightarrow E$ iff $\min\{v_{l}(\psi) \mid \psi \in \Gamma\} \leq \max\{v_{r}(\psi) \mid \psi \in E\}$.
 - of a hypersequent H iff it is a model of some $s \in H$.

HIF - (cut)

Soundness and Completeness

 $\mathcal{H} \vdash_{\mathsf{HIF}-(cut)} H$ iff every $\mathbf{M}_{\mathsf{HIF}-(cut)}$ -valuation which is a model of every hypersequent in \mathcal{H} is also a model of H.

• Proving cut-admissibility for **HIF** reduces to proving that for every $\mathbf{M}_{\mathbf{HIF}-(cut)}$ -valuation which is not a model of some hypersequent H, there exists an $\mathbf{M}_{\mathbf{HIF}}$ -valuation which is not a model of H.

HIF - (cut)

Soundness and Completeness

 $\mathcal{H} \vdash_{\mathsf{HIF}-(cut)} H$ iff every $\mathbf{M}_{\mathsf{HIF}-(cut)}$ -valuation which is a model of every hypersequent in \mathcal{H} is also a model of H.

- Proving cut-admissibility for **HIF** reduces to proving that for every $\mathbf{M}_{\mathbf{HIF}-(cut)}$ -valuation which is not a model of some hypersequent H, there exists an $\mathbf{M}_{\mathbf{HIF}}$ -valuation which is not a model of H.
- Dual construction for HIF (id).
- This method can be generalized for arbitrary canonical derivation rules added to HIF.

Conclusions

- Non-deterministic semantics is a useful tool for investigating proof-theoretic properties of logical calculi.
- The semantic tools should complement the usual proof-theoretic ones.

Further Research

- Extensions for first order logics
- Sub-structural calculi

