
Decidable Verification under Localized
Release-Acquire Concurrency

(Extended Version)

Abhishek Kr Singh and Ori Lahav

Tel Aviv University
abhishek.uor@gmail.com orilahav@tau.ac.il

Abstract. State reachability for finite state concurrent programs run-
ning under Release-Acquire (RA) semantics is known to be undecidable,
while under a weaker variant, called Weak-Release-Acquire (WRA), the
problem is decidable. However, WRA allows many counterintuitive be-
haviors not allowed under RA, in which threads locally oscillate between
observed values. We propose a strengthening of WRA in the form of
a new memory model, which we call Localized Release-Acquire (LRA),
that prunes these oscillatory behaviors. We provide semantics for LRA
and show that verification under LRA is decidable by extending the
potential-based technique used to prove decidability under WRA. The
LRA model is still weaker than RA, and thus our results can be used to
soundly verify programs under RA.

Keywords: Relaxed Memory Concurrency · State Reachability · Release-
Acquire Semantics

1 Introduction

The Release-Acquire memory model (RA), a prominent fragment of the C/C++
shared-memory concurrency specifications from 2011 [13,16,17,27], has recently
gained a lot of attention (see, e.g., [2, 7, 18, 23–25, 30]). For programmers, RA
combines the essential guarantees of coherence [11] (a.k.a. “sequential consistency
per-location”) and causal consistency [10, 20], which enable the implementation
of various concurrent algorithms and synchronization mechanisms with very few
barriers. For implementors, RA is weaker than the Total Store Order model
(TSO) [29, 32], which enables efficient mapping of memory accesses to Intel’s
x86 processors. Moreover, unlike TSO, RA is “monotone” [33], which, roughly
speaking, means that replacing parallel composition with sequential composition
can never introduce additional behaviors [26].

Unfortunately, the fundamental problem of state reachability in finite-state
concurrent programs running under RA was recently shown to be undecidable [2].
This is in contrast with state reachability assuming the well-known model of
sequential consistency (SC) [28], which amounts to standard reachability in a
finite state system, as well as with state reachability assuming TSO, which was

https://orcid.org/0000-0002-2760-5419
https://orcid.org/0000-0003-4305-6998


2 Abhishek Kr Singh and Ori Lahav

shown to be decidable [4,5,12] using the framework of well-structured transition
systems (WSTS) [1, 15]. More recently, decidability of state reachability was
established for two variants of RA [21,22], called Strong Release-Acquire (SRA)
and Weak Release-Acquire (WRA), which bound RA from above (every behavior
allowed by SRA is allowed by RA) and below (every behavior allowed by RA is
allowed by WRA). In particular, verification under WRA can be used to obtain
sound (but incomplete) verification under RA, since any buggy program under
RA is also buggy under WRA. The gap, however, between WRA and RA includes
some dubious behaviors:

Example 1. The annotated behaviors in the three litmus tests below are allowed
by WRA but disallowed by RA:

(Oscillation 1) (Oscillation 2) (Oscillation 3)

x := 2
x := 1
b := x //2
c := x //1

x := 2
a := x //1
b := x //2
c := x //1

x := 1 x := 2
a := y //1
b := x //2
c := x //1

x := 1
y := 1

Intuitively speaking, a thread in WRA can “change its mind” about the order of
concurrent writes. In RA, every shared variable is governed by a “modification
order” which dictates the (globally agreed upon) order of concurrent writes, and
reads have to respect that order.

In this paper, we aim to narrow the gap between models with decidable
reachability problem and RA by providing a model that lies between WRA and
RA and still allows for decidable verification. More concretely, we propose to
strengthen WRA in a way that eliminates the above oscillatory behaviors, while
still (1) being weaker than RA and (2) inducing a decidable state reachability
problem. The proposed model, which we call Localized Release-Acquire (LRA),
is obtained by adding one constraint (a.k.a. axiom) to WRA’s declarative consis-
tency predicate. In turn, decidability is established similarly to [22], by carefully
designing an operational “lossy” semantics based on maintaining thread poten-
tials, so that it fits well in the framework of WSTS, and it is equivalent to LRA.
Our proof establishes the equivalence of the lossy potential-based system with
LRA using forward simulation in one direction and backward simulation in the
converse.

2 Preliminaries

In this section we present the formal preliminaries for our results, including
the representation of concurrent programs, memory systems, and declarative
execution graphs. We employ the following finite domains (and metavariables
ranging over them):

thread identifiers τ, π ∈ Tid = {T1, T2, ...}
variables x, y ∈ Loc ≜ {x, y, ...}

values v ∈ Val ≜ {0, 1, 2, ...}
We represent concurrent programs as labeled transition systems. A labeled tran-
sition system (LTS, for short) A over an alphabet Σ is a triple ⟨Q,Q0, T ⟩, where



Decidable Verification under Localized Release-Acquire Concurrency 3

Q is a set of states, Q0 ⊆ Q is the set of initial states, and T ⊆ Q × Σ × Q is
a set of transitions. We denote by A.Q, A.Q0, and A.T the three components of
an LTS A; we write σ−→A for the relation {⟨q, q′⟩ | ⟨q, σ, q′⟩ ∈ A.T} and −→A for⋃

σ∈Σ
σ−→A. A state q ∈ A.Q is reachable in A if q0 −→∗

A q for some q0 ∈ A.Q0. A
sequence σ1, ... ,σn is a trace of A if q0

σ1−→A q1
σ2−→A ··· qn−1

σn−−→A qn for some
q0 ∈ A.Q0 and q1, ... ,qn ∈ A.Q.

For brevity, we elide the definition of how concurrent programs in a pro-
gramming language are interpreted as LTSs (see [22] for such definition), but
only note that these LTSs are finite-state and they employ labels (a.k.a. “pro-
gram transition labels”) from the set ProgLab ≜ Tid × (Lab ∪ {ϵ}), where Lab
denotes the set of action labels, representing interactions that a program may
have with the memory, and ϵ denotes a thread-internal transition. Action labels
l ∈ Lab take one of the following forms: a read R(x, vR), a write W(x, vW), or a read-
modify-write RMW(x, vR, vW), where x ∈ Loc and vR, vW,∈ Val. The functions typ,
loc, valR, and valW respectively retrieve (when applicable) the type (R/W/RMW),
variable (x), read value (vR), and written value (vW) of an action label. Further-
more, for a program transition label α ∈ ProgLab, the functions tid and lab

respectively retrieve the thread identifier (τ) and the action label (or ϵ) of α,
and the functions on action labels (typ, loc, ...) are lifted to program transition
labels in the obvious way.

To represent concurrent programs running under a particular memory model,
we synchronize the transitions of a program Pr with a memory system. A mem-
ory system is another LTS M (but, possibly infinite-state) whose set of transition
labels consists of non-silent program transition labels (elements of Tid× Lab) as
well as a (disjoint) set M.Θ of memory-internal actions. Then, the composi-
tion of a program Pr and a memory system M, denoted by Pr⋊⋉M, is the LTS
whose transition labels are the elements of ProgLab ∪ M.Θ; states are pairs
⟨p,M⟩ ∈ Pr .Q×M.Q; initial state is ⟨pInit,M.Q0⟩; and transitions are given by:

α ∈ Tid× Lab
p α−→Pr p′ M α−→M M ′

⟨p,M⟩ α−→Pr⋊⋉M ⟨p′,M ′⟩

α ∈ Tid× {ϵ}
p α−→Pr p′

⟨p,M⟩ α−→Pr⋊⋉M ⟨p′,M⟩

α ∈ M.Θ
M α−→M M ′

⟨p,M⟩ α−→Pr⋊⋉M ⟨p,M ′⟩

The state reachability problem for a memory system M receives as input a
program Pr and a state p ∈ Pr .Q and asks whether ⟨p,M⟩ is reachable in Pr⋊⋉M
for some M ∈ M.Q.

Finally, we also need the notion of a declarative memory model, which ac-
cepts/rejects program behaviors based on constraints on the generated execution
graphs.

Definition 1. An execution graph G is a pair ⟨E, rf ⟩, where:

– E is a finite set of events. An event e is a tuple ⟨τ, s, l⟩, where τ ∈ Tid,
called the event’s thread identifier ; s ∈ N, called the event’s serial identifier,
and l ∈ Lab, called the event’s label. The functions tid, sn, and lab return
the thread identifier (τ), identifier (s), and action label (l) of an event. All



4 Abhishek Kr Singh and Ori Lahav

functions on action labels (typ, loc, ...) are lifted to events in the obvious
way. We denote by E the set of all events, and define the following subsets:

R ≜ {e ∈ E | typ(e) ∈ {R, RMW}} W ≜ {e ∈ E | typ(e) ∈ {W, RMW}}
RMW ≜ R ∩W Eτ = {e ∈ E | tid(e) = τ}

– rf is a reads-from relation for E, that is a relation on E satisfying:
• If ⟨w, r⟩ ∈ rf , then w ∈ W and r ∈ R.
• If ⟨w, r⟩ ∈ rf , then loc(w) = loc(r) and valW(w) = valR(r).
• w1 = w2 whenever ⟨w1, r⟩, ⟨w2, r⟩ ∈ rf (each read reads from at most

one write).
• For every r ∈ E∩R, there exists some w ∈ E such that ⟨w, r⟩ ∈ rf (each

read reads from some write).

We denote the components of G by G.E and G.rf. For any set E′ ⊆ E, we
write G.E′ for G.E ∩ E′ (e.g., G.W = G.E ∩ W). The program order induced
by an execution graph G, denoted by G.po, is defined as G.po ≜ {⟨e1, e2⟩ ∈
E × E | sn(e1) < sn(e2) ∧ tid(e1) = tid(e2)}.

Given a set E of events, τ ∈ Tid, and l ∈ Lab, NextEvent(E, τ, l) denotes
the event with thread identifier τ , label l, and a minimal fresh serial identifier
w.r.t. E, i.e., NextEvent(E, τ, l) ≜ ⟨τ, s, l⟩, where s = min{n ∈ N | ⟨τ, n, l⟩ ̸∈ E}.

Definition 2. An execution graph G is generated by a program Pr with final
state p ∈ Pr .Q if ⟨p0, G0⟩ →∗ ⟨p,G⟩ for some p0 ∈ Pr .Q0, where G0 denotes the
empty execution graph (given by G0 ≜ ⟨∅, ∅⟩) and → is defined by:

p
τ,l−→Pr p′ E′ = E ∪ {NextEvent(E, τ, l)} rf ⊆ rf ′

⟨E′, rf ′⟩ is an execution graph
⟨p, ⟨E, rf ⟩⟩ → ⟨p′, ⟨E′, rf ′⟩⟩

p
τ,ε−−→Pr p′

⟨p,G⟩ → ⟨p′, G⟩

Using the above definitions, a declarative memory model can be identified
with a set of so-called consistent execution graphs, and a program state p is
’emphreachable under a declarative memory model if some consistent execution
graph G is generated by Pr with final state p.

3 The Localized Release-Acquire Model

In this section we introduce the Localized Release-Acquire (LRA) model, start-
ing with its declarative presentation. LRA is obtained by adding a single con-
straint, called “local-read-coherence”, to WRA. We first briefly repeat the three
constraints of WRA (see [20] for more details). Figure 1 summarizes the four
constraints of LRA.



Decidable Verification under Localized Release-Acquire Concurrency 5

E

hb

irr-hb

Wx Wx

Rx

rf hb

hb

weak-coherence

Wx

RMWxRMWx

rf rf

weak-atomicity

Wx Rx

Rx

rf hb

hb \ rf

local-read-coherence

Fig. 1. Illustration of forbidden patterns in LRA

Notation for relations. Given a relation R, dom(R) denotes its domain; R? and
R+ denote its reflexive and transitive closures; and R−1 denotes its inverse. The
(left) composition of relations R1, R2 is denoted by R1 ; R2. We denote by [A]
the identity relation on a set A (e.g., [A] ;R ; [B] = R ∩ (A×B)).

First, we need a derived "happens-before" relation. For a given execution
graph G, we define G.hb ≜ (G.po ∪ G.rf)+. We require that G.hb is a partial
order, which results in our first constraint:

G.hb is irreflexive (irr-hb)

The next constraint intuitively makes sure that “a thread cannot read a
value when it is aware of a later value written to the same location”, where
“aware” and “later” are interpreted using G.hb. Formally, we define G.hb|loc ≜
{⟨e1, e2⟩ ∈ G.hb | loc(e1) = loc(e2)} (i.e., per-location restriction of the happens-
before relation), and require the following:

G.hb|loc ; [W] ;G.hb ;G.rf−1 is irreflexive (weak-coherence)

In particular, the following annotated outcome of the message-passing (MP)
test is forbidden:

(MP)

x := 0
x := 1
y := 1

a := y //1
b := x //0

W(x, 0)

W(x, 1)

W(y, 1)

R(y, 1)

R(x, 0)

rf

An execution graph justifying this outcome must have rf-edges as depicted
above. However, we have hb|loc from W(x, 0) to W(x, 1), hb from W(x, 1) to R(x, 0),
and rf from W(x, 0) to R(x, 0), which is forbidden by weak-coherence.

The final condition that comes from WRA ensures that distinct RMW events
never read from the same write event:

∀⟨w1, e1⟩, ⟨w2, e2⟩ ∈ G.rf ; [RMW]. w1 = w2 =⇒ e1 = e2 (weak-atomicity)

This concludes the consistency constraints of WRA. As noted above, unlike
RA, WRA admits behaviors in which threads oscillate between values that were
concurrently written to the same location. Our proposed condition of LRA that
prunes these behaviors is the following:

(G.hb|loc \G.rf) ; [R] ;G.hb ;G.rf−1 is irreflexive (local-read-coherence)



6 Abhishek Kr Singh and Ori Lahav

Intuitively, this constraint ensures that a thread cannot read from a certain
write w if it is already aware of a read r′ reading from the same location that is
later than w and reads from some other write w′. Again, “aware” and “later” are
interpreted using G.hb.

The following examples demonstrate “oscillations” between observed values
that are allowed in WRA but forbidden in LRA.

(Oscillation 1) (Oscillation 2) (Oscillation 3)

x := 2
x := 1
b := x //2
c := x //1

x := 2
a := x //1
b := x //2
c := x //1

x := 1 x := 2
a := y //1
b := x //2
c := x //1

x := 1
y := 1

T1 T2

W(x, 2)

W(x, 1)

R(x, 2)

R(x, 1)

rf
rf

T1 T2 T3

W(x, 2) W(x, 1)
R(x, 2)

R(x, 1)

R(x, 1)

rf
rf

rf

T1 T2 T3

W(x, 2)
W(x, 1)

W(y, 1)R(x, 2)

R(x, 1)

R(y, 1)

rf

rf

rf

hb?

(Order-Propagation)

x := 2
a := x //1
b := x //2
y := 1

d := y //1
c := x //1 x := 1

T1 T2 T3 T4

W(x, 2) W(x, 1)
R(x, 2)

W(y, 1)

R(x, 1)

R(x, 1)

R(y, 1)
rf

rf

rf
rf

It can be checked that local-read-coherence forbids these execution graphs:
in all of them we have (1) G.hb|loc \G.rf from W(x, 1) to R(x, 2); (2) G.hb from
R(x, 2) to the read R(x, 1) that represents the read to c; and (3) rf from W(x, 1)
to that read.

Next, we establish the relation between LRA and RA (see [22] for a definition
of RA).

Proposition 1. LRA is weaker than RA, that is: if a program state is reachable
under RA, then it is also reachable under LRA.

Proof. We establish this result by recalling the following “read-coherence” con-
sistency constraint of RA (see Figure 2 and [20] for more details). Note the
use of modification order G.mo in RA to interpret one write being “later” than
another, in the place of G.hb|loc in the “weak-coherence” in WRA. Here G.mo is
disjoint union of relations {G.mox}x∈Loc where each G.mox is a strict total order
on Wx.

G.mo ;G.hb ;G.rf−1 is irreflexive (read-coherence)

Since WRA is strictly weaker than RA, it suffices to show that the additional
constraint “local-read-coherence” of LRA is also guaranteed in RA. The proof
follows by contradiction. Assume otherwise, hence, for a given x ∈ Loc, we have
w,w′ ∈ Wx and r, r′ ∈ Rx where ⟨w, r′⟩ ∈ hb \ rf, ⟨w′, r′⟩ ∈ rf, ⟨w, r⟩ ∈ rf, and
w ̸= w′ (see right side of Figure 2). Since loc(w) = x = loc(w′), due to the RA
semantics, we have one of the following cases:



Decidable Verification under Localized Release-Acquire Concurrency 7

Wx Wx

Rx

rf hb

mo

read-coherence

w r′ w′

r

rf hb

hb \ rf rf

⟨w,w′⟩ ∈ mox∨⟨w′, w⟩ ∈ mox

Fig. 2. Axiom read-coherence in RA and illustration for proof of Proposition 1

– ⟨w,w′⟩ ∈ mox: In this case we have ⟨w, r⟩ ∈ rf while ⟨w, r⟩ ∈ mox ; hb, which
contradicts the axiom read-coherence of RA.

– ⟨w′, w⟩ ∈ mox: In this case we have ⟨w′, r′⟩ ∈ rf while ⟨w′, r′⟩ ∈ mox ; hb,
which again contradicts the axiom read-coherence of RA.

To see that LRA is strictly weaker than RA, we note that LRA does not
provide full coherence. Indeed, as the next example shows, even programs with
a single shared variable can exhibit weak behaviors:

(WW)

x := 2
a := x //1

x := 1
b := x //2

T1 T2

W(x, 2) W(x, 1)

R(x, 2)R(x, 1)

rfrf

Interestingly, our final example shows the LRA model is possibly blocking: it
may be the case that a thread simply cannot read from a certain location, since
any option for reading would violate local-read-coherence.

(Blocking)

x := 2
a := x //1
z := 1

x := 1
b := x //2
c := z //1
d := x //nothing can be read

T1 T2

W(x, 2) W(x, 1)

R(x, 2)R(x, 1)

W(z, 1) R(z, 1)

R(x,−)

rfrf

rf

Roughly speaking, the synchronization on z “joins” the threads and rules out
both options. More formally, if the final read reads from W(x, 1), we violate
local-read-coherence due to G.hb|loc \ G.rf from W(x, 1) to R(x, 2) and G.hb
from R(x, 2) to the final read. In turn, if the final read reads from W(x, 2), we
violate local-read-coherence due to G.hb|loc \ G.rf from W(x, 2) to R(x, 1) and
G.hb from R(x, 1) to the final read.

It is important to note that the blocking aspect of LRA model does not affect
the benefits of sound verification of the RA programs using LRA, since (due to
Proposition 1) forbidden outcomes in LRA model (possibly due to a blocked
run) are also forbidden in the RA model.



8 Abhishek Kr Singh and Ori Lahav

3.1 An Operational Presentation

Since LRA-consistency is “prefix-closed”, it is straightforward to “operational-
ize” LRA’s declarative presentation, which will help us below in relating the
potential-model to LRA. To do so, we define a memory system, called opLRA,
whose states are execution graphs, the only initial state is the empty execution
graph, and the transitions are as follows:

write
e = NextEvent(G.E, τ, W(x, vW))

G′ = ⟨G.E ∪ {e}, G.rf⟩

G
τ,W(x,vW)−−−−−→opLRA G′

read/rmw
l = R(x, vR) ∨ l = RMW(x, vR, vW)

e = NextEvent(G.E, τ, l) G′ = ⟨G.E ∪ {e}, G.rf ∪ {⟨w, e⟩}⟩
w ∈ G.Wx valW(w) = vR

w ̸∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ])

w ̸∈ dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ ])
typ(l) = RMW =⇒ w ̸∈ dom(G.rf ; [RMW])

G
τ,l−−→opLRA G′

These transitions are enforcing consistency on every step, which allows us to
establish the following relation.

Proposition 2. LRA is equivalent to opLRA, that is: a program state is reach-
able under LRA iff it is reachable under opLRA.

4 Lossy semantics for LRA

In this section, we present loLRA, a potential-based memory system that is
equivalent to LRA and well suited for verification in the framework of WSTS.

The memory states of loLRA maintain a collection of "read/write-option"
lists for each thread, called the potential of the thread. Concretely, a state of
loLRA is a potential mapping B which maps each thread τ ∈ Tid to its potential
B(τ). Potentials are finite sets of option lists, where each option list stands for
a sequence of possible future reads (read options) and writes (write options)
that ascribe possible operations the thread may perform in the order it may
perform them. For instance, a list o1 · o2 consisting of two read options, o1 and
o2, allows the thread to read val(o1) from location loc(o1) and then val(o2)
from location loc(o2). Thread potentials are explicitly “lossy”—a thread can non-
deterministically lose whatever parts of its potential at any point. Initially, the
loLRA memory system non-deterministically starts in a state where all potentials
consist solely of write options.

Next, we present the full definitions (which, except for loLRA’s transitions
match precisely the definitions of the corresponding system for WRA in [22]).



Decidable Verification under Localized Release-Acquire Concurrency 9

Notation for sequences. We use ϵ to denote the empty sequence. The length of a
sequence s is denoted by |s| (in particular |ϵ| = 0). We often identify a sequence
s over Σ with its underlying function in {1, ... ,|s|} → Σ, and write s(k) for the
symbol at position 1 ≤ k ≤ |s| in s. We write σ ∈ s if the symbol σ appears
in s, that is if s(k) = σ for some 1 ≤ k ≤ |s|. We use “ ·” for the concatenation
of sequences, and lift it to concatenation of sets S1 and S2 of sequences in the
obvious way (S1 · S2 ≜ {s1 · s2 | s1 ∈ S1, s2 ∈ S2}). We identify symbols with
sequences of length 1 or their singletons when needed (e.g., in expressions like
σ · S for σ ∈ Σ and a set S of sequences over Σ).

Definition 3. Options, option lists, potentials, and potential mappings are de-
fined as follows:

1. An option o is either ⟨τ, x, v, πRMW⟩ (read option) or OW(x) (write option),
where τ, πRMW ∈ Tid, x ∈ Loc, and v ∈ Val. The functions typ, tid, loc, val,
and rmw-tid return (when applicable) the type (R/W), thread identifier (τ),
location (x), value (v), and RMW thread identifier (πRMW) of a given option.

2. An option list L is a finite sequence of (read or write) options. For a given
option list L, we define loc(L) ≜ {loc(o) | o ∈ L}.

3. A potential B is a finite non-empty set of option lists.
4. A potential mapping B is a function assigning a potential to every τ ∈ Tid.

We define a (well quasi) ordering on option lists that naturally extends to
potentials and to potential mappings.

Definition 4. The (overloaded) relation ⊑ is defined by:

1. on option lists: L ⊑ L′ if L is a (not necessarily contiguous) subsequence of
L′;

2. on potentials: B ⊑ B′ if ∀L ∈ B. ∃L′ ∈ B′. L ⊑ L′ (a.k.a. “Hoare ordering”);
3. on potential mappings: B ⊑ B′ if B(τ) ⊑ B′(τ) for every τ ∈ Tid (compo-

nentwise order).

The memory system loLRA is formally defined as follows.

Definition 5. The memory system loLRA is defined by:

– loLRA.Q is the set of potential mappings.
– loLRA.Q0 = {B | ∀τ ∈ Tid, L ∈ B(τ), o ∈ L. typ(o) = W}.
– The transitions of loLRA are given in Figure 3.

The transitions of loLRA are informally understood as follows:

– read: For a thread τ to read v from x, all lists of τ should start with an
option o with val(o) = v and loc(o) = x (since it is the same option o in
the head of all lists, all lists of τ also start with the same thread identifier,
which is important for the equivalence result; see [22, Example 5.5]). The
read step consumes these options by discarding the first element from each
of τ ’s lists.



10 Abhishek Kr Singh and Ori Lahav

write
o = ⟨τ, x, vW, πRMW⟩

∀π ∈ Tid, L′ ∈ B′(π).
((π = τ =⇒ OW(x) · L′ ∈ B(τ)) ∧ (π ̸= τ =⇒ L′ ∈ B(π))) ∨
(∃n ≥ 1, L0, ... ,Ln.

L′ = L0 · (o · L1) · (o · L2) ·...· (o · Ln) ∧
OW(x) · (L1 ·...· Ln−1) · OW(x) · Ln ∈ B(τ) ∧
(π = τ =⇒ OW(x) · L0 ·...· Ln−1 · OW(x) · Ln ∈ B(τ) ∧ x ̸∈ loc(L0 ·...· Ln−1)) ∧
(π ̸= τ =⇒ L0 ·...· Ln−1 · OW(x) · Ln ∈ B(π) ∧ x ̸∈ loc(L1 ·...· Ln−1)))

B τ,W(x,vW)−−−−−→loLRA B′

read
loc(o) = x
val(o) = vR

B = B′[τ 7→ o · B′(τ)]

B τ,R(x,vR)−−−−−→loLRA B′

rmw
loc(o) = x val(o) = vR rmw-tid(o) = τ

B = Bmid[τ 7→ o · Bmid(τ)]

Bmid
τ,W(x,vW)−−−−−→loLRA B′

B τ,RMW(x,vR,vW)−−−−−−−−→loLRA B′

lower
B′ ⊑ B

B ε−→loLRA B′

Fig. 3. Transitions of loLRA memory system

– write: For a thread τ to write v to x, an option OW(x) must be the first
in each of τ ’s lists. The write consumes these options, discarding the first
element from each of τ ’s lists. To allow future reads from the executed write,
the write may add a read option o with loc(o) = x, val(o) = v, tid(o) =
τ , and some rmw-tid(o) (possibly multiple times) in every existing list of
every thread (including the writer itself). The write step enforces carefully
tailored conditions on where these new options are added:
1. In the potential of the writer itself, a new option cannot be added after an

existing write option to x (except for the write option that is consumed
in this write step) and the last added read option should immediately
precede an existing write option to x.

2. In the potential of other threads the last added read option should im-
mediately precede an existing write option to x that is to be consumed
by the current write step.

3. If more than one option is added, the added read options can never
“surround” an existing read/write option with location x.

4. New read options can be placed in a list L only if the suffix of L after
the first occurrence of the newly added read options are present as an
option list of the writing thread τ .

– rmw: The only additional requirement when performing an RMW compared
to a non-interrupted execution of a read followed by a write is that two
RMWs should never read from the same event. This is achieved by including
RMW thread identifiers in read options, denoting the (unique) thread that
may consume this option when executing an RMW. When a thread writes,
it picks an (arbitrary) unique thread identifier (πRMW) for its added options;
reads ignore this field; and RMWs by thread τ can only consume read options
whose RMW thread identifier is τ .



Decidable Verification under Localized Release-Acquire Concurrency 11

W(x, 0)

W(x, 1)

W(y, 1)

R(y, 1)

R(x, 0)

rf

T1 T2

OW(x)

OW(x)

OW(y)

OW(y)

OW(x)

L′
0L0

T1 T2

W(x, 0)

OW(x)

OW(y)

OW(y)

ox,0

L′

1(a) 2(a)

T1 T2

W(x, 0)

OW(x)

OW(y)

OW(y)

ox,0ox,0

✗

T1 T2

W(x, 0)

W(x, 1)

OW(y)

OW(y)

ox,0

}L
′

T1 T2

W(x, 0)

W(x, 1)

W(y, 1)

oy,1

ox,0···

}✗

2(b) 3(a) 4(a)

Fig. 4. This figure shows the loLRA transitions for MP program. Here the dashed line
in 1(a) between OW(x) of T1 and OW(x) of T2 indicates that a future write W(x, 0) of T1
(see 2(a)) may replace the OW(x) of T2 with a read option ox,0. We follow a similar
depiction in all the remaining diagrams of the paper.

– lower: The step allows to remove read/write options as well as full option
lists at any time.

We revisit the examples from §3 to illustrate that loLRA forbids those out-
comes. In following discussions, shaded portions of the diagram for each thread
correspond to its option lists. We write ox,v to represent a read option o with
loc(o) = x and val(o) = v.

Example 2. Recall the execution graph of MP from §3 (see Figure 4). Since
no step in loLRA can introduce a write option, we observe the following facts
about the option lists L0 ∈ B0(T1) and L′

0 ∈ B0(T2) where B0 may lead to the
annotated program state (a = 1 and b = 0) using a trace in which L0 and L′

0

are not discarded by a lower step:

1. L0 contains OW(x) · OW(x) · OW(y) as a sub-list to enable W(x, 0), W(x, 1), and
W(y, 1) in T1.

2. For the reads R(y, 1) and R(x, 0) to happen the corresponding writes W(y, 1)
and W(x, 0) need to insert read options oy,1 and ox,0 at these locations (see
read step).

3. L′
0 contains OW(y) followed by OW(x) to enable future insertions of read options

oy,1 and ox,0 by the writes W(y, 1) and W(x, 0) respectively (see condition 2
of write step).

Starting in the state B0 (1(a) in Figure 4), one can reach state 3(a) through
state 2(a) in two successive steps corresponding to execution of the first two
writes, W(x, 0) and W(x, 1) of T1, where the first write W(x, 0) replaces OW(x) in
the option list of T2 with a read option ox,0 resulting in L′ = L′

0[OW(x) 7→ ox,0].



12 Abhishek Kr Singh and Ori Lahav

T1 T2

W(x, 2)

W(x, 1)

R(x, 2)

R(x, 1)

rf
rf

T1 T2

OW(x)

W(x, 1)

OW(x) ✗

T1 T2

W(x, 2)

W(x, 1)

ox,2 ✗

(Oscillation 1) 1(a) 1(b)

T1 T2 T3

W(x, 2) W(x, 1)
R(x, 2)

R(x, 1)

R(x, 1)

rf
rf

rf

T1 T2 T3

OW(x) W(x, 1)
OW(x)

✗

✗

T1 T2 T3

W(x, 2) W(x, 1)
ox,2

✗

✗

(Oscillation 2) 2(a) 2(b)

Fig. 5. loLRA transitions for Oscillation 1 and Oscillation 2 (Example 3).

In the next step (shown as 4(a)), we hope to perform the write W(y, 1) in T1 and
replace OW(y) in T2 with the read option oy,1. However, the current write step
requires that the suffix of L′ after OW(y) (here, ox,0) be present as an option list
of thread T1 (due to condition 4 of the write step). This is clearly not true and
hence we can not continue with the current execution trace. To circumvent this
blocking run the first write W(x, 0) of T1 might want to non-deterministically
insert a read option ox,0 at the specified location (see 2(b)) in its option list.
However, due to the presence of an earlier OW(x) in the option lists of T1 this is
not allowed. Therefore, the loLRA semantics successfully forbids the annotated
outcome of the message passing test.

Example 3. Recall the execution graphs of (Oscillation 1) and (Oscillation 2)
from §3 (see Figure 5), where T2 oscillates between the observed values of x.
Consider following two cases (and the corresponding execution graphs) to observe
a contradiction for each possible trace of loLRA:

– W(x, 1) executes before W(x, 2): For (Oscillation 1) and (Oscillation 2) this
is depicted as 1(a) and 2(a) of Figure 5 respectively. Note the presence of
OW(x) at the specified locations in the option lists of thread T2 to mark the
end of new read options due to the future write W(x, 2). In the current state
of (Oscillation 1), the write W(x, 1) of thread T2 is not allowed to put a read
option in its own option list due to the presence of an earlier OW(x) (see
condition 1 of write step). Similarly in the current state of (Oscillation 2),
the write W(x, 1) of thread T3 cannot place new read options in the list of
thread T2 because OW(x) appears between the new read options (see condition
3 of write step).

– W(x, 1) executes after W(x, 2): For (Oscillation 1) and (Oscillation 2) this is
depicted as 1(b) and 2(b) of Figure 5 respectively. Note the presence of ox,2
(instead of OW(x) in the previous case) at the specified location in the option



Decidable Verification under Localized Release-Acquire Concurrency 13

T1 T2 T3

W(x, 2)
W(x, 1)

W(y, 1)R(x, 2)

R(x, 1)

R(y, 1)

rf

rf

rf

hb?

T1 T2 T3

OW(x)

W(x, 1)

OW(y)

OW(x)

OW(y)

OW(x)✗ ✗

T1 T2 T3

W(x, 2)

W(x, 1)

OW(y)

ox,2

OW(y)

ox,2✗ ✗

(Oscillation 3) 3(a) 3(b)

Fig. 6. The loLRA transitions for the program Oscillation 3 (Example 4).

lists of thread T2 to allow the read R(x, 2) to read in future from the write
W(x, 2) of T1. Again in the states corresponding to 1(b) and 2(b), due to
conditions 1 and 3 of write step, W(x, 1) is not allowed to put new read
options at the specified locations.

Example 4. Recall the execution graph of (Oscillation 3) from §3, where T2 oscil-
lates between the observed values of x (see Figure 6). We consider the following
two cases and the resulting execution graphs, based on the order of execution
between the write events W(x, 1) and W(x, 2), to observe a contradiction in each
trace of loLRA:

– W(x, 1) executes before W(x, 2): This condition is depicted as 3(a). Note the
presence of OW(y) and OW(x) at the specified location in the option list of T2 to
mark the end of new read options due to the future writes W(y, 1) and W(x, 2)
of T3 and T1 respectively. Also note the presence of OW(x) in the option lists
of T3. We claim that this OW(x) is needed as justification for the future write
W(y, 1) of T3 (when the write W(y, 1) will be replacing the write option OW(y)
on T2 with the read option oy,1). To justify the claim, assume otherwise (i.e.,
OW(x) is absent in the option list of T3), and we observe that W(y, 1) of T3 can
not continue in any of the following possible cases:
• W(x, 2) has not occurred when W(y, 1) tries to execute: In this case OW(x) is

still present in the option list of T2 and hence is required at the specified
location in the option list of T3 as a justification for the current write
W(y, 1) (see condition 4 of the write step). Therefore, the write W(y, 1)
can not continue in this case.

• W(x, 2) has occurred when W(y, 1) tries to execute: In this case OW(x) on
T2 has been replaced with a ox,2 and hence ox,2 is also expected in the
option list of T3 (as justification for the current write step W(y, 1)).
However, the presence of ox,2 in T3 can only be ensured (as insertion of
new read option) by the corresponding write W(x, 2). The write W(x, 2)
can not add a ox,2 at the specified location due to the absence of OW(x)
at the same location to mark the end of newly added read options (see
condition 2 of write step). Hence, in this case again the write W(y, 1)
can not continue.

Assuming the presence of OW(x) in the option list of T3 (as shown in 3(a)) it
is easy to see that W(x, 1) of T3 can not put a read option in its own option



14 Abhishek Kr Singh and Ori Lahav

x := 2

d := x //2
a := y //1
b := x //2
c := x //1

x := 1
y := 1

T1 T2 T3

OW(x)

W(x, 1)

OW(y)

OW(x)

OW(y)

(Oscillation 4) 4(c)

T1 T2 T3

W(x, 2)
W(x, 1)

W(y, 1)R(x, 2)

R(x, 2)

R(x, 1)

R(y, 1)rf

rf

rf

T1 T2 T3

OW(x)

W(x, 1)

OW(y)

OW(x)

OW(y)

OW(x)✗ ✗

T1 T2 T3

W(x, 2)

W(x, 1)

OW(y)

ox,2

OW(y)

ox,2✗ ✗

(Osc 4) 4(a) 4(b)

Fig. 7. The loLRA transitions for the program Oscillation 4 (Example 5).

list (see condition 1 of write step) which is necessary as justification for the
future write W(y, 1) of T3 (again using similar arguments as discussed above).
Therefore, the current case is forbidden by the lossy loLRA semantics.

– W(x, 1) executes after W(x, 2): This condition is depicted as 3(b), where the
write W(x, 2) of T1 has replaced the write option OW(x) in the option lists
of T2 with a read option ox,2. Again, as discussed in the previous case (for
justifying the future write W(y, 1) of T3), the write W(x, 2) of T1 should also
place a read option ox,2 in the option lists of T3 at the specified location.
Now, as shown in 3(b), the write W(x, 1) of T3 can not put a read option in
its own option list (due to the presence of an earlier ox,2) which is necessary
as justification for the future write W(y, 1) of T3. Thus, the current case is
also forbidden by the lossy loLRA semantics.

In the discussions so far (particularly related to cases 1(a), 2(a), and 3(a) of
the previous examples), we observed that marking the end of newly added read
options (using a pre-existing write option) is helpful in forbidding oscillations. In
all of these cases it is easy to see (using exactly similar arguments) that we can
also forbid these oscillatory behaviors by requiring (in conditions 1 and 2 of the
write step) that the beginning of newly added read options be marked using a
pre-existing write option. Next example illustrates the distinctive advantage of
marking the end over marking the beginning.

Example 5. Consider execution graph (Osc 4) corresponding to the annotated
outcome of (Oscillation 4) shown in Figure 7. The constraint local-read-coherence
forbids this execution graph since we have (1) G.hb|loc \ G.rf from W(x, 1) to
the third read R(x, 2) of T2; (2) G.hb from the third read R(x, 2) of T2 to the last
read R(x, 1) of T2; and (3) rf from W(x, 1) to the last read R(x, 1) of T2.

Consider the following two possibilities (4(b) and 4(a) of Figure 7) corre-
sponding to this outcome where: (1) W(x, 1) executes after W(x, 2); and (2) W(x, 1)
executes before W(x, 2).



Decidable Verification under Localized Release-Acquire Concurrency 15

Assuming (1) and using arguments similar to Example 4, we land in config-
uration 4(b) which is not allowed by the lossy loLRA semantics. However, note
that assuming (2) we get a contradiction only because OW(x) is present at the
specified location in 4(a) to mark the end of new read options in the option list
of T2 (by the write W(x, 2) of thread T1). Instead, if we choose to mark the be-
ginning (and not the end) of new read options in the option list of T2 we result
in the configuration of 4(c) resulting in the absence of any pre-existing OW(x)
at the end of the new entries. In this case, we observe that there is a trace of
lossy loLRA (for the annotated outcome of (Oscillation 4)) in which W(x, 1) and
W(y, 1) of T3 appears before W(x, 2) of T1.

Next, we show that for a given program Pr , Pr⋊⋉loLRA admits the required
conditions of the WSTS framework that ensure decidability of the induced cov-
erability problem (see, e.g., [9, 15]). In particular, the compatibility condition
between the well-quasi-ordering on states and the transitions is trivial since we
explicitly include the (lower) step in loLRA.

Lemma 1. Given a program Pr , the LTS Pr⋊⋉loLRA equipped with the well-
quasi-ordering ⊑ (lifted to states of Pr⋊⋉loLRA by defining ⟨p,B⟩ ⊑ ⟨p′,B′⟩ iff
p = p′ and B ⊑ B′) is a WSTS that admits effective initialization and effective
pred-basis.

As a corollary, we obtain that state reachability under loLRA is decidable.
We refer the reader to §B where we give more details and proofs (which generally
follow those in [22]).

5 Equivalence of the Memory Systems for LRA

In this section we establish the equivalence between loLRA and opLRA by
demonstrating a simulation between these systems. The states of loLRA and
opLRA are related to each other using write lists, which match read options in
loLRA’s potentials with concrete write event in opLRA’s execution graphs.

Definition 6. A write list is a sequence of write events and write options. Let
G be an execution graph, L an option list, and tidRMW : W → Tid. A write list
W is a ⟨G,L, tidRMW⟩-write-list if |L| = |W | and the following hold for every
1 ≤ k ≤ |W |:

– If L(k) is a write option, then W (k) = L(k).
– If L(k) = ⟨τ, x, v, πRMW⟩, then W (k) ∈ G.W, tid(W (k)) = τ , loc(W (k)) = x,

valW(W (k)) = v, and tidRMW(W (k)) = πRMW.

In addition to the above, we require that weak-coherence and local-read-
coherence are maintained by any extension of the execution graph G with a
sequence of reads and writes of thread τ that are obtained by following the write
list W . This is formalized in the following notion of ⟨G, τ⟩-consistency of a write
list W .



16 Abhishek Kr Singh and Ori Lahav

τ τ2

W (k)

w

L(k)

✗

hb|lochb ?

C1(a)

τ1 τ τ2

W (j) W (k)

w

L(j)

L(k)

✗

hb|lochb
?

C1(b)

τ τ2

W (k)

L(k)

OW(x) ✗
h
b ?

x = loc(W (k))

C2(a)

τ1 τ τ2

W (j) W (k)
L(j)

L(k)

OW(x) ✗

hb ?

x = loc(W (k))

C2(b)

τ1 τ τ2

w
W (k)

L(k)

rf

✗

hb ?

hb
?

loc(w) = loc(W (k))

w ̸= W (k)

C3(a)

τ1 τ τ2

w
W (k)

L(j)

L(k)

W (j)rf

✗

hb ?

hb
?

loc(w) = loc(W (k))

w ̸= W (k)

C3(b)

τ1 τ τ2

W (j) W (k)
L(j)

L(k)

✗
h
b ?

loc(W (j)) = loc(W (k))

W (j) ̸= W (k)

C4(a)

τ1 τ τ2

W (j) W (k)

W (i)

L(j)

L(k)

L(i)

✗

hb ?

loc(W (j)) = loc(W (k))

W (j) ̸= W (k)

C4(b)

Fig. 8. Illustration of conditions in Definition 7 for the ⟨G, τ⟩-consistency of W . Each
condition is split into two cases (e.g., C1 is summarized using C1(a) or C1(b)).

Definition 7. A write list W is ⟨G, τ⟩-consistent if for every 1 ≤ k ≤ |W | with
W (k) ∈ E:

C1 W (k) ̸∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ∪ {W (j) | 1 ≤ j < k}]).
C2 If W (i) = OW(loc(W (k))) for some i < k,

then W (k) ̸∈ dom(G.hb? ; [Eτ ∪ {W (j) | 1 ≤ j < i}]).
C3 W (k) ̸∈ dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ ∪ {W (j) | 1 ≤ j < k}]).
C4 If loc(W (j)) = loc(W (k)) and W (k) ̸= W (j) for some j < k,

then W (k) ̸∈ dom(G.hb? ; [Eτ ∪ {W (i) | 1 ≤ i < j}]).

Intuitively, for any future extension of execution graph with a sequence of
events on τ , conditions C1 and C2 help in maintaining weak-coherence while C3
and C4 ensure that local-read-coherence is preserved. To assist readers, these
conditions are depicted using diagrams in Figure 8 where the shaded area of τ
represents a sequence of future events.

The simulation relation ⋎ is now defined as follows.



Decidable Verification under Localized Release-Acquire Concurrency 17

Definition 8. A state B ∈ loLRA.Q matches an execution graph G, denoted
by B ⋎ G, if there exists a function tidRMW : W → Tid, such that: (1) for every
τ ∈ Tid and L ∈ B(τ), there exists a ⟨G, τ⟩-consistent ⟨G,L, tidRMW⟩-write-list,
and (2) for every ⟨w, e⟩ ∈ G.rf ; [RMW], we have tid(e) = tidRMW(w).

Based on the simulation relation, we establish the equivalence of loLRA and
opLRA. The proof, given in §A, shows that ⋎ constitutes a forward simulation
from loLRA to opLRA, and ⋎−1 constitutes a backward simulation from opLRA
to loLRA.

Theorem 1. The traces of loLRA and the traces of opLRA coincide.

6 Conclusion, Related and Future Work

We established the decidability of state reachability for finite-state programs
under LRA, a memory model that lies strictly between WRA and RA. For that
matter, we adapted the potential-based semantics of WRA from [22] to LRA, and
showed that it meets the requirements for decidability of the WSTS framework.

In addition to the closely related work discussed in the introduction to this
paper, the paper [14] studies the problem of verifying whether a given memory
system provides causal consistency, which is a different verification problem than
the one discussed in the current paper. The CC model in [14] (when restricted
to single instruction transactions) is equivalent to (the RMW-free fragment of)
WRA, whereas CCv from [14] is equivalent to SRA.

Another line of related work concerns parametrized programs, where one has
an unknown number of threads but all of them run the same code. This arises
a decidable verification problem under SC and TSO [5], but decidability of this
problem is still unknown for WRA, SRA, and LRA. For the RMW-free fragment
this problem is PSPACE for TSO [8] as well as for RA [19] (the latter result
also allows a fixed number of distinguished threads running loop-free programs,
possibly including RMWs).

An interesting direction for future work is to try to further close the gap
between LRA and RA by introducing a restricted form of RA’s modification
order. A related problem that is still open (to the best of our knowledge) is
whether the fragment of RA without RMWs induces a decidable verification
problem. In addition, other models with undecidable reachability problems (such
as the promising semantics [6] and the full POWER model [3]) may be bounded
from below by decidable models.

Acknowledgements This work was supported by the Israel Science Founda-
tion (grant number 814/22) and the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant
agreement no. 851811).



18 Abhishek Kr Singh and Ori Lahav

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. The Bulletin of
Symbolic Logic 16(4), 457–515 (2010), http://www.jstor.org/stable/40961367

2. Abdulla, P.A., Arora, J., Atig, M.F., Krishna, S.: Verification of programs under
the release-acquire semantics. In: PLDI. pp. 1117–1132. ACM, New York, NY,
USA (2019). https://doi.org/10.1145/3314221.3314649

3. Abdulla, P.A., Atig, M.F., Bouajjani, A., Derevenetc, E., Leonardsson, C., Meyer,
R.: On the state reachability problem for concurrent programs under Power. In:
NETYS. pp. 47–59. Springer International Publishing, Cham (2021). https://doi.
org/10.1007/978-3-030-67087-0_4

4. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: The benefits of duality in
verifying concurrent programs under TSO. In: CONCUR. LIPIcs, vol. 59, pp. 5:1–
5:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016), https://doi.org/
10.4230/LIPIcs.CONCUR.2016.5

5. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: A load-buffer semantics for
total store ordering. Logical Methods in Computer Science Volume 14, Issue 1
(Jan 2018). https://doi.org/10.23638/LMCS-14(1:9)2018

6. Abdulla, P.A., Atig, M.F., Godbole, A., Krishna, S., Vafeiadis, V.: The decidability
of verification under PS 2.0. In: ESOP. pp. 1–29. Springer International Publishing,
Cham (2021). https://doi.org/10.1007/978-3-030-72019-3_1

7. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Optimal stateless model checking
under the release-acquire semantics. Proc. ACM Program. Lang. 2(OOPSLA),
135:1–135:29 (Oct 2018). https://doi.org/10.1145/3276505

8. Abdulla, P.A., Atig, M.F., Rezvan, R.: Parameterized verification under TSO is
PSPACE-complete. Proc. ACM Program. Lang. 4(POPL) (Dec 2019). https://doi.
org/10.1145/3371094

9. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Information and Computation 160(1),
109–127 (2000). https://doi.org/10.1006/INCO.1999.2843

10. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory:
definitions, implementation, and programming. Distributed Computing 9(1), 37–
49 (1995). https://doi.org/10.1007/BF01784241

11. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (Jul 2014). https://doi.org/10.1145/2627752

12. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about
weak memory models? In: ESOP. pp. 26–46. Springer-Verlag, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28869-2_2

13. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++
concurrency. In: POPL. pp. 55–66. ACM, New York, NY, USA (2011). https:
//doi.org/10.1145/1925844.1926394

14. Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal consistency.
In: POPL. pp. 626–638. ACM, New York, NY, USA (2017). https://doi.org/10.
1145/3009837.3009888

15. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! The-
oretical Computer Science 256(1), 63 – 92 (2001). https://doi.org/10.1016/
S0304-3975(00)00102-X

16. ISO/IEC 14882:2011: Programming language C++ (2011)
17. ISO/IEC 9899:2011: Programming language C (2011)

http://www.jstor.org/stable/40961367
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1007/978-3-030-67087-0_4
https://doi.org/10.1007/978-3-030-67087-0_4
https://doi.org/10.1007/978-3-030-67087-0_4
https://doi.org/10.1007/978-3-030-67087-0_4
https://doi.org/10.4230/LIPIcs.CONCUR.2016.5
https://doi.org/10.4230/LIPIcs.CONCUR.2016.5
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.1007/978-3-030-72019-3_1
https://doi.org/10.1007/978-3-030-72019-3_1
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1006/INCO.1999.2843
https://doi.org/10.1006/INCO.1999.2843
https://doi.org/10.1007/BF01784241
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X


Decidable Verification under Localized Release-Acquire Concurrency 19

18. Kaiser, J.O., Dang, H.H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong logic for
weak memory: Reasoning about release-acquire consistency in Iris. In: ECOOP.
pp. 17:1–17:29. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2017). https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

19. Krishna, S., Godbole, A., Meyer, R., Chakraborty, S.: Parameterized verification
under release acquire is PSPACE-complete. In: PODC. pp. 482–492. ACM, New
York, NY, USA (2022). https://doi.org/10.1145/3519270.3538445

20. Lahav, O.: Verification under causally consistent shared memory. ACM SIGLOG
News 6(2), 43–56 (Apr 2019). https://doi.org/10.1145/3326938.3326942

21. Lahav, O., Boker, U.: Decidable verification under a causally consistent shared
memory. In: PLDI. pp. 211–226. ACM (2020). https://doi.org/10.1145/3385412.
3385966

22. Lahav, O., Boker, U.: What’s Decidable About Causally Consistent Shared Mem-
ory? ACM Trans. Program. Lang. Syst. 44(2), 8:1–8:55 (2022), https://doi.org/
10.1145/3505273

23. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
POPL. pp. 649–662. ACM, New York, NY, USA (2016). https://doi.org/10.1145/
2837614.2837643

24. Lahav, O., Margalit, R.: Robustness against release/acquire semantics. In: PLDI.
pp. 126–141. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3314221.
3314604

25. Lahav, O., Vafeiadis, V.: Owicki-gries reasoning for weak memory models. In:
ICALP. pp. 311–323. Springer-Verlag, Berlin, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6_25

26. Lahav, O., Vafeiadis, V.: Explaining relaxed memory models with program trans-
formations. In: FM. LNCS, vol. 9995, pp. 479–495. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-319-48989-6_29

27. Lahav, O., Vafeiadis, V., Kang, J., Hur, C.K., Dreyer, D.: Repairing sequential
consistency in C/C++11. In: PLDI. pp. 618–632. ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3062341.3062352

28. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)

29. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
TPHOLs. pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03359-9_27

30. Raad, A., Lahav, O., Vafeiadis, V.: On parallel snapshot isolation and release/ac-
quire consistency. In: ESOP. pp. 940–967. Springer, Berlin, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-89884-1_33

31. Schmitz, S., Schnoebelen, P.: Algorithmic aspects of WQO theory (Aug 2012),
https://cel.archives-ouvertes.fr/cel-00727025, lecture notes

32. Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-TSO: A
rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM
53(7), 89–97 (2010). https://doi.org/10.1145/1785414.1785443

33. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Zappa Nardelli, F.:
Common compiler optimisations are invalid in the C11 memory model and what
we can do about it. In: POPL. pp. 209–220. ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2676726.2676995

https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3505273
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-319-89884-1\_33
https://doi.org/10.1007/978-3-319-89884-1_33
https://cel.archives-ouvertes.fr/cel-00727025
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2676726.2676995


20 Abhishek Kr Singh and Ori Lahav

A Simulation Proofs

The following alternative formulation of the write step will be convenient to
use in our proofs. This formulation “works backwards”—choosing read options
to omit from the target state for reaching the source state. Each such possibility
is an “index choice”:

Definition 9. An index choice for a state B′ ∈ loLRA.Q is a function P assign-
ing a set P(π, L′) ⊆ {1, ... ,|L′|} to every π ∈ Tid and L′ ∈ B′(π). An index choice
P for B′ ∈ loLRA.Q justifies a ⟨τ, W(x, vW)⟩-step, denoted by P |= ⟨τ, W(x, vW)⟩, if
the following hold:

– There exists πRMW ∈ Tid such that L′(k) = ⟨τ, x, vW, πRMW⟩ for every π ∈ Tid,
L′ ∈ B′(π) and k ∈ P(π, L′).

– For every π ∈ Tid, L′ ∈ B′(π) and k ∈ {1, ... ,|L′|} \ P(π, L′):
• If p1 < k < p2 for some p1, p2 ∈ P(π, L′), then loc(L′(k)) ̸= x.
• If π = τ and k < p for some p ∈ P(π, L′), then loc(L′(k)) ̸= x.

Now, a predecessor of B′ with respect to a write step intuitively satisfies
two constraints: 1. For each list L′ of B′, there is a corresponding list L in B that
possibly lack some read options of the form ⟨τ, x, vW, πRMW⟩, corresponding to the
new read options of B′; and 2. If a list L′ is different from the corresponding list
L then there is a list of τ in B that justifies this difference. Notice that B may
have arbitrary additional lists in addition to the above mandatory lists.

Note 1 (List operations). For an option list L, a location x, and a set P ⊆
{1, ... ,|L|} of positions in L, we define (where pmin = minP and pmax = maxP
for P ̸= ∅):

– Lx\P is the list derived from L by removing from it the positions in P\{pmax}
and replacing the value present at L(pmax) with OW(x) (when P = ∅, we define
Lx \ P ≜ L). The mapping of the positions of L that are not in P \ {pmax}
to their matching positions in Lx \ P is denoted by Map⟨L,P ⟩. Formally,
Map⟨L,P ⟩ ≜ λk ∈ (({1, ... ,|L|} \ P ) ∪ {pmax}). k − |{j ∈ P \ {pmax} | j < k}|
(and Map⟨L,P ⟩ ≜ λk ∈ {1, ... ,|L|}. k when P = ∅).

– Lx \\ P further removes from L the positions before the first position in P ,
namely Lx \\ P ≜ λk ∈ {1, ... , |Lx \ P | − (pmin − 1)}. (Lx\P )(k+(pmin−1))
(undefined if P = ∅). The mapping of the positions of L that are not in
P \ {pmax} and not before the first position in P to their matching posi-
tions in Lx \\ P is denoted by MMap⟨L,P ⟩. Formally, MMap⟨L,P ⟩ ≜ λk ∈
({pmin, ... ,|L|} \ P ) ∪ {pmax}. (Map⟨L,P ⟩(k)− (pmin − 1)).

For example, for the option list
L = ⟨T1, x, 0, T4⟩·⟨T1, x, 1, T2⟩·⟨T2, y, 1, T3⟩·⟨T1, x, 1, T2⟩·⟨T1, y, 2, T4⟩·⟨T1, x, 1, T2⟩·
⟨T2, y, 1, T1⟩
and P = {2, 4, 6}, we have:

– Lx \ P = ⟨T1, x, 0, T4⟩ · ⟨T2, y, 1, T3⟩ · ⟨T1, y, 2, T4⟩ · OW(x) · ⟨T2, y, 1, T1⟩



Decidable Verification under Localized Release-Acquire Concurrency 21

– Map⟨L,P ⟩ = [1 7→ 1; 3 7→ 2; 5 7→ 3; 6 7→ 4; 7 7→ 5]
– Lx \\ P = ⟨T2, y, 1, T3⟩ · ⟨T1, y, 2, T4⟩ · OW(x) · ⟨T2, y, 1, T1⟩
– MMap⟨L,P ⟩ = [3 7→ 1; 5 7→ 2; 6 7→ 3; 7 7→ 4]

Definition 10. The source of B′ w.r.t. a thread τ , a location x, and an index
choice P for B′, denoted by srcx(B′, τ,P), is given by:

srcx(B′, τ,P) ≜ λπ ∈ Tid.


{L′

x \ P(π, L′) | L′ ∈ B′(π)} π ̸= τ

{L′
x \ P(τ, L′) | L′ ∈ B′(τ)} ∪ π = τ

{L′
x \\ P(η, L′) | P(η, L′) ̸= ∅, η ∈ Tid and L′ ∈ B′(η)}

Proposition 3. B τ,W(x,vW)−−−−−→loLRA B′ iff there exists an index choice P for B′

such that the following hold:

– P |= ⟨τ, W(x, vW)⟩;
– OW(x) · srcx(B′, τ,P)(τ) ⊆ B(τ); and
– srcx(B′, τ,P)(π) ⊆ B(π) for every π ∈ Tid \ {τ}.

Lemma 2. For every trace of loLRA there is an equivalent trace of opLRA.

Proof. We show that ⋎ constitutes a forward simulation relation from loLRA
to opLRA. First, the initial states clearly match: for every B ∈ loLRA.Q0 we
have B ⋎G0, since (using any function tidRMW : W → Tid) for every τ ∈ Tid and
L ∈ B(τ), L itself, having only write options, is a ⟨G, τ⟩-consistent ⟨G,L,⟩-write-
list, regardless of what G is.

Now, suppose that B ⋎ G and B τ,l−→loLRA B′. Let tidRMW : W → Tid that
satisfies the conditions of Definition 8. We show that there exists G′ such that
B′ ⋎G′ and G

τ,l−→opLRA G′. Consider the possible cases:

– write-step l = W(x, vW): Let w = NextEvent(G.E, τ, l). Let G′ be the exe-
cution graph defined by G′.E = G.E ∪ {w} and G′.rf = G.rf. By definition,
we have G

τ,l−→opLRA G′. We show that B′ ⋎ G′. First, since B τ,l−→loLRA B′,
by Proposition 3, there exists an index choice P for B′ that justifies a
⟨τ, l⟩-step, such that srcx(B′, τ,P)(π) ⊆ B(π) for every π ∈ Tid \ {τ} and
OW(x) · srcx(B′, τ,P)(τ) ⊆ B(τ). Since P justifies a ⟨τ, l⟩-step, there exists
πRMW ∈ Tid, such that L′(k) = ⟨τ, x, vW, πRMW⟩ for every π ∈ Tid, L′ ∈ B′(π)
and k ∈ P(π, L′). Let tidRMW

′ = tidRMW[w 7→ πRMW]. Since w ̸∈ dom(G′.rf),
we vacuously have tid(e) = tidRMW

′(w) for every ⟨w, e⟩ ∈ G′.rf; [RMW]. It
follows that for every ⟨w′, e⟩ ∈ G′.rf; [RMW], we have tid(e) = tidRMW

′(w′).
We show that for every π ∈ Tid and L′ ∈ B′(π), there exists a ⟨G′, π⟩-
consistent ⟨G′, L′, tidRMW

′⟩-write-list. Let π ∈ Tid and L′ ∈ B′(π). We con-
struct a ⟨G′, π⟩-consistent ⟨G′, L′, tidRMW

′⟩-write-list W ′. Let P ≜ P(π, L′)
and (the last two are only defined if P ̸= ∅):

L ≜

{
L′
x \ P π ̸= τ

OW(x) · (L′
x \ P ) π = τ

f ≜

{
Map⟨L′,P ⟩ π ̸= τ

λk ∈ {1, ... ,|L′|} \ P.Map⟨L′,P ⟩(k) + 1 π = τ

Lτ ≜ OW(x) · L′
x \\ P fτ ≜ λk ∈ {minP , ... ,|L′|} \ P.MMap⟨L′,P ⟩(k) + 1



22 Abhishek Kr Singh and Ori Lahav

Then, by definition, we have L ∈ B(π) and Lτ ∈ B(τ). Let W be a ⟨G, π⟩-
consistent ⟨G,L, tidRMW⟩-write-list, and Wτ be a ⟨G, τ⟩-consistent ⟨G,Lτ , tidRMW⟩-
write-list. Note that for every k > minP with k ̸∈ P and typ(L′(k)) = R,
we have tid(W (f(k))) = tid(L(f(k))) = tid(Lτ (fτ (k))) = tid(Wτ (fτ (k)),
and so G.hb must order the two write events, W (f(k)) and Wτ (fτ (k)).
We define W ′ as follows:

W ′ ≜ λk ∈ {1, ... ,|L′|}.


L′(k) typ(L′(k)) = W

w typ(L′(k)) = R ∧ k ∈ P

W (f(k)) typ(L′(k)) = R ∧ k < minP

maxG.hb{W (f(k)),Wτ (fτ (k))} otherwise
It is easy to see that W ′ is a ⟨G′, L′, tidRMW

′⟩-write-list. We show that W ′

is ⟨G′, π⟩-consistent. Let 1 ≤ k ≤ |L′| such that W ′(k) ∈ E. Let y =
loc(W ′(k)), wπ = W (f(k)) and wτ = Wτ (fτ (k)) (the latter is only de-
fined if k > minP ). We prove that each of the conditions in Definition 7
holds:

C1) W ′(k) ̸∈ dom(G′.hb|loc ; [W] ;G′.hb? ; [Eπ ∪ {W ′(j) | 1 ≤ j < k}]). Sup-
pose otherwise. First, note that we cannot have k ∈ P , since w is a
maximal element in G′.hb. Consider the two possible cases:
(a) W ′(k) ∈ dom(G′.hb|loc ; [W] ;G′.hb? ; [Eπ]): The definition of W ′ en-

sures ⟨wπ,W
′(k)⟩ ∈ G′.hb|loc?, and so wπ ∈ dom(G′.hb|loc ; [W] ;

G′.hb? ; [Eπ]). Since W is ⟨G, π⟩-consistent, we have that wπ ̸∈ dom
(G.hb|loc ; [W] ;G.hb? ; [Eπ]), and therefore it must be the case that
π = τ and ⟨wπ, w⟩ ∈ G′.hb|loc. It follows that wπ ∈ dom(G.hb?; [Eτ ]).
But, since π = τ , we have W (1) = L(1) = OW(x) = OW(loc(wπ)), we
obtain a contradiction to the fact that W is ⟨G, τ⟩-consistent.

(b) ⟨W ′(k),W ′(j)⟩ ∈ G′.hb|loc ; [W] ;G′.hb? for some 1 ≤ j < k. Consider
the two possible cases:
• W ′(j) = w: In this case we must have k ≥ minP , and so W ′(k) =

maxG.hb{wπ, wτ}. Hence, we have ⟨wτ ,W
′(k)⟩ ∈ G.hb|loc?, and

so ⟨wτ , w⟩ ∈ G′.hb|loc ; [W] ;G′.hb?. Now, if ⟨wτ , w⟩ ∈ G′.hb|loc ;
[W] ; G′.hb, then we also have wτ ∈ dom(G.hb|loc ; [W] ; G.hb?;
[Eτ ]), which contradicts the fact that Wτ is ⟨G, τ⟩-consistent.
Therefore, we have ⟨wτ , w⟩ ∈ G′.hb|loc. It follows that wτ ∈
dom(G.hb?; [Eτ ]). But, since Wτ (1) = Lτ (1) = OW(x) = OW(loc(wτ )),
we obtain a contradiction to the fact that Wτ is ⟨G, τ⟩-consistent.

• W ′(j) ̸= w: In this case, we must have ⟨W ′(k),W ′(j)⟩ ∈ G.hb|loc;
[W] ; G.hb?. The definition of W ′ ensures that ⟨wπ,W

′(k)⟩ ∈
G.hb|loc?, and so ⟨wπ,W

′(j)⟩ ∈ G.hb|loc ; [W] ;G.hb?. Now, since
W is ⟨G, π⟩-consistent, we cannot have W ′(j) = W (f(j)). Let
w′

τ = Wτ (fτ (j)). Hence, j ≥ minP and W ′(j) = w′
τ . It follows

that k ≥ minP , and so ⟨wτ ,W
′(k)⟩ ∈ G.hb|loc?. Hence, we have

⟨wτ , w
′
τ ⟩ ∈ G.hb|loc ; [W] ; G.hb?. This contradicts the fact that

Wτ is ⟨G, τ⟩-consistent.
C2) If W ′(i) = OW(loc(W

′(k))) for i < k, then W ′(k) ̸∈ dom(G′.hb? ; [Eπ ∪
{W ′(j) | j < i}]). Suppose otherwise. Consider the two possible cases:



Decidable Verification under Localized Release-Acquire Concurrency 23

(a) There exists i < k with W ′(i) = OW(y) but W ′(k) ∈ dom(G′.hb? ; [Eπ]).
Note that the definition of W ′ ensures that W ′(i) = L′(i) = OW(y),
and since W is a ⟨G,L, tidRMW⟩-write-list, it follows that W (f(i)) =
OW(y). Consider the two possible cases:
• W ′(k) = w: In this case, we must have y = x, π = τ and i <
maxP(τ, L′). Since P justifies a ⟨τ, W(x, vW)⟩-step, we cannot have
L′(i) = OW(x).

• W ′(k) ̸= w: In this case, the definition of W ′ ensures that
⟨wπ,W

′(k)⟩ ∈ G′.hb|loc?, and so wπ ∈ dom(G′.hb? ; [Eπ]). Since
wπ ̸= w (as wπ ∈ G.E), it follows that wπ ∈ dom(G.hb? ; [Eπ]).
Since W (f(i)) = OW(y), this contradicts the fact that W is ⟨G, π⟩-
consistent.

(b) There exists j < i < k with W ′(i) = OW(y) but ⟨W ′(k),W ′(j)⟩ ∈
G′.hb?. Note that the definition of W ′ ensures that W ′(i) = L′(i) =
OW(y), and since W is a ⟨G,L, tidRMW⟩-write-list, it follows that W (f(i))
= OW(y). In addition, since Wτ is ⟨G,Lτ , tidRMW⟩-write-list, it follows
that Wτ (fτ (i)) = OW(y) if i > minP . Consider the possible cases:
• W ′(k) = w: In this case, we must have y = x and W ′(j) = w.

It follows that k, j ∈ P , and since P justifies a ⟨τ, W(x, vW)⟩-step,
we cannot have L′(i) = OW(x).

• W ′(k) ̸= w and W ′(j) = w: In this case we must have i, k >
minP , and so W ′(k) = maxG.hb{wπ, wτ} and Wτ (fτ (i)) = OW(y).
Hence, we have ⟨wτ ,W

′(k)⟩ ∈ G.hb|loc?, and so ⟨wτ , w⟩ ∈ G′.hb?.
Since wτ ̸= w (as wτ ∈ G.E), it follows that wτ ∈ dom(G.hb? ; [Eτ ]).
Since Wτ (fτ (i)) = OW(y), this contradicts the fact that Wτ is
⟨G, τ⟩-consistent.

• W ′(k) ̸= w and W ′(j) ̸= w: In this case, we have ⟨W ′(k),W ′(j)⟩
∈ G.hb?. Let wj

π = W (f(j)) and wj
τ = Wτ (fτ (j)) (the latter is

only defined if j > minP ). Our construction ensures that one of
the following holds:
∗ W ′(j) = wj

π: Since W ′(k) ̸= w, the definition of W ′ ensures
that ⟨wπ,W

′(k)⟩ ∈ G′.hb|loc?, and so ⟨wπ, w
j
π⟩ ∈ G.hb?. This

contradicts the fact that W is ⟨G, π⟩-consistent.
∗ W ′(j) = wj

τ : In this case we have j > minP , and so k >
minP . Since W ′(k) ̸= w, the definition of W ′ ensures that
⟨wτ ,W

′(k)⟩ ∈ G′.hb|loc?, and so ⟨wτ , w
j
τ ⟩ ∈ G.hb?. This con-

tradicts the fact that Wτ is ⟨G, τ⟩-consistent.
C3) W ′(k) ̸∈ dom((G′.hb|loc \G′.rf) ; [R] ;G′.hb? ; [Eπ ∪ {W ′(j) | 1 ≤ j < k}]).

Suppose otherwise. Consider the two possible cases:
(a) W ′(k) ∈ dom((G′.hb|loc \G′.rf) ; [R] ;G′.hb? ; [Eπ]). In this case we

have w′ ∈ G′.Wy, r ∈ G′.R such that ⟨w′, r⟩ ∈ G′.rf, W ′(k) ∈
dom(G′.hb|loc ; [r] ; G′.hb? ;[Eπ]), and w′ ̸= W ′(k). Note that since
w is a maximal element in G′.hb, we have r ∈ G.R, w′ ̸= w, and
W ′(k) ̸= w. It follows that wπ ∈ dom(G.hb|loc ; [r] ;G.hb? ; [Eπ]).
Consider the two possible cases:



24 Abhishek Kr Singh and Ori Lahav

• wπ ̸= w′: In this case we have wπ ∈ dom((G.hb|loc \ G′.rf) ;
[r] ; G.hb? ; [Eπ]) which contradicts the fact that W is ⟨G, π⟩-
consistent.

• wπ = w′: In this case we have wπ ̸= W ′(k) (since w′ ̸= W ′(k)).
Therefore we have wπ ∈ dom(G.hb|loc ; [W ′(k)] ;G.hb? ; [Eπ])
where W ′(k) ∈ G.W which contradicts the fact that W is ⟨G, π⟩-
consistent.

(b) W ′(k) ∈ dom((G′.hb|loc\G′.rf);[R];G′.hb?;[{W ′(j) ∈ E | 1 ≤ j < k}]).
In this case we have w′ ∈ G′.Wy, r ∈ G′.R, W ′(j) ∈ G′.W for some
j < k such that ⟨w′, r⟩ ∈ G′.rf, W ′(k) ∈ dom(G′.hb|loc ; [r] ;G′.hb? ;
[W ′(j)]) and w′ ̸= W ′(k). Note that, since w is a maximal element
in G′.hb, we have r ∈ G.R, w′ ̸= w, and W ′(k) ̸= w. We claim that
wπ ̸= w′ ̸= wτ . Assume otherwise and we have ⟨w′, r⟩ ∈ G.rf where
w′ ∈ dom(G.hb|loc ; [W ′(k)] ;G.hb ; [r]) which contradicts the fact
that G is LRA-consistent. For j > minP , let wj

π = W (f(j)) and
wj

τ = Wτ (fτ (j)). Consider the two possible cases:
• j ∈ P : In this case we have w = W ′(j) and wτ ∈ dom((G.hb|loc \
G.rf) ; [r] ; G.hb?; [Eτ ]) which contradicts the fact that Wτ is
⟨G, τ⟩-consistent.

• j ̸∈ P : If j < minP we have W ′(j) = wj
π and wπ ∈ dom((G.hb|loc\

G.rf) ; [r] ; G.hb? ;[wj
π]) which contradicts the fact that W is

⟨G, π⟩-consistent. If j > minP , our construction ensures that
one of the following holds:
∗ W ′(j) = wj

π: In this case we have wπ ∈ dom((G.hb|loc \G.rf) ;
[r] ;G.hb? ; [wj

π]) which contradicts the fact that W is ⟨G, π⟩-
consistent.

∗ W ′(j) = wj
τ : In this case we have wτ ∈ dom((G.hb|loc \G.rf) ;

[r] ;G.hb? ; [wj
τ ]) which contradicts the fact that Wτ is ⟨G, τ⟩-

consistent.

C4) If loc(W ′(j)) = loc(W ′(k)) and W ′(k) ̸= W ′(j) for some j < k, then
W ′(k) ̸∈ dom(G′.hb? ; [Eπ ∪ {W ′(i) | i < j}]). Suppose otherwise. Let
m = minP ,n = maxP , wj

π = W (f(j)), and wj
τ = Wτ (fτ (j)). Consider

the following possible cases:
(a) For some j < k, loc(W ′(j)) = loc(W ′(k)), W ′(k) ∈ dom(G′.hb? ;

[Eπ]), and W ′(k) ̸= W ′(j). Note that k ̸∈ P (and hence w ̸=
W ′(k)), otherwise, we will have y = x, π = τ and j < maxP(τ, L′)
which contradicts the fact that P justifies a ⟨τ, W(x, vW)⟩-step (since
loc(L′(j)) = x). Consider the two possible cases:
• W ′(j) = w: We claim that maxP < k, assuming otherwise (i.e.,
j < k < maxP ), we have loc(L′(k)) = x = loc(L(f(k))),
which contradicts the fact that P justifies a ⟨τ, l⟩-step (since,
f(j) < f(k) < f(n)). If π ̸= τ , since P justifies a ⟨τ, l⟩-step,
we have W (f(n)) = L(f(n)) = OW(y), f(n) < f(k) and wπ ∈
dom(G.hb? ; [Eπ]). This contradicts the fact that W is ⟨G, π⟩-
consistent. If π = τ we have W (1) = L(1) = OW(y) and wπ ∈



Decidable Verification under Localized Release-Acquire Concurrency 25

dom(G.hb? ; [Eπ]). This contradicts the fact that W is ⟨G, π⟩-
consistent.

• W ′(j) ̸= w: In this case we have j ̸= m ̸= k. Consider the
following three possible cases:
∗ j < k < m: In this case we have wπ = W ′(k), wj

π = W ′(j) and
hence wπ ∈ dom(G′.hb? ; [Eπ]) which contradicts the fact that
W is ⟨G, π⟩-consistent.

∗ j < m < k: In this case wj
π = W ′(j). If wj

π ̸= wπ we have wπ ∈
dom(G′.hb? ; [Eπ]) where loc(wj

π) = loc(wπ) which contra-
dicts the fact that W is ⟨G, π⟩-consistent. If wj

π = wπ we have
wπ ̸= W ′(k) and hence wπ ∈ dom(G.hb|loc ; [W ′(k)] ; G.hb? ;
[Eπ]) which contradicts the fact that W is ⟨G, π⟩-consistent.

∗ m < j < k: If wj
π ̸= wπ we have wπ ∈ dom(G′.hb? ; [Eπ])

where loc(wj
π) = loc(wπ) which contradicts the fact that W

is ⟨G, π⟩-consistent. If wj
π = wπ we consider the following two

cases:
· W ′(k) ̸= wπ: We have wπ ∈ dom(G.hb|loc ; [W ′(k)] ;G.hb? ;
[Eπ]) which contradicts the fact that W is ⟨G, π⟩-consistent.

· W ′(k) = wπ: In this case we have W ′(j) = wj
τ ̸= wj

π. The
definition of W ′ ensures that ⟨wτ ,W

′(k)⟩ ∈ G.hb|loc? and
hence ⟨wτ , w

j
π⟩ ∈ G.hb|loc? (since W ′(k) = wπ = wj

π). We
also have ⟨wj

π,W
′(j)⟩ ∈ G.hb|loc? and hence ⟨wj

π, w
j
τ ⟩ ∈

G.hb|loc (since wj
π = W ′(k) ̸= W ′(j) = wj

τ ). Therefore we
have wτ ∈ dom(G.hb|loc ; [wj

τ ]) which contradicts the fact
that Wτ is ⟨G, τ⟩-consistent.

(b) For some 1 ≤ i < j < k, loc(W ′(j)) = loc(W ′(k)), W ′(k) ∈
dom(G′.hb? ; [W ′(i)]), and W ′(k) ̸= W ′(j). Note that k ̸∈ P , oth-
erwise, we will have W ′(k) = W ′(i) = w and loc(L′(j)) = loc(w)
where i < j < k and i, k ∈ P which contradicts the fact that P
justifies a ⟨τ, l⟩-step. We consider following sub-cases:
• i ∈ P : In this case we have W ′(i) = w ̸= W ′(k) and hence
⟨W ′(k),W ′(i)⟩ ∈ G′.hb. Consider the following cases:
∗ W ′(j) = W ′(i): In this case we have W ′(j) = w = W ′(i),
loc(W ′(k)) = loc(w) and hence W ′(k) ∈ dom(hb|loc ; [w] ;
hb? ; [W ′(j)]). Therefore the present case reduces to (item C1)
and we observe a contradiction using same reasoning.

∗ W ′(j) ̸= W ′(i): In this case we claim that W ′(k) = wτ , assum-
ing otherwise, we will have wτ ∈ dom(hb|loc ;[W ′(k)];hb? ;[Eτ ])
which contradicts the fact that Wτ is ⟨G, τ⟩-consistent. Next
consider following possibilities:
· wj

τ ̸= wτ : In this case loc(wj
τ ) = loc(wτ ) and wτ ∈ dom(G.hb?;

[Eτ ]) which contradicts the fact that Wτ is ⟨G, τ⟩-consistent.
· wj

τ = wτ : In this case W ′(k) = wτ = wj
τ , ⟨wπ,W

′(k)⟩ ∈
G.hb|loc?, and ⟨wj

τ ,W
′(j)⟩ ∈ G.hb|loc?. Since wj

τ = W ′(k) ̸=
W ′(j) = wj

π, we have wπ ∈ dom(G.hb|loc ; [wj
π]) which con-

tradicts the fact that W is ⟨G, π⟩-consistent.



26 Abhishek Kr Singh and Ori Lahav

• i ̸∈ P : We consider the following cases:
∗ j ∈ P : We claim that maxP < k, assuming otherwise (i.e.,
j < k < maxP ), we have loc(L′(k)) = x = loc(L(f(k))),
which contradicts the fact that P justifies a ⟨τ, l⟩-step (since,
f(j) < f(k) < f(n)). Consider the following possible cases:
· i < minP : Since n = maxP and P justifies a ⟨τ, l⟩-step,

we have W (f(n)) = L(f(n)) = OW(y) where f(i) < f(n) <
f(k) and wπ ∈ dom(G.hb? ; [W (i)]). This contradicts the
fact that W is ⟨G, π⟩-consistent.

· i > minP : Let nπ = f(maxP ) and nτ = fτ (maxP ). If
W ′(i) = wi

π then we have wπ ∈ dom(G.hb? ; [wi
π]) where

W (nπ) = OW(loc(wπ)) (since P justifies a ⟨τ, l⟩-step). This
contradicts the fact that W is ⟨G, π⟩-consistent. If W ′(i) =
wi

τ then we have wτ ∈ dom(G.hb? ; [wi
τ ]) where Wτ (nτ ) =

OW(loc(wτ )). This contradicts the fact that Wτ is ⟨G, τ⟩-
consistent.

∗ j ̸∈ P : In this case we have m ̸∈ {i, j, k} and i < j < k. We
consider the following possible cases:
· tid(W ′(j)) = tid(W ′(k)): In this case, since W ′(j) ̸= W ′(k),

we have either (a) ⟨W ′(j),W ′(k)⟩ ∈ G′.hb or (b) ⟨W ′(k),W ′(j)⟩
∈ G′.hb. Assuming (a) we have W ′(j) ∈ dom(G′.hb|loc ;
[W ′(k)] ;G′.hb? ; [W ′(i)]) where i < j and hence the present
case reduces to (item C1) resulting in a contradiction. Simi-
larly, assuming (b) we have W ′(k) ∈ dom(G′.hb|loc ; [W ′(j)])
where j < k and hence again the present case reduces to
(item C1) resulting in a contradiction.

· tid(W ′(j)) ̸= tid(W ′(k)): In this case it is easy to see that
wj

π ̸= wπ and wj
τ ̸= wτ . If W ′(i) = wi

π then we have wπ ∈
dom(G.hb? ; [wi

π]) and wj
π ̸= wπ which contradicts the fact

that W is ⟨G, π⟩-consistent. On the other hand, if W ′(i) =
wi

τ then we have wτ ∈ dom(G.hb? ; [wi
τ ]) and wj

τ ̸= wτ which
contradicts the fact that Wτ is ⟨G, τ⟩-consistent.

– read-step l = R(x, vR): By definition, since B τ,l−→loLRA B′, there exists a
read option o with loc(o) = x and val(o) = vR such that B(τ) = o·B′(τ). For
every L ∈ B(τ), let WL be a ⟨G, τ⟩-consistent ⟨G,L, tidRMW⟩-write-list. Let
A = {WL(1) | L ∈ B(τ)}. Since B(τ) is non-empty, we know that A is not
empty. Since each WL is a ⟨G,L, tidRMW⟩-write-list, we have that tid(w) =
tid(o) for every w ∈ A. Hence, G.po totally orders A. Let w = minG.poA
and let Lmin ∈ B(τ) such that w = WLmin(1). Let r = NextEvent(G.E, τ, l)
and let G′ be the execution graph given by G′.E = G.E ∪ {r} and G′.rf =
G.rf ∪ {⟨w, r⟩}.
We show that G τ,l−→opLRA G′. By definition, it suffices to show the following:
• w ∈ G.Wx and valW(w) = vR: We have w = WLmin(1), and since
WLmin is a ⟨G,Lmin, tidRMW⟩-write-list, we have that w ∈ G.W, loc(w) =
loc(WLmin(1)) = loc(Lmin(1)) = loc(o) = x and valW(w) = valW(WLmin

(1)) = val(Lmin(1)) = val(o) = vR.



Decidable Verification under Localized Release-Acquire Concurrency 27

• w ̸∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]): Since WLmin is ⟨G, τ⟩ -consistent
and w = WLmin(1), we cannot have w ∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]).

• w ̸∈ dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ ]): Since WLmin is ⟨G, τ⟩ -
consistent and w = WLmin(1), we cannot have w ∈ dom((G.hb|loc \
G.rf) ; [R] ;G.hb? ; [Eτ ]).

It remains to show that B′ ⋎G′. We use the same tidRMW mapping and show
that for every π ∈ Tid and L′ ∈ B′(π), there exists a ⟨G′, π⟩-consistent
⟨G′, L′, tidRMW⟩-write-list. Let π ∈ Tid and L′ ∈ B′(π). We define a ⟨G′, π⟩-
consistent ⟨G′, L′, tidRMW⟩-write-list. Consider two cases:
• π ̸= τ : By definition, since B τ,l−→loLRA B′, we have L′ ∈ B(π). Let W be

a ⟨G, π⟩-consistent ⟨G,L′, tidRMW⟩-write-list. It is easy to see that W is
also a ⟨G′, L′, tidRMW⟩-write-list. To see that W is ⟨G′, π⟩-consistent, we
note that if any one of the following holds in G′ then the same holds in
G,

∗ W (k) ∈ dom(G′.hb|loc ; [W] ;G′.hb? ; [Eπ ∪ {W (j) | 1 ≤ j < k}]).
∗ W (k) ∈ dom(G′.hb? ; [Eπ ∪ {W (j) | 1 ≤ j < k}]).
∗ W (k) ∈ dom((G′.hb|loc\G′.rf);[R];G′.hb?;[Eπ∪{W (j) | 1 ≤ j < k}]).
∗ W (k) ∈ dom(G′.hb? ; [Eπ ∪ {W (i) | 1 ≤ i < j}]).

Therefore, the ⟨G′, π⟩-consistency of W directly follows from its ⟨G, π⟩-
consistency.

• π = τ : Let L = o·L′. Then, L ∈ B(τ). Let W ′ = λk ∈ {1, ... ,|L′|}.WL(1+
k). It is easy to see that W ′ is a ⟨G′, L′, tidRMW⟩-write-list. We show that
W ′ is ⟨G′, τ⟩-consistent. Let 1 ≤ k ≤ |W ′| such that W ′(k) ∈ E. We
prove that each of the conditions in Definition 7 holds:

C1) W ′(k) ̸∈ dom(G′.hb|loc ; [W] ;G′.hb? ; [Eτ ∪ {W ′(j) | 1 ≤ j < k}]): Sup-
pose otherwise. If W ′(k) ∈ dom(G.hb|loc;[W];G.hb?;[Eτ∪{W ′(j) | 1 ≤
j < k}]), then WL(1+k) ∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ∪{WL(1+
j) | 1 ≤ j < k}]), which contradicts the fact that WL is ⟨G, τ⟩-
consistent. Hence, we must have ⟨W ′(k), w⟩ ∈ G.hb|loc ; [W] ;G.hb?.
Since L(1) = o, the definition of w ensures that ⟨w,WL(1)⟩ ∈ G.po?.
It follows that ⟨WL(1 + k),WL(1)⟩ ∈ G.hb|loc ; [W] ; G.hb?, which
again contradicts the fact that WL is ⟨G, τ⟩-consistent.

C2) If W ′(i) = OW(loc(W
′(k))) for i < k, then W ′(k) ̸∈ dom(G′.hb? ;

[Eτ∪ {W ′(j) | j < i}]). Suppose otherwise. Consider the two possible
cases:
(a) There exists i < k with W ′(i) = OW(loc(W

′(k))) (i.e., WL(1 +
i) = OW(loc(WL(1 + k)))) but W ′(k) ∈ dom(G′.hb? ; [Eτ ]). If
W ′(k) ∈ dom(G.hb? ; [Eτ ]), then WL(1 + k) ∈ dom(G.hb? ; [Eτ ]),
which contradicts the fact that WL is ⟨G, τ⟩-consistent. Hence,
we must have ⟨W ′(k), w⟩ ∈ G.hb?. Since L(1) = o, the defi-
nition of w ensures that ⟨w,WL(1)⟩ ∈ G.po?. It follows that
⟨WL(1 + k),WL(1)⟩ ∈ G.hb while WL(1+i) = OW(loc(WL(1 + k)))
where i < k. Again, this contradicts the fact that WL is ⟨G, τ⟩-
consistent.

(b) There exists j < i < k with W ′(i) = OW(loc(W
′(k))) (and so,

WL(1 + i) = OW(loc(WL(1 + k)))) but ⟨W ′(k),W ′(j)⟩ ∈ G′.hb?.



28 Abhishek Kr Singh and Ori Lahav

In this case, since W ′(j) ∈ W, we must have ⟨W ′(k),W ′(j)⟩ ∈
G.hb?. Hence, ⟨WL(1 + k)),WL(1 + j)⟩ ∈ G.hb? which contra-
dicts the fact that WL is ⟨G, τ⟩-consistent.

C3) W ′(k) ̸∈ dom((G′.hb|loc\G′.rf);[R];G′.hb?;[Eτ∪{W ′(j) | 1 ≤ j < k}]).
Suppose otherwise. If W ′(k) ∈ dom(G.hb|loc \ G.rf) ; [R] ; G.hb? ;
[Eτ ∪{W ′(j) | 1 ≤ j < k}]) then WL(1+k) ∈ dom((G.hb|loc \G.rf) ;
[R] ; G.hb? ; [Eτ ∪ {WL(1 + j) | 1 ≤ j + 1 < k + 1}]), which contra-
dicts the fact that WL is ⟨G, τ⟩-consistent. Hence, we must have
⟨W ′(k), w⟩ ∈ (G.hb|loc \ G.rf) ; [R] ; G.hb?. Since L(1) = o, the
definition of w ensures that ⟨w,WL(1)⟩ ∈ G.po?. It follows that
WL(1 + k) ∈ dom((G.hb|loc \ G.rf) ; [R]; G.hb? ; [WL(1)]), which
again contradicts the fact that WL is ⟨G, τ⟩-consistent.

C4) If loc(W ′(j)) = loc(W ′(k)) and W ′(k) ̸= W ′(j) for some j < k,
then W ′(k) ̸∈ dom(G′.hb? ; [Eτ∪ {W ′(i) | 1 ≤ i < j}]). Suppose oth-
erwise. Consider the two possible cases:
(a) For j < k, loc(W ′(j)) = loc(W ′(k)), W ′(k) ∈ dom(G′.hb? ; [Eτ ]),

and W ′(k) ̸= W ′(j). If W ′(k) ∈ dom(G.hb? ; [Eτ ]) then WL(1 +
k) ∈ dom(G.hb? ; [Eτ ]), which contradicts the fact that WL is
⟨G, τ⟩-consistent. Hence, we must have WL(1+k) ∈ dom(G.hb? ; [w]).
Since L(1) = o, the definition of w ensures that ⟨w,WL(1)⟩ ∈
G.po?. It follows that WL(1 + k) ∈ dom(G.hb? ; [WL(1)]), where
WL(1+k) = W ′(k) ̸= W ′(j) = WL(1+j). Again, this contradicts
the fact that WL is ⟨G, τ⟩-consistent.

(b) For 1 ≤ i < j < k, loc(W ′(j)) = loc(W ′(k)), W ′(k) ∈ dom(G′.hb?;
[W ′(i)]), and W ′(k) ̸= W ′(j). In this case we have WL(1 + k) ∈
dom(G.hb?;[WL(1+i)]), where loc(WL(1+j)) = loc(WL(1+k)),
WL(1+k) = W ′(k) ̸= W ′(j) = WL(1+j), and 1 < 1+i < 1+j <
1 + k. This contradicts the fact that WL is ⟨G, τ⟩-consistent.

– rmw-step l = RMW(x, vR, vW): By definition and Proposition 3, since B τ,l−→loLRA B′,
we have the following:
• There exists a read option o with loc(o) = x, val(o) = vR and rmw-tid(o)
= τ such that L(1) = o for every L ∈ B(τ).

• There exists an index choice P for B′ that justifies a ⟨τ, W(x, vW)⟩-step,
such that srcx(B′, τ,P)(π) ⊆ B(π) for every π ∈ Tid \ {τ} and o · OW(x) ·
srcx(B′, τ,P)(τ) ⊆ B(τ).

For every L ∈ B(τ), let WL be a ⟨G, τ⟩-consistent ⟨G,L, tidRMW⟩-write-list.
Let A = {WL(1) | L ∈ B(τ)}. Since B(τ) is non-empty, we know that A is not
empty. Since each WL is a ⟨G,L, tidRMW⟩-write-list, we have that tid(w) =
tid(o) for every w ∈ A. Hence, G.po totally orders A. Let w = minG.poA
and let Lmin ∈ B(τ) such that w = WLmin(1). Let e = NextEvent(G.E, τ, l)
and let G′ be the execution graph given by G′.E = G.E ∪ {e} and G′.rf =
G.rf ∪ {⟨w, e⟩}.
Note that w = WLmin(1), and since WLmin is a ⟨G,Lmin, tidRMW⟩-write-list, we
have:
• w ∈ G.W.
• loc(w) = loc(WLmin(1)) = loc(Lmin(1)) = loc(o) = x.



Decidable Verification under Localized Release-Acquire Concurrency 29

• valW(w) = valW(WLmin(1)) = val(Lmin(1)) = val(o) = vR.
• tidRMW(w) = tidRMW(WLmin(1)) = rmw-tid(Lmin(1)) = τ .

Therefore, to show that G τ,l−→opLRA G′, by definition, it suffices to show the
following:
• w ̸∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]): Since WLmin is ⟨G, τ⟩-consistent

and w = WLmin(1), we cannot have w ∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]).
• w ̸∈ dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ ]): Since WLmin is ⟨G, τ⟩- con-

sistent and w = WLmin(1), we cannot have w ∈ dom((G.hb|loc \ G.rf) ;
[R] ;G.hb? ; [Eτ ]).

• w ̸∈ dom(G.rf; [RMW]): Suppose otherwise, and let e′ ∈ RMW such
that ⟨w, e′⟩ ∈ G.rf. Then, since tidRMW(w) = τ , the second condition in
Definition 8 ensures that tid(e) = τ . Hence, w ∈ dom(G.rf ; [RMW ∩ Eτ ]) ⊆
dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]), which contradicts the first item.

It remains to show that B′ ⋎ G′. Since P justifies a ⟨τ, W(x, vW)⟩-step, there
exists πRMW ∈ Tid, such that L′(k) = ⟨τ, x, vW, πRMW⟩ for every π ∈ Tid, L′ ∈
B′(π) and k ∈ P(π, L′). Let tidRMW

′ = tidRMW[w 7→ πRMW]. Since e ̸∈ dom(G′.rf),
we vacuously have tid(e′) = tidRMW

′(e) for every ⟨e, e′⟩ ∈ G′.rf; [RMW]. In
addition, we have tid(e) = τ = tidRMW(w) = tidRMW

′(w). Since w is the
unique event such that ⟨w, e⟩ ∈ G′.rf, it follows that for every ⟨w′, e′⟩ ∈
G′.rf; [RMW], we have tid(e′) = tidRMW

′(w′).
We show that for every π ∈ Tid and L′ ∈ B′(π), there exists a ⟨G′, π⟩-
consistent ⟨G′, L′, tidRMW

′⟩-write-list. Let π ∈ Tid and L′ ∈ B′(π). We con-
struct a ⟨G′, π⟩-consistent ⟨G′, L′, tidRMW

′⟩-write-list W ′. Let P ≜ P(π, L′)
and (the last two are only defined if P ̸= ∅):

L ≜

{
L′
x \ P π ̸= τ

o · OW(x) · (L′
x \ P ) π = τ

f ≜

{
Map⟨L′,P ⟩ π ̸= τ

λk ∈ {1, ... ,|L′|} \ P.Map⟨L′,P ⟩(k) + 2 π = τ

Lτ ≜ o · OW(x) · L′
x \\ P fτ ≜ λk ∈ {minP , ... ,|L′|} \ P.MMap⟨L′,P ⟩(k) + 2

Then, by definition, we have L ∈ B(π) and Lτ ∈ B(τ). Let W be a ⟨G, π⟩-
consistent ⟨G,L, tidRMW⟩-write-list, and Wτ be a ⟨G, τ⟩-consistent ⟨G,Lτ , tidRMW⟩-
write-list. Note that for every k > minP with k ̸∈ P and typ(L′(k)) = R,
we have tid(W (f(k))) = tid(L(f(k))) = tid(Lτ (fτ (k))) = tid(Wτ (fτ (k)),
and so G.hb must order the two write events, W (f(k)) and Wτ (fτ (k)). We
define W ′ as follows:

W ′ ≜ λk ∈ {1, ... ,|L′|}.


L′(k) typ(L′(k)) = W

e typ(L′(k)) = R ∧ k ∈ P

W (f(k)) typ(L′(k)) = R ∧ k < minP

maxG.hb{W (f(k)),Wτ (fτ (k))} otherwise
It is easy to see that W ′ is a ⟨G′, L′, tidRMW

′⟩-write-list. We show that W ′

is ⟨G′, π⟩-consistent. Let 1 ≤ k ≤ |L′| such that W ′(k) ∈ E. Let y =
loc(W ′(k)), wπ = W (f(k)) and wτ = Wτ (fτ (k)) (the latter is only de-
fined if k > minP ). We prove that each of the conditions in Definition 7
holds:

C1) W ′(k) ̸∈ dom(G′.hb|loc ; [W] ;G′.hb? ; [Eπ ∪ {W ′(j) | 1 ≤ j < k}]). Sup-
pose otherwise. First, note that we cannot have k ∈ P , since e is a
maximal element in G′.hb. Consider the two possible cases:



30 Abhishek Kr Singh and Ori Lahav

(a) W ′(k) ∈ dom(G′.hb|loc ; [W] ;G′.hb? ; [Eπ]): The definition of W ′ en-
sures that we have ⟨wπ,W

′(k)⟩ ∈ G′.hb|loc?, and so wπ ∈ dom(G′.hb|loc;
[W] ;G′.hb? ; [Eπ]). Since W is ⟨G, π⟩-consistent, we have that wπ ̸∈
dom(G.hb|loc ; [W] ; G.hb? ; [Eπ]), and therefore it must be the case
that ⟨wπ, e⟩ ∈ G′.hb|loc ;[W];(G.hb? ;G′.rf)? and π = τ . Now, if wπ ∈
dom(G.hb?; [Eτ ]), then since π = τ , we have W (2) = L(2) = OW(x) =
OW(loc(wπ)), and we obtain a contradiction to the fact that W is
⟨G, π⟩-consistent. Otherwise, we have ⟨wπ, w⟩ ∈ G.hb|loc ; [W] ;G.hb?.
Since π = τ , we have L(1) = o, and the definition of w ensures that
⟨w,W (1)⟩ ∈ G.po?. It follows that ⟨wπ,W (1)⟩ ∈ G.hb|loc ;[W];G.hb?,
which again contradicts the fact that W is ⟨G, π⟩-consistent.

(b) ⟨W ′(k),W ′(j)⟩ ∈ G′.hb|loc ; [W] ;G′.hb? for some 1 ≤ j < k. Consider
the two possible cases:
• W ′(j) = e: In this case we must have k ≥ minP , and so W ′(k) =

maxG.hb{wπ, wτ}. Hence, we have ⟨wτ ,W
′(k)⟩ ∈ G.hb|loc?. There

are two possibilities:
∗ W ′(k) ∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]): In this case, since
⟨wτ ,W

′(k)⟩ ∈ G.hb?, we get wτ ∈ dom(G.hb|loc ; [W] ;G.hb? ;
[Eτ ]) which contradicts the fact that Wτ is ⟨G, τ⟩-consistent.

∗ W ′(k) ̸∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]): In this case we have
W ′(k) ∈ dom( G.hb|loc ; [W] ;G.hb? ; [w]). Since ⟨wτ ,W

′(k)⟩ ∈
G.hb? and ⟨w,Wτ (1)⟩ ∈ G.po?, it follows that wτ ∈ dom(G.hb|loc;
[W] ; G.hb? ; [Wτ (1)]) which contradicts the fact that Wτ is
⟨G, τ⟩-consistent.

• W ′(j) ̸= e: In this case, we must have ⟨W ′(k),W ′(j)⟩ ∈ G.hb|loc ;
[W] ; G.hb?. The definition of W ′ ensures that ⟨wπ,W

′(k)⟩ ∈
G.hb|loc?, and so ⟨wπ,W

′(j)⟩ ∈ G.hb|loc ; [W] ;G.hb?. Now, since
W is ⟨G, π⟩-consistent, we cannot have W ′(j) = W (f(j)). Let
w′

τ = Wτ (fτ (j)). Hence, j ≥ minP and W ′(j) = w′
τ . It follows

that k ≥ minP , and so ⟨wτ ,W
′(k)⟩ ∈ G.hb|loc?. Hence, we have

⟨wτ , w
′
τ ⟩ ∈ G.hb|loc ; [W] ;G.hb? which contradicts the fact that

Wτ is ⟨G, τ⟩-consistent.
C2) If W ′(i) = OW(loc(W

′(k))) for i < k, then W ′(k) ̸∈ dom(G′.hb? ; [Eπ ∪
{W ′(j) | j < i}]). Suppose otherwise. Consider two possible cases:
(a) There exists i < k with W ′(i) = OW(y) but W ′(k) ∈ dom(G′.hb? ; [Eπ]).

Note that the definition of W ′ ensures that W ′(i) = L′(i) = OW(y),
and since W is a ⟨G,L, tidRMW⟩-write-list, it follows that W (f(i)) =
OW(y). We claim that W ′(k) ̸= e. Assuming otherwise we will have
y = x, π = τ , and i < maxP(τ, L′), which contradicts the fact that
P justifies a ⟨τ, W(x, vW)⟩-step (since L′(i) = OW(x)). Consider the two
possible cases:
• W ′(k) ∈ dom(G.hb? ; [Eπ]): In this case, since ⟨wπ,W

′(k)⟩ ∈
G.hb?, we get wπ ∈ dom(G.hb? ; [Eπ]) which contradicts the fact
that W is ⟨G, π⟩-consistent.

• W ′(k) ̸∈ dom(G.hb? ; [Eπ]): In this case we have τ = π and
W ′(k) ∈ dom(G.hb?;[w]). Since ⟨wπ,W

′(k)⟩ ∈ G.hb? and ⟨w,W (1)⟩



Decidable Verification under Localized Release-Acquire Concurrency 31

∈ G.po?, it follows that wπ ∈ dom(G.hb? ; [W (1)]) which contra-
dicts the fact that W is ⟨G, π⟩-consistent.

(b) There exists j < i < k with W ′(i) = OW(y) and ⟨W ′(k),W ′(j)⟩ ∈
G′.hb?. Note that the definition of W ′ ensures that W ′(i) = L′(i) =
OW(y), and since W is a ⟨G,L, tidRMW⟩-write-list, it follows that W (f(i))
= OW(y). In addition, since Wτ is ⟨G,Lτ , tidRMW⟩-write-list, it follows
that Wτ (fτ (i)) = OW(y) if i > minP . Let m = minP , wj

π = W (f(j)),
and wj

τ = Wτ (fτ (j)). Consider the possible cases:
• ⟨W ′(k),W ′(j)⟩ ∈ G.hb?: If W ′(j) = wj

π we have ⟨wπ, w
j
π⟩ ∈

G.hb? which contradicts the fact that W is ⟨G, π⟩-consistent.
If W ′(j) = wj

τ we have j > m and ⟨wτ , w
j
τ ⟩ ∈ G.hb?. This

contradicts the fact that Wτ is ⟨G, τ⟩-consistent.
• ⟨W ′(k),W ′(j)⟩ ̸∈ G.hb?: In this case we have W ′(j) = e and
W ′(k) ∈ dom(G.hb? ; [w]). Since ⟨wτ ,W

′(k)⟩ ∈ G.hb? and ⟨w,Wτ (1)⟩
∈ G.po?, it follows that wτ ∈ dom(G.hb? ; [Wτ (1)]) which con-
tradicts the fact that Wτ is ⟨G, τ⟩-consistent.

C3) W ′(k) ̸∈ dom((G′.hb|loc \G′.rf) ; [R] ;G′.hb? ; [Eπ ∪ {W ′(j) | 1 ≤ j < k}]).
Suppose otherwise. Consider two possible cases:
(a) W ′(k) ∈ dom((G′.hb|loc \G′.rf) ; [R] ;G′.hb? ; [Eπ]). In this case we

have w′ ∈ G′.Wy, r ∈ G′.R such that ⟨w′, r⟩ ∈ G′.rf, W ′(k) ∈
dom(G′.hb|loc ; [r] ; G′.hb? ;[Eπ]), and w′ ̸= W ′(k). Note that since
e is a maximal element in G′.hb, we have r ∈ G.R, w′ ̸= e, and
W ′(k) ̸= e. Consider the two possible cases:
• W ′(k) ∈ dom(G.hb|loc ; [r] ;G.hb? ; [Eπ]): In this case we have
wπ ∈ dom(G.hb|loc ; [r] ;G.hb? ; [Eπ]). We claim that w′ ̸= wπ. As-
suming otherwise, we will have wπ ̸= W ′(k) (since w′ ̸= W ′(k)).
Therefore we have wπ ∈ dom(G.hb|loc ; [W ′(k)] ;G.hb? ; [Eπ])
where W ′(k) ∈ G.W which contradicts the fact that W is ⟨G, π⟩-
consistent. Since w′ ̸= wπ, we have wπ ∈ dom((G.hb|loc \G.rf) ;
[r] ; G.hb? ; [Eπ]) which contradicts the fact that W is ⟨G, π⟩-
consistent.

• W ′(k) ̸∈ dom(G.hb|loc ; [r] ;G.hb? ; [Eπ]): In this case we have
W ′(k) ∈ dom(G.hb|loc ; [r]), r ∈ dom(G.hb ; [w]), and e ∈ Eπ

(i.e., τ = π). Since ⟨wτ ,W
′(k)⟩ ∈ G.hb? and ⟨w,Wτ (1)⟩ ∈ G.po?,

it follows that wτ ∈ dom(G.hb|loc ; [r] ;G.hb? ; [Wτ (1)]). If wτ =
w′ we have wτ ∈ dom(G.hb|loc ; [W ′(k)] ;G.hb? ; [Wτ (1)]) which
contradicts the fact that Wτ is ⟨G, τ⟩-consistent. On the other
hand if wτ ̸= w′ we have wτ ∈ dom((G.hb|loc \ G.rf) ; [r] ;
G.hb? ; [Wτ (1)]) which again contradicts the fact that Wτ is
⟨G, τ⟩-consistent.

(b) W ′(k) ∈ dom((G′.hb|loc\G′.rf);[R];G′.hb?;[{W ′(j) ∈ E | 1 ≤ j < k}]).
In this case we have w′ ∈ G′.Wy, r ∈ G′.R, W ′(j) ∈ G′.W for some
j < k such that ⟨w′, r⟩ ∈ G′.rf, W ′(k) ∈ dom(G′.hb|loc ; [r] ;G′.hb? ;
[W ′(j)]) and w′ ̸= W ′(k). Note that, since e is a maximal element
in G′.hb, we have r ∈ G.R, w′ ̸= e, and W ′(k) ̸= e. We claim that
wπ ̸= w′ ̸= wτ . Assume otherwise and we have ⟨w′, r⟩ ∈ G.rf where



32 Abhishek Kr Singh and Ori Lahav

w′ ∈ dom(G.hb|loc ; [W ′(k)] ;G.hb ; [r]) which contradicts the fact
that G is LRA-consistent. For j > minP , let wj

π = W (f(j)) and
wj

τ = Wτ (fτ (j)). Consider the two possible cases:
• j ∈ P : In this case we have e = W ′(j) and wτ ∈ dom((G.hb|loc \

G.rf) ; [r] ; G.hb? ; [w]). Since ⟨w,Wτ (1)⟩ ∈ G.po we have wτ ∈
dom((G.hb|loc \G.rf) ; [r] ;G.hb? ; [Wτ (1)]) which contradicts the
fact that Wτ is ⟨G, τ⟩-consistent.

• j ̸∈ P : If j < minP we have W ′(j) = wj
π and wπ ∈ dom((G.hb|loc\

G.rf) ; [r] ; G.hb? ;[wj
π]) which contradicts the fact that W is

⟨G, π⟩-consistent. If j > minP , our construction ensures that
one of the following holds:
∗ W ′(j) = wj

π: In this case we have wπ ∈ dom((G.hb|loc \G.rf) ;
[r] ;G.hb? ; [wj

π]) which contradicts the fact that W is ⟨G, π⟩-
consistent.

∗ W ′(j) = wj
τ : In this case we have wτ ∈ dom((G.hb|loc \G.rf) ;

[r] ;G.hb? ; [wj
τ ]) which contradicts the fact that Wτ is ⟨G, τ⟩-

consistent.

C4) If loc(W ′(j)) = loc(W ′(k)) and W ′(k) ̸= W ′(j) for some j < k, then
W ′(k) ̸∈ dom(G′.hb? ; [Eπ ∪ {W ′(i) | i < j}]). Suppose otherwise. Let
m = minP , n = maxP , wj

π = W (f(j)), and wj
τ = Wτ (fτ (j)). Consider

the following two possible cases:
(a) For some j < k, loc(W ′(j)) = loc(W ′(k)), W ′(k) ∈ dom(G′.hb? ;

[Eπ]), and W ′(k) ̸= W ′(j). Note that k ̸∈ P (and hence e ̸= W ′(k)).
Assuming otherwise, we must have y = x, π = τ and j < maxP(τ, L′)
which contradicts the fact that P justifies a ⟨τ, W(x, vW)⟩-step (since
loc(L′(j)) = x). Consider the two possible cases:
• W ′(j) = e: If π ̸= τ , since P justifies a ⟨τ, l⟩-step, we have
W (n) = L(n) = L′(n) = OW(y) and wπ ∈ dom(G.hb? ; [Eπ]). This
contradicts the fact that W is ⟨G, π⟩-consistent. If π = τ we
have W (1) = L(1) = OW(y) and wπ ∈ dom(G.hb? ; [Eπ]). This
contradicts the fact that W is ⟨G, π⟩-consistent.

• W ′(j) ̸= e: In this case we have j ̸= m ̸= k. Consider the follow-
ing three possible cases:
∗ j < k < m: In this case we have wπ = W ′(k), wj

π = W ′(j) and
hence wπ ∈ dom(G′.hb? ; [Eπ]) which contradicts the fact that
W is ⟨G, π⟩-consistent.

∗ j < m < k: In this case wj
π = W ′(j). If wj

π ̸= wπ we have wπ ∈
dom(G′.hb? ; [Eπ]) where loc(wj

π) = loc(wπ) which contra-
dicts the fact that W is ⟨G, π⟩-consistent. If wj

π = wπ we have
wπ ̸= W ′(k) and hence wπ ∈ dom(G.hb|loc ; [W ′(k)] ; G.hb? ;
[Eπ]) which contradicts the fact that W is ⟨G, π⟩-consistent.

∗ m < j < k: If wj
π ̸= wπ we have wπ ∈ dom(G′.hb? ; [Eπ])

where loc(wj
π) = loc(wπ) which contradicts the fact that W

is ⟨G, π⟩-consistent. If wj
π = wπ we consider the following two

cases:



Decidable Verification under Localized Release-Acquire Concurrency 33

· W ′(k) ̸= wπ: We have wπ ∈ dom(G.hb|loc ; [W ′(k)] ;G.hb? ;
[Eπ]) which contradicts the fact that W is ⟨G, π⟩-consistent.

· W ′(k) = wπ: In this case we have W ′(j) = wj
τ ̸= wj

π. The
definition of W ′ ensures that ⟨wτ ,W

′(k)⟩ ∈ G.hb|loc? and
hence ⟨wτ , w

j
π⟩ ∈ G.hb|loc? (since W ′(k) = wπ = wj

π). We
also have ⟨wj

π,W
′(j)⟩ ∈ G.hb|loc? and hence ⟨wj

π, w
j
τ ⟩ ∈

G.hb|loc (since wj
π = W ′(k) ̸= W ′(j) = wj

τ ). Therefore we
have wτ ∈ dom(G.hb|loc ; [wj

τ ]) which contradicts the fact
that Wτ is ⟨G, τ⟩-consistent.

(b) For some 1 ≤ i < j < k, loc(W ′(j)) = loc(W ′(k)), W ′(k) ∈
dom(G′.hb? ; [W ′(i)]), and W ′(k) ̸= W ′(j). We claim that k ̸∈ P . As-
suming otherwise we will have W ′(k) = W ′(i) = e and loc(L′(j)) =
loc(e) where i < j < k and i, k ∈ P which contradicts the fact that
P justifies a ⟨τ, l⟩-step. We further consider the following sub-cases:
• i ∈ P : In this case we have W ′(i) = e ̸= W ′(k) and hence

⟨W ′(k),W ′(i)⟩ ∈ G′.hb. Consider the following two cases:
∗ W ′(j) = W ′(i): In this case we have W ′(j) = e = W ′(i),
loc(W ′(k)) = loc(e) and hence W ′(k) ∈ dom(hb|loc ; [e] ;
hb? ; [W ′(j)]) where e ∈ W. Therefore the present case reduces
to (A) and we can observe a contradiction using the same
reasoning.

∗ W ′(j) ̸= W ′(i): We claim that W ′(k) = wτ . Assuming other-
wise, we will have wτ ∈ dom(hb|loc ; [W ′(k)] ; hb? ; [Eτ ]) which
contradicts the fact that Wτ is ⟨G, τ⟩-consistent. We consider
the following possible cases:
· wj

τ ̸= wτ : In this case loc(wj
τ ) = loc(wτ ) and wτ ∈ dom(G.hb?;

[Eτ ]) which contradicts the fact that Wτ is ⟨G, τ⟩-consistent.
· wj

τ = wτ : In this case W ′(k) = wτ = wj
τ , ⟨wπ,W

′(k)⟩ ∈
G.hb|loc?, and ⟨wj

τ ,W
′(j)⟩ ∈ G.hb|loc?. Since wj

τ = W ′(k) ̸=
W ′(j) = wj

π, we have wπ ∈ dom(G.hb|loc ; [wj
π]) which con-

tradicts the fact that W is ⟨G, π⟩-consistent.
• i ̸∈ P : We consider the following two cases:

∗ j ∈ P : We claim that maxP < k. Assuming otherwise (i.e., j <
k < maxP ), we will have loc(L′(k)) = x, which contradicts
the fact that P justifies a ⟨τ, l⟩-step. Consider the following
possible cases:
· i < minP : Since P justifies a ⟨τ, l⟩-step, we have W (n) =
L(n) = L′(n) = OW(y) where f(i) < n and wπ ∈ dom(G.hb? ;
[W (i)]). This contradicts the fact that W is ⟨G, π⟩-consistent.

· i > minP : Let nπ = f(maxP ) and nτ = fτ (maxP ). If
W ′(i) = wi

π then we have wπ ∈ dom(G.hb? ; [wi
π]) where

W (nπ) = OW(loc(wπ)) (since P justifies a ⟨τ, l⟩-step). This
contradicts the fact that W is ⟨G, π⟩-consistent. If W ′(i) =
wi

τ then we have wτ ∈ dom(G.hb? ; [wi
τ ]) where Wτ (nτ ) =

OW(loc(wτ )). This contradicts the fact that Wτ is ⟨G, τ⟩-
consistent.



34 Abhishek Kr Singh and Ori Lahav

∗ j ̸∈ P : In this case we have m ̸∈ {i, j, k} and i < j < k. We
consider the following possible cases:
· tid(W ′(j)) = tid(W ′(k)): In this case, since W ′(j) ̸= W ′(k),

we have either (a) ⟨W ′(j),W ′(k)⟩ ∈ G′.hb or (b) ⟨W ′(k),W ′(j)⟩
∈ G′.hb. Assuming (a) we have W ′(j) ∈ dom(G′.hb|loc ;
[W ′(k)] ;G′.hb? ; [W ′(i)]) where i < j and hence the present
case reduces to (A) resulting in a contradiction. Similarly,
assuming (b) we have W ′(k) ∈ dom(G′.hb|loc ; [W ′(j)]) where
j < k and hence the present case reduces to (A) again re-
sulting in a contradiction.

· tid(W ′(j)) ̸= tid(W ′(k)): In this case it is easy to see that
wj

π ̸= wπ and wj
τ ̸= wτ . If W ′(i) = wi

π then we have wπ ∈
dom(G.hb? ; [wi

π]) and wj
π ̸= wπ which contradicts the fact

that W is ⟨G, π⟩-consistent. On the other hand, if W ′(i) =
wi

τ then we have wτ ∈ dom(G.hb? ; [wi
τ ]) and wj

τ ̸= wτ which
contradicts the fact that Wτ is ⟨G, τ⟩-consistent.

Finally, suppose that B ⋎ G and B ε−→loLRA B′ (using the lower step). Let
tidRMW : W → Tid that satisfies the conditions of Definition 8. To show that
B′ ⋎ G, we use the same tidRMW mapping and show that for every τ ∈ Tid and
L′ ∈ B′(τ), there exists a ⟨G, τ⟩-consistent ⟨G,L′, tidRMW⟩-write-list.

Let τ ∈ Tid and L′ ∈ B′(τ). We define a ⟨G, τ⟩-consistent ⟨G,L′, tidRMW⟩-write-
list W ′. By definition, since B ε−→loLRA B′, there exists L ∈ B(τ) such that L′ ⊑ L.
Let W be a ⟨G, τ⟩-consistent ⟨G,L, tidRMW⟩-write-list, and let f : {1, ... ,|L′|} → N
be an increasing function such that L′(k) = L(f(k)) for every k ∈ dom(f). It
is easy to see that W ′ = λk ∈ {1, ... ,|L′|}.W (f(k)) is a ⟨G,L′, tidRMW⟩-write-list.
To see that W ′ is ⟨G, τ⟩-consistent, note that:

– W ′(k) ∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ∪ {W ′(j) | 1 ≤ j < k}]) implies
W (f(k)) ∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ∪ {W (f(j)) | 1 ≤ f(j) < f(k)}]).

– W ′(k) ∈ dom(G.hb? ; [Eτ ∪ {W ′(j) | 1 ≤ j < k}]) implies
W (f(k)) ∈ dom(G.hb? ; [Eτ ∪ {W (f(j)) | 1 ≤ f(j) < f(k)}]).

– W ′(k) ∈ dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ ∪ {W ′(j) | 1 ≤ j < k}]) im-
plies W (f(k)) ∈ dom((G.hb|loc \ G.rf) ; [R] ; G.hb? ; [Eτ ∪ {W (f(j)) | 1 ≤
f(j) < f(k)}]).

Therefore, the ⟨G, τ⟩-consistency of W ′ directly follows from the ⟨G, τ⟩-consistency
of W .



Decidable Verification under Localized Release-Acquire Concurrency 35

Lemma 3. For every trace of opLRA there is an equivalent trace of loLRA.

Proof. We show that ⋎−1 constitutes a backward simulation from opLRA to
loLRA. The two first requirements of a backward simulation clearly hold for ⋎:
1. ⋎−1 is total, as for every state G of opLRA, we have (λτ ∈ Tid. {ϵ}) ⋎ G.
2. Consider a state B of loLRA, such that B⋎G0. By the definition of ⋎, it should
be possible to link every read option of B to some write event of G0. Since there
are no write events in G0, there cannot be read options in B, implying that
B ∈ loLRA.Q0.

We move to the third requirement. Suppose that G τ,l−→opLRA G′ and B′⋎G′,
witnessed by a function tidRMW : W → Tid. We construct a state B such that
B τ,l−→loLRA B′ and B ⋎G. Consider the possible cases:

– write-step l = W(x, vW): Let w = NextEvent(G.E, τ, l). Since G τ,l−→opLRA G′,
we have G′.E = G.E ∪ {w} and G′.rf = G.rf. Let P be the index choice for
B′ that assigns the set of “new” positions in B′:

P ≜ λπ ∈ Tid, L′ ∈ B′(π). {1 ≤ k ≤ |L′| | W ′
⟨π,L′⟩(k) = w}.

Then, we define

B ≜ λπ ∈ Tid.

{
OW(x) · srcx(B′, τ,P)(τ) π = τ

srcx(B′, τ,P)(π) π ̸= τ

By Proposition 3, to show that B τ,l−→loLRA B′, it suffices to prove that P
justifies a ⟨τ, W(x, vW)⟩-step. Let πRMW = tidRMW(w). Thus, we show that the
following hold for every π ∈ Tid and L′ ∈ B′(π), where P = P(π, L′) and
W ′ = W ′

⟨π,L′⟩:
• Let k ∈ P . Then, we have W ′(k) = w, and thus L′(k) = ⟨τ, x, vW, πRMW⟩.
• Let k ∈ {1, ... ,|L′|} \ P such that p1 < k < p2 for some p1, p2 ∈ P . We

show that L′(k) ̸= OW(x). Since p1, p2 ∈ P , we have W ′(p1) = W ′(p2) =
w, and so ⟨W ′(p1),W

′(p2)⟩ ∈ G′.hb?. Since W ′ is ⟨G′, π⟩-consistent, we
cannot have W ′(k) = OW(loc(W

′(p2))), and so L′(k) ̸= OW(x).
• Suppose that π = τ and let k ∈ {1, ... ,|L′|} \P such that k < p for some

p ∈ P . We show that L′(k) ̸= OW(x). Since p ∈ P , we have W ′(p) = w,
and so W ′(p) ∈ dom(G′.hb? ; [Eτ ]). Since W ′ is ⟨G′, τ⟩-consistent, we
cannot have W ′(k) = OW(loc(W

′(p))), and so L′(k) ̸= OW(x).
Next, we prove that B⋎G, by showing that for every π ∈ Tid and L ∈ B(π),
there exists a ⟨G, π⟩-consistent ⟨G,L, tidRMW⟩-write-list. Since G.rf ⊆ G′.rf,
the second condition of ⋎ (Definition 8), namely that for every ⟨w, e⟩ ∈
G.rf; [RMW], we have tid(e) = tidRMW(w), trivially holds. Let π ∈ Tid and
L ∈ B(π). Following the construction of B, one of the following holds:
• π ̸= τ and L = L′

x\P(π, L′) for some L′ ∈ B′(π). Let P = P(π, L′), W ′ =
W ′

⟨π,L′⟩ and f = Map−1
⟨L′,P ⟩. We define W ≜ λk ∈ {1, ... ,|L|}. W ′(f(k)).

Using the fact that W ′ is a ⟨G′, L′, tidRMW⟩-write-list, it is easy to see that
W is a ⟨G,L, tidRMW⟩-write-list.



36 Abhishek Kr Singh and Ori Lahav

It remains to show that W is ⟨G, π⟩-consistent, namely the conditions
of Definition 7 hold. Indeed, the construction of W and the fact that
G.hb ⊆ G′.hb directly ensure that these conditions follows from the
⟨G′, π⟩-consistency of W ′.

• π = τ and L = OW(x) · (L′
x \ P(τ, L′)) for some L′ ∈ B′(τ). Let P =

P(τ, L′), W ′ = W ′
⟨τ,L′⟩ and f = λk ∈ {2, ... ,|L|}. Map−1

⟨L′,P ⟩(k − 1). We
define:

W ≜ λk ∈ {1, ... ,|L|}.

{
OW(x) k = 1

W ′(f(k)) k > 1

Using the fact that W ′ is a ⟨G′, L′, tidRMW⟩-write-list, it is easy to see
that W is a ⟨G,L, tidRMW⟩-write-list. It remains to show that W is ⟨G, τ⟩-
consistent. The condition C2(b) follow directly from the ⟨G′, τ⟩-consistency
of W ′. Condition C2(a), however, deserves more attention, as we added
OW(x) at the start of the list. Assume toward contradiction some k, such
that W (k) ∈ E, loc(W (k)) = x and W (k) ∈ dom(G.hb? ; [Eτ ]). Then
since W ′(f(k)) = W (k), w = maxG′.poG

′.Eτ and loc(W (k)) = loc(w),
we have ⟨W ′(f(k)), w⟩ ∈ G′.hb|loc;[W] ;G′.hb?, contradicting (C1(a) in)
the ⟨G′, τ⟩-consistency of W ′.

• π = τ and L = OW(x) · (L′
x \\ P(η, L′)) for some η ∈ Tid and L′ ∈

B′(η). Let P = P(η, L′), m = min(P ), W ′ = W ′
⟨η,L′⟩ and f = λk ∈

{2, ... ,|L|}. MMap−1
⟨L′,P ⟩(k − 1). We define:

W ≜ λk ∈ {1, ... ,|L|}.

{
OW(x) k = 1

W ′(f(k)) k > 1

By the fact that W ′ is a ⟨G′, L′, tidRMW⟩-write-list, we get that W is a
⟨G,L, tidRMW⟩-write-list. It remains to show that W is ⟨G, τ⟩-consistent.
We consider all the ⟨G, τ⟩-consistency conditions for W :

C1) The existence of some k, such that W (k) ∈ dom(G.hb|loc ; [W] ;
G.hb? ; [{W (j) | 1 ≤ j < k}]) directly contradicts the same condi-
tion in the ⟨G′, η⟩-consistency of W ′. Now, assume toward contra-
diction some k, such that W (k) ∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]).
Then, since W ′(f(k)) = W (k), f(k) > m, W ′(m) = w and w =
maxG′.poG

′.Eτ , we have W ′(f(k)) ∈ dom(G′.hb|loc ; [W] ; G′.hb? ;
[{W ′(j) | 1 ≤ j < f(k)}]), contradicting (C1(b) in) the ⟨G′, η⟩- con-
sistency of W ′.

C2) The existence of some i < k such that W (k) ∈ dom(G.hb?;[{W (j) | 1 ≤
j < i}]) directly contradicts the same condition in the ⟨G′, η⟩ -
consistency of W ′. Now, assume toward contradiction the existence
of some i < k, such that W (i) = OW(loc(W (k))) and W (k) ∈
dom(G.hb? ; [Eτ ]). First if i = 1, then loc(W (k)) = x, and as above,
since W ′(f(k)) = W (k), f(k) > m, W ′(m) = w and w = maxG′.poG

′.Eτ ,
we have W ′(f(k)) ∈ dom(G′.hb|loc ; [W] ; G′.hb? ; [{W ′(j) | 1 ≤
j < f(k)}]), contradicting (C1(b) in) the ⟨G′, η⟩-consistency of W ′.
Now, suppose that i > 1. Then, again, since W ′(f(k)) = W (k),



Decidable Verification under Localized Release-Acquire Concurrency 37

f(k) > f(i) > m, W ′(m) = w and w = maxG′.poG
′.Eτ , we have

⟨W ′(f(k)),W ′(m)⟩ ∈ G′.hb?, contradicting (C2(a) in) the ⟨G′, η⟩-
consistency of W ′.

C3) The existence of some k such that W (k) ∈ dom((G.hb|loc\G.rf);[R];
G.hb? ; [{W (j) | 1 ≤ j < k}]) directly contradicts the same condition
in the ⟨G′, η⟩-consistency of W ′. Now, assume toward contradiction
some k, such that W (k) ∈ dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ ]).
Then, since W ′(f(k)) = W (k), f(k) > m, W ′(m) = w and w =
maxG′.poG

′.Eτ , we have W ′(f(k)) ∈ dom((G′.hb|loc \ G′.rf) ; [R] ;
G′.hb? ; [{W ′(j) | 1 ≤ j < k}]), contradicting (C3(b) in) the ⟨G′, η⟩-
consistency of W ′.

C4) The existence of some j < k such that loc(W (j)) = loc(W (k)),
W (k) ̸= W (j), and W (k) ∈ dom(G.hb? ; [{W (i) | 1 ≤ i < j}]) di-
rectly contradicts the same condition in the ⟨G′, η⟩-consistency of
W ′. Now, assume toward contradiction the existence of some j < k,
such that loc(W (j)) = loc(W (k)), W (k) ̸= W (j), and W (k) ∈
dom(G.hb? ; [Eτ ]). Then, since W ′(f(k)) = W (k), f(k) > f(j) > m,
and W ′(m) = w = maxG′.poG

′.Eτ , we have ⟨W ′(f(k)),W ′(m)⟩ ∈
G′.hb?, contradicting (C4(b) in) the ⟨G′, η⟩-consistency of W ′.

– read-step l = R(x, vR): Let r = NextEvent(G.E, τ, l). Since G τ,l−→opLRA G′,
we have that G′.E = G.E ∪ {r} and G′.rf = G.rf ∪ {⟨w, r⟩} for some write
event w ∈ G.Wx such that valW(w) = vR, w ̸∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]),
and w ̸∈ dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ ]).
Let o = ⟨tid(w), x, vR, tidRMW(w)⟩. We define B by:

B ≜ λπ ∈ Tid.

{
o · B′(τ) π = τ

B′(π) π ̸= τ

By definition, we have B τ,l−→loLRA B′. We show that B⋎G. Note that the sec-
ond condition of ⋎ (Definition 8) trivially holds. It remains to be shown that
for every π ∈ Tid and L ∈ B(π), there exists a ⟨G, π⟩-consistent ⟨G,L, tidRMW⟩-
write-list.
For π ̸= τ and L ∈ B(π), observe that L ∈ B′(π), and since G.hb ⊆ G′.hb,
we have that W ′

⟨π,L′⟩ is also a ⟨G, π⟩-consistent ⟨G,L, tidRMW⟩-write-list.
For π = τ consider an option list L ∈ B(τ). Let L′ ∈ B′(τ) such that
L = o · L′. Let W ′ = W ′

⟨τ,L′⟩. We define W ≜ w · W ′. By the fact that
W ′ is a ⟨G′, L′, tidRMW⟩-write-list, we get that W is a ⟨G,L, tidRMW⟩-write-list.
It remains to show that W is ⟨G, τ⟩-consistent. We prove below the ⟨G, τ⟩-
consistency conditions for W :

C1) Given that W ′ is ⟨G′, τ⟩-consistent we only need to show that w ̸∈
dom(G.hb|loc ; [W] ; G.hb? ; [Eτ ]), which is guaranteed by the proper-
ties of w as stated above (it follows from the preconditions of the read
step in opLRA).

C2) The condition C2(a) for W directly follows from ⟨G′, τ⟩-consistency of
W ′. For C2(b), given the ⟨G′, τ⟩-consistency of W ′, it suffices to handle



38 Abhishek Kr Singh and Ori Lahav

the case that j = 1. Thus, assume toward contradiction some 1 < k ≤ |L|
and 1 < i < k, such that W (i) = OW(loc(W (k))) and ⟨W (k), w⟩ ∈ G.hb?.
Then, since r ∈ G′.Eτ and ⟨w, r⟩ ∈ G′.rf, we get that W ′(k − 1) ∈
dom(G′.hb? ; [Eτ ]), while W ′(i− 1) = OW(loc(W

′(k − 1))), contradicting
(C2(a) in) the ⟨G′, τ⟩-consistency of W ′.

C3) Given that W ′ is ⟨G′, τ⟩-consistent we only need to show that w ̸∈
dom((G.hb|loc \ G.rf) ; [R] ; G.hb? ; [Eτ ]), which is guaranteed by the
properties of w as stated above (it follows from the preconditions of the
read step in opLRA).

C4) For condition C4(a), given the ⟨G′, τ⟩-consistency of W ′, it suffices to
handle the case that j = 1. Thus, assume toward contradiction some
1 < k ≤ |L| where w = W (1) ̸= W (k), loc(w) = loc(W (k)), and
W (k) ∈ dom(G.hb? ; [Eτ ]). Then, since r ∈ G′.Eτ and ⟨w, r⟩ ∈ G′.rf,
we get that W ′(k−1) ∈ dom((G′.hb|loc \G′.rf) ; [r] ;G′.hb? ; [Eτ ]), con-
tradicting (C3(a) in) the ⟨G′, τ⟩-consistency of W ′. Similarly for con-
dition C4(b), given the ⟨G′, τ⟩-consistency of W ′, it suffices to handle
the case that i = 1. Assume toward contradiction some 1 < j < k ≤
|L| where w = W (1), W (j) ̸= W (k), loc(W (j)) = loc(W (k)), and
W (k) ∈ dom(G.hb? ; [w]). Then, since r ∈ G′.Eτ and ⟨w, r⟩ ∈ G′.rf, we
get W ′(k − 1) ∈ dom(G′.hb? ; [Eτ ]) where W ′(j − 1) ̸= W ′(k − 1) and
loc(W ′(j − 1)) = loc(W ′(k − 1)), contradicting (C4(a) in) the ⟨G′, τ⟩-
consistency of W ′.

– rmw-step l = RMW(x, vR, vW): Let e = NextEvent(G.E, τ, l). Since G τ,l−→opLRA G′,
we have G′.E = G.E ∪ {e}, G′.rf = G.rf ∪ {⟨w, e⟩} and valW(w) = vR,
for some w ∈ Wx, such that w ̸∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]), w ̸∈
dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ ]), and w ̸∈ dom(G.rf; [RMW]).
Let P be the index choice for B′ that assigns the set of “new” positions in
B′:

P ≜ λπ ∈ Tid, L′ ∈ B′(π). {1 ≤ k ≤ |L′| | W ′
⟨π,L′⟩(k) = e}.

Then, we define:

B ≜ λπ ∈ Tid.

{
o · OW(x) · srcx(B′, τ,P)(τ) π = τ

srcx(B′, τ,P)(π) π ̸= τ

where o is the read option given by o ≜ ⟨tid(w), x, vR, τ⟩.
Using Proposition 3, to show that B τ,l−→loLRA B′, it suffices to prove that P
justifies a ⟨τ, W(x, vW)⟩-step. This is done as in the write case, together with
the following observation: Since e ∈ G′.Eτ , e ∈ RMW and ⟨w, e⟩ ∈ G′.rf, the
fact that tidRMW witnesses B′ ⋎G′, guarantees that tidRMW(w) = τ .
It remains to show that B ⋎ G. We show that for every π ∈ Tid and L ∈
B(π), there exists a ⟨G, π⟩-consistent ⟨G,L, tidRMW⟩-write-list. (The second
condition of ⋎ (Definition 8) trivially holds.) Let π ∈ Tid and L ∈ B(π).
Following the construction of B, one of the following holds:
• π ̸= τ and L = L′

x \ P(π, L′) for some L′ ∈ B′(π). This case is exactly
the same as the analogous case in the write step.



Decidable Verification under Localized Release-Acquire Concurrency 39

• π = τ and L = o · OW(x) · (L′
x \ P(τ, L′)) for some L′ ∈ B′(τ). Let

P = P(τ, L′), W ′ = W ′
⟨τ,L′⟩ and f = λk ∈ {3, ... ,|L|}. Map−1

⟨L′,P ⟩(k − 2).
We define:

W ≜ λk ∈ {1, ... ,|L|}.


w k = 1

OW(x) k = 2

W ′(f(k)) k > 2

By the fact that W ′ is a ⟨G′, L′, tidRMW⟩-write-list, we get that W is a
⟨G,L, tidRMW⟩-write-list. It remains to show that W is ⟨G, τ⟩-consistent.
We prove below the ⟨G, τ⟩-consistency conditions for W :

C1) Observe that W (1) = w and w ̸∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ])
is guaranteed by the properties of w as stated above (it follows
from the preconditions of the rmw step in opLRA). The condi-
tion C1(a) for W directly follows from ⟨G′, τ⟩-consistency of W ′.
For C1(b), given the ⟨G′, τ⟩-consistency of W ′, it suffices to han-
dle the case that j = 1 (i.e., W (j) = w) and k > 2. Thus, as-
sume toward contradiction some 2 < k ≤ |L| such that ⟨W (k), w⟩ ∈
G.hb|loc ; [W] ;G.hb?. Since ⟨w, e⟩ ∈ G′.rf and e ∈ Eτ , we would have
W ′(f(k)) ∈ dom(G′.hb|loc ; [W] ;G.hb? ; [Eτ ]), contradicting (C1(a)
in) the ⟨G′, τ⟩-consistency of W ′.

C2) To ensure the condition C2(a), since we added W (2) = OW(x), which
is not present in W ′, we need to show that W (k) ̸∈ dom(G.hb? ; [Eτ ])
whenever loc(W (k)) = x and 2 < k ≤ |L|. Assume otherwise and we
have e = maxG′.poG

′.Eτ , loc(W (k)) = loc(e), e ∈ W, W ′(f(k)) =
W (k), and W ′(f(k)) ∈ dom(G′.hb|loc ; [W] ;G′.hb? ; [Eτ ]), which con-
tradicts (C1 in) the fact that W ′ is ⟨G′, τ⟩-consistent. For the con-
dition C2(b), since we added W (1) = w and W (2) = OW(x), we
should ensure that for every 2 < k ≤ |L|, if loc(W (k)) = x then
⟨W (k), w⟩ ̸∈ G.hb?. Assume otherwise and we have e = maxG′.poG

′.Eτ ,
loc(W (k)) = loc(e), e ∈ W, W ′(f(k)) = W (k) ̸= e. Hence W ′(f(k)) ∈
dom(G′.hb|loc ; [W] ;G′.hb? ; [Eτ ]) which contradicts (C1(a) in) the
fact that W ′ is ⟨G′, τ⟩-consistent.

C3) For condition C3(a), knowing that W ′ is ⟨G′, τ⟩-consistent we only
need to show that w ̸∈ dom((G.hb|loc\G.rf); [R] ;G.hb? ; [Eτ ]), which
is guaranteed by the properties of w as stated above (it follows from
the preconditions of the read step in opLRA). For the condition
C3(b), given the ⟨G′, τ⟩-consistency of W ′, it suffices to handle the
case that j = 1. Thus assume toward contradiction some 2 < k ≤ |L|
where w = W (1) and W (k) ∈ dom((G.hb|loc\G.rf); [R] ;G.hb? ; [w]).
Since W ′(f(k)) = W (k), ⟨w, e⟩ ∈ G′.rf, and e = maxG′.poG

′.Eτ it
follows that W ′(f(k)) ∈ dom((G′.hb|loc \ G′.rf) ; [R] ; G′.hb? ; [Eτ ])
which contradicts (C3(a) in) the ⟨G′, τ⟩-consistency of W ′.

C4) For the condition C4(a), given the ⟨G′, τ⟩-consistency of W ′, it suf-
fices to handle the case that j = 1. Thus assume toward contra-
diction some 2 < k ≤ |L| where w = W (1), w ̸= W (k), loc(e) =



40 Abhishek Kr Singh and Ori Lahav

loc(w) = loc(W (k)), and W (k) ∈ dom(G.hb? ; [Eτ ]). Then since e =
maxG′.poG

′.Eτ , e ∈ W, loc(e) = loc(W (k)) and W (k) = W ′(f(k)),
we have W ′(f(k)) ∈ dom(G′.hb|loc ; [W] ; G′.hb? ; [Eτ ]), contradict-
ing (C1(a) in) the ⟨G′, τ⟩-consistency of W ′. Similarly for condition
C4(b), given the ⟨G′, τ⟩-consistency of W ′, it suffices to handle the
case that i = 1. Assume toward contradiction some 1 < j < k ≤ |L|
where w = W (1), W (j) ̸= W (k), loc(W (j)) = loc(W (k)), and
W (k) ∈ dom(G.hb? ; [w]). Then, since e ∈ G′.Eτ and ⟨w, e⟩ ∈ G′.rf,
we get W ′(f(k)) ∈ dom(G′.hb? ; [Eτ ]) where W ′(f(j)) ̸= W ′(f(k))
and loc(W ′(f(j))) = loc(W ′(f(k))), contradicting (C4(a) in) the
⟨G′, τ⟩-consistency of W ′.

• π = τ and L = o · OW(x) · (L′
x \\ P(η, L′)) for some η ∈ Tid and L′ ∈

B′(η). Let P = P(η, L′), W ′ = W ′
⟨η,L′⟩, m = min(P ) and f = λk ∈

{3, ... ,|L|}. MMap−1
⟨L′,P ⟩(k − 2). We define:

W ≜ λk ∈ {1, ... ,|L|}.


w k = 1

OW(x) k = 2

W ′(f(k)) k > 2

By the fact that W ′ is a ⟨G′, L′, tidRMW⟩-write-list, we get that W is a
⟨G,L, tidRMW⟩-write-list. It remains to show that W is ⟨G, τ⟩-consistent.
We prove below the ⟨G, τ⟩-consistency conditions for W :

C1) The difference from the previous case is that we have the ⟨G′, η⟩-
consistency of W ′

⟨η,L′⟩ rather than of W ′
⟨τ,L′⟩. Hence, we should make

sure that for every 2 < k ≤ |L|, we still have W (k) ̸∈ dom(G.hb|loc ;
[W] ; G.hb? ; [Eτ ∪ {w}]). Assume first toward contradiction some
k, such that W (k) ∈ dom(G.hb|loc ; [W] ;G.hb? ; [Eτ ]). Then, since
W ′(f(k)) = W (k), f(k) > m, W ′(m) = e and e = maxG′.poG

′.Eτ ,
we have W ′(f(k)) ∈ dom(G′.hb|loc ; [W] ; G′.hb? ; [{W ′(j) | 1 ≤
j < f(k)}]), contradicting (C1(b) in) the ⟨G′, η⟩- consistency of W ′.
Next, assume toward contradiction some k, such that ⟨W (k), w⟩ ∈
G.hb|loc ; [W] ; G.hb?. Then, we reach an analogous contradiction,
since ⟨w, e⟩ ∈ G′.rf.

C2) For condition C2(a), knowing the ⟨G′, η⟩-consistency of W ′ it suf-
fices to handle the case that i = 2. Assume towards contradiction
some k > 2, such that W (k) ∈ dom(G.hb? ; [Eτ ]) and loc(e) =
x = loc(W (k)). Since W ′(f(k)) = W (k), f(k) > m, W ′(m) =
e and e = maxG′.poG

′.Eτ , we have W ′(f(k)) ∈ dom(G′.hb|loc ;
[W] ;G′.hb? ; [{W ′(j) | 1 ≤ j < f(k)}]), contradicting (C1(b) in) the
⟨G′, η⟩-consistency of W ′. For the condition C2(b), since we added
W (1) = w and W (2) = OW(x), we should ensure that for every 2 <
k ≤ |L|, if loc(W (k)) = x then ⟨W (k), w⟩ ̸∈ G.hb?. Indeed, assume
toward contradiction that ⟨W (k), w⟩ ∈ G.hb?. Then, since ⟨w, e⟩ ∈
G′.rf, W ′(m) = e and e ∈ W, we get that ⟨W ′(f(k)),W ′(m)⟩ ∈
G′.hb|loc ; [W] ; G′.hb?. Since f(k) > m, this contradicts (C1(b) in)
the ⟨G′, η⟩-consistency of W ′.



Decidable Verification under Localized Release-Acquire Concurrency 41

C3) For condition C3(a), knowing that W ′ is ⟨G′, η⟩-consistent we only
need to show that W (1) ̸∈ dom((G.hb|loc \G.rf) ; [R] ;G.hb? ; [Eτ ]),
which is guaranteed by the properties of w as stated above (it fol-
lows from the preconditions of the read step in opLRA and the
fact that w = W (1)). For the condition C3(b), given the ⟨G′, η⟩-
consistency of W ′, it suffices to handle the case that j = 1. Thus
assume toward contradiction some 2 < k ≤ |L| where w = W (1) and
W (k) ∈ dom((G.hb|loc \ G.rf) ; [R] ; G.hb? ; [w]). Since W ′(f(k)) =
W (k), ⟨w, e⟩ ∈ G′.rf, and e = W ′(m), it follows that W ′(f(k)) ∈
dom((G′.hb|loc \G′.rf) ; [R] ;G′.hb? ; [W ′(m)]). Since f(k) > m, this
contradicts (C3(b) in) the ⟨G′, η⟩-consistency of W ′.

C4) For the condition C4(a), given the ⟨G′, η⟩-consistency of W ′, it suf-
fices to handle the case that j = 1. Thus assume toward contra-
diction some 2 < k ≤ |L| where w = W (1), w ̸= W (k), loc(e) =
loc(w) = loc(W (k)), and W (k) ∈ dom(G.hb? ; [Eτ ]). Then since e =
maxG′.poG

′.Eτ = W ′(m), e ∈ W, loc(e) = loc(W (k)), and W (k) =
W ′(f(k)), we have W ′(f(k)) ∈ dom(G′.hb|loc ; [W] ;G′.hb? ; [W ′(m)]),
contradicting (C1(b) in) the ⟨G′, η⟩-consistency of W ′ (since f(k) >
m). Similarly for condition C4(b), given the ⟨G′, η⟩-consistency of
W ′, it suffices to handle the case that i = 1. Assume toward con-
tradiction some 1 < j < k ≤ |L| where w = W (1), W (j) ̸= W (k),
loc(W (j)) = loc(W (k)), and W (k) ∈ dom(G.hb? ; [w]). Then, since
e = maxG′.poG

′.Eτ = W ′(m) and ⟨w, e⟩ ∈ G′.rf, we get W ′(f(k)) ∈
dom(G′.hb? ; [W ′(m)]) where W ′(f(j)) ̸= W ′(f(k)) and loc(W ′(f(j)))
= loc(W ′(f(k))), contradicting (C4(b) in) the ⟨G′, η⟩-consistency of
W ′ (since f(k) > f(j) > m).



42 Abhishek Kr Singh and Ori Lahav

B Decidability of State Reachability under loLRA

We establish the decidability of the reachability problem under the loLRA model.
We start by recalling the framework of well-structured transition systems.

Preliminaries. A well-quasi-ordering (wqo) on a set S is a reflexive and transitive
relation ≾ on S such that for every infinite sequence s1, s2, ... of elements of S, we
have si ≾ sj for some i < j. In a context of a set S and a wqo ≾ on S, the upward
closure of a set U ⊆ S, denoted by ↑U , is given by {s ∈ S | ∃u ∈ U. u ≾ s}; a set
U ⊆ S is called upward closed if U = ↑U ; and a set B ⊆ U is called a basis of
U if U = ↑B. The properties of a wqo ensure that every upward closed set has
a finite basis.

A well-structured transition system (WSTS) is an LTS A equipped with a
wqo ≾ on A.Q that is compatible with A, that is: if q1 −→A q2 and q1 ≾ q3, then
there exists q4 ∈ A.Q such that q3 −→∗

A q4 and q2 ≾ q4. The coverability problem
for ⟨A,≾⟩ asks whether an input state q ∈ A.Q is coverable, namely: is some
state q′ with q ≾ q′ reachable in A?

Coverability is decidable (see, e.g., [9, 15]) for a WSTS ⟨A,≾⟩ provided that
≾ is decidable and the following hold:

(i) effective initialization: there exists an algorithm that accepts a state q ∈ A.Q
and decides whether ↑{q} ∩A.Q0 = ∅.

(ii) effective pred-basis: there exists an algorithm that accepts a state q ∈ A.Q
and returns a finite basis of ↑predA(↑{q}).

For the latter we define the set of predecessors of a set S ⊆ A.Q w.r.t. a
symbol σ ∈ Σ, denoted by predσA(S), by {q ∈ A.Q | ∃q′ ∈ S. q

σ−→A q′}. The set of
predecessors of a set S ⊆ A.Q, denoted by predA(S), is given by

⋃
σ∈Σ predσA(S).

loLRA as a Well-Structured Transition System. The ⊑ ordering on the states of
loLRA is clearly decidable and also forms a wqo. Indeed, by Higman’s lemma,
⊑ is a wqo on the set of all option lists. In turn, its lifting to potentials (which
are finite by definition) is a wqo on the set of all potentials (see [31]). Finally,
by Dickson’s lemma, the pointwise lifting of ⊑ to functions assigning a potential
to every τ ∈ Tid (i.e., states of loLRA) is also a wqo.

Now, let Pr be a program. The ⊑ ordering is naturally lifted to states of
the concurrent system Pr⋊⋉loLRA (that is, pairs ⟨p,B⟩ ∈ Pr .Q × loLRA.Q) by
defining ⟨p,B⟩ ⊑ ⟨p′,B′⟩ iff p = p′ and B ⊑ B′.

Lemma 4. Pr⋊⋉loLRA equipped with ⊑ is a WSTS that admits effective initial-
ization and effective pred-basis.

Proof. First, since Pr .Q is (by definition) finite and ⊑ is a wqo on loLRA.Q, we
have that ⊑ is a wqo of Pr⋊⋉loLRA.Q.

Second, since lower is explicitly included in loLRA, ⊑ is clearly compatible
with Pr⋊⋉loLRA. Indeed, given q1 = ⟨p1,B1⟩, q2 = ⟨p2,B2⟩ and q3 = ⟨p3,B3⟩
such that q1 −→Pr⋊⋉loLRA q2 and q1 ⊑ q3 (so p1 = p3), for q4 = q2, we have
q3 −→∗

Pr⋊⋉loLRA q4 (since B3
ε−→loLRA B1 using the lower step) and q2 ⊑ q4.



Decidable Verification under Localized Release-Acquire Concurrency 43

Next, Pr⋊⋉loLRA trivially admits effective initialization. Indeed, the states
⟨p,B⟩ for which ↑{⟨p,B⟩} ∩ Pr⋊⋉loLRA.Q0 ̸= ∅ are exactly the initial states
themselves—Pr .Q0 × {λτ. {ϵ}}.

It remains to show the effective pred-basis for Pr⋊⋉loLRA. For this matter,
we demonstrate how to calculate a finite basis of ↑predαloLRA(↑{B′}) for α of
the form ⟨τ, W(x, vW)⟩, ⟨τ, R(x, vR)⟩, ⟨τ, RMW(x, vR, vW)⟩ or ε. Then, a finite basis of
↑predαPr⋊⋉loLRA(↑{⟨p′,B′⟩}) is predαPr ({p′}) × Qα for α ̸= ε; and {p′} × Qα for
α = ε (silent memory step). In addition, for a silent program step, a finite basis
of ↑pred⟨τ,ε⟩Pr⋊⋉loLRA(↑{⟨p′,B′⟩}) is given by pred

⟨τ,ε⟩
Pr ({p′})× {B′}.

Silent memory step The set of predecessors of B′ with respect to a silent
memory step (i.e., using lower) is very simple—it contains any state B such
that B′ ⊑ B. Thus, {B′} is a finite basis of ↑predεloLRA({B′}), as well as of
↑predεloLRA(↑{B′}).

Read A predecessor B of B′ with respect to a read step is similar to B′, ex-
cept for having in each read-option list of τ an additional first read option
of the form ⟨τW, x, vR, πRMW⟩. Hence, for α = ⟨τ, R(x, vR)⟩, the set {B′[τ 7→
⟨τW, x, vR, πRMW⟩·B′(τ)] | τW, πRMW ∈ Tid} is a finite basis of ↑predαloLRA({B′}). It is
also a basis of ↑predαloLRA(↑{B′}): For a state B′′ with B′ ⊑ B′′, a correspond-
ing read option ⟨τW, x, vR, πRMW⟩ appears in the lists of τ in predαloLRA({B′′}) be-
fore some additional read options, ensuring that predαloLRA({B′}) ⊑ predαloLRA({B′′}).

Write We construct the basis of the predecessors w.r.t. a write step by con-
sidering all (finitely many) possibilities of omitting read options from lists
of B′. By Proposition 3 and the following Lemma 5, we get a finite basis of
↑pred⟨τ,W(x,vW)⟩loLRA (↑{B′}), as:
{srcx(B′, τ,P)[τ 7→ OW(x) · srcx(B′, τ,P)(τ)] | P is an index choice for B′ and P |= ⟨τ, W(x, vW)⟩}.

Lemma 5. Let P be an index choice for B′ ∈ loLRA.Q such that P |=
⟨τ, W(x, vW)⟩. If B′

0 ⊑ B′, then there exists an index choice P0 for B′
0 such

that P0 |= ⟨τ, W(x, vW)⟩ and srcx(B′
0, τ,P0) ⊑ srcx(B′, τ,P).

Proof. Since B′
0 ⊑ B′, for every π ∈ Tid, there exists a function Fπ : B′

0(π) →
B′(π) such that for every L′

0 ∈ B′
0(π), we have L′

0 ⊑ Fπ(L
′
0), witnessed by

a strictly increasing function f⟨π,L′
0⟩ : {1, ... ,|L′

0|} → {1, ... ,|Fπ(L
′
0)|}, such

that L′
0(k) = (Fπ(L

′
0))(f⟨π,L′

0⟩(k)) for every k ∈ {1, ... ,|L′
0|}.

We define P0 to be the positions in P that originated in B′
0, according to the

f⟨π,L′
0⟩ functions. That is,

P0 ≜ λπ ∈ Tid, L′
0 ∈ B′

0(π). {k ∈ {1, ... ,|L′
0|} | f⟨π,L′

0⟩(k) ∈ P(π, Fπ(L
′
0))}.

It is easy to verify that P0 justifies a ⟨τ, W(x, vW)⟩-step. Let B0 = srcx(B′
0, τ,P0).

We show that B0 ⊑ srcx(B′, τ,P).
Recall that for every thread π ∈ Tid, we have that every list L0 ∈ B0(π)
is equal to L′

0 \ P0(π, L
′
0) (or resp. to L′

0 \\ P0(η, L
′
0)) for some list L′

0 of
B′
0(π) (resp. for some list L′

0 of B′
0(η) for some η ∈ Tid). Hence, we can define

a function Hπ : B0(π) → srcx(B′, τ,P)(π), by setting Hπ(L0) = Fπ(L
′
0) \



44 Abhishek Kr Singh and Ori Lahav

P(π, Fπ(L
′
0)). Observe that for every L0 ∈ B0(π), we have L0 ⊑ Hπ(L0),

witnessed by the function h⟨π,L0⟩ : {1, ... ,|L0|} → {1, ... ,|Hπ(L0)|}, defined
by

h⟨π,L0⟩(k) ≜ Map⟨Fπ(L′
0),P(π,Fπ(L′

0))⟩(f⟨π,L
′
0⟩(Map−1

⟨L′
0,P0(π,L′

0)⟩
(k))),

for every k ∈ {1, ... ,|L0|}. (Respectively, we define
Hπ(L0) = Fη(L

′
0) \\ P(η, Fη(L

′
0))), witnessed analogously.)

RMW The predecessor with respect to an RMW step intuitively combines
the predecessors with respect to the read and write steps. By Proposition 3
and Lemma 5, we get that the set

{srcx(B′, τ,P)[τ 7→ ⟨τW, x, vR, τ⟩·OW(x)·srcx(B′, τ,P)(τ)] | τW ∈ Tid and
P is an index choice for B′ such that P |= ⟨τ, W(x, vW)⟩}

is a finite basis of ↑pred⟨τ,RMW(x,vR,vW)⟩loLRA (↑{B′}).

It is now easy to establish the decidability of reachability under loLRA.

Theorem 2 (loLRA reachability). Given a program Pr and a state p ∈ Pr .Q,
it is decidable to check whether p is reachable under the memory system loLRA.

Proof. Since the first component (the program state) in ⊑-ordered pairs of
Pr⋊⋉loLRA’s states is equal, reachability under loLRA is reduced to coverability
in ⟨Pr⋊⋉loLRA,⊑⟩, which is decidable by Lemma 4 and the framework of [9].


	Decidable Verification under Localized Release-Acquire Concurrency  (Extended Version)

