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Message passing

X =g 1,
Y =sc 1;

a = Ysci /1 A X =rix 1;

b= Xsc //O - Y ‘=re1 11

a = Yacqs /71
b:= Xrlx: //0

Store buffer

X i=gc 1; Y i=sc 1; o X i=re1 1; Y i=sc 1;
a:=Ys; /0 || b:i=Xsc; /0 a:=Ysc; /0 || bi=Xsc; /0
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Semantics of SC-atomics is too strong!
Example due to Yatin Manerkar et al. [CoRR abs/1611.01507]

X =g 1;

a:i=Xaeq /1
9 5= Ysc //0

Y =sc ]-;

C = Yacqs /1
d:= Xscy //0

C/C++11: behavior disallowed



Semantics of SC-atomics is too strong!
Example due to Yatin Manerkar et al. [CoRR abs/1611.01507]

3= Xacq; /1
9 5= Ysc //O

1. e 1. || € =Yacar /1
X T sc 17 .y =T sc 1v d = Xsc; //O

C/C++11: behavior disallowed

Compilation of C/C++11 to Power

R™™ 1d W st

R2°4 1d;lwsync weel lwsync;st
Leading sync: R®¢ — sync;1d;lwsync WS¢ —  sync;st
Trailing sync: R*¢ — 1d; sync W%¢ = lwsync;st;sync




Semantics of SC-atomics is too strong!
Example due to Yatin Manerkar et al. [CoRR abs/1611.01507]

€= Yacqs /1

d = Xacqs //1
q X 1 =gc 1; || ¥ i =sc 1; d =x.: /0

b:= Ysc /0

C/C++11: behavior disallowed

Compilation of C/C++11 to Power

R™™ 1d W st

R2°4 1d;lwsync weel lwsync;st
Leading sync: R®¢ — sync;1d;lwsync WS¢ —  sync;st
Trailing sync: R*¢ — 1d; sync W%¢ = lwsync;st;sync

Compilation result with “trailing sync” convention:

a=x; /1 c=y, /1
lwsync; x:=1; y:i=1; lwsync;
b=y, /0 sync; sync; d=x; /0
sync; sync;

Power: behavior allowed



Semantics of SC-atomics is too strong!

Other examples show unsoundness of:
» Leading sync compilation (implemented in GCC and LLVM)
» Placing sync both before and after SC-accesses

In order to recover the correctness of existing compilers, we
suggest to weaken the standard.




C11’s declarative semantics 101 Batty et al. [POPL'16]

a 1= Xacq, /1
b:=ys; /0

5% S=ge il H Y ‘=sc 1; o= Y J! J

d:=xs; /0




C11’s declarative semantics 101 Batty et al. [POPL'16]

a 1= Xacq, /1 L . L ) C = Yacq: /1
bi=yw; /0 | X T Lofl yi=se ks d:=xs; /0
program order
w*(0) W,*(0) —
R(1) W (1) wy*(1) Ry(1)

| |

Ry*(0) RZ(0)



C11’s declarative semantics 101 Batty et al. [POPL'16]

i EET FES Do A
w:2(0) W2 (0) program order
RS W W R

Stage 0: choose reads-from
Every read reads from a corresponding write.




C11’s declarative semantics 101 Batty et al. [POPL'16]

3= Xacq; /1 - 1. | e =Yaca /1
bi=ye: /0 | X7 Ll yimelifl g2 Xsc; /0
a a program order
w*(0) w,*(0) —
> P reads from
N o T ->
RYY(1)<=---- We(l) LeTs. we(l)----- > Ry%Y(1)
REO<T T > RE4(0)

Stage 0: choose reads-from
Every read reads from a corresponding write.
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A 1= Xacq; /1 4. . Ci=Yacq; /1
bi=ye; /0 || X7 Ll yimelifl g2 Xse; /0
o a program order
w*(0) w,*(0) —
S P reads from
ac sc ‘A’ sc ac ha ens-before
R Fmmm= WE(1) L7 W) === -3 RM(T) ppER=>
RS(0) <=~ T RrE(0)
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3= Xacq; /1 R .|l € =Yacqs /1
bi=ye; /0 || X7 L y=ebill g.oh: 70
a a program order
w2(0) w,*(0) —
> P reads from
R;ﬁ(cq(l) _____ W)s(c(l)”,o\~\~ W}S/C(l) _____ R;Cq(l) happens—before
RE(O)<-"" T > R3°(0)
Stage 2: "SC-per-location”
w2(0) wy*(0)
RI(1) W= (1) (1) R (1)
RE°(0) R°(0)
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C11’s declarative semantics 101 Batty et al. [POPL'16]

3= Xacq; /1 - 1. | e =Yaca /1
bi=ye; /0 || X7 L ymse b g Xse; /0
a a program order
W (0) wy (0) ﬁ
Y < reads from
cq sc At happens-before
RIL) gomm == WEE(L) o7 il
sc-per-loc
e

Ry*(0)

Stage 2: "SC-per-location”

W (0)® v (0)

N




C11’s declarative semantics 101 Batty et al. [POPL'16]

A 1= Xacq; /1 . ) . ) Ci=Yacq; /1
bi=ye; /0 || X7 Ll yimelifl g2 Xsc; /0
o a program order
w2 (0) wy*(0) ﬁ
s ¢ reads from

happens-before
—

~ .

sc-per-loc
e

Ry*(0)

Stage 3: global restrictions on SC-accesses

Order all SC-accesses while respecting:

h sc sc-per-loc

b - o SC
a:*5¢—> b «5¢ a: ¥ ——— bW,

sc-order b 2 sc-order
_— _—
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C11’s declarative semantics 101 Batty et al. [POPL'16]

A 1= Xacq; /1 . ) . ) Ci=Yacq; /1
bi=ye; /0 || X7 L y=ebill g.oh: 70
o a program order
w2(0) w,*(0) —
\ ,' reads from
--->
cq(l) _____ wsc 1 Piat wsc 1) _____ Racq( ) happens—before
/ \
RSC(O

R;°(0) sc-order
—
C/C++11: behavior disallowed

Stage 3: global restrictions on SC-accesses

Order all SC-accesses while respecting:

hb sc-per-loc

o sSC SC
a:*5¢—> b «5¢ a: ¥ ——— bW,
sc-order sc-order
_— _—




What went wrong and how to fix it

W0) ()
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program order
e

reads from
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E—

sc-per-loc
—_—

sc-order
—
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W0) ()

sc-order
_—

program order
e

reads from

--->

happens-before
E—

sc-per-loc
—_—

sc-order
—

> There are hb-paths between SC-accesses without sync fence in between.



What went wrong and how to fix it

program order
w2(0) w,*(0) —
S reads from

.

R;a(cq(l) _____ Wic(l) ,A~\ w;c(l) _____ R;cq(l) happens—before
l / B S =& \ sc-per-loc
/ 7 >
Ry°(0) R3°(0) sc-order
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a:*sc ;b:*sc

sc-order
_—

> There are hb-paths between SC-accesses without sync fence in between.

> Both compilation schemes ensure a sync fence on hb-paths between
SC-accesses that start and end with “program order”.
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What went wrong and how to fix it

program order
w2(0) w,*(0) —
S o " reads from

--->

happens-before
—

R —

Ry°(0) R;°(0) sc-order
C/C++11: behavior disallowed
hb po PO hb PO
a> SCﬁb. a:*SCHb:*SC a:*SCHﬁHb:*SC

C-orde sc-order sc-order
—> b a——bp a——bp

> There are hb-paths between SC-accesses without sync fence in between.

> Both compilation schemes ensure a sync fence on hb-paths between
SC-accesses that start and end with “program order”.
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What went wrong and how to fix it

program order
w2(0) w,*(0) —
S > reads from

--->

nch(l)‘%%-- 3R happens before
| e
Ry°(0) R;°(0) sc-order
C/C++11: behavior disallowed Fixed model: behavior allowed

hb po PO hb PO
> sc_)b. a:*sz‘,;}b:*sc az*sc;,_)Hb:*sc

C-orde sc-order sc-order
—> b a——bp a——bp

> There are hb-paths between SC-accesses without sync fence in between.

> Both compilation schemes ensure a sync fence on hb-paths between
SC-accesses that start and end with “program order”.



Results

The fixed model is not too strong:
> correctness of existing compilation schemes

» Power/ARMv7 (Alglave et al. '14): leading/trailing sync
» x86-TSO: mfence after-SC-writes/before-SC-reads

» soundness of compiler optimizations

The fixed model is not too weak:
> DRF theorem (without relaxed accesses)

» coincides with C11 when SC-accesses are to distinguished locations




SC-fences

Store buffer

How to guarantee only SC behaviors (i.e., a=1V b=1)7

x = 1 y = 1- X ‘=rix 1; Y =rix 1;
e T @ fenceg; fence,.;
a = Ysc: —

a:= Yrix; || b= Xpx;




Semantics of SC-fences is too weak!

» SC-fences, even when placed between every two accesses,
do not restore SC.

ai=Xux, /1 C:=ynax /1
fenceg.; X =pnx 1; || Y i=nx1; fence,;
b:=ynx; /0 d:= X4 /0

C/C++11: behavior allowed!

» Algorithm designers may have to unnecessarily strengthen
access modes, leading to redundant hardware fences.

» Chase-Lev concurrent deque [L& et al. '13]: “unrecoverable
overheads" in the interaction between atomic operations and
memory barriers in C11.




Stronger semantics for SC fences

Global restrictions on SC-fences
Order all SC-fences while respecting:

hb hb sc-per-loc hb
a:F¢——> b F5° a:F¢—>*——>* —p:F°
sc-order sc-order
a——b g 2c0ree]

» We prove the correctness of existing compilation schemes
and compiler optimizations for the strengthened model.

» SC-fences between every two accesses suffice to restore
SC (assuming no data races on non-atomics).




Thin-air conservative solution

non- release/
. C (relaxed] C . C sc
atomic - acquire

y

The out-of-thin-air problem

Relaxed accesses are overly weak:

» Values appear out-of-thin-air » DRF is broken
v
e e Load-buffering 4 control dependency
— . — : a:i=Xx; /1 b:=ynx; /1
a:=xux; /1 H b= ynx /1 if (a2 1) it (bo1)
Yy i=rix a X i=r1x b;

Yy i=rx 1; X i=rix L;




Thin-air conservative solution

non- release
sromie C = [ © s

acquire

The out-of-thin-air problem

| A\

Relaxed accesses are overly weak:
» Values appear out-of-thin-air » DRF is broken

v

(PN sy e Load-buffering + control dependency

e — a:=xnx; /1 b:=ynx /1
2 i 1 kel B EE if (b=1)
Y e 2 X B Y i=rx L; X i=r1x 1;
Conservative solution [Boehm&Demsky '14]

> Require acyclicity of (program order U reads-from)
» More expensive compilation:

1. (fake) control dependency after relaxed reads
2. or: (lightweight) fence before relaxed writes

\



Correctness of conservative solution

Conservative solution [Boehm&Demsky '14]

> Require acyclicity of (program order U reads-from)
» More expensive compilation:

1. (fake) control dependency after relaxed reads
2. or: (lightweight) fence before relaxed writes

We proved correctness of compilation to Power/ARMv7 for scheme (1).

Main challenge

> Hardware models allow (program order U reads-from) cycles
(involving non-atomic reads in the source).

» We have to show that such cycles can be untangled to produce a
racy consistent execution.




Summary

We presented RC11, a repaired model for C/C++11 concurrency:
» weaker semantics for SC-accesses
> stronger semantics for SC-fences
> disallow (program order Ureads-from) cycles
We proved:
» correctness of compilation schemes
» soundness of compiler optimizations

> programming guarantees (DRF, SC-fences can restore SC)

4

» Mechanize our proofs

> ARMv8




Summary

We presented RC11, a repaired model for C/C++11 concurrency:
» weaker semantics for SC-accesses
> stronger semantics for SC-fences
> disallow (program order Ureads-from) cycles
We proved:
» correctness of compilation schemes
» soundness of compiler optimizations

> programming guarantees (DRF, SC-fences can restore SC)

4

» Mechanize our proofs

> ARMv8

Thank you!



Correctness of compilation to different hardware

Batty et al. Strong

C/C++11 [POPL'16] RC11 RC11 Strongest
x86-TSO v v v X X
POWER X X v v X
ARMVT7 (no isb) v v v v 4
ARMV7 (with isb) X X v v X
ARMv8 POP X X e ? X
ARMvS8.2 (with STLR,LDAR) v * Ve * v * v * v *

eco ™ (rf Umo Urb)™
def
Pohbpo = po|.s1oc; hb; ol 1ec
RC11 ' acyclic(([E%] U [F*<]; hb?); (po U pohbpo U rf U mo U rb); ([E%] U hb?; [F*<])
U [F%°];b’; (b U eco); hb’; [F°])
Strong-RC11 % acyclic(([E%] U [F*°]; hb’); (po U pohbpo U eco); ([E*] U hb?; [F*])
U [F*°]; hb; (hb U eco); hb; [F*°])

Strongest 2 acyclic([E*] U [F*°]; hb’); (kb U eco); ([E*] U hb?; [F*<])



Strengthening C11's declarative semantics for SC-fences

a=Xux /1 Ci=Yynx /1
fences.; X :=nx1; || ¥ :=nx1; || fences;
b:= ynx; /0 d = X1x; /0




Strengthening C11's declarative semantics for SC-fences

a:i=x1x; /1 C:=Yynx /1
fences.; X :=nx1; || ¥ :=nx1; || fences;
b:= ynx; /0 d = X1x; /0
w*(0) W,*(0)
A 4
m program order
A Y 'l >
P24 reads from
happens-before
—_—
sc-per-loc
—_—

sc-order
—



Strengthening C11's declarative semantics for SC-fences

a=Xux /1 Ci=Yynx /1
fenceg; X i=nx1; || ¥ =nx 1 fenceg;
b:= ynx; /0 d = X1x; /0
w:*(0) w,*(0)
Y ,
m program order
A Y 'l >
P24 reads from
happens-before
—_—
sc-per-loc
—
sc-order
—

Global restrictions on SC-fences

Order all SC-fences while respecting:

hb po sc-per-loc po
a:F*———> b F* a:F —*——>W,—p:F*
sc-order sc-order
—>b a——>p
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Strengthening C11's declarative semantics for SC-fences

a=Xux /1 Ci=Yynx /1
fenceg; X i=nx1; || ¥ =nx 1 fenceg;
b:= ynx; /0 d = X1x; /0
w*(0) W,*(0)
m program order
"" reads from
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Strengthening C11's declarative semantics for SC-fences

a=Xux /1 Ci=Yynx /1
fenceg; X i=nx1; || ¥ =nx 1 fenceg;
b:= ynx; /0 d = X1x; /0
w*(0) W,*(0)
m program order
"" reads from
happens-before
—_—
sc-per-loc
—
sc-order
—
C/C++11: behavior allowed! Fixed model: behavior disallowed!

Global restrictions on SC-fences

Order all SC-fences while respecting:

hb hb
hb sc-per-loc *x
a:F*————> b F* a:FSC);<>*><—’)’<);<’b:FSC

sc-order sc-order
—> b a—




