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Main Contributions

A correspondence between a wide class of proof-systems (called
basic systems) and Kripke semantics.
More precisely, a general soundness and completeness result
which uniformly provides Kripke semantics for each basic system.

Extension of the previous result to obtain semantic
characterizations of crucial proot-theoretic properties of basic
systems:

The subformula property
Cut-admissibility



Basic Systems: General Framework

1 Propositional sequent systems

2 Manipulate two-sided multiple-conclusion sequents

3 Fully structural :
Sequents are finite sets of signed formulas, e.g.

ψ,ϕ⇒ ϕ,ψ ∧ ϕ ≡ {f:ψ, f:ϕ, t:ϕ, t:(ψ ∧ ϕ)}

Identity axiom, cut, weakening rules always present

4 The logical rules are all basic rules



Basic Rules - Examples

�Γ⇒ ψ

�Γ⇒ �ψ
Γ, ψ ⇒ ∆

Γ,�ψ ⇒ ∆

Distinction between active and context formulas

The structure of the active part:

⇒ ψ

⇒ �ψ  ⇒ p1/⇒ �p1
ψ ⇒
�ψ ⇒  p1 ⇒ /�p1 ⇒

Introducing context-relations to handle the context part:

�Γ⇒
�Γ⇒  π1 = {〈f:�p1, f:�p1〉}

Γ⇒ ∆
Γ⇒ ∆

 π0 = {〈f:p1, f:p1〉, 〈t:p1, t:p1〉}

The final formulation:
〈⇒ p1, π1〉/⇒ �p1 〈p1 ⇒, π0〉/�p1 ⇒
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Basic Rules

A basic rule:
〈s1, π1〉, . . . , 〈sn, πn〉/C

Premises: sequents s1, . . . , sn
Corresponding context-relations: π1, . . . , πn
Conclusion: sequent C

Its application:
σ(s1) ∪ c1 . . . σ(sn) ∪ cn

σ(C) ∪ c′
1 ∪ . . . ∪ c′

n

where :
σ is a substitution
for every 1 ≤ i ≤ n, 〈ci , c′

i 〉 is a πi -instance
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Basic Rules - More Examples

Basic Rule Application

〈p1 ⇒, π0〉, 〈 ⇒ p1, π0〉/⇒
Γ1, ψ ⇒ ∆1 Γ2 ⇒ ψ,∆2

Γ1, Γ2 ⇒ ∆1,∆2

〈p1 ⇒ p2, π0〉/ ⇒ p1 ⊃ p2
Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ ⊃ ψ,∆

〈p1 ⇒ p2, πi〉/ ⇒ p1 ⊃ p2
Γ, ϕ⇒ ψ

Γ⇒ ϕ ⊃ ψ

〈⇒ p1, πK 4〉/⇒ �p1
Γ1,�Γ2 ⇒ ψ

�Γ1,�Γ2 ⇒ �ψ

π0 = {〈f:p1, f:p1〉, 〈t:p1, t:p1〉}

πi = {〈f:p1, f:p1〉}

πK 4 = {〈f:p1, f:�p1〉, 〈f:�p1, f:�p1〉}
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Basic Systems

Many useful sequent systems are basic.

This includes systems for (the propositional fragments of):

Classical logic
Intuitionistic logic, its dual, and bi-intuitionistic logic
Variety of modal logics
Intuitionistic modal logics
Many-valued logics
Variety of paraconsistent logics



Kripke Semantics in General

Definition
A Kripke frame consists of:

A set of worlds W
A set of accessibility relations R
A valuation v : W × wff → {T, F}

To obtain Kripke semantics for a basic system G, we identify a set of
G-legal frames for which G is sound and complete, i.e.
`G s iff every G-legal frame is a model of s.

A frame is a model of a sequent s if s true in every world
A sequent s is true in a world w if s contains at least one signed
formula which is true in w
A signed formula X:ψ is true in a world w if v(w , ψ) = X
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Kripke Semantics for Basic Systems

For a basic system G:
Each context-relation in G and each basic rule of G imposes a
constraint on the set of frames.
Joining all of these constraints, we obtain the set of G-legal frames.

It might produce non-deterministic semantics.
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G-legal Frames

Reminder: π0 = {〈f:p1, f:p1〉, 〈t:p1, t:p1〉}

For every context-relation π in G there is a corresponding
accessibility relation Rπ, where Rπ0 is the identity relation.
The constraint imposed by the context-relation π:
if wRπu then for every π-instance 〈X:ψ, Y:ϕ〉, either v(u, ψ) 6= X or
v(w , ϕ) = Y.
The constraint imposed by the basic rule 〈s1, π1〉, . . . , 〈sn, πn〉/C:
For every world w , substitution σ, if for every 1 ≤ i ≤ n, σ(si) is true
in every u such that wRπi u, then σ(C) is true in w .
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Example

〈⇒ p1, πK 〉/⇒ �p1

πK = {〈f:p1, f:�p1〉}

Γ⇒ ψ

�Γ⇒ �ψ

In legal frames:
An accessibility relation RπK ∈ R.

If wRπK u then for every ψ, either v(w ,�ψ) = F or v(u, ψ) 6= F,
i.e. if v(w ,�ψ) = T, then v(u, ψ) = T for every u such that wRπK u.

If v(u, ψ) = T for every u such that wRπK u, then v(w ,�ψ) = T.



Example - Primal Implication [Gurevich et al.]

π0 = {〈f:p1, f:p1〉, 〈t:p1, t:p1〉}

πi = {〈f:p1, f:p1〉}

〈⇒ p2, πi〉/⇒ p1  p2 〈⇒ p1, π0〉, 〈p2 ⇒, π0〉/p1  p2 ⇒

Γ⇒ ϕ

Γ⇒ ψ  ϕ

Γ1 ⇒ ψ,∆1 Γ2, ϕ⇒ ∆2
Γ1, Γ2, ψ  ϕ⇒ ∆1,∆2

In legal frames:

A accessibility relation Rπi ∈ R.
If wRπi u and v(w , ψ) = T then v(u, ψ) = T.
If v(w , ϕ) = T then v(w , ψ  ϕ) = T.
If v(w , ψ) = T and v(w , ϕ) = F then v(w , ψ  ϕ) = F.
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Kripke Semantics for Basic Systems

Theorem
Every basic system G is sound and complete with respect to the
semantics of G-legal frames.

General and uniform:
Various known soundness and completeness results are specific
cases of this general theorem

Modular
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The Subformula Property

A basic system has the subformula property if `G s implies that
there exists a proof of s in G consisting only of subformulas of the
formulas in s.

In basic systems the subformula property implies decidability and
consistency.

Q: What is the semantic meaning of the subformula property?

Next, we strengthen the soundness and completeness theorem to
characterize proofs containing only formulas from a given set F .

For this we introduce F-semiframes.
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Frames

Definition
A frame consists of:

A set of worlds W
A set of accessibility relations R
A valuation v : W × wff → {T, F}

Theorem
There exists a proof in G of s

if and only if

every G-legal

F-semi

frame is a model of s.



Semiframes

Definition
An F-semiframe consists of:

A set of worlds W
A set of accessibility relations R
A valuation v : W ×F → {T, F}

Theorem
There exists a proof in G of s containing only formulas from F

if and only if

every G-legal F-semiframe is a model of s.



Semantic Characterization of the Subformula Property

The last theorem leads to a semantic decision procedure for basic
systems that have the subformula property (just check all possible
semiframes).
Semantic sufficient condition for the subformula property: If every
G-legal F-semiframe can be extended to a G-legal frame for every
set F of formulas closed under subformulas, then G has the
subformula property.

This criterion is applicable for many interesting basic systems.



Cut-Admissibility

To characterize cut-admissibility in basic systems, we provide another
soundness and completeness theorem for cut-free proofs.

Intuition

An application of cut:
ψ ⇒ ⇒ ψ

⇒
If cut is forbidden, we need a frame which is a model of ψ ⇒ and⇒ ψ.
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Quasiframes

Definition
A frame consists of:

A set of worlds W
A set of accessibility relations R
A valuation v : W × wff → {T, F}

A sequent s is true in a world w if at least one of the following hold:
v(w , ψ) = F for some ψ on the left side of s
v(w , ψ) = T for some ψ on the right side of s
v(w , ψ) = i for some ψ in s

If v(w , ψ) = i, then both {f:ψ} and {t:ψ} are true in w .
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Semantic Characterization of Cut-Admissibility

Theorem
There exists a cut-free proof in G of s

if and only if

every G-legal quasiframe is a model of s.

Semantic sufficient condition for cut-admissibility:
If every G-legal quasiframe can be refined into a G-legal frame,
then G enjoys cut-admissibility
(by refinement, we mean changing all i’s to T’s or F’s).

Provides a uniform basis for semantic proofs of cut-admissibility in
basic systems.
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Extensions

Similar method is applicable to:
Provide semantics when cut is allowed only on some formulas (to
characterize strong cut-admissibility).
Provide semantics when the identity axiom is available only for
some formulas (to characterize axiom-expansion).

Thank you!


