Robustness Against
Release/Acquire Semantics

Ori Lahav Roy Margalit
000
TEL AVIV UNIVERSITY
0 Wyeo (L epu |l cru |
S) R
yo# Memory

A short story: Peterson’s a@om’tﬁm in C++

* In 1981, Peterson proposed a simple algorithm for CPU CPU ... CPU
critical section in shared memory. . .
' ------ .
e |t assumes sequential consistent shared memory (SC). \l °
Memory
Wx0 Wy @
* Q: How to implement Peterson’s algorithm in C/C++1177
Wx1 s oWyl
Ry O 4 A Rx0

A short story: Peterson’s a@oritﬁm in C++

Peterson: :Peterson() {
_victim.store(0, memory order release);
_interested[0].store(false, memory order release);

_interested[l].store(false, memory order release);

}

volid Peterson::lock() {
int me = threadID; // either 0 or 1

int he = 1 — me; // the other thread 1.

_interested[me].exchange(true, memory order acq rel);
_victim.store(me, memory order release);
while (interested[he].load(memory order acquire)

&& victim.load(memory order acqulire) == me)

continue; // spin

7. Dmitriy V'jukov Says:

December 3, 2008 at 4:55 am 7/ :
Memory ordering in your implementation of Peterson’s algo is
both insufficient and excessive at the same time. In both
permits races and contains unnecessary fences.

Bartosz Milewski Says:

So even though | don’t have a formal proof, | believe my
implementation of Peterson lock is correct. For all | know,
Dmitriy’s implementation might also be correct, but it’s much
harder to prove.

C++ atomics and memory ordering, blog post by Bartosz Milewski
https://bartoszmilewski.com/2008/12/01/c-atomics-and-memory-ordering/

https://bartoszmilewski.com/2008/12/01/c-atomics-and-memory-ordering/

A short story: Peterson’s a@om’tﬁm in C++

A subsequent post by Anthony Williams analyzed both algorithms:
e Bartosz’s implementation is indeed wrong.

e Dmitriy’s implementation is correct.

https://www.justsoftwaresolutions.co.uk/threading/petersons lock with C++0x atomics.html

"Any time you deviate from SC, you increase the
complexity of the problem by orders of magnitude."

https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html

Goal

Automatically establish robustness of programs against a weak memory model

verification verification under

under sequential + robustness
weak memory consistency

 Key ingredient in automatic fence insertion
e QOur focus: C/C++11’s Release/Acquire fragment

* Previous work: hardware models (especially x86-TSO)

Our Contribution

Execution-graph robustness against Release/Acquire is decidable
and PSPACE-complete.

e as verification under SC e as robustness against x86-TS0O

* A tool for verifying execution-graph robustness

X

input program W'th. verification problem SPIN not robust
Release/Acquire atomics —— | Rocker |— . — model
. In Promela
and non-atomics checker J

robust
 Evaluation on several challenging synchronization algorithms

Release/Acquire in C/C++11

lmplementability 4——————————————=—) Programmability

 allows cheaper implementation ensures the DRF property
(w.r.t. SC):

o often sufficiently strong:
e x86-TSO: use primitive accesses

e put not always...
 IBM Power: use “lightweight” fences (e.g., Perterson’s algorithm)

* supports “message passing” idiom

Syntax

atomic store explicit(&x, r, memory order release)

r atomic load explicit(&x, memory order acquire)

atomic fetch add explicit(&x, r, memory order acq rel)

b

atomic compare exchange strong explicit(&x, &rl, r2,
memory order acq rel, memory order acquire)

atomic thread fence(memory order seq cst)

Semantics tone-slide coursel

e A form of causal consistency
 Defined declaratively using execution graphs

happens-before =

(program-order U reads-from)™

modification-order - total order
on writes to the same location

mo

Message passing litmus test

X =y =0
x =1 a=vy// 1
y =1 b =x//0

iInconsistent execution graph
disallowed program outcome

Operational version

program
a =y b = x .
left to run finite state
space
local store a=0 b=0

: machinestate (g, G)

Wx0 Wy 0
R ‘ current é /; : § |n1;|nt|te
machine step e ent [e pac
5 execution Space
... graph

Example: “store-buffer” litmus test

X =1 y =
a = b =
a=0 b=0
Wx0 Wy @
Wx1
, G -
(90> Go) T

Initial state

Y —
a =y b =
a=0 b=0
Wx0 Wy 0
Wx1
RyO
A (g1, G =

>

Y —
b = b =x
a=0 b=0 a=0 b=0 a=0 b=0
Wx o Wy @ Wx 0 Wy @ Wx o Wy 0
Wx1 f Wx1 S Wyl Wx1 f Wy 1
Ry@‘(Ry@‘(Ry@‘(~ARX®
Wy Rx0
(@2 G) o ke @303 o (44, Gy)
final state

Robusthess

Wx@ Wy9 CPU CPU ___ CPU
W 1(1 Wy 1 . *\'*
Ry o4 Memory
Release/Acquire Seqguential consistency

Vq. (3G. (a0 Gy =3, @.0)) = (3M. (g My) ~% (a.M))

Bad news...

e Reduction from state reachability [Bouajjani, Derevenetc, Meyer ESOP'13]

o State-reachability for Release/Acquire is undecidable! [Abdulla, Arora, Atig, Krishna PLDI'19]

Execution-graph robustness

hbUmo can be linearized to an
execution order of an SC-run

Execution-graph robustness against Release/Acquire is decidable
and PSPACE-complete.

Reduction to reachability under an instrumented SC semantics

Lallowed by SC]

a “minimal” robustness violation: \/
disallowed
(G- Go) ~ra (q15G1) —rA (425 G2) =RA -+ RA (G Gp) —RA (G Gp) |sba; cgvcv)e
/\

can take an RA-step to a non-SC execution graph

(90- My) —sc (g1 M) —>5c (g5, M) —5c ... =5c (g, M,)

robustness
IO Il 12 In - -
INstrumentation

x =1 y = 1 y =1 y = 1
a = b = a =y b = b = x b = x
a =20 b =20 a =20 b =20 a =20 b =20 a =20 b =20 a =20 b =20
Wx o Wy @ Wx0 Wy®o Wx0 Wy®o Wx0 Wy®
Wx1 Wx1 ," le‘\ ,"Wyl
Ry@" Ry@" Ry@" \ARXQ
(90 Go) . (41,G) 2. (g,,Gy) . (3G PO (g Gy
T1 RA T1 RA T2 RA T2 RA
(90 Mp) —sc (g M) —sc (@ M) —sc (g3, M3) robustness
A I, I, /Ii viloation!

For w = the mo-maximal write to x (W x 1):

e WhasnohbT2
e Every SC-run producing G, executes w before the current last event of T2 |

Instrumented SC Semantics

(t.W(x,v))or
(T, RMW(X, Ug. T)) {r,R(x, v))
V. =1 fVSC(T)UMSC(x) T=T Vsc(T)UWsc(x) m=r1
SC — . < {
Vsc(m)\ {x} T#*T | Vsc(r) T*ET
W= 1 ’Msc(x) UVsc(T) y=x rMsc(x) UVsc(T) y=x
SC = y. 1 {
Msc(y) \ {x} y#x | |Msc(y) y#Xx
W = Ay. | | Msc(x)UVsc(T) y=x Wsc(y) (1,W(x, v)) where vg = M(x) (r,R(x,v)) (T, RMW(x, vg, vy))
Wsc(y)\ {x} y#x 0 T=T,y=x V(O W) W) 7= 7 V() y) NWx)(y) 7=t
Vi=Amy. [{V(r)x)U{wR} m#1,y=x {V(”)(!;) Y ﬂ ; . SV(m)(x) U {wRr} T¥T,Yy=Xx
Figure 5. Maintaining Vsc, Msc and Wsc in SCM transitions. V(r)(y) y#x V(r)(@) TFET,YFX
V(z)(y) Z=X, YFX Wx)(y)NV(r)y) z=x,y#x
W=lzy | (W)U {m} z#xy=x |WE)) MDx)U{r) z#xy=x
|W(z)(y) otherwise W(z)(y) otherwise
0 T=T,Yy=X - B
VRm =Am,y. | {Vem(m)(x)U{wr} m#r1,y=x {zRWEZ))((!;))n W (x)(y) z ; ;
Ve (7)(1) y# x -
Ve (7)(y) Z=X,Yy#X ‘
W v = X,
W = 22,5 | { W)U {or} 2% %, y=x | Wem(2)(®) {w“""f‘))((y)) om0 2 = 7 x
| Wanw(2)(y) otherwise RwENY

Figure 6. Maintaining V, W, Vgmy, and Wgyy in SCM transitions.
R R R R RRRRRRRRRREEEEEEEEEE————I——mm

J JERIFLE

Complications

e Read-modify-write (RMW) instructions

a = CAS(x,0,1)
require much more refined instrumentation
(depends on values being read)

. . . . not robust
* Masking benign violations X

X =1 Y = 1

do a = Y while (a # 1) do b = X while (b # 1)
X =Y =0 v/ robust
masked using blocking instructions: X =1 Y =1
walit (Y == 1) wait (X == 1)

e Sequentially consistent fences modelled as RMWs

Evaluation

¢ ™ f’ ™ 4 - 2 ™
number of number robust? w/0 robustness robustness
threads of lines instrumentation against x86-TSO
- E . . —-— J e)
* Y% v | 10 Trencher (TSO)
#T . LoC | Result | Time (sec) A e —
5 5 (sec) Result Time (sec)
spin-lock 34 v 1.6 1.2 v 5.4
seqg-lock 49 v 20.7 3.4 v 8.9
Peterson 28 X 2.5 1.2 x 5.6
Peterson for x86-TSO 30 X 3.3 1.3 v 5.6
Peterson - Dmitriy 36 v 4.3 1.2 v 5.5
Peterson - Bartosz 28 X 3.4 1.1 X 5.6
RCU 74 v 67.6 2.2 X * - requires
--- - blocking
RCU (offline) 215 v 137.9 18.3 X * - instructions

Summary

e \We developed a sound and precise reduction from execution-graph robustness
against Release/Acquire semantics to a reachability problem under SC.

e Execution-graph robustness against Release/Acquire is PSPACE-complete.

e We implemented the reduction and verified several challenging algorithms,
demonstrating in particular that execution-graph robustness is not overly strong.

verification verification under

under sequential + robustness
weak memory consistency

X

input brogram W'th. verification problem SPIN not robust
Release/Acquire atomics — | Rocker |— . — model
_ in Promela
and non-atomics checker]

robust

Thank you!

Q

Q

Y // O

Y // O

|l
O K o

|l
O K o

X // 0

X // 0

state
robustness

execution
graph
robustness

X

X

