(Non-deterministic) Semantics as a Tool for Analyzing
Proof Systems

Ori Lahav

Tel Aviv University

Researcher's Seminar of the Theory and Logic Group
Vienna University of Technology
April 25, 2012



@ A formal language £, based on which £-formulas are constructed.
@ A relation - between sets of L-formulas and L-formulas, satisfying:
Reflexivity:  if ¢ € T then T F .

Monotonicity: if T F and T C T, then T' I 1.
Transitivity:  if T and T',¢ F o then T, 7' F .



@ A formal language £, based on which £-formulas are constructed.
@ A relation - between sets of L-formulas and L-formulas, satisfying:
Reflexivity:  if ¢ € T then T F .

Monotonicity: if T F and T C T, then T' I 1.
Transitivity:  if T and T',¢ F o then T, 7' F .

We can define logics:
@ Semantically: 7 + 9 if every “model” of T is a “model” of .

@ Syntactically: 7 F ) if ¢ has a derivation from 7T in a given proof
system.



Motivation

Use semantics to:

@ understand logics defined by new proof systems.

@ (co-semi) decide such logics.

@ prove (or disprove) proof-theoretic properties of (families of) proof
systems.

o Proof-theoretic methods are sometimes tedious and error-prone.
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Sequent Systems

@ Sequents (here and now) are objects of the form ' = A, where ' and
A are finite sets of formulas.

@ Semantic intuition:

Pl Pn = V1, Ym e 1AL ANOR DLV LV Yy

@ Tarskian consequence relations (logics) can obtained by:
V: THE™ o = {=¢|veTtre=¢
T: THEM = Fo T = ¢ forsomel C T

We choose V because of its robustness.



LK

Axioms:
(id) o=¢
Structural Rules:
M= A M= A
(W =) Me=A (= W) M= p A
Nepg=A TI=¢pA
(cut) M= A

Logical Rules:

I':>g01,A F,go2:>A r,<,01:>§02,A
(>=) M1 Dpr= A (=2) = @1 D¢, A

rv@la‘p2:>A r:>§017A r:><p2aA
(=) o1 Apa = A (=) = o1 A2, A



Classical Logic

The “Matrix’ Mg
@ Truth-values: {T,F}
@ Truth-tables:

S| Tl|F AlT|F
T|T|F T|T|F
FlT|T FIlF|F

@ An M\k-valuation is a model of a sequent ' = A iff v(¢)) = F for
some ¢ € [ or v(¢)) = T for some ¢ € A.

Soundness and Completeness

Q Frk s iff every M k-valuation which is a model of every sequent in Q is
also a model of s.
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Notation: Q I—E s iff there exists a derivation of s from €2 in G consisting
solely of E-sequents (i.e. sequents consisting solely of formulas from &).
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Subformula Property

Qbgs —  Qrebel,

Q: Can we find “semantics” for I—fK?
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(Stronger) Soundness and Completeness

For every closed set £ of formulas, and set Q U {s} of E-sequents:
Q I—fK s iff every partial Myk-valuation, defined on &, which is a model of
every sequent in Q is also a model of s.



“Semantics” for &

(Stronger) Soundness and Completeness
For every closed set £ of formulas, and set Q U {s} of E-sequents:

Q I—fK s iff every partial Myk-valuation, defined on &, which is a model of
every sequent in Q is also a model of s.

Now, proving the subformula property for LK reduces to proving that every
partial Mk-valuation (defined on a closed set of formulas) can be extended

to a (full) Myk-valuation.



“Semantics” for &

(Stronger) Soundness and Completeness

For every closed set £ of formulas, and set Q U {s} of E-sequents:
Q I—fK s iff every partial Myk-valuation, defined on &, which is a model of
every sequent in Q is also a model of s.

Now, proving the subformula property for LK reduces to proving that every
partial Mk-valuation (defined on a closed set of formulas) can be extended
to a (full) Myk-valuation.

This is trivial. ®
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Cut-Admissibility

Cut-Admissibility

Fg s - '_G—(cut) S
@ Holds for LK (Gentzen, 1934).
Q: Can we find semantics for LK — (cut)?

@ Does not hold in the presence of assumptions, e.g.
= p1 D p2Fk = p1 D (P3 D p2)

= p1 D P2 VLk—(cut) = P1 D (3 D p2)

Theorem

I—{’l’("_(cut) does not have a finite characteristic matrix.
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Non-Deterministic Matrices

@ Truth-tables assign non-empty sets of truth-values.

o v(o(¥1,...,¢n)) €o(v(¢r),...,v(¢n)) instead of
v(o(d1, -5 Pn)) = S(v(¥), -5 V().

@ Particularly useful to handle syntactic underspecification.

Alrlr Al r|F A] T |F

T T Ty [{Fy T {1 F} | {F)

F|F|F F | {F} | {F} F| {r} |{F}
r’¢1a(p2:>A r:>Q01aA r:><1027A

(A=)

Mot A2 = A M= o1 A g2, A



Semantics for LK — (cut)
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Semantics for LK — (cut)

Y= = ¢

(cut)

The “NMatrix’ Myk_(cur)

o Truth-values: {(F,F), (T, T), (F,T)}
@ Truth-tables:

A () | (F,F) | (F,T)
(T, 1) | {{T,7), (F, 1)} | {(F,F), (F,T)} {(F, T)}
(B, F) || {{F, B}, {(F, T)} | {{F, B}, (F, T)} | {{F, F), (B, T)}
(B, T) {(F, T)} {(F, ), (F, T) } {(F, 1)}

® An Mik_(cur)-valuation is a model of a sequent ' = A iff v)(¢)) = F
for some 1) € T or v,(¢») = T for some ¢ € A.



The “NMatrix” Myk_(cur)

(A=)

r"Pla‘P2 = A

o1 Apa = A

(T,T)

r:>(,01,A r:>8027A

|

= o1 Ao, A

{(r, 1), (F, )}

{(r, ), (F, )}

{(F, 1)}




The “NMatrix” Myk_(cur)

Mo, 00 = A M=, A T=p, A
(A=) r, (Zil/\iiz = A (=) r90:1> w1 A Y2, 22
| (T, T) | (F,F) | (F,T)
(1, 7) || {{T, 1), (F, )} | {(F, F), (F,T)} {(F, 1)}
(7, F) | {(F,F), (7, )} | {(FF), (F,T)} | {(F,F),(F, T)}
(F, T) {(r, 1)} {(r,F),(F, 1)} {(r, 1)}




The “NMatrix” Myk_(cur)

r"Pla‘P2:>A r:>§017A r:></927A
(n=) o1 A2 = A (=N ['= 91 A2, A
Al @n | @®® | e

(r,m) | {(r,m), ()} | A F), (1)} | {01
(#,7) || {(F,F), (7, 1)} | {{F,F), (7, 1)} | {(F,F), (F, T)}
(F, T) {my [H{E ) Em)) | (1))




The “NMatrix” Myk_(cur)

Mo, 0= A M=, A T=p, A
(A=) I, g;jl/\gpgjg = A (=) r(p:1> 1 N P2, Zz
A (T, T) \ (F,F) \ (F,T)
(T, ) || {{r,1), (¢, 1)} | {(F,F), (7, )} | {(F,T)}
(. 1) || (1), (B, 1)} | {(F,F), (F, 1)} | {(F, F), (F, T)}
(F,T) {(F, 1)} {FF), Fm} | {{FT)}
= o1, A T,po=A o1 = w2, A
(D :>) I',<;1 D Y2 ﬁzA (:>D) M= 201 D) ;Q,A
51 @n [ em | (1)
(1, 1) | {{T,7), (F, 1)} | {(F,F), (F, T)} {(F, T)}
(7, F) || {(r, 1), (F, )} | {(T,T), (F, T)} | {{T,T), (F,T)}
(1) || {{T, 1), (F, )} {(F, )} {(F, )}




Semantics for LK — (cut)

Soundness and Completeness

Q FLK—(cut) S 1ff every Mg _(cur)-valuation which is a model of every
sequent in 2 is also a model of s.

— New formulation of results of Schiitte (1960) and Girard (1987).
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Proving Cut-Admissibility for LK

Cut-Admissibility for LK

Fik s = FLK—(cut) S

@ Reduces to proving that for every Mk _(c,)-valuation which is not a
model of some sequent s, there exists an M k-valuation which is not a
model of s.

@ Simply, by induction on the build-up of formulas.



(Non-deterministic) Semantics as a Tool for Analyzing

Proof Systems

Similar ideas can be used to study:

e Systems without (id) (in fact, any rule except for weakening,
contraction and exchange).
@ Concrete proof-specifications, specifying which formulas:

o Are allowed to appear in derivations on each side of the sequent.
o Are allowed to serve as active formulas of each derivation rule.



(Non-deterministic) Semantics as a Tool for Analyzing

Proof Systems

These methods can be applied in broad families of proof systems:

r:><p2,A
M= @1~ @2, A

Canonical Systems

sU{a:y} suU{b:pa}
sU{c: o1 xpa}

Labelled Systems

F,g01:>g02 r:>(p

Basic Systems IEE ar = Oy

Canonical Godel Systems



The System HIF

Manipulates single-conclusion hypersequents.

Axioms:
p=¢
Structural Rules:
H|T=E HIT = H
W=) grre=e OW Frrsy W) HrsE
H|ML,MM=E H|LNLh=>E6 H|T=¢ H|Tp=E
(com) HIT,T,= E [T2,11 = E (cut) HIT=E

Logical Rules:

HiT=¢1 H|lg,=E H|T, o1 = ¢
D = =D
( ) H||—,g013(,02:>E ( ) H‘r=>g013(,02
H|T E H|T H|T
(A=) | T\ 1,02 = (= A) [T=u |7 =

H|r,501/\g02:>E H‘r=>g01/\g02



Semantics - Godel logic

The “Matrix” My

o Truth-values: [0, 1]
@ Truth-tables:

~ 1 x<y ~ .
O(x,y) = { A(x,y) = min(x, y)
y x>y

@ An My g-valuation is a model:

o of a sequent ' = E iff min{v(¢)) | ¥ € T} < max{v(vy) | ¢ € E}.
o of a hypersequent H iff it is a model of some s € H.

Soundness and Completeness

H i H iff every My g-valuation which is a model of every hypersequent
in H is also a model of H.




Semantics for HIF — (cut)




Semantics for HIF — (cut)

Y= =

(cut)

The “NMatrix" Myjr_(cur)
@ Truth-values: {(x,y) € [0,1] x [0,1] | x < y}
@ Truth-tables:

Sl ) — [0,{1 % SXz] y [{1 x1 < o 1]

)
X2 y1> X2 Y2 X1 >y

A({x1, 1), (x2,¥2)) = [0, min(x1, x2)] x [min(y1, y2), 1]
® An Myp_(cur)-valuation is a model.

o of a sequent [' = E iff min{v)(¢)) | ¥ € '} < max{v,(¢) | ¥ € E}.
o of a hypersequent H iff it is a model of some s € H.
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H EHIE— (cut) H iff every Myg_(cur)-valuation which is a model of every
hypersequent in # is also a model of H.

@ Proving cut-admissibility for HIF reduces to proving that for every
MU (cut)-valuation which is not a model of some hypersequent H,
there exists an My g-valuation which is not a model of H.



HIF — (cut)

Soundness and Completeness
H EHIE— (cut) H iff every Myg_(cur)-valuation which is a model of every
hypersequent in # is also a model of H.

@ Proving cut-admissibility for HIF reduces to proving that for every
MU (cut)-valuation which is not a model of some hypersequent H,
there exists an My g-valuation which is not a model of H.

@ Dual construction for HIF — (id).
@ This method can be generalized for arbitrary canonical derivation rules
added to HIF.



Conclusions

@ Non-deterministic semantics is a useful tool for investigating
proof-theoretic properties of logical calculi.

@ The semantic tools should complement the usual proof-theoretic ones.

Further Research

@ Extensions for first order logics

@ Sub-structural calculi



Thank you!



