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A short story: Peterson’s a@om’tﬁm in C++

* In 1981, Peterson proposed a simple algorithm for CPU CPU ... CPU
critical section in shared memory. . .
' ------ .
e |t assumes sequential consistent shared memory (SC). \l °
Memory
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* Q: How to implement Peterson’s algorithm in C/C++1177
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A short story: Peterson’s a@oritﬁm in C++

Peterson: :Peterson() {
_victim.store(0, memory order release);
_interested[0].store(false, memory order release);

_interested[l].store(false, memory order release);

}

volid Peterson::lock() {
int me = threadID; // either 0 or 1

int he = 1 — me; // the other thread 1.

_interested[me].exchange(true, memory order acq rel);
_victim.store(me, memory order release);
while ( interested[he].load(memory order acquire)

&& victim.load(memory order acqulire) == me)

continue; // spin

7. Dmitriy V'jukov Says:

December 3, 2008 at 4:55 am 7/ :
Memory ordering in your implementation of Peterson’s algo is
both insufficient and excessive at the same time. In both
permits races and contains unnecessary fences.

Bartosz Milewski Says:

So even though | don’t have a formal proof, | believe my
implementation of Peterson lock is correct. For all | know,
Dmitriy’s implementation might also be correct, but it’s much
harder to prove.

C++ atomics and memory ordering, blog post by Bartosz Milewski
https://bartoszmilewski.com/2008/12/01/c-atomics-and-memory-ordering/



https://bartoszmilewski.com/2008/12/01/c-atomics-and-memory-ordering/

A short story: Peterson’s a@om’tﬁm in C++

A subsequent post by Anthony Williams analyzed both algorithms:
e Bartosz’s implementation is indeed wrong.

e Dmitriy’s implementation is correct.

https://www.justsoftwaresolutions.co.uk/threading/petersons lock with C++0x atomics.html

"Any time you deviate from SC, you increase the
complexity of the problem by orders of magnitude."


https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html

Goal

Automatically establish robustness of programs against a weak memory model

verification verification under

under sequential + robustness
weak memory consistency

 Key ingredient in automatic fence insertion
e QOur focus: C/C++11’s Release/Acquire fragment

* Previous work: hardware models (especially x86-TSO)



Our Contribution

Execution-graph robustness against Release/Acquire is decidable
and PSPACE-complete.

e as verification under SC e as robustness against x86-TS0O

* A tool for verifying execution-graph robustness

X

input program W'th. verification problem SPIN not robust
Release/Acquire atomics —— | Rocker |— . — model
. In Promela
and non-atomics checker J

robust
 Evaluation on several challenging synchronization algorithms



Release/Acquire in C/C++11

lmplementability 4——————————————=—) Programmability

 allows cheaper implementation  ensures the DRF property
(w.r.t. SC):

o often sufficiently strong:
e x86-TSO: use primitive accesses

e put not always...
 IBM Power: use “lightweight” fences (e.g., Perterson’s algorithm)

* supports “message passing” idiom



Syntax

atomic store explicit(&x, r, memory order release)

r atomic load explicit(&x, memory order acquire)

atomic fetch add explicit(&x, r, memory order acq rel)

b

atomic compare exchange strong explicit(&x, &rl, r2,
memory order acq rel, memory order acquire)

atomic thread fence(memory order seq cst)



Semantics tone-slide coursel

e A form of causal consistency
 Defined declaratively using execution graphs

happens-before =

( program-order U reads-from )™

modification-order - total order
on writes to the same location

mo

Message passing litmus test

X =y =0
x =1 a=vy// 1
y =1 b =x//0

iInconsistent execution graph
disallowed program outcome




Operational version

program
a =y b = x .
left to run finite state
space
local store a=0 b=0

: machinestate (g, G)
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Example: “store-buffer” litmus test
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Robusthess
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Bad news...

e Reduction from state reachability [Bouajjani, Derevenetc, Meyer ESOP'13]

o State-reachability for Release/Acquire is undecidable! [Abdulla, Arora, Atig, Krishna PLDI'19]



Execution-graph robustness

hbUmo can be linearized to an
execution order of an SC-run




Execution-graph robustness against Release/Acquire is decidable
and PSPACE-complete.

Reduction to reachability under an instrumented SC semantics

Lallowed by SC ]

a “minimal” robustness violation: \/
disallowed
(G- Go) ~ra (q15G1) —rA (425 G2) =RA -+ RA (G Gp) —RA (G Gp) |sba; cgvcv)e
/\

can take an RA-step to a non-SC execution graph

(90- My) —sc (g1 M) —>5c (g5, M) —5c ... =5c (g, M,)
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For w = the mo-maximal write to x (W x 1):

e WhasnohbT2
e Every SC-run producing G, executes w before the current last event of T2 |




Instrumented SC Semantics
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Complications

e Read-modify-write (RMW) instructions

a = CAS(x,0,1)
require much more refined instrumentation
(depends on values being read)

. . . . not robust
* Masking benign violations X

X =1 Y = 1

do a = Y while (a # 1) do b = X while (b # 1)
X =Y =0 v/ robust
masked using blocking instructions: X =1 Y =1
walit (Y == 1) wait (X == 1)

e Sequentially consistent fences modelled as RMWs



Evaluation

¢ ™ f’ ™ 4 - 2 ™
number of number robust? w/0 robustness robustness
threads of lines instrumentation against x86-TSO
- E . . —-— J e )
* Y% v | 10 Trencher (TSO)
#T . LoC | Result | Time (sec) A e —
5 5 (sec) Result Time (sec)
spin-lock 34 v 1.6 1.2 v 5.4
seqg-lock 49 v 20.7 3.4 v 8.9
Peterson 28 X 2.5 1.2 x 5.6
Peterson for x86-TSO 30 X 3.3 1.3 v 5.6
Peterson - Dmitriy 36 v 4.3 1.2 v 5.5
Peterson - Bartosz 28 X 3.4 1.1 X 5.6
RCU 74 v 67.6 2.2 X * - requires
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- - blocking
RCU (offline) 215 v 137.9 18.3 X * - instructions




Summary

e \We developed a sound and precise reduction from execution-graph robustness
against Release/Acquire semantics to a reachability problem under SC.

e Execution-graph robustness against Release/Acquire is PSPACE-complete.

e We implemented the reduction and verified several challenging algorithms,
demonstrating in particular that execution-graph robustness is not overly strong.

verification verification under

under sequential + robustness
weak memory consistency

X

input brogram W'th. verification problem SPIN not robust
Release/Acquire atomics — | Rocker |— . — model
_ in Promela
and non-atomics checker ]
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Thank you!
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