Tel-Aviv University
The Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

Canonical Constructive Systems

This thesis is submitted in partial fulfillment
of the requirements towards the M.Sc. degree

by

Ori Lahav

This thesis was prepared under the supervision of

Prof. Arnon Avron

July, 2009



Abstract

We define the notions of a canonical inference rule and a canonical system
in the framework of single-conclusion sequential systems, and give a construc-
tive condition for non-triviality of a canonical system. We develop a general
non-deterministic Kripke-style semantics for such systems, and show that every
constructive canonical system (i.e. coherent canonical single-conclusion system)
induces a class of non-deterministic Kripke-style frames for which it is strongly
sound and complete. We use this non-deterministic semantics to show that
all constructive canonical systems admit a strong form of the cut-elimination
theorem, and to provide a decision procedure for such systems. These results
identify a large family of basic constructive connectives, each having both a
proof-theoretical characterization in terms of a coherent set of canonical rules,
as well as a semantic characterization using non-deterministic frames. The fam-
ily includes the standard intuitionistic connectives, together with many other
independent connectives.
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Introduction

The Problem

The standard intuitionistic connectives (D, A,V and L or D, A,V and —) are
of great importance in theoretical computer science, especially in type theory,
where they correspond to basic operations on types (via the formulas-as-types
principle and Curry-Howard isomorphism).

Now a natural question is: what is so special about these connectives? The
standard answer is that they are all constructive connectives. But then what
exactly is a constructive connective, and can we define other basic constructive
connectives beyond the standard intuitionistic ones? And what does the last
question mean anyway: how do we “define” new (or old) connectives? Two
main approaches can be taken to answer the last question:

1. The proof theoretic approach. According to this approach, a connec-
tive is defined by a set of axioms and derivation rules in some appropriate
axiomatic proof system. These axioms and rules determine the way in
which the connective is used in proofs. In particular, constructive connec-
tives are defined by axioms and rules in axiomatic systems, which allow
only constructive derivations. The best example for such a system is LJ,
Gentzen’s single-conclusion sequential system for intuitionistic logic.

2. The model theoretic approach. According to this approach, a con-
nective is characterized by formal restrictions on the semantic values that
models assign to formulas containing this connective. These restrictions
determine which models are relevant when the connective under discussion
is used. They might lead to deterministic semantics, in which there is only
one way to set the value of the formula given the values of its subformulas,
or to non-deterministic one, in which there is more than one way of doing
so. In particular, constructive connectives are defined within the frame-
work of some denotational semantics suitable for constructive reasoning.
The best example is the semantics of Kripke frames for intuitionistic logic.

iii



iv INTRODUCTION

Our Approach

Our goal in this work is to combine the two approaches outlined above. Ini-
tially we take the first approach, and show a general way to define constructive
connectives by providing a set of inference rules for it. We do this by intro-
ducing the notion of canonical constructive systems, which generalizes (as we
show) Gentzen’s original LJ. Then we generalize the semantics of Kripke frames
for intuitionistic logic in order to provide semantics for every connective which
can be defined in some canonical system. The key for doing this is the use of
non-deterministic semantics. This makes it possible to provide simple semantics
for many connectives, which lacked one up to now. We prove soundness and
completeness of our semantics, and use it to prove some important properties
of our proof systems and of the consequence relations they induce.

The main inspiration for this work is previous works about classical logic ([3,
4]). In these papers the notion of multiple-conclusion canonical rule was intro-
duced. These rules are “well-behaved” inference rules in a multiple-conclusion
Gentzen system: each rule is associated with exactly one connective; it includes
exactly one occurrence of the introduced connective and no occurrences of other
connectives; it is context-independent (pure in the sense of [2]) and there are no
side conditions limiting its application. This gives canonical rules the subformula
property, i.e. the formulas in the premises of the rule are immediate subformu-
las of its conclusion. Equipped with this notion, “multiple-conclusion canonical
propositional Gentzen systems” were defined as sequential systems which have
only canonical rules as logical rules. Then, a simple coherence property was sug-
gested, and proved to be a necessary and sufficient condition for non-triviality
and cut-elimination in multiple-conclusion canonical systems. This coherence
criterion plays also an important role in our work about single-conclusion canon-
ical systems (see definition 21).

These previous works also provide semantics for such systems in the form
of two-valued non-deterministic matrices (two-valued Nmatrices). Nmatrices
are a natural generalization of the classical truth-tables. They are obtained
by discarding the principle of truth-functionality, and permitting truth tables
to leave the value of the compound formula undetermined in some entries. In
this way, a large family of connectives (which includes all the classical connec-
tives) is defined. Each connective in this family has both a proof-theoretical
characterization in terms of a coherent set of canonical rules, and a semantic
characterization using two-valued Nmatrices. The present work can be seen as
the constructive counterpart of [3, 4].

The central property that we prove for our canonical constructive systems is
a strong form of cut-elimination. This ensures that the definition of a connective
by set of inference rules in some canonical constructive system is independent of
the system (which may include rules for other connectives). This kind of modu-
larity is characteristic for systems with cut-elimination, in particular: canonical
constructive systems.

Since cut-elimination is the most important technique in proof theory, a lot
of effort has been put into characterizing systems which admit it (see [8]). Our



work contributes in this field too. First, we simultaneously prove a strong form
of cut-elimination for a large family of single-conclusion systems (the canonical
constructive systems). Second, we offer a coherence criterion which is necessary
and sufficient for cut-elimination in canonical systems. This criterion is very
simple. Accordingly, checking whether a canonical system is coherent (and so
admits cut-elimination) is an easy task. Finally, we investigate the connections
between our strong form of cut-elimination and the usual one.

Thesis Organization

The rest of this thesis consists of 4 chapters:

1. Chapter 1 provides some necessary background about Gentzen’s single-
conclusion calculus and Kripke semantics for intuitionistic logic.

2. Chapter 2 describes some related work and discusses some of its advan-
tages and shortcomings.

3. Chapter 3 is the main chapter of this thesis. It is divided into two sections:
one about strict constructive systems and the other about non-strict ones
(the difference between these two versions is explained in Section 1.1).

4. Chapter 4 provides our solution to the problem described above (i.e. “what
is a constructive connective?”). It also describes the connections between
our results and those that are presented in Chapter 2. Finally, it presents
some directions for further research.

Finally, note that some results from this thesis appear in [5].
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Chapter 1

Preliminaries

1.1 Gentzen’s Single-Conclusion Calculus

Since a finitary consequence relation, b, is determined by the set of pairs (T, )
such that ' - ¢, it is natural to base proof systems for logics on the use of such
pairs. Originally, this was done by Gentzen in [9], when he introduced systems
which manipulate sequents, instead of formulas. Gentzen suggested two different
variants of a sequent:

1. A multiple-conclusion sequent which is constructed from two finite (pos-
sibly empty) sequences of formulas, separated by a new symbol (e.g. =).

2. A single-conclusion sequent which is a multiple-conclusion sequent of the
form I" = A, such that A contains at most one formula.

The use of sequents made it possible to obtain “ideal” inference rules for
the basic connectives. Each of these rules deals with a single connective and
contains this connective only, and exactly once. These rules are divided to
two types: left introduction rules, which introduce the connective on the left
side of the sequent, and right introduction rules, which do it on the right side.
By specifying the premises needed to introduce a connective on each side, this
“ideal” kind of rules reflects the independent meaning of the connective, and
thus these rules are traditionally considered as definitions of connectives.

Two sequential calculi were introduced in [9]: LK and LJ. LK was proved
to be sound and complete with respect to classical logic, and LJ was proved to
be sound and complete with respect to intuitionistic logic. While the inference
rules of these two systems are the same, the difference between them is the
type of sequents that are used in their derivations: while derivations in LK use
multiple-conclusion sequents, LJ limits its sequents to be single-conclusion.

Although Gentzen used finite sequences of formulas, on both sides of a se-
quent, it is often more convenient to use sets, which eliminate the need for
structural rules to deal with permutations and repetitions of formulas on both
sides of a sequent. In the present work we assume the standard structural rules
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of minimal logic, i.e. we always assume the existence of the interchange rules
and contraction rules. Thus, we will define a sequent using sets on both sides
of a sequent.

We give here a set-version of the propositional fragment of LJ, which is
the starting point of our work. The following axioms and rules are used in
derivations by replacing ¢ and 1 by concrete formulas, replacing I' by a finite
set of concrete formulas, and either omitting E, or replacing it by a single
concrete formula.

e Axioms
Y=
e Structural Rules
— Weakening
I'=FE I'=
I'A=F I'=y¢p
— Cut
'y Aep=FE
INA=F
e Logical Rules
— Conjunction rules
' T'=29y INe=FE Iy=FE
F'=oAy FeoAnv=F oAy =F
— Disjunction rules
I'=9p I'=q I'ey=F T yv=F
F'=soeVvy F'=seVvy Fevy=FE
— Implication rules
o=y I'=se T,Ww=F
=Dy Ne>y=~FE
— Negation rules
'=oe o=
I —p= I'= -

Gentzen proved the cut-elimination theorem (“Hauplatz”) for LJ (and also
for LK), which says that whenever there exists a proof (from no assumptions)
of some sequent in LJ, then there exists a proof of it without any application
of the cut rule. This property has many corollaries and applications, including
decidability of the intuitionistic logic. The original proof of the cut-elimination
theorem was done by complex syntactic arguments, and involved many case
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distinctions in order to go through all possible combinations of rules. This
kind of proofs often leaves many details to the reader, and tends to contain
inaccuracies or mistakes. In the present work, we will not follow this approach,
and thus we do not describe it here.

In the same paper Gentzen also introduced natural deduction systems. These
systems are another type of sequential systems, in which instead of using left
introduction rules, one uses elimination rules. A single-conclusion sequent in
these systems is defined as a multiple-conclusion sequent whose right side in-
cludes ezactly one formula. In this framework it is impossible to have “ideal”
rules for negation. To solve this, D, A,V and L are used as basic connectives,
and —y is an abbreviation for ¢ DL !

Some later presentations of LJ also use single-conclusion sequents with ex-
actly one formula on the right side, and again — is defined as an abbreviation
for ¢ DL. This version is more natural for deriving a consequence relation,
since provability of a sequent of the form I' = ¢ is naturally identified with
I' F . We will refer to this version of LJ as the strict version, while the original
version will be called the non-strict one. In the present work we initially work
within the strict framework and present a generalization of this version of LJ.
Afterwards we present a generalization of the original non-strict version.

Our generalization of the strict version of LJ can be done in the natural de-
duction framework as well. This is briefly described in Subsection 3.2.6. Except
for this subsection, henceforth by “sequential system”, we mean Gentzen-type
systems like LK and LJ. However, we will use the natural deduction terms “in-
troduction rule” and “elimination rule”, also for Gentzen-type systems, instead
of “left introduction rule” and “right introduction rule”.

I This is also natural (or even unavoidable) for the usual semantic point of view, in which
the various connectives are characterized in terms of their proofs. A proof of - is defined as
a procedure that transforms any proof of ¢ to a proof of an absurd.
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1.2 Kripke Semantics for the Intuitionistic Logic
The most useful semantics for propositional intuitionistic logic is that of Kripke
frames, introduced in [12].

Let F is the set of wifs in the language of D, A,V and L.
Definition. A Kripke frame is a triple W = (W, <, v) such that:

1. (W, <) is a nonempty partially ordered set. The elements of W will be
referred as worlds.

2. v is a function from W x F to {t, f} satisfying the following conditions
for every a € W, and every two formulas ¢ and :

persistence condition: v(a,¢) = t implies v(b, ¢) = t for every b > a.

v(a, o A) =t iff v(a,p) =t and v(a, ) = t.

v(a,p V) =tiff v(a,p) =1t or v(a,) =t.

v(a, ¢ D 1/)) =t iff v(b, p) =t implies v(b, ) =t for every b > a.

v(a, L) =

Definition. A frame W = (W, <, v) is a model of a sequent I" = E if for every
a € W, either v(a,v) = f for some ¢ € T, or E = {¢} and v(a, ) = t.

Definition. Sl s (where S is a set of sequents and s is a sequent) iff
every frame which is a model of S is also a model of s.

Kripke proved that this semantics is sound and complete for intuitionistic
logic. It was later strengthened to the following strong soundness and complete-
ness theorem:

Theorem. A sequent s is provable in LJ from a set of sequents S iff S h‘;?fwk .



Chapter 2

Related Previous Work

In this chapter we give an overview of some previous papers that are most
relevant to this thesis. In the last chapter, after presenting our work, we return
to compare our results to these works.

2.1 Logical Connectives for Intuitionistic
Propositional Logic, Dean P. McCullough

In [13] McCullough examined the question of adding new constructive connec-
tives to intuitionistic propositional logic. He showed that the set of four basic
intuitionistic connectives (D, A,V and = or D,A,V and 1) is a functionally
complete set for intuitionistic propositional logic. For this, he first had to char-
acterize a general intuitionistic connective. His approach to this question was
purely semantic, based on a generalization of Kripke frame semantics.

According to his definition, a constructive connective is defined by a “meta-
logical” formula. We reformulate his definitions, in a way suitable for our pur-
poses. For us, McCullough’s “metalogical” formulas are second order formulas,
or more precisely: monadic logic of order (MLO) formulas, without quantifica-
tion on second order variables. We use X7, X5, ... as second order variables, and
1, T2, ... as first order variables. The signature only includes a binary relation <
which is used between first order variables. A definition of an n-ary connective
is a formula in this language with one first order free variable z1, and n second
order free variables Xi,...,X,,. Using a set of such formulas, {®,,,..., P, },
the notion of Kripke frame is generalized as follows:

Definition. A {®,,,..., P, }-frameis a triple W = (W, <, v) such that:
1. (W, <) is a nonempty partially ordered set.

2. v is a persistent function from W x F (where F is the set of wifs in the
language) to {¢t, f} such that for every 1 <1i < m, v(a,o;(¢1,...,%,)) =1
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iff My | @, (a,{b € W | v(b,aby) = t},....{b € W | v(b,4,)) = t}) 1,
where My is the structure which is naturally induced by the frame: its
domain is W and < is interpreted as the < relation of W.

Example (Conjunction). ®, = X;(x1) A Xo(x1) defines the intuitionistic con-
junction. In a {®a}-frame, v(a,p Ap) =t iff a € {b € W | v(b,¢) = t} and
a € {beW]|ubp) =t} ie iff v(a,9) =t and v(a,p) =t as in a Kripke
frame.

Example (Implication). & = Vas > x1X1(z2) D Xa(x2) defines the intu-
itionistic implication. In a {®5}-frame, v(a,» D @) = t iff for every b > a,
bef{ceW |v(ie,)=florbe{ceW |v(c,p) =t} ie. iff for every b > a,
v(b,v) = f or v(b,p) =t as in a Kripke frame.

Example (Composition). We can obtain other constructive connectives by
composing defining formulas. For example, a ternary constructive connective
can be obtained by composing &~ and ®,: & = Xy (z1) A (Vag > 21 Xs(22) D
X3 (mg))

McCullough asserted that not every formula in this second order language
can be used as a defining formula. For this he gave two more conditions:

1. ®, is monotone:
For every MLO-structure, M = (D, I) (where I[<] is an order relation on
D), a € D and upwards closed Py,...,P, C D (b € P; and ¢ > b implies
ceP): if M |E=Pq(a,Pr,...,P,) and b > a then M |= ®,(b, P1,...,P,).

2. All quantifiers in ®, are bounded below, i.e all universal quantifiers are
of the form Vb(a < b D ¥), and all existential quantifiers are of the form
Jb(a < bAD).

The first condition is necessary, since it reflects the persistence requirement
of Kripke frames. This condition ensures the existence of {®,}-frame. On the
other hand, McCullough did not justify his syntactic second condition 2.

McCullough showed that every such defining formula is equivalent (over
monotone valuations) to a composition of the four basic defining formulas (P,
Dp, Py, and @, or ). He concluded that every constructive connective (a
connective which is characterized by such a formula) is equivalent to a compo-
sition of the four basic intuitionistic connectives. Hence, no new constructive
connectives can be defined.

One of the main weak points in McCullough’s work is the absence of any
justification for the second criterion above. Some works (see [16] for example)
replaced this condition with other conditions that are more natural. For our
purposes it is important to note that McCullough’s semantics is purely deter-
ministic, following the principle of truth-functionality, since a M,y is either a
model of @, or not, and thus the values assigned to the subformulas of ¢ in all
worlds b such that b > a uniquely determine the value of ¢ in a.

IThis way of writing is not totally formal, but the intention should be clear.
2The second condition is obviously related to the idea that the truth value of some formula
should only be effected by the values of its subformulas in the accessible worlds.
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2.2 An Extension of the Intuitionistic Proposi-

tional Calculus, K. A. Bowen
Unlike McCullough, Bowen (in [7]) followed a purely syntactic approach to define
constructive connectives. In [7], Bowen offered an extension of LJ with two new

intuitionistic connectives®. The new connectives were defined by the following
introduction and elimination rules in a single-conclusion sequential system:

1. Converse Non-Implication, ¢:

Ty=¢ Ie= I'=vy
LoZ v = F=spgy
2. Not Both, |:
I'sye TI'=9 I'p= LY =
Lol = L=ely T'=ely

Bowen extended Gentzen’s cut-elimination proof to the extension of LJ by
¢. He only gave the modifications that are needed in Gentzen’s original proof,
to prove that when we add the rules for ¢, the cut-elimination theorem is
preserved. Using cut-elimination and a some syntactic arguments, he showed
that ¢ cannot be expressed by the 4 basic connectives of LJ. He concluded that
¢ has no Kripke-style characterization in sense of McCullough. He left to the
reader to do the same with |. Bowen did not provide semantic interpretation
for his new connectives. He ended with an assertion that the same can be done
in order to define similar n-ary connectives, which maintain the cut-elimination
theorem.

His work motivated ours in the following points:

Generality We wished to offer more general theory about syntactic definitions
of constructive connectives. We generalize LJ extended with Bowen’s two
new connectives, by showing a general type of logical rules that define con-
structive connectives, and generalize some of Bowen’s results (especially
cut-elimination) for these general systems. As a result, we do not need to
repeat the proof for every connective, as Bowen did. Moreover, our work
turns Bowen’s final observation into precise notions.

Semantics A Kripke-style semantics helps to reveal the nature of connectives.
As Bowen proved, McCullough’s semantic approach for defining construc-
tive connective does not apply to ¢ and |. We wanted to point the exact
reason for this, and find appropriate semantics for Bowen’s style connec-
tives.

3He also presented “neither-nor” connective, which we do not describe here, since this
connective can be expressed by the four basic intuitionistic connectives.
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A simple corollary of cut-elimination in single conclusion systems is that in
order to prove = o(p1, ..., p,) in such system, we do not have any other option
but to prove the premises of one of its introduction rules, and then use that
introduction rule. Bowen proved this for ¢, and again leaves | for the reader.
He saw this as the most characteristic property of constructive connectives. For
example, concerning ¢ he writes: “For if we are to have evidence that A is
not implied by B, what better evidence can we ask than evidence for B and
evidence that A is absurd?”. This argument may give another reason to claim
that a connective that is defined in some single-conclusion system which admits
cut-elimination is a constructive connective.

2.3 Nonstandard Connectives for Intuitionistic
Propositional Logic, M. Kaminski

Kaminski (see [11]) followed the syntactic approach for defining connectives.
He provided a general template of logical rules in a single-conclusion sequential
system that may be used to define connectives. He defined (his definition 9)
this template in a slightly opaque way. We give here our interpretation of his
definition:

e The introduction template is:

{T',A; = B }1<i<m
I'=o(r,...,0%,)

where:

— m is the number of premises of the rule.

— Each A; should be a sequence (possibly empty) of formulas from the
s (1< j <n).
— Each B; should be one formula from the ;’s (1 < j < n) or empty.

e The elimination template is:

{T'; A; = Bi}i<i<m
F,O(l/)l,...,’(/Jn) = F

where:

— m and A; are as above.

— Each B; should be E, one formula from the v¢;’s (1 < j < n) or
empty.

The resulting rules (actually, schemes) are used in derivations as usual: by
replacing the meta-variables 1;’s by concrete formulas, replacing I' by a finite
set of concrete formulas, and either omitting F or replacing it by one concrete
formula. Notice that LJ’s logical rules, as well as Bowen’s new rules can be
formed of these templates. For example:
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e Using the template of introduction rules, choosing m = 1, replacing A;
by 11 and By by 19 will give LJ’s introduction rule for implication.

e Using the template of elimination rules, choosing m = 2, omitting A;,
replacing B by ¥1, As by 12 and By by E will give LJ’s elimination rule
for implication.

Kaminski proved a cut-elimination theorem for every system which is ob-
tained by adding one new connective with this kind of rules to LJ (his Theorem
9). However, he assumed that the resulting system is “consistent”. He did not
explicitly explain what he means by this term. Following his proof (his Lemma
5), it seems that he required that every sequent in the language of LK which is
provable in the resulting system, is also provable in LK. This is a very strong
requirement, and it is not clear how one verifies that some set of inference rules
added to LJ creates a “consistent” extension.

Kaminski’s cut-elimination proof is syntactic, and he only described the
required additions to Gentzen’s original cut-elimination proof. This makes the
proof even more complex (triple induction instead of double), and harder to
follow.

Kaminski did not give semantics for his general LJ extensions. Moreover,
he claimed that no reasonable semantics can be used in the general case. The
reason for this is that, in his opinion, a semantics that assigns the same value
to ¢; and ¥; (1 < i < n) should assign the same value to o(p1,...,¢,) and
o(t1,...,%y). This kind of semantics cannot be suitable for any such exten-
sion of LJ since there might happen (he gives one of Bowen’s connective as
an example) that = ¢1 = ¥1,...,= @, = ¥, are provable in a system, but
= o(p1,...,0n) = o(¢1,...,1,) is not provable (where = is an abbreviation
for two implications). In the present work, we explicitly reject this criterion, as
we offer non-deterministic semantics.

It should be noted that most of Kaminski’s work is devoted to two other
templates of logical rules, inspired by modal logic calculi. These templates
are used to define nonstandard connectives. For them, he gave a (deterministic)
Kripke-style semantics, and proved cut-elimination. This kind of rules is beyond
the scope of this thesis.

2.4 Towards a Semantic Characterization
of Cut-Elimination, A. Ciabattoni and K.
Terui

In [8] Ciabattoni and Terui tried to identify exact conditions for cut-elimination
in single-conclusion systems. They defined the notion of simple calculi, which
are single-conclusion sequential systems which have ¢ = ¢ as axioms, the cut
rule, and any collection of other structural rules and logical rules from certain
pre-defined families of rules. They dealt with a broad range of systems with
various types of structural rules. Since in the present work we assume the
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standard structural rules of minimal logic, we give here an elaborated definition
of logical rules in simple calculi, adapted for our framework.

Definition.
1. An introduction template* is an expression of the form:

F,T1:>\I/1 F,Tm:>\l/m
I'=o(tr,...,0,)

where Y; is a sequence of meta-variables from 1,...,%,, and ¥; is any
meta-variable from 1, ...,, or empty.

2. An elimination template is an expression of the form:

F,Tl =W ... F,T.m =V,
Lo, ...,¢n) = F
where T; is a sequence of meta-variables from 1, ...,%,, and ¥; is F or
some meta-variable from ¥y, ...,¥,.

3. Infinitely many introduction rules (or more precisely, schemes) are ob-
tained from an introduction template by replacing I' with a sequence of
meta-variables of formulas.

4. Infinitely many elimination rules (or more precisely, schemes) are obtained
from an elimination template by replacing I' with a sequence of meta-
variables of formulas, and omitting E or replacing it with a meta-variable
of formula.

5. The generated rules are used in the derivations by replacing the meta-
variables of formulas with concrete formulas. The formula which matches
o(11,...,%,) in an application of a rule as above is called the principal
formula of the application.

Example (Conjunction). One can define the intuitionistic conjunction in a
simple calculus. Using the introduction template, an introduction rule is con-
structed for every finite I':

F:>’(/J1 F?ﬂ)g
['= 91 Ao

Using the elimination template, an elimination rule is constructed for every
finite I', and singleton or empty E:

F7¢17w2 )
Fa¢1/\¢2 =LK

Note that formally A has infinitely many rules in this simple calculus.

4A template is actually a “scheme of schemes”.



2.4. CIABATTONI AND TERUI 11

Ciabattoni and Terui defined a syntactic property of a set of rules for a
connective which they call reductivity. They proved that this property exactly
characterize simple calculi which admits reductive cut-elimination. Both terms
are defined in the following. Again, we adapt the definitions to our framework.

Definition. A simple calculus is called reductive iff whenever it includes two
rules of the form:

LY==V .. 0, =0, T, =0 ... 0,0, =0

F:><>(’l/)1,...,1,[)n) F/,O(I/}l,...,i/)n):>E
then I', TV = FE is derivable from the assumptions T1 = ¥q,...,T,, = ¥,, and
T, = ¥,..., T, = ¥} using only axioms, cut and weakening.

Example (Reductivity of Conjunction). The set of logical rules for conjunction
from the previous example is reductive, since the next derivation is possible for
any I', IV and E:
=1 Y, = F
= P2 = F
_=F
o= ~FE

cut

cut
weak

Notice that formally we have to show infinitely many possible derivations, in
order to prove reductivity of a set of rules of a connective.

Definition. A reductive cut is a application of the cut rule of the form:

F'=s¢ ILep=F
Iil=F

which satisfies at least one of the following conditions:

e I' = ¢ and II, p = FE are both derived by applications of a logical rule in
which ¢ serves as the principal formula.

e I'= porll,¢ = FE is derived by application of a logical rule, in which ¢
does not serve as a principal formula, or by an application of weakening.

e I'= yporll,¢= FE is an axiom.

A simple calculus admits reductive cut-elimination iff whenever a sequent s
is derivable from a set S of sequents, s has a derivation from S without any re-
ducible cuts. The usual cut-elimination is implied by reductive cut-elimination,
since the first cut in a derivation with no assumptions is always reducible.

Ciabattoni’s and Terui’s proof of the exact correspondence between reduc-
tivity and reductive cut-elimination is done semantically, using variants of phase
semantics. This semantics is significantly more abstract and complicated than
Kripke frame semantics. It is crucial to notice that non-determinism is implicitly
used in this semantics.



Chapter 3

Canonical Constructive
Systems

3.1 Basic Definitions and Notations

In what follows L is a propositional language, F is its set of wifs, p, ¢ denote
atomic formulas, v, ¢, 0 denote arbitrary formulas (of £), T" denotes subsets of
F, I, A, 3,11 denote finite subsets of F, and E, F' denote subsets of F, which
are either singletons or empty. We assume that the atomic formulas of £ are
P1,D2,- .. (in particular: {p1,...,p,} are the first n atomic formulas of £).

Definition 1. An L-substitution is a function o : F — F, such that for every
n-ary connective of £, o, we have: o(o(¢1,...,%,)) = o(a(¥1),...,0(n)).
Obviously a substitution is determined by its values on the atomic formulas. A
substitution is extended to sets of formulas in the obvious way.

Definition 2. A sequent is an expression of the form I' = E where I and F
are finite sets of formulas, and E is either a singleton or empty. A sequent of
the form T’ = {¢} is called definite. A sequent of the form I' = {} is called
negative. A Horn clause is a sequent which consists of atomic formulas only.

Notation. We mainly use s to denote a sequent and S to denote a set of sequents.
For convenience, we identify ¢ and {¢}, and we sometimes do not write anything
instead of {}. For example, we shall denote a sequent of the form I' = {¢} by
I' = ¢, and a sequent of the form I" = {} by I' = . We also employ the standard
abbreviations, e.g. I, A instead of I' U A.

3.2 Strict Sequential Systems

This section deals with strict single-conclusion sequential systems, i.e. single-
conclusion sequential systems which allow only definite sequents in their deriva-
tions.

12
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3.2.1 Strict Canonical Constructive Systems

The following definitions formulate in exact terms the idea of an “ideal rule”
which was described in the introduction and in Section 1.1.

Definition 3.

1. A strict canonical introduction rule is an expression of the form:

{IL; = qi}1<i<cm/ = o(P1,-..,Dn)

where m > 0, ¢ is a connective of arity n, and for every 1 < i < m,
IT; = ¢; is a definite Horn clause such that II; Ugq; C {p1,...,pn}-

II; = ¢; (1 <4 <m) are called the premises of the rule.

= o(p1,...,pn) is called the conclusion of the rule.

2. A strict canonical elimination rule is an expression of the form

{IL; = Eiti<i<cm/ © (P, 0n) =

where m, ¢ are as above, and for every 1 < i < m, II; = FE; is a Horn
clause (either definite or negative) such that II; U E; C {p1,...,pn}-

IT; = E; (1 <i<m) are called the premises of the rule.

o(p1,-..,pn) = is called the conclusion of the rule.

3. An application of the rule {II; = ¢;}1<i<m/ = ©(p1,...,pn) is any infer-
ence step of the form:

{L,o(IL) = o(gi) h<i<m
I'=o(e(p1,-.-,0n))

where T is a finite set of formulas and o is a substitution in L.

4. An application of the rule {II; = E;}1<i<m/ © (P1,...,Pn) = is any
inference step of the form:

{F’ G(Hl) = O'(Ei)7ﬂ}1§i§m
Tyo(e(p1y--.ypn)) =0

where I' and o are as above, 8 is a formula, and for every 1 < i < m:
F; = 0 in case FE; is empty, and F; is empty otherwise.

Remark 4. While only definite sequents are used in the derivations of a strict
system, negative sequents may appear in the formulations of elimination rules
in the form of negative premises.
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Example 5 (Conjunction). The two usual rules for conjunction are:
{pi.p2= 1}/ Ap2= and {=p1, =p}/ =piAp
Applications of these rules have the form:

Ly, p=0 'sy TI'=se
Tvynp=20 I'=vyvAp

The above elimination rule can easily be shown to be equivalent to the combi-
nation of the two more usual elimination rules for conjunction.

Example 6 (Disjunction). The two usual introduction rules for disjunction are:
{=p}/ =pmVp: and {=p}/ =pVpe
Applications of these rules have then the form:

I'= 9y I'=soe
'=yVe '=yVve

The usual elimination rule for disjunction is:
=, p2=}/pVpe=
Its applications have the form:

y=60 TI,o=190
Lyvyve=~0

Example 7 (Implication). The two usual rules for implication are:

{=p, p2=}/pDOp2= and {p1=p2}/ =p1Dp
Applications of these rules have the form:

=4y T,po=10 Tyv=9¢p
Lyo>p=20 =YDy

Example 8 (Absurdity). In intuitionistic logic there is no introduction rule for
the absurdity constant L, and there is exactly one elimination rule for it:

{}/ L=

Applications of this rule provide new azxioms:

Il=2¢6
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Example 9 (Semi-implication). Suppose we introduce a “semi-implication” ~»
with the following two rules: !

{=p1, 2=}/ p~p2=> and {=p}/ =p~p2
Applications of these rules have the form:

'y T,p=10 I'=s ¢
L~ =0 F=y~e

Example 10 (Tonk). In [14] Prior introduced a “connective” T' (which he called
“Tonk”). Its introduction and elimination rules can be formulated as canonical
rules:

{pr=1}/pmTpr= and {=p2}/ = piTp2

Applications of these rules have the form:

ry=20 | )
LyvTp =0 I'=yTp

Prior used “Tonk” to obtain a trivial system in order to show that rules alone
cannot define a connective. In the following we deal with the problem that is
raised by this connective.

Example 11 (Affirmation). Suppose we introduce an “affirmation” connective
> with the following rules:

{pr=1/p>p= and {=p}t/ =>pn
Applications of these rules have the form:

Meo=120 I'=9p
>p=20 I'=p>o

Definition 12. A strict canonical system is a strict single-conclusion sequential
system in which the axioms are the sequents of the form ¢ = ¢, cut and
weakening (in their strict version) are among its rules, and each of its other rules
is either a strict canonical introduction rule or a strict canonical elimination rule.

Remark 13. The weakening and cut rules in their strict version are:

I'=qy F'=¢ Ap=4v
A=y A=y

Definition 14. Let G be a strict canonical system, and let S U {s} be a set of
definite sequents. S Fg? s iff there exists a derivation in G of s from S. The

sequents of S are called assumptions (or non-logical axioms).

A crucial property of canonical systems is their consistency (on non-triviality).
Intuitively, it means that “something” is not provable. It is defined as follows:

IThe same connective was independently introduced in [10] for different purposes.
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Definition 15. A strict canonical system G is called consistent iff /57 p1 = po.
Remark 16. This property ensures the (usual) consistency of the induced con-
sequence relation as described in Subsection 3.2.5.

It happens that in order to be consistent, the system must satisfy one more
condition: 2

Definition 17. A set R of strict canonical rules for an n-ary connective ¢ is
called coherent if S1 U Sy is classically inconsistent whenever R contains both
Sl/ o (pla v 7pn) = and SQ/ = o(pla v 7pn)

Remark 18. Tt is known that a set of clauses is classically inconsistent iff the
empty clause can be derived from it using only cuts.

Example 19. The sets of rules for the connectives A, V, D, L,~» and >, which
were introduced in the examples above are coherent. For example, for the two
rules for conjunction we have S1 = {p1,p2 = }, So = { = p1, = p2}, and
S1US;3 is the classically inconsistent set {p1,p2 =, = p1, = pa2} (from which
the empty sequent can be derived using two cuts).

Example 20 (Tonk). The rules for Tonk were {p1 = } / p1Tp2 = and
{ = p2} / = p1Tps. Now the union of the sets of premises of these two rules
is {p1 =, = p2}, and this is a classically consistent set of clauses. It follows
that Prior’s set of rules for Tonk is incoherent.

Definition 21. A strict canonical system, G, is called coherent if every con-
nective of the language of G has a coherent set of rules in G.

Theorem 22. FEvery consistent strict canonical system is coherent.

Proof. Let G be an incoherent strict canonical system. This means that G
includes two rules S1/¢ (p1,...,pn) = and Sa/ = o(p1,...,pn), such that the
set of clauses S7 U S is classically satisfiable. Let v be an assignment in {¢, f}
that satisfies all the clauses in S; U Ss. Define a substitution o by:

o) ={ bt M=

Let 1= g € S1USs. Then FE? p1,...,pn,o(II) = o(g). This is trivial in case
v(q) = t, since in this case o(q) = ¢ € {p1,...,Pn}. On the other hand, if
v(q) = f then v(p) = f for some p € II (since v satisfies the clause II = ¢q).
Therefore in this case o(p) = o(q) = pn+1, and so again p1,...,p,,o(Il) =
o(q) is obtained by weakening of the axiom p,4+1 = pni1. We can similarly
prove that F&? p1,...,pn,0(II) = ppyq in case II = € S;. Now by applying
S1/ o (p1y..-,pn) = and S3/ = o(p1,...,pn) to these provable sequents we
get proofs in G of py1,...,pn = o(p1,-..,0n) and of p1,... . Dp,o(P1, -, Pn) =
Prt1- That FEY p1, ..., ppn = pny1 then follows using a cut. This easily entails
that F&? p1 = p2, and hence G is not consistent. O

2This is exactly the same condition suggested in [3, 4] for the multiple-conclusion case.
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The last theorem implies that coherence is a necessary demand from any accept-
able canonical system G. It follows that not every set of such rules is legitimate
for defining constructive connectives - only coherent ones do (and this is what
is wrong with “Tonk”). In the sequel (Corollary 44) we show that coherence is
also sufficient to ensure the system’s consistency®. Accordingly we define:

Definition 23. A strict canonical constructive system is a coherent strict canon-
ical system.

The following definition will be needed in the sequel:

Definition 24. Let s be a sequent, S, S’ be sets of sequents, and G be a strict
canonical system.

1. A cut is called an S-cut if the cut formula occurs in S.
2. A proof in G of s from &' is called an S-proof if every cut in it is an S-cut.

3. G admits cut-elimination iff whenever Fg? s, there exists a proof of s
without cuts (i.e. there exists a (-proof).

4. ([2]) G admits strong cut-elimination iff whenever S g7 s, there exists
an S-proof of s from S.

Notice that cut-elimination is a special case of strong cut-elimination with
an empty S. Also notice that by cut-elimination we mean here just the existence
of proofs without (certain forms of) cuts, rather than an algorithm to transform
a given proof to a cut-free one (for the assumption-free case the term cut-
admissibility is sometimes used).

3.2.2 Semantics for Strict Canonical Systems

In this section we generalize Kripke semantics to arbitrary strict canonical con-
structive systems. For this we introduce non-deterministic Kripke frames and
semiframes.

Definition 25. A generalized L-semiframe is a triple W = (W, <, v) such that:
1. (W, <) is a nonempty partially ordered set.

2. v is a persistent function from W x F’ to {t, f}, where 7' C F is closed
under subformulas.

When v is defined on W x F then the generalized L-semiframe is also called
generalized L-frame.

Remark 26. Recall that a function v : W x F' — {t, f} is persistent iff for every
a € W and ¢ € F', v(a,p) =t implies that v(b, ) =t for every b > a.

3 Tt is also implied by [3, 4]. Tt is shown there that the coherence of G implies the
consistency of the multiple conclusion relation which is induced by G. That relation extends
Fo?, and therefore G is consistent.
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Since we only use the notions of generalized L-frames and generalized L-
semiframes, we shall refer them as L£-frames and L-semiframes.

Definition 27. Let W = (W, <,v) be an L-semiframe.

1. A sequent I' = F is locally true in a € W iff either v(a, ) = f for some
Y eT, or E={p}and v(a,p)=t.

2. A sequent is true in a € W iff it is locally true in every b > a.

3. W is a model of a sequent s if s is true in every a € W (iff s is locally true
in every a € W). It is a model of a set of sequents S if it is a model of
every s € S.

Definition 28. Let W = (W, <,v) be an L-semiframe. An L-substitution, o,
(locally) satisfies a Horn clause II = F in a € W iff o(II) = o(E) is (locally)
true in a.

Remark 29. Because of the persistence condition, a definite Horn clause of the
form = q is satisfied in a by o iff v(a,0(q)) = t.

Definition 30. Let W = (W, <, v) be an L-semiframe.

1. An L-substitution fulfils a strict canonical introduction rule in a € W iff
it satisfies every premise of the rule in a.

2. An L-substitution fulfils a strict canonical elimination rule in a € W iff it
satisfies every definite premise of the rule in a, and locally satisfies every
negative premise of the rule in a.

Definition 31. Let W = (W, <,v) be an L-semiframe, and let r be a strict
canonical rule for ¢. Assume that W x F’ is the domain of v. W respects r iff for
every a € W and every substitution o: if o fulfils 7 in @ and o (o(p1, ..., pn)) € F’
then o locally satisfies r’s conclusion in a.

Example 32 (Implication). By definition, an L-frame W = (W, <, v) respects
the rule (D=) iff for every a € W, v(a,p D %) = f whenever v(b,p) =t
for every b > a and v(a,®) = f. Because of the persistence condition, this is
equivalent to: v(a,p D ¥) = f whenever v(a,p) =t and v(a,?v)) = f. Again
by the persistence condition, this is equivalent to: v(a,¢ D %) = f whenever
there exists b > a such that v(b,p) =t and v(b,¢)) = f. W respects (=D) iff
for every a € W, v(a, ¢ D 1) = t whenever for every b > a, either v(b, ) = f or
v(b, 1) = t. Hence the two rules together impose exactly the well-known Kripke
semantics for intuitionistic implication ([12]).

Example 33 (Semi-Implication). An L-frame W = (W, <,v) respects the rule
(~=) under the same conditions it respects (D=-). W respects (=~») iff for
every a € W, v(a, ¢ ~ 1) = t whenever v(a, ) = t (recall that this is equivalent
to: v(b,v) =t for every b > a). Note that in this case the two rules for ~ do
not always determine the value assigned to ¢ ~ v if v(a,v) = f, and there is
no b > a such that v(b, ) = t and v(b,¢) = f, then v(a, ~ ) is free to be
either ¢t or f. So the semantics of this connective is non-deterministic.
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Example 34 (Affirmation). An L-frame W = (W, <, v) respects the rule (>=)
if v(a,r> ¥) = f whenever v(a,v) = f. It respects (=) if v(a,> ¢) =t
whenever v(a,v) = t. This means that for every a € W, v(a,> 1) simply
equals to v(a, ).

Example 35 (Tonk). An L-frame W = (W, <,v) respects the rule (T' =)
if v(a,pTY) = f whenever v(a,p) = f. It respects (= T) if v(a,Ty) =1
whenever v(a,1) = ¢. The two constraints contradict each other in case both
v(a,p) = f and v(a,t) = t. This is a semantic explanation why Prior’s “con-
nective” T (“Tonk”) is meaningless.

Definition 36. Let G be a strict canonical system for £. An L-semiframe is
G-legal iff it respects all the rules of G.

We now can give the definition of the semantic relation induced by a strict
canonical system:

Definition 37. Let G be a strict canonical constructive system, and let SU{s}
be a set of definite sequents. S FE? s iff every G-legal L-frame which is a model

of S is also a model of s.

3.2.3 Soundness, Completeness, Cut-elimination

In this section we show that the two relations induced by a canonical construc-
tive system G (F&? and F&?) are identical. Half of this identity is given in the
following theorem:

Theorem 38. FEvery canonical constructive system G is strongly sound with
respect to the semantics of G-legal frames. In other words: If S F&? s then
SEgYs.

Proof. Assume that S FE? s, and W = (W, <,v) is a G-legal model of S. We
show that s is locally true in every a € W. Since the axioms of G and the
assumptions of S trivially have this property, and the cut and weakening rules
obviously preserve it, it suffices to show that the property of being locally true
is preserved also by applications of the logical rules of G.

e Suppose I' = o(o(p1,...,pn)) is derived from {T',o(IL;) = o(¢:) hi<i<m
using the introduction rule r = {II; = ¢; }1<i<m = ©(p1,...,Dn). Assume
that all the premises of this application have the required property. We
show that so does its conclusion. Let a € W. If v(a,v) = f for some ¢ € T,
then obviously T = o(o(p1,...,ps)) is locally true in a. Assume otherwise.
Then the persistence condition implies that v(b,v) =t for every ¢ € T’
and b > a. Hence our assumption concerning {I',o(IL;) = o(q;) }i<i<m
entails that for every b > a and 1 < i < m, either v(b,¢) = f for some
v € o(ILy), or v(b,o(q;)) = t. It follows that for 1 < ¢ <m, II; = ¢ is sat-
isfied in a by ¢. Thus, o fulfils r in a. Since W respects r, it follows that
v(a,o(o(p1,...,pn))) = t, as required.
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e Now we deal with the elimination rules. Suppose I',o(¢(p1,...,pn)) = 0
is derived from {F, O'(Hl) = U(Qi)}lgigml and {F, O’(HZ‘) = 9}m1+1§i§ma
U.Sil’lg the rule r = {Hz = Ei}lgigm/o (pl; R ,pn) = (Where E;, = {qz}
for 1 <i<mj and FE; is empty for m; +1 <4i <m). Assume that all
the premises of this application have the required property. We show
that so does its conclusion. Let a € W. If v(a,9) = f for some ¢y € T
or v(a,f) =t, then we are done. Assume otherwise. Then v(a,6) = f,
and (by the persistence condition) v(b, 1) =t for every ) € T and b > a.
Hence our assumption concerning {I', o(Il;) = o(¢;) }1<i<m, entails that
for every b>a and 1 <i < my, either v(b,¢) = f for some ¢ € o(II;),
or v(b,0(q;)) =t. This immediately implies that the definite premises
of r are satisfied in a by o. Since v(a,0) = f, our assumption con-
cerning {I', o(IL;) = 6},, +1<i<m entails that for every m; +1 <1i <m,
v(a,v) = f for some 1 € o(11;). Hence the negative premises of r are lo-
cally satisfied in @ by o. Thus, ¢ fulfils r in a. Since W respects r, it
follows that v(a,o(o(p1,...,pn))) = f, as required.

O

For the converse, we first prove the following key result.

Theorem 39. Let G be a strict canonical constructive system in L, and let
SU{s} be a set of definite sequents in L. Then either there is an S-proof of s
from S, or there is a G-legal L-frame which is a model of S but not a model of
s.

Proof. Assume that s = T'g = ¢ does not have an S-proof in G. We construct
a G-legal L-frame W which is a model of S but not of s. Let F' be the set
of subformulas of SU {s}. Given a formula ¢ € F’', call a theory T C F’ ¢-
mazximal if there is no finite I' C 7 such that I' = ¢ has an S-proof from S, but
every proper extension 7' C F’ of T contains such a finite subset I'. Obviously,
if TU{p} € F" and I" = ¢ has no S-proof from S, then I' can be extended to
a theory 7 C F’ which is p-maximal. In particular, Iy can be extended to a
po-maximal theory 7.

Now let W = (W, C, v), where:

e W is the set of all extensions of 7y in F’ which are p-maximal for some
peF.

e v is defined inductively as follows. For atomic formulas:

- 15

Suppose v(7T, ;) has been defined for every 7 € W and 1 <1i <n. We
let v(7,0(¢1,...,1%,)) =t iff at least one of the following holds:

1. There exists an introduction rule for ¢ which is fulfilled in 7 by a
substitution o such that o(p;) = 1; (1 <i <n).
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2.

o(1,...,%y,) € T and there does not exist 7/ € W, 7 C 7', and an
elimination rule for ¢ which is fulfilled in 7’ by a substitution o such
that o(p;) =v¢; (1<i<n). *

First we prove that VW is an L-frame:

e IV is not empty because 7y € W.

e We prove by structural induction that v is persistent:
For atomic formulas v is trivially persistent since the order is C.
Assume that v is persistent for 1, ...,1,. We prove its persistence for
(11, ..., ¥y). So assume that v(7,o(¢1,...,%,)) =t and T CT*. By
v’s definition there are two possibilities:

1.

There exists an introduction rule for ¢ which is fulfilled in 7 by a
substitution o such that o(p;) = ¥; (1 < i <n). This is also true in
7%, and so v(7T*,0(¢1,...,¥,)) =t.

o(h1,...,9%,) €T and there does not exist 7/ € W, 7 C 7', and
an elimination rule for ¢ which is fulfilled in 7’ by a substitution
o such that o(p;) =; (1 <i<mn). Then o(¢1,...,v¢,) € T* (since
T C T%), and there surely does not exist 7/ € W, 7* C 7', and an
elimination rule for o whose which is fulfilled in 7’ by such o (other-
wise the same would hold for 7). Hence v(7*,o(¢1,...,¢,)) =t in
this case too.

Next we prove that W is G-legal:

1. The introduction rules are directly respected by the first condition in v’s
definition.

2. Let r be an elimination rule for ¢, and suppose r is fulfilled by a substitu-
tion o, such that o(p;) = ¢; (1 <i <n). Then neither of the conditions
under which v(7,0(t1,...,%y,)) =t can hold:

(a)
(b)

The second condition explicitly excludes the option that r is fulfilled
by o (inany 7/ € W, T C 7', so also in 7T itself).

The first condition cannot be met because of G’s coherence, which
does not allow the two sets of premises (of an introduction rule and
an elimination rule for the same connective) to be locally satisfied
together, and hence the two rules cannot be both fulfilled by the same
substitution in the same element of W. To see this, assume by the
way of contradiction that S is the set of premises of an elimination
rule for ¢, Sy is the set of premises of an introduction rule for o,
and there exists 7 € W in which both sets of premises are locally
satisfied by a substitution o such that o(p;) =; (1 <i<n). Let u

4This inductive definition is not totally formal, since satisfaction by a substitution is defined
for a L-frame, which we are in the middle of constructing, but the intention should be clear.
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be an assignment in {¢, f} in which u(p;) = v(7, ;). Since o locally
satisfies in 7 both sets of premises, u classically satisfies S and Ss.
This contradicts the coherence of G.

It follows that v(7,o(¢1,...,%,)) = f, as required.

It remains to prove that WV is a model of S but not of s. For this we first prove
that the following hold for every 7 € W and every formula ¢ € F':

(a) If ¢ € T then v(7T,9) =t.
(b) If 7 is ¢-maximal then v(7,v¢) = f.

We prove (a) and (b) together by a simultaneous induction on the complexity
of . For atomic formulas they easily follow from v’s definition, and the fact
that p = p is an axiom. For the induction step, assume that (a) and (b) hold
for 91,...,1, € F'. We prove them for o(¢1,...,1,) € F'.

e Assume that o(¢1,...,%,) € T, but v(7,0(¢1,...,%,)) = f. By v’s def-
inition, since o(¢1,...,%,) € T there should exist 7/ € W, 7 C 7', and
an elimination rule, r = {Il; = E; }1<i<m/ © (P1,...,Dn) =, which is ful-
filled in 7’ by a substitution o such that o(p;) =v; (1 <i<n). Let
{II; =}1<i<m, be the negative premises of r and, {II; = ¢; }m,+1<i<m
be the definite ones. Since o locally satisfies in 7’ every sequent in
{II; = }i<i<m,, then for every 1 < i < m; there exists ¢;, € o(I;) such
that v(7”,4;,) = f. By the induction hypothesis this implies that for ev-
ery 1 <i < my, there exists ¢;, € o(II;) such that ¢;, ¢ 7'. Let ¢ be
the formula for which 7’ is maximal. Then for every 1 <i < m; there
is a finite A; € 77 such that A;,¢;, = ¢ has an S-proof from S, and so
A;,0(I1;) = ¢ has such a proof. This in turn implies that there must exist
m1 + 1 <ig <m such that ', o(Il;,) = o(g;,) has no S-proof from S for
any finite I' € 7”. Indeed, if such a proof exists for every m; +1 <1i < m,
we would use the m; proofs of A;, o(II;) = ¢ for 1 <i < mgy, the m —my
proofs for T';,o(Il;) = o(q;) for m; +1 <i <m, some trivial weaken-
ings, and the elimination rule r to get an S-proof from S of the se-
quent UZ7" Ay, UZm Ty, 041, ..., %) = ¢. Since o(1, ..., ¢by) €T,
this would contradict 7"’s p-maximality. Using this ig, extend 7' U o(Il;,)
to a (g, )-maximal theory 7”. By the induction hypothesis, v(7"”, ) =t
for every ¢ € o(11;,) and v(7T",0(q;,)) = f. Since T C T", this contra-
dicts the fact that o satisfies II;, = ¢;, in 7.

e Assume that 7 is o(¢1,...,¥y)-maximal, but v(7,o(¢1,...,9¥,)) =t.
Obviously, o(¥1,...,%,) ¢ T (because o(¢1,...,%,) = o(1,...,1,) IS
an axiom). Hence by v’s definition there exists an introduction rule for o,
r={Il; = ¢;}1<i<m/ = ©(p1,...,Dn), which is fulfilled in 7, by a substi-
tution o such that o(p;) = ¥; (1 <i<n). As in the previous case, there
must exist 1 < iy < m such that T', o(II;,) = o(g;,) has no S-proof from S
for any finite I' C 7T (if such a proof exists for every 1 < i < m with finite
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I'; € 7 than we could have an S-proof from S of UZZT'T; = o(¢1, ..., 1y)
using the m proofs of T';, o(Il;) = o(g;), some weakenings and r). Using
this ig, extend 7 U o(I1;,) to a o(g;,)-maximal theory 7”’. By the induc-
tion hypothesis, v(77,v¢) =t for every ¢ € o(Il;,) and v(7",0(q;,)) = f.
Since 7 C 7', this contradicts the fact that o satisfies II;, = ¢;, in 7.

Next we note that (b) can be strengthened as follows:

(c) If p € F', T € W and there is no finite I' C 7 such that I" = ¢ has an
S-proof from S, then v(7,¢) = f.

Indeed, under these conditions 7 can be extended to a 1-maximal theory 7.
Now 7' € W, T C 7', and by (b), v(7’,%) = f. Hence also v(7,¢) = f.

Now (a) and (b) together imply that v(7Zy,v) =t for every ¢ € T’y C 7y,
and v(7p, o) = f. Hence W is not a model of s. We end the proof by showing
that W is a model of §. So let ¢1,...,1%, =0 €S and let 7 € W, where 7
is pp-maximal. Assume by way of contradiction that y,...,1, = 6 € S is not
locally true in 7. Therefore, v(7,1;) =t for 1 <4 < n, while v(7,0) = f. By
(c), for every 1 < i < n thereis a finite I'; C 7 such that I'; = ¢; has an S-proof
from S. On the other hand v(7,0) = f implies (by (a)) that 6 ¢ 7. Since 7
is p-maximal, it follows that there is a finite A C 7 such that A, 0 = ¢ has an
S-proof from S. Now from T'; = ¢; (1 <i<n), A,0 = ¢, and ¢1,...,¢, = 0
one can infer I'y, ..., I';; A = ¢ by n+1 S-cuts (on 1, . .., 1, and 0). It follows
that T'y,...,T, A = ¢ has an S-proof from S. Since I'y,..., T, A C 7T, this
contradicts the p-maximality of 7. O

Remark 40. In [2], Avron suggested a strengthening of the cut-elimination the-
orem for Gentzen’s original systems. He defines the notion of a hyper-resolution
rule (or hyper-cut rule), and shows that this special kind of cuts is the only one
needed in derivations. We can show the same in our case. Let hyper-cut be the
rule:

1/)1,-~',¢n:>9 1_\1:>1/}1 Fnjwn Aﬁéw
Fl,...7Fn7A:>§0

Call ¢, ...,1¥, = 0 the nucleus of the rule. Obviously, this rule is a special case
of the cut rule, since it can be produced by n+1 consecutive cuts. The last proof
shows that this kind of derivations, whose nuclei are the initial assumptions, are
the only ones that are needed in strict canonical constructive systems. Hence,
the last theorem can be strengthened as follows: if there does not exist a G-legal
L-frame which is model of S and not a model of s, then there exists a proof
of s from S, which uses only canonical rules, weakening and hyper-cuts with
elements of S as nuclei.

Theorem 41 (Soundness and Completeness). Every strict canonical construc-
tive system G is strongly sound and complete with respect to the semantics of
G-legal frames. In other words: S & s iff SEGY s.
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Proof. Immediate from Theorem 39 and Theorem 38. O

Corollary 42 (Compactness). Let G be a strict canonical constructive system.
If SEEY s then there exists a finite 8" C S such that 8" EGY s.

Theorem 43 (General Strong Cut-Elimination Theorem). FEvery strict canon-
ical constructive system G admits strong cut-elimination (see definition 24).

Proof. Follows from Theorem 41 and Theorem 39. O

Corollary 44. The following conditions are equivalent for a strict canonical
system G:

1. G 1is consistent.

2. G is coherent.

3. G admits strong cut-elimination.
4. G admits cut-elimination.

Proof. 1 implies 2 by Theorem 22. 2 implies 3 by Theorem 43. 3 trivially
implies 4. Finally, without using cuts there is no way to derive p; = ps in a
strict canonical system. Hence 4 implies 1. O

3.2.4 Analycity and Decidability

In general, in order for a denotational semantics of a propositional logic to be
useful and effective, it should be analytic. This means that in order to determine
whether a sequent s follows from a set of sequents S, it suffices to consider partial
valuations, defined on the set of all subformulas of the formulas in SU{s}. Now
we show that the semantics of G-legal frames is analytic in this sense.

Theorem 45 (Analycity). Let G be a strict canonical constructive system for
L. Then the semantics of G-legal frames is analytic in the following sense: If
W' = (W, <,v') is a G-legal semiframe, then v’ can be extended to a function v
so that W = (W, <,v) is a G-legal frame.

Proof. Let W' = (W, <,v') be a G-legal semiframe. We recursively extend v’
to a total function v. For atomic p and for every a € W we let v(a,p) = v/(a,p)
if v'(a,p) is defined, and v(a,p) = t (say) otherwise. For ¢ = o(¢1,...,1y,)
and for every a € W we let v(a,p) = v'(a,¢) whenever the latter is defined,
and otherwise we define v(a, ¢) = f iff there exists an elimination rule for ¢, r,
and an element b > a of W, such that a substitution o, such that o(p;) = v,
(1 <j <n),fulfilsrin b (with respect to (W, <, v)). Note that the satisfaction of
the premises of r by ¢ in elements of W depends only on the values assigned by v
to 91, ..., %y, so the recursion works, and v is well defined. From the definition
of v and the assumption that W’ is a G-legal semiframe, it immediately follows
that v is an extension of v/, that v is a persistent function defined on W x F (so
W = (W, <,v) is a L-frame), and that W respects all the elimination rules of
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G. Hence it only remains to prove that it respects also the introduction rules
of G. Let r = {II; = q¢i}1<i<m/ = ©(p1,-..,pn) be such a rule, and assume
that for every 1 < i < m, o(II;) = o(¢;) is true in a with respect to (W, <, v).
We should show that v(a, (11, ...,1¥,)) =t.

If v'(a,o(¢1, . . .,1n)) is defined, then since its domain is closed under sub-
formulas, for every 1 <i < n and every b € W, v/(b,4;) is defined. In this case,
our construction ensures that for every 1 <i <mn and every b € W we have
v'(b, ;) = v(b, ;). Therefore, since for every 1 < i < m, o(I;) = o(g;) is lo-
cally true in every b > a with respect to (W, < v), it is also locally true with
respect to (W, <,v’). Since v’ respects r, v'(a, o(¥1,...,%,)) = t, and it implies
v(a,o(1r,...,1¥,)) =t as well, as required.

Now, assume v'(a,o(¥1,...,1%y)) is not defined, and assume by way of con-
tradiction that v(a,o(¥1,...,1%,)) = f. So, there exists b > a and an elimina-
tion rule {A; = E;}1<i<k/ © (P15 .. .,Pn) = such that o(4A;) = o(E;) is locally
true in b for 1 < ¢ < k. Since b > a, our assumption about a implies that
o(Il;) = o(g;) is locally true in b for 1 < ¢ < m. It follows that by defining
u(p) = v(b,o(p)) we get a valuation u in {¢, f} which satisfies all the clauses
in the union of {II, = ¢i}i<i<m and {A; = E;}1<i;<x. This contradicts the
coherence of G. O

The following two theorems are now easy consequences of Theorem 45 and
the soundness and completeness theorems of the previous section:

Theorem 46. Let Gy be a strict canonical constructive system in a language
L1, and let Gg be a strict canonical constructive system in a language L.
Assume that Lo is an extension of L1 by some set of connectives, and that Gg
is obtained from Gy by adding to the latter canonical rules for connectives in
Lo — L1. Then Gg is a conservative extension of Gy (i.e.: if all sequents in
SUs are in L1 then S }—gf s iff S l—f_f;l s).

Proof. Suppose that S /&Y s. Then there is Gi-legal model W of S which
is not a model of s. Since the set of formulas of £; is a subset of the set of
formulas of L5 which is closed under subformulas, Theorem 45 implies that W
can be extended to a Gg-legal model of S which is not a model of s. Hence

Sals. O

Remark 47. Prior’s “connective” Tonk ([14]) has made it clear that not every
combination of “ideal” introduction and elimination rules can be used for defin-
ing a connective. Some constraints should be imposed on the set of rules. Such
a constraint was indeed suggested by Belnap in his famous [6]: the rules for a
connective ¢ should be conservative, in the sense that if S Fg? s is derivable
using them, and ¢ does not occur in S U s, then S Fg? s can also be derived
without using the rules for ¢. This solution to the problem has two problematic
aspects:

1. Belnap did not provide any effective necessary and sufficient criterion for
checking whether a given set of rules is conservative in the above sense.
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Without such criterion every connective defined by inference rules (with-
out an independent denotational semantics) is suspected of being a Tonk-
like connective, and should not be used until a proof is given that it is
“innocent”.

2. Belnap formulated the condition of conservativity only with respect to
the basic deduction framework, in which no connectives are assumed. But
nothing in what he wrote excludes the possibility of a system G having two
connectives, each of them “defined” by a set of rules which is conservative
over the basic system B, while G itself is not conservative over B. If
this happens then it will follow from Belnap’s thesis that each of the two
connectives is well-defined and meaningful, but they cannot exist together.
Such a situation is almost as paradoxical as that described by Prior.

Now the first of these two objections is met, of course, by our coherence criterion
for strict canonical systems, since coherence of a finite set of canonical rules
can effectively be checked. The second is met by Theorem 46. That theorem
shows that a very strong form of Belnap’s conservativity criterion is valid for
strict canonical constructive systems, and that a set of rules can be used as a
definition for a connective in such systems since it is independent of the system
in which it is included. This is a necessary demand, if we do want to see the
rules themselves as definitions of a connective.

Theorem 48. Let G be a strict canonical constructive system. Then G is
strongly decidable: Given a finite set S of sequents, and a sequent s, it is decid-
able whether S g s or not.

Proof. Let F' be the set of subformulas in S U {s}. From Theorem 45 and
the proof of Theorem 39 it easily follows that in order to decide whether
S FE s it suffices to check all triples of the form (W, C,v') where W C 27
and v’ : F' x W — {t, f}, and see if any of them is a G-legal semiframe which
is a model of S but not a model of s. O

Remark 49. The last two theorems can also be proved directly from the cut-
elimination theorem for strict canonical constructive systems.

3.2.5 The Induced Consequence Relation

Originally, a consequence relation is a relation between formulas. The use of
sequents is a tool for defining consequence relation between formulas. In this
subsection we recall the definition of a consequence relation and its properties,
and follow the usual way to obtain a consequence relation from - and F. Then
we state our major results in terms of formulas, without use of sequents. The
propositions in this subsection are easily derived from our definitions, so we
omit their proofs.

Definition 50. A Tarskian consequence relation (ter for short) for £ is a binary
relation - between sets of formulas of £ and formulas of £ that satisfies the
following conditions:
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strong Reflexivity:  if ¢ € T then T F .
Monotonicity: ifTH@and T C 7' then 7'+ .
Transitivity (cut):  f T and 7,9 F ¢ then T F .

Definition 51. A ter F for £ is structural if for every L-substitution ¢ and every
T and ¢, if T+ @ then o(7) F o(p). F is finitary if the following condition
holds for every 7 and ¢: if 7 F ¢ then there exists a finite I' C 7 such that
Tk . F is consistent (or non-trivial) if py I/ po.

It is easy to see (see [4]) that there are exactly two inconsistent structural
ters in any given language ®. These tcrs are obviously trivial, so we exclude
them from our definition of a logic:

Definition 52. A propositional logic is a pair (£, ), where L is a propositional
language, and  is a ter for £ which is structural, finitary and consistent.

Definition 53. Let G be a strict canonical system. The tcr Fg between for-
mulas which is induced by G is defined by: 7 kg ¢ iff there exists a finite
I' C 7 such that g T' = o.

Proposition 54. g is a structural and finitary ter for every strict canonical
system G.

Proposition 55. T tg ¢ iff (= ¢ | Y € T} EE= .
Proposition 56. A strict canonical system G is consistent iff Fq is consistent.
A strict canonical system also induces a semantic consequence relation:

Definition 57. An L-semiframe (W, < v) is a model of a formula ¢ if v(a, @) =t
for every a € W. It is a model of a theory 7 if it is a model of every ¢ € 7.

Remark 58. W is a model of a formula ¢ iff it is a model of the sequent = .

Definition 59. Let G be a strict canonical constructive system. The semantic
ter Fg between formulas which is induced by G is defined by: 7 Fqg ¢ if every
G-legal L-frame which is a model of 7 is also a model of .

Again we have:
Proposition 60. 7 Fg ¢ iff (=¥ | Y € T}ES = .

Corollary 61 (Soundness and Completeness). Every strict canonical construc-
tive system G is strongly sound and complete with respect to the semantics of
G-legal frames. In other words: T Faq ¢ iff T Fg ¢.

Proof. Immediate from Theorem 39, Theorem 38 and propositions 55, 60. [

Corollary 62. If G is a strict canonical constructive system in L then (L Fg)
(or equivalently (L,Fg)) is a logic.

Strong conservativity and strong decidability of Fg and Fg (in the sense of
Theorem 46 and Theorem 48) are also easy corollaries of the previous theorems
and the two reductions.

5T + ¢ for every 7 and ¢, and T + ¢ for every nonempty 7 and .
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3.2.6 The Natural Deduction Version

We formulated this section in terms of Gentzen-type systems, in which each
rule introduces a connective on the right side of the sequent or on the left
side. However, we could have formulated them instead in terms of natural
deduction systems, in which there are rules to eliminate a connective rather than
to introduce it on the left side. An application of a strict canonical introduction
rule in this context is defined exactly as before, while an application of an
elimination rule of the form {Il; = E;}1<i<m/ < (P1,-..,pn) = in the context
of natural deduction is any inference step of the form:

{T,0(Il;) = 0(E;), Fi}i<icm T = o(o(p1,...,0n))
I'=20

where I', o, 8 and F; are as in the definition of a strict canonical elimination
rule.

Translating our results to natural deduction systems is possible.

Example 63 (Conjunction). The usual elimination rule for conjunction is:
{pr,p2=} /P Ap2=
In natural-deduction systems its applications have the form:

Dy,p=0 T'=9vAp
I'=20

Example 64 (Disjunction). The usual elimination rule for disjunction is:
{p1=, p2=}/p1Vpe=
In natural deduction systems its applications have the form:

''y=0 T,eo=0 TI'=yVey
I'=20

Example 65 (Implication). The usual elimination rule for implication is:
{=p, pp=}/pOp=
In natural-deduction systems its applications have the form:

F'=svy T,p=0 T'=vYvDyp
I'=20

This form of the rule is obviously equivalent to the more usual one (from I" = )
and I' = ¢ D p infer ' = o).

Example 66 (Absurdity). The usual rule for absurdity is:
{y/ L=
In natural-deduction systems applications of the same rule have the form:

I'=1
I'=20
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3.3 Non-Strict Sequential Systems

In this section we adapt our results to sequential systems which do allow the
use of negative sequents in their derivations (as done in most presentations of
intuitionistic logic). Most of the definitions and the proofs are similar to the
strict version. In this case we will just state this fact to avoid repetitions.

3.3.1 Non-Strict Canonical Constructive Systems

The use of negative sequents in derivations should be reflected in the structure
of the logical rules of canonical systems. Here, negative sequents might serve
as premises of the rules. This is simple in introduction rules, since they do
not allow right context in a single-conclusion system (otherwise there would
not be “enough space” for the conclusion). Therefore, the introduction rules
formulation is simply changed to allow negative premises as well, and these
premises are realized as negative sequents in derivations. The elimination rules
are slightly more complicated, since right context might be added to the neg-
ative premises and penetrate into the conclusion. However, there also might
be negative premises which do not allow adding a right context, as negative
premises of the introduction rules. In order to support this kind of rule, we
split the set of premises of the canonical elimination rule into two sets: hard
premises which do not allow right context (including the definite premises), and
soft premises, which do allow right context (of-course all of them are negative).

Definition 67.

1. A non-strict canonical introduction rule is an expression of the form:

{Hi = Ei}lgigm/ = <>(p17 ce 7pn)

where m > 0, ¢ is a connective of arity n, and for every 1 < i < m,
II; = E; is a Horn clause such that II; U E; C {p1,...,pn}.

II; = E; (1 <1i<m) are called the premises of the rule.

= o(p1,...,pn) is called the conclusion of the rule.

2. A non-strict canonical elimination rule is an expression of the form:

({IL; = Ei}i<i<m, {Zi = h<i<k)/ ©(01,---,0n) =

where m, ¢, II;, E; are as above, and for every 1 < i < k, X; = is a
negative Horn clause such that 3; C {p1,...,pn}.

I, = E; (1 <i<m)and X; = (1 <i<k) are called the premises of the
rule.

II; = E; (1 <i<m) are called hard premises.

Y = (1 <i < k) are called soft premises.

o(p1,-..,pn) = is called the conclusion of the rule.
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3. An application of the rule {II; = E;}1<i<m/ = ©(p1,...,pn) is any
inference step of the form:

{L,0(IL) = o(Ei) bi<i<m
L= o(o(p1,---,0n))

where I' is a finite set of formulas and o is a substitution in L.

4. An application of the rule
<{HZ = Ei}1§i§m7 {Ei j}1§i§k>/ 3 (pl, - 7pn) = is any inference step
of the form:

{Lo(L) = o(Ei) h<icm  {L,0(35) = Ehicick
Tyo(o(p1y...,0on)) = F

where I and o are as above, E is either a singleton (of some formula) or
empty.

Remark 68. The soft premises of a non-strict canonical elimination rule allow
the addition of right context formula, but do not force it. No right context is
optional (an empty F in the previous definition). This cannot be done in strict
canonical systems, and for this reason, a strict canonical elimination rule has
no exact equivalent non-strict canonical rule.

Example 69 (Negation). Allowing negative premises in introduction rules
makes it possible to deal with negation as a basic connective. The two usual
rules for negation are:

{=p}hAh/p= and {p1=}/ =-m

Applications of these rules have the form:

I'=qy I'¢=
I''y=F I'= -

Example 70 (The previous connectives). Every connective in the examples
in the previous section (A,V,D, L~ > and T) has also non-strict canonical
introduction and elimination rules. The introduction rules and their applications
are exactly the same. The elimination rules are also similar, except for splitting
the definite premises and the negative premises to two sets (the definite premises
are hard, and the negative premises are soft) and using E instead of 6 in the
applications. E.g., the elimination rule of conjunction is:

({ b {p1,p2=}) / p1 Ap2= instead of {p1,p2=1}/p1Ap2=

Applications of this rule have the form:

Lpo=FE . Fyp=10
YN instead of —F,w/\<p=>9
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Example 71 (Bowen’s new connectives). Bowen’s rules for his new connectives
(see Section 2.2) are equivalent to the following non-strict canonical rules:

({p2=ph{})/p€pe= and {p1=, =p2}/ =p1Lp2

{=p,=ph{/nlp= and {p=}/=plp {p2=}/ =D

Applications of these rules have the form:

Ty= Tp= =4y
Ledy=F F=pdgy
I'=s¢ Iy o= Ty =
Coly=FE F'sely T=ely

Example 72 (Strong Affirmation). Suppose we introduce a “strong affirma-
tion” connective » with the following rules:

{pr=1{}H/ »p= and {=p}/ =>mn
Applications of these rules have the form:

o= I'=¢
I'»y»pop=FE I'=sp»op

Non-strict canonical system is defined equivalently to strict canonical system,
with non-strict canonical rules instead of strict canonical rules. Of course, the
weakening and cut rules have to be modified, and we now take the following

rules:
I'=F = = Ae=FE

IN'A=F I'=qy I'N'A=F

The induced relation, F&?, and the consistency of a non-strict canonical system
are also defined equivalently.

As in the strict case, we would like to offer a simple criterion for non-triviality
of a non-strict canonical system, i.e. for the consistency of G. However, in this
case we cannot show an equivalent simple criterion, and we leave this as an open
question. To overcome this obstacle, we define a stronger form of consistency,
and show that our previous coherence criterion, applied to non-strict canonical
systems, is equivalent to this stronger form.

Definition 73. A non-strict canonical system, G, is called strongly consistent
if =pi, p=>e!=.

Remark 74. This property is trivial in strict systems, since it assumes negative
sequents in the derivations.
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Proposition 75. Every strongly consistent non-strict canonical system is also
consistent.

Proof. Let G be an inconsistent non-strict canonical system. Then g7 py =
p2. Using the premises = py, p» = and two cuts we can have = py, pr =F&'=
as needed. O

The next example shows that the other direction is not always true:

Example 76 (Circle). Let G be a non-strict canonical system, containing only
the following rules:

{r{p=1H/epm= and {p=}/ =opm
Applications of these rules have the form:

e=FE L=
Pop=FE I'= op

In G there is no way to derive a negative sequent from no assumptions (this is
proved by simple induction), and hence the introduction rule for o cannot be
used. For this trivial reason, G is consistent. However, it is easy to see that G
is not strongly consistent.

Remark 77. This example also shows that strong cut-elimination and cut-
elimination are not equivalent in the case of non-strict canonical systems. For
the same reason, G admits cut-elimination, but it does not admit strong cut-
elimination. Recall that these two properties are equivalent in strict canonical
systems (Corollary 44).

Although it is stronger than the usual consistency, strong consistency is a very
natural demand from a system. Intuitively a strongly inconsistent system is a
system in which either everything is provable, or it only proves that formulas
are true or only proves that formulas are false.

Coherence of sets of non-strict canonical rules is defined essentially the same as
for strict rules (note that three sets of premises are now involved - the premises
of the introduction rules, the soft premises of the elimination rule and the hard
premises of the elimination rule). Coherence of non-strict canonical systems is
defined exactly as in the strict case.

Example 78. All sets of rules for the A,V,D, L~~~ ¢, and » from the
previous examples are coherent. The sets of rules for the connectives T' and o
from the previous examples are not coherent.

Theorem 79. Every strongly consistent non-strict canonical system is coherent.

Proof. Let G be an incoherent non-strict canonical system. This means that G
includes two rules (S1, S2)/o(p1,...,pn) = and S3/ = o(p1,...,Pn), such that
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the set of clauses S1 U Ss U S3 is classically satisfiable. Let v be an assignment
in {t, f} that satisfies all the clauses in S; U S5 US3. Define a substitution o by:

o(p) :{ p1 v(p) =t

p2 v(p)=f

Let Il = F € S{US,US3. Since v satisfies all the clauses in S; U Sy U Ss,
for every Il = FE € S; US2 U S5 we have ps € o(Il) or p; € o(E). Hence, ev-
ery I = F € 51 US, can be derived from = p;,ps = by weakening. Now by
applying (S1,52)/ ¢ (p1,...,pn) = and S3/ = o(p1,...,pn) to these prov-
able sequents we get proofs from = p1,p2 = of = o(o(p1,...,pn)) and of
o(o(p1,---,pn)) =. That = p1,ps =F&? = then follows using a cut. O

The last theorem shows that coherence is also a minimal demand from a non-
strict canonical system. Again, in the sequel we show that coherence is also
a sufficient demand for strong consistency (Corollary 93) 6. Hence, a non-
strict canonical constructive system is defined equivalently to a strict canonical
constructive system.

Example 76 shows that while coherence is necessary for (usual) consistency
of strict systems, this is not the case for non-strict systems. However we can
impose a restriction on non-strict canonical systems, which gives them this
property, as done in the next definition:

Definition 80. A non-strict canonical system is called definite if its introduc-
tion rules have only definite Horn clauses as premises, and its elimination rules
have only definite Horn clauses as hard premises.

Theorem 81. Fvery consistent definite non-strict canonical system is coherent.

Proof. Similar to the proof of Theorem 22. O

An S-cut, an S-proof, cut-elimination and strong cut-elimination for non-
strict canonical systems are defined the same as for strict canonical systems.

3.3.2 Semantics for Non-Strict Canonical Systems

We modify our fulfil definition (definition 30) in order to prove soundness and
completeness in the non-strict case. The respect definition remains the same,
using the new fulfil definition:

Definition 82. Let W = (W, <, v) be an L-semiframe.

1. An L-substitution fulfils a non-strict canonical introduction rule in a € W
iff it satisfies every premise of the rule in a.

2. An L-substitution fulfils a non-strict canonical elimination rule in a € W
iff it satisfies every hard premise of the rule in a, and locally satisfies every
soft premise of the rule in a.

6 Again, this can be derived from [3, 4]. See footnote 3.
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Remark 83. The only difference is in the elimination rules. Instead of satisfac-
tion of the definite premises and local satisfaction of the megative premises, we
now require satisfaction of the hard premises and local satisfaction of the soft
premises.

Example 84. The semantics that was presented in the previous section for D,
~», > and T remains exactly the same.

Example 85 (Negation). An L-frame W = (W, <, v) respects the rule (- =)
if v(a, 1)) = f whenever v(a,1) = t. Because of the persistence condition, this
is equivalent to: v(a, ) = f whenever v(b,) =t for some b > a. It respects
(= -) if v(a,~) = t whenever v(b,¢)) = f for every b > a. Hence the two
rules together impose exactly the well-known Kripke semantics for intuitionistic
negation.

Example 86 (Converse Non-Implication). An L-frame W = (W, <, v) respects
the rule (¢=) if v(a,» ¢ 1) = f whenever for every b > a either v(b, ) =t
or v(b,1p) = f. Because of the persistence condition, this is equivalent to:
v(a, o ¢ ¥) = f whenever there exists some b > a such that either v(b,¢) =t
or v(e,v) = f for every ¢ > b. It respects (=¢) if v(a,¢ ¢ 1) = t whenever
v(b, ) = f and v(b, ) = ¢ for every b > a. Because of the persistence condition,
this is equivalent to: v(a, ¢ ¢ ©) = t whenever v(a,¢) =t and v(b, p) = f for
every b > a. This implies that v(a,p ¢ ¥) is free when v(b, ) = f for every
b > a, v(a,¥) = f, and there does not exist b > a such that v(c,9) = f for
every ¢ > b. Hence, the semantics for this connective is non-deterministic. For
this reason, it does not have a semantics in the sense of McCullough (see Section
2.1).

Example 87 (Not Both). An L-frame W = (W, <,v) respects the rule (|=) if
v(a,p | ¥) = f whenever v(b, ) =t and v(b,v) = t for every b > a. Because
of the persistence condition, this is equivalent to: v(a,p | ¥) = f whenever
v(b,¢) =t and v(b, ) =t for some b > a. It respects (=|); if v(a,p | ) =1
whenever v(b, ) = f for every b > a. It respects (=])2 if v(a,p | ¥) =t
whenever v(b, 1) = f for every b > a. This implies that v(a, ¢ | ¥) is free when
v(a,p) = f and v(a,v) = f but v(by,p) =t and v(b1,v) = f for some by > a,
and v(be, ) = f and v(be,v) =t for some by > a (this is possible because the
order relation does not have to be linear). Again, we obtain non-deterministic
semantics.

Example 88 (Strong Affirmation). An L-frame W = (W, < v) respects the
rule (»=) if v(a,» 1) = f whenever v(b,v)) = f for every b > a. It respects
(=») if v(a,» 1) = t whenever v(b,¢) = t for every b > a. Because of the
persistence condition, this is equivalent to: v(a,» 1) =t whenever v(a, ) = t.
This implies that v(a,» ©) is free when v(a,v) = f and v(b,v) = ¢ for some
b > a. Again, we obtain non-deterministic semantics.

A G-legal frame and the relation Fg? are defined exactly as in the strict case.
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3.3.3 Soundness, Completeness, Cut-elimination

The proofs of the next theorems are essentially similar to their strict counter-
parts, using the non-strict semantics definitions. For the sake of brevity, we
exclude them.

Theorem 89 (Soundness and Completeness). Every non-strict canonical con-
structive system G is strongly sound and complete with respect to the semantics
of G-legal frames. In other words: SF&* s iff SEE? s.

Theorem 90 (General Strong Cut-Elimination Theorem). Every non-strict
canonical constructive system G admits strong cut-elimination.

Remark 91. Again (see remark 40) we can prove a strengthening of the last
theorem. Let hyper-cut; and hyper-cut; be the rules which allow the following
two derivations:

Vi,.., =0 Ti1=¢v; ... Thy=1v, A6O=F
r,....I''n, A= F
’(/)17...,’¢n:> ].—‘1:>'LZJ1 Fn:>’(/)n
F17--~7Fn:>

Call ¢1,...,%, = E, where E = 6 in the first derivation and empty in the
second, the nucleus of the rule. The last theorem can be strengthened as follows:
If there does not exist a G-legal L£-frame which is model of § and not a model
of s, then there exists a proof of s from &, which uses only canonical rules,
weakening and hyper-cuts with elements of S as nuclei. The full proof also
shows that we can restrict the use of weakening on the right side of sequents to
apply only on negative assumptions, immediately after hyper-cute was applied.

Corollary 92 (Compactness). Let G be a non-strict canonical constructive
system. If SEE? s then there exists a finite S’ C S such that S’ F&? s.

Corollary 93. The following conditions are equivalent for a non-strict canon-
ical system G:

1. G is strongly consistent.
2. G s coherent.
3. G admits strong cut-elimination.

Proof. 1 implies 2 by Theorem 79. 2 implies 3 by Theorem 90. Finally, in
a non-strict canonical system there is no way to derive = from = pj,ps =,
without using other cuts than cuts on p; or ps. Hence 3 implies 1. O

Corollary 94. The following conditions are equivalent for a definite non-strict
canonical system G:

1. G is consistent.
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2. G s coherent.

3. G admits strong cut-elimination.
4. G admits cut-elimination.

5. G s strongly consistent.

Proof. 1implies 2 by Theorem 81. 2 implies 3 by Theorem 90. 3 trivially implies
4. 4 implies 1 since without using cuts there is no way to derive p; = ps in
a non-strict canonical system. 5 implies 1 by proposition 75. 3 implies 5 since
there is no way to derive = from = p; and py = with cuts only on p; and ps
in a non-strict canonical system. O

3.3.4 Analycity and Decidability

The semantics of G-legal frames is analytic (see Theorem 45) also in the non-
strict case. Strong conservativity and strong decidability (in the sense of Theo-
rem 46 and Theorem 48) are again easy consequences of the analycity and the
soundness and completeness theorems of the previous subsection. The proofs of
these theorems are identical to the proofs in the strict case.

3.3.5 The Induced Consequence Relation

In this section we give our results for non-strict canonical systems in terms of
formulas. The main ideas are similar to those of Subsection 3.2.5.

It is natural to extend definition 50 in the non-strict case, as follows:

Definition 95. An Eztended Tarskian consequence relation (eter for short) for
L is a binary relation - between sets of formulas of £ and singletons or empty
sets of formulas of £ that satisfies the following conditions:

strong Reflexivity: if ¢ € T then T F .
Monotonicity: if7FFEand 7 C 7' then 7'+ E.
Transitivity (cut): T F and 7,9+ E then 7 + E.

Intuitively, 7 F means that 7 contains a self-contradiction. Structurality,
finitarity and consistency of an etcr are defined equivalently as for a ter (see
definition 51). Notice that in this case (see [4]) there are exactly four inconsistent
structural eters in any given language 7. These etcrs are obviously trivial, so we
exclude them from our definition of an extended logic:

Definition 96. A propositional extended logic (elogic for short) is a pair (L, F),
where £ is a propositional language, and F is an etcr for £ which is structural,
finitary and consistent.

"T + E for every T and E, T + E for every E and nonempty 7, 7 + E for every 7 and
nonempty E, and 7 + E for every nonempty 7 and nonempty E.
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The etcr kg between formulas which is induced by a non-strict canonical
system, G, is defined equivalently to the tcr which is induced by a strict canonical
system.

Proposition 97. g is a structural and finitary ter for every non-strict canon-
ical system G.

Proposition 98. 7 ¢ E iff (= ¢ | v € T} 5= E.

Proposition 99. A non-strict canonical system G is consistent iff g is con-
sistent.

Again, a non-strict canonical system also induces a semantic consequence rela-
tion.

Definition 100. Let G be a non-strict canonical constructive system. The
semantic tcr Fq between formulas which is induced by G is defined by: 7 Fg F
if every G-legal L-frame which is a model of 7 is also a model of E.

Again we have:
Proposition 101. 7 Eg E iff {= ¢ | € T} EE'= E.

Corollary 102 (Soundness and Completeness). FEvery non-strict canonical con-
structive system G is strongly sound and complete with respect to the semantics
of G-legal frames. In other words: T Fg E iff T Fg E.

Corollary 103. If G is a non-strict canonical constructive system in L then
(L,Fg) (or equivalently (L,\g)) is an elogic.

Strong conservativity and strong decidability of Fg and Fg (in the sense of
Theorem 46 and Theorem 48) are also easy corollaries of the previous theorems
and the two reductions.



Chapter 4

Conclusions and Further
Work

Definition. A constructive connective is a connective defined by a set of rules
in some canonical constructive system.

This is our answer to the initial question, “What is a constructive connec-
tive?” Theorem 46 (as well as its non-strict counterpart) ensures that a coherent
set of canonical rules can be seen as a definition of a connective, since it shows
that in canonical constructive systems the same set of rules defines the same
connective regardless of the rules for the other connectives of the system. Note
that we have suggested two kinds of canonical constructive systems: strict and
non-strict. We did not deal with the connections between them. We leave this
issue to a further work.

In the following we return to the four papers that were described in Chapter
2, and explain the connections between their results and ours. In the last
subsection we list some more directions for further work.

Logical Connectives for Intuitionistic Propositional Logic,
Dean P. McCullough

McCullough’s semantic definition of a constructive connective, as formulated
in Section 2.1, does not cover the whole range of connectives that can be de-
fined in canonical constructive systems. McCullough’s semantics is determin-
istic, adhering to the principle of truth-functionality. Hence, non-deterministic
connectives are not captured by McCullough’s approach. In the current work,
truth-functionality is rejected, and thus many new, perhaps useful, connectives
can be defined.

Unlike McCullough, our basic definition of a connective is proof-theoretical.
However, we do give Kripke frame semantics for each connective in the form
of conditions which are imposed on Kripke frames concerning formulas that
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contain that connective. In our definitions these conditions are given using
natural language. However, it is not hard to see that they can be formalized as
MLO formulas, of the same kind that was considered in McCullough’s semantics.
The crucial difference is that while McCullough uses one MLO formula to define
a connective, we use two formulas: one expressing the truth-conditions, and the
other expressing the falsity-conditions. The MLO formulas that we obtain by
formalizing our semantics satisfy McCullough’s conditions. This can be seen as a
justification for McCullough’s unjustified assertion on the structure of defining
formulas, since this structure is what one obtains following our independent
approach for defining connectives.

An Extension of the Intuitionistic Propositional Calculus,
K. A. Bowen

As Bowen suspected (see Section 2.2), we showed that his two new connectives
are two specific examples of much broader family of connectives that can be
defined in single-conclusion sequential systems, which admit cut-elimination.
Unlike Bowen, we provided semantics for all these connectives (and particularly
for his two new connectives), and used this semantics to prove our main results.

Although we did not deal with expressibility questions, it is easy to see
from our results that Bowen’s connectives cannot be expressed by the four ba-
sic intuitionistic connectives. The reason for this is that Bowen’s connectives
are essentially different, as they have non-deterministic nature. This argument
avoids Bowen’s complicated syntactic arguments and the use of McCullough’s
result.

Nonstandard Connectives for Intuitionistic Propositional
Logic, M. Kaminski

As described in Section 2.3, Kaminski has proved a cut-elimination theorem for
any “consistent” extension of LJ of some certain form. The templates of the
logical rules for the new connective in Kaminski’s work match our definition
of a non-strict canonical rule !. However, our work has an advantage over his
result, since our coherence criterion is much simpler and easy to verify than his
consistency demands.

Another crucial difference between Kaminski’s work and ours is the nature
of the cut-elimination proof. Kaminski’s proof is syntactic. It extends Gentzen’s
original proof by adding another level of induction. We avoid this, and integrate
the cut-elimination proof in the completeness proof. Thus, this makes our proof
simpler (and perhaps safer...).

INote that in order to deal with the full variety of Kaminski’s rules, we had to allow
negative hard premises in elimination rules.
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Towards a Semantic Characterization of Cut-Elimination,
A. Ciabattoni and K. Terui

Our notion of non-strict canonical systems falls in the category of simple calculi
that was presented in [8] (see Section 2.4). However, our presentation is sim-
pler, since while a connective has essentially infinitely many introduction (and
elimination) rules in a simple calculus, our definition of a canonical rule treats
this infinite set of rules as one rule. Hence, our coherence criterion is simpler
than Ciabattoni’s and Terui’s reductivity criterion, but they can be shown to
be equivalent.

The notions of strong cut-elimination and Ciabattoni’s and Terui’s reductive
cut-elimination are also connected. While they give structural conditions on
the required applications of the cut rule in a proof, we simply limit the set of
possible cut formulas. In order to obtain our limitation from their conditions,
one should inductively apply their conditions in a certain proof, cut by cut.

Another crucial similarity is that both works use non-deterministic semantic
frameworks (in [8] this is only implicit). However, while we use the concrete
framework of intuitionistic-like Kripke frames (which leads to decision proce-
dures for all the systems we consider), variants of the significantly more abstract
phase semantics are used in [§].

Further Work

The next list is a short collection of related issues which require further work:

e Investigate the connections between the strict case and the non-strict case,
and perhaps deal with both of them in a unified framework.

e Give an independent semantic definition of a constructive connective using
generalized frames, and prove its equivalence to our definition.

e Expressibility issues: When can one connective be expressed by a composi-
tion of other connectives? Is there a functional complete set of constructive
connectives?

e Give simple criterions for consistency and (usual) cut-elimination in non-
strict canonical systems.

e Investigate the connections between invertibility, axiom-expansion and de-
terminism of connectives in canonical constructive systems.

e Extend our results about propositional constructive logic to first-order
constructive logic.

e Extend our results to signed calculi with more than two signs.
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