A Promising Semantics for
Relaxed-Memory Concurrency

Jeehoon Kang! Chung-Kil Hur! Ori Lahav?
Viktor Vafeiadis?> Derek Dreyer?

1Seoul National University

2Max Planck Institute for Software Systems (MPI-SWS)

Kent Concurrency Workshop, July 2016

Programming language concurrency semantics

What is the right semantics for a concurrent programming
language?

v

Allow efficient implementation on modern hardware

v

Validate compiler optimizations

v

Support high-level reasoning principles
Avoid “undefined behavior”

v

Despite many years of research, no semantics was proven to
admit all of the desired properties.

Programming language concurrency semantics

In particular:

» The Java model fails to validate common compiler
optimizations.

» The C11 model allows out-of-thin-air behaviors, that
break fundamental reasoning principles.

» Stronger semantics for C11 (preserve load-store ordering
for relaxed accesses) has some performance impact, and
relies on undefined behavior for non-atomic accesses.

The out-of-thin-air problem in C11

» Initially, x =y = 0.
» All accesses are “relaxed”.

Load-buffering

X =y

a=x; /1
y =1

This behavior must be allowed:
Power/ARM allow it

The out-of-thin-air problem in C11

» Initially, x =y = 0.
» All accesses are “relaxed”. [x =y =0]

Load-buffering RyixX, 1 Rrixy, 1

ai=x; /1 ‘ x=y; l >< l

y=1
erx% 1 wrlxx7 1

This behavior must be allowed:
Power/ARM allow it program order

B —
reads from
—_—

The out-of-thin-air problem in C11

Load-buffering + data dependency

X =y

a=x; /1
y=a

The behavior should be forbidden:
Values appear out-of-thin-air!

The out-of-thin-air problem in C11

Load-buffering + data dependency

a=x; /1 X v x=y=0
y = a; = / \
The behavior should be forbidden: Rpiex, 1 Rpxy, 1

Values appear out-of-thin-air! l >< \

erx% 1 wrlxX7 1

Same execution as before!
C11 allows these behaviors

The out-of-thin-air problem in C11

Load-buffering + data dependency

a=x; /1 X v =y=0

y = a; = / \
The behavior should be forbidden: Rpiex, 1 Rpxy, 1
Values appear out-of-thin-air! l >< \
Load-buffering + control dependencies

— oyt wrlxy7 1 wrlxX7 1

Nolh | uEo=D
£ (a=1) _
(=1l
y =1

The behavior should be forbidden: Same execution as befo_re! J
DRF guarantee is broken! C11 allows these behaviors

The hardware solution

Keep track of syntactic dependencies,
and forbid “dependency cycles”.

Load-buffering + data dependency

a=x; /1
y = a;

X =y,

dependency

————————— >

The hardware solution

Keep track of syntactic dependencies,
and forbid “dependency cycles”.

Load-buffering + data dependency [X =Y = O]

ai=xi /1 | _, / \
y =g =Y
» rlxX]- rlx_y71
a=x; /1 e v ; ;'
y=a+1-—a; =Y Wiy, 1 WeixX, 1
dependency

This approach is not suitable for a programming language:
Compilers do not preserve syntactic dependencies. J

A “promising” semantics for relaxed-memory concurrency

We propose a model that satisfies all these goals, and covers
nearly all features of C11.

» DRF guarantees » Efficient implementation
» No “out-of-thin-air” values on modern hardware
» Avoid “undefined behavior” > Compiler optimizations

Key idea: Start with an operational semantics, and allow
threads to promise to write in the future

Simple operational semantics for C11's relaxed accesses

Store-buffering

x=y=0
= 1l
b:=x/0

x = 1;

a=y/0

Simple operational semantics for C11's relaxed accesses

Store-bufferin
s Memory T1's view T>'s view
(x : 0@0) y Xy
> x = 1; >y = 1; (v : 000) 0 0 0 0

a=y/0 b::x,//O

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the
last observed timestamp for every location

Simple operational semantics for C11's relaxed accesses

Memor . .
y T1's view T>'s view

Store-buffering

x=y=0 (x : 0@0) "
x =1 >y =1 {y:000) —g f)/ 5 g
»a =y /0 b:=x/0 (x:1le1) 1

» Global memory is a pool of messages of the form

(location : value @ timestamp)

» Each thread maintains a thread-local view recording the
last observed timestamp for every location

Simple operational semantics for C11's relaxed accesses

Store-buffering

X:y:0 <X:O@O> Tl)’(svi;/aw Tg)’(svi)(/aw

x = 1; y =1 (v : 0@0) X 0 0 X

>a=y /0| »bi=x/0 (x:len) 7 :
(y:1le1)

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the
last observed timestamp for every location

Simple operational semantics for C11's relaxed accesses

Store-buffering

X—y =0 <X:O@O> T1XSV|;W Tgxsv;aw
x = 1; y =1, {y : 0@o) X 0 0 X
a=y /0| »b:=x/0 (x:1le1) 1 3

> (y:1le1)

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the
last observed timestamp for every location

Simple operational semantics for C11's relaxed accesses

Store-buffering

X—y =0 <XZO@O> T1XSV|;W Tgxsv;aw
x = 1; y =1, (v : 0@0) X 0 0 X
a=y/0 b:=x/0 (x:1le1) 1 3

> > (y:le1)

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the
last observed timestamp for every location

Simple operational semantics for C11's relaxed accesses

Store-buffering Memory s view | Ta's view
x=y=0 (x : 0@0) Xy X y
x = 1; =1; (v : 0@0) X 0 0 X
a:=y /0 b:=x/0 (x:le1) 1 3
> > (y:1le1)

Coherence Test

Simple operational semantics for C11's relaxed accesses

Store—buffering Memory T view T.'s view
1 2

=y =0 (x : 0@0) % v Xy
x:=1; y =1 {y - 0eo) X o0 0 X
a=y /0| b=x/0 (x:1le1) 7 1
> - (y:1le1)
Coherence Test Memory Ti's view T,’s view
x=0 (x : 0@0) X X
» x = 1; > x =2, Y 0

a=x /2 b:=x /1

Simple operational semantics for C11's relaxed accesses

Store—buffering Memory T view T.'s view
1 2

=y =0 (x : 0@0) % v Xy
x:=1; y =1 {y - 0eo) X o0 0 X
5= /i b:=x /0 (x:1le1) 1 1

> - (y:1le1)

Coherence Test Memory Ti's view T,’s view

x=0 (x : 0@0) al X

x =1 > x =2 (x:1le1) X 0

» a=x //2 b:=x //]. 1

Simple operational semantics for C11's relaxed accesses

Store—buffering Memory T view T.'s view
1 2

=y =0 (x : 0@0) N X
x:=1; =1 {y + 0e0) X ?)/ 0 g
5= /i b:=x /0 (x:1le1) 1 1

> - (y:1le1)

Coherence Test Memory T1's view T,’s view

o ox=0 (x : 0@0)));— X
x:=1; X:=2; (x :1e1) X
»a=x /2| »b:=x /1 (x : 202) : 2

Simple operational semantics for C11's relaxed accesses

Store-buffering

Memory . .
T1's vie T,’s vie
X=y=0 (x:000) "'y“’ ° ‘"y“’
x = 1; =1; (v : 000) X 0 0 K
ai=y /0| bi=x/0 (x:1e1) 7 .
> > (y:1le1)
Coherence Test Memory T1's view T.'s view
T 0 L (x : 0@0) ;(X
x:=1; X = 2; <X . 1@1> X
a=x /2| »wbi=x /1 (x : 202) X ’
> 2

Simple operational semantics for C11's relaxed accesses

Store-bufferi
ore-butfering) <|\)/(|el’8(@::)y> T1's view T>'s view
x = 1; =1 <y : O@O> X ?)/ 0 g
5= /i b:=x /0 (x:1le1) 1 1
> - (y:1le1)
Coherence Test Memory Vi et T,'s view
X = (x : 0@0) al X
o y X
x:=1 X =4 (x:1le1) X X
ai=x /2| b=x /1| [loe) 2
> > :

Promises

Load-buffering

a=x; /1 =
y=1 -

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.

Promises

Load-buffert Memory
oad-buffering <X : 0©0>

: 000

»a—=x; /1 o v)

y=1

T1's view T>'s view

w4 w4

0 O 0 O

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the

promised message.

Promises

Memory
Load-buffering (X _ 0©0>
(y : 0@0)

=x; /1
> A8=2% 4 > X =y; (y:1le1)

y=1

T1's view T>'s view

w4 w4

0 O 0 O

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the

promised message.

Promises

Memory
Load-buffering (X _ 0©0>
(y : 0@0)

=x; /1
> A8=2% 4 > X =y; (y:1le1)

y=1

T1's view T>'s view

w4 w4

0 0 0 X
1

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the

promised message.

Promises

. Memory
Load-buffering (x i 0©0> Ti's view T's view
: X Yy X Yy
1 (y : 0@0) 0o XK
y =1 X =y, (y:1le1) 1 1
> (x:1le1)

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.

Promises

Load-buffering

v
s —
X
'—l
@
=

T1's view T>'s view

w4 w4

X o X X
1 11

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the

promised message.

Promises

: Memory
Load-buffering (x i 0©0> Ti's view T's view
X Yy X Yy
: 0@0
smx J1| y:000) === Sk
yo— 1 X =y, (y:1le1) 11 11
~ > (x:1le1)

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in
the future, allowing other threads to read from the
promised message.

Promises

: Memory
(x:0eo) Trsview To'sview
=v=0 X X
a::x;x//ly {y - 0eo) X);/ X g
y;:]_; A <y:1@1> 1 1 1 1
> > (x:1le1)
Must not admit the same
a=x; /1
y = a ‘ = execution! J

Promises

Load-buffering

x=y=0
a=x; /1 I Key ldea
wo= 1 > Y A thread can only promise if it can
> perform the write anyway (even

v

without having made the promise)

Load-buffering + dependency
a=x; /1 ‘

y:: a, X::y;

Certified promises

Thread-local certification

A thread can promise to write a message, if it can
thread-locally certify that its promise will be fulfilled.

Certified promises

Thread-local certification

A thread can promise to write a message, if it can
thread-locally certify that its promise will be fulfilled.

Load-buffering Load buffering + fake dependency
a=x; /1 Xy a=x; /1 X v
y = 1; =Y y:=a+1-a; =

T; may promise y = 1, since it is able to write y = 1 by itself.

Load buffering + dependency

T; may NOT promise y = 1, since
a=x; /1 it is not able to write y = 1 by itself.

y = a; =0

The full model

v

Atomic updates

v

Release/acquire fences and accesses

v

Release sequences

SC fences and accesses
Plain accesses (C11's non-atomics & Java's normal accesses)

v

v

Access Modes

pln C rlx C ra [C sc

To achieve all of this we enrich our timestamps, messages, and
thread views.

Results

O Compiler optimizations O DRF guarantees
O Efficient implementation O No “out-of-thin-air” values
on modern hardware ¥ Avoid “undefined behavior”

Results

¥ Compiler optimizations O DRF guarantees
O Efficient implementation O No “out-of-thin-air” values
on modern hardware ¥ Avoid “undefined behavior”

Theorem (Local Program Transformations)

The following transformations are sound:
» Trace-preserving transformations

> Reorderings:

RS R WS WE Wy, ; RS, unless o1 = 0p = sc
RE 1xi Rpin RE p1xs Wygrlx Rotrix; Facq
W; Facq Fre1; Wotrix Fre1; R

> Merges:

Ro;Ro ~ Ro Wo, Wo ~> Wo W;Rya ~ W Wsc; Rse ~ Wsce

Results

¥ Compiler optimizations O DRF guarantees
& Efficient implementation O No “out-of-thin-air” values
on modern hardware ¥ Avoid “undefined behavior”

Theorem (Compilation to TSO/Power)

» Standard compilation to TSO is correct
» TSO can be fully explained by transformations over SC
» Compilation to Power is correct
» Using an axiomatic presentation of the promise-free machine

Results

¥ Compiler optimizations ¥ DRF guarantees
& Efficient implementation O No “out-of-thin-air” values
on modern hardware ¥ Avoid “undefined behavior”

Theorem (DRF Theorems)

Key Lemma Races only on ra/sc under promise-free
semantics == only promise-free behaviors
DRF-RA Races only on ra/sc under release/acquire
semantics = only release/acquire behaviors
DRF-SC Races only on sc under SC semantics
= only SC behaviors

Results

¥ Compiler optimizations ¥ DRF guarantees
& Efficient implementation # No “out-of-thin-air” values
on modern hardware ¥ Avoid “undefined behavior”

Theorem (Invariant-Based Program Logic)

Fix a global invariant J. Hoare logic where all assertions are of
the form P A\ J, where P mentions only local variables, is sound.

Results

¥ Compiler optimizations ¥ DRF guarantees

& Efficient implementation & No “out-of-thin-air” values
on modern hardware & Avoid “undefined behavior”

Theorem (Invariant-Based Program Logic)

Fix a global invariant J. Hoare logic where all assertions are of
the form P A\ J, where P mentions only local variables, is sound.

<

Load-buffering 4+ data dependency

x=y=0
{/}
a:=x; {J}
{Jn(a=0)} X =y, JE (x=0)A(y=0)
y = a; {J}

{J/}

\

Future Work

v

Correct compilation to ARMv8

v

Global transformations and sequentialization

v

Liveness

v

Program logic

See http://sf.snu.ac.kr/promise-concurrency/
for Coq proofs.

http://sf.snu.ac.kr/promise-concurrency/

Future Work

v

Correct compilation to ARMv8

v

Global transformations and sequentialization

v

Liveness

v

Program logic

See http://sf.snu.ac.kr/promise-concurrency/)
for Coq proofs.]

Thank you!

http://sf.snu.ac.kr/promise-concurrency/

Atomic updates

a.=x++ /0 H b:=x++; /0

» To obtain atomicity, the timestamp order keeps track of
immediate adjacency.

» Main challenge: threads performing updates may
invalidate the already-certified promises of other threads.

Atomic updates

a.=x++ /0 Hb::x++; /0 J

» To obtain atomicity, the timestamp order keeps track of
immediate adjacency.

» Main challenge: threads performing updates may
invalidate the already-certified promises of other threads.

a=x; /1
b:=2z++ /0 || x =y, || z++
y =b+1,

» Solution: require certification for every future memory.

Guiding Principle of Thread Locality

The set of actions a thread can take is determined only by the
current memory and its own state.

Certification is needed at every step

a=x; /1
b=z /1
if b=0theny :=1;

Sequentialization is unsound

a=x; /1
if a=0then ||y :=x;||x:=y;
x:=1;

a=x; /1

if a = 0 then
x:=1;

y =X

