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Abstract—We provide a general method for generating cut-
free and/or analytic hypersequent Gentzen-type calculi for a
variety of normal modal logics. The method applies to all
modal logics characterized by Kripke frames, transitive Kripke
frames, or symmetric Kripke frames satisfying some properties,
given by first-order formulas of a certain simple form. This
includes the logics KT, KD, S4, S5, K4D, K4.2, K4.3, KBD,
KBT, and other modal logics, for some of which no Gentzen
calculi was presented before. Cut-admissibility (or analyticity
in the case of symmetric Kripke frames) is proved semantically
in a uniform way for all constructed calculi. The decidability
of each modal logic in this class immediately follows.

Keywords-modal logic; frame properties; proof theory; hy-
persequent calculi; cut-admissibility;

I. INTRODUCTION

Modal logics have important applications in many areas
of computer science. Ever since Kripke and others devel-
oped relational semantics, the assembling of a new modal
logic for particular applications often begins by locating
relevant frame properties. The class of frames satisfying
these properties can be then used to characterize a new logic.
An accompanying proof-theoretic characterization of a given
modal logic is usually required. First, it is essential for the
development of automated reasoning methods. Second, it
provides a complementary view on the logic, that may be
useful in the theoretic investigation of the new logic in hand.
Developing general methods for generating proof systems
for modal logics, specified by frame properties, is the main
aim of this paper.

Since their introduction by Gentzen, sequent calculi have
been a preferred framework to define efficient well-behaved
proof-theoretic characterizations for various logics. How-
ever, ordinary sequent systems do not suffice, as they are
many useful non-classical logics (sometimes with simple
relational semantics) for which no well-behaved useful se-
quent calculus seems to exist. This led to the development
of frameworks employing higher-level objects, generalizing
in different ways the standard sequent calculi. A particularly
simple and straightforward generalization is the framework
of hypersequents. In fact, hypersequents, which are noth-
ing more than disjunctions of sequents, turned out to be
applicable for a large variety of non-classical logics (see,
e.g., [1], [2]). In particular, the modal logic S5, that lacks a

well-behaved simple cut-free sequent calculus, is naturally
handled using hypersequents [3]. However, the full power of
the hypersequent framework in the context of modal logics
has not yet been exploited.

In this paper we show that the hypersequent framework
can be easily used for many more normal modal logics
in addition to S5. Indeed, we identify an (infinite) set of
so-called “simple” frame properties, given by first-order
formulas of a certain general form, and show how to
construct a corresponding hypersequent derivation rule for
each simple property. The constructed rules are proved to be
“well-behaved”, in the sense that augmenting the (cut-free)
basic hypersequent calculus for the fundamental modal logic
K with any (finite) number of these rules do not harm cut-
admissibility. In addition, we show how to generate rules
for simple properties, to be added to the calculi for the
modal logics K4 (the logic of transitive frames) or KB
(the logic of symmetric frames). In the case of K4, cut-
admissibility is again preserved. In the case of KB, we
only have analyticity (the subformula property), rather than
full cut-admissibility.1 This provides a systematic method to
construct hypersequent systems for a variety of modal logics,
including among others KT, KD, S4, S5, K4D, K4.2,
K4.3, KBD, KBT, as well as logics characterized by
frames of bounded cardinality, bounded width, and bounded
top width. Soundness and completeness for the intended
semantics, as well as cut-admissibility or analyticity are
proved uniformly for all obtained systems.

Finally, the existence of such a well-behaved hyperse-
quent calculus immediately implies the decidability of the
corresponding logic. Hence the decidability of all modal
logics characterized by simple properties is a corollary of
our results.

Related works

A lot of effort has been invested to study and develop
proof-theoretical frameworks in which modal logics are
uniformly handled. Among others, this includes semantic
tableaus, display calculi, nested sequents calculi, labelled
calculi, and tree-hypersequent calculi (see, e.g., [4], [5], [6],

1Note that transitivity and symmetricity are not “simple” frame properties
themselves, and we have to change the basic calculus in order to handle
them.



[7], [8], [9]). It is beyond our scope to provide a general
comparison between the various different formalisms. We
can say that in general, there is a delicate balance between
several aspects: the expressibility of a certain formalism
(how many modal logics are captured?); its modularity
(ideally, one-to-one correspondence between the ingredients
of the logic specification and those of the proof system);
its applicability (its usefulness in decision procedures and
in the investigation of the logics); and its simplicity (how
simple are the data-structures it employs?). We believe that
the framework of hypersequents, studied in this paper, is
still very close to Gentzen’s approach, and yet it is modular,
applicable, and it suffices for various important modal logics.

The formulas that specify our, so-called, simple frame
properties, are a small portion of the family of geometric
formulas (see [7]). Thus, the methods of [7] can be used
to obtain a labelled sequent calculus for each of the logics
that we handle in this paper. The main difference here is
that these labelled sequent calculi internalize the Kripke
semantics in the sequents themselves, while our hyperse-
quent calculi are purely syntactic, and the semantics is not
explicitly involved in the formal derivations. In addition,
the calculi constructed by the method of this paper all have
the subformula property, and therefore, we easily obtain a
uniform decidability result for the corresponding logics (see
Corollary 2). In contrast, the methods of [7] lead to calculi
enjoying only weak notions of the subformula property, and
consequently, decidability requires a separate proof of the
termination of the proof-search algorithm for each calculus.

Several other works provide hypersequent calculi for
different kinds of logics. Among others, this includes [2]
where fuzzy logics are studied, [10] that considers inter-
mediate logics, and [1] that studies various propositional
substructural logics. In fact, [1] provides a general method
to construct a hypersequent rule out of an (Hilbert) axiom of
a certain sort. However, this method does not cover axioms
that include modal operators. Concerning modal logics, we
are aware (except for [3] mentioned above) of [11], that
provides several hypersequent systems for extensions of
MTL with modal operators and proves (syntactic) cut-
elimination for them, and [12], that provides a cut-free
hypersequent calculus for S4.3. While S4.3 is a particular
instance of a logic that can be handled using our method, the
logics studied in [11] are beyond our scope, as they require
substructural hypersequent calculi.

Finally, we note that the large topic of “correspondence
theory” in modal logic aims to study the connection be-
tween formulas in modal logics (modal axioms) and frame
properties formulated in (higher-order) classical logic. Our
work translates frame properties (given in first-order clas-
sical logic) directly to hypersequent rules. This provides
a different sort of (one-directional) correspondence, that
does not involve modal axioms per se. Investigating the
correspondence between modal axioms and simple frame

properties is left for further research.

II. SIMPLE FRAME PROPERTIES

Let L be a propositional language consisting of the
propositional constant ⊥, the binary connective ⊃, and the
modal operator 2. For all modal logics considered below,
∧,∨,¬ and � can be easily expressed in L. As usual, given
a set Γ of formulas, 2Γ denotes the set {2ϕ : ϕ ∈ Γ}.
Similarly, 2-1Γ is standing for {ϕ : 2ϕ ∈ Γ}. We denote
by AtL the set of atomic formula of L, and by FrmL the
set of all L-formulas. `lK and `gK denote (respectively) the
local and the global consequence relations of the modal logic
K for the language L. Semantically, these relations can be
characterized as follows:

Definition 1: A Kripke frame is a pair 〈W,R〉, where W
is a non-empty set of elements (called worlds), and R is a
binary relation on W (called accessibility relation). A Kripke
model is a triple 〈W,R, [ ]〉 obtained by augmenting a Kripke
frame 〈W,R〉 with a function [ ] (called valuation), that
assigns to every atomic formula p ∈ AtL a subset [p] ⊆ W
(the worlds in which p is true). [ ] is recursively extended
to FrmL as follows:

1) [⊥] = ∅.
2) [ϕ1 ⊃ ϕ2] = [ϕ2] ∪ (W \ [ϕ1]).
3) [2ϕ] = {w ∈W : ∀u ∈W. if wRu then u ∈ [ϕ]}.
Fact 1: Let T be a (possibly infinite) set of formulas, and

ϕ be a formula.
1) T `lK ϕ iff for every Kripke model 〈W,R, [ ]〉, and

every w ∈ W : either w 6∈ [ψ] for some ψ ∈ T , or
w ∈ [ϕ].

2) T `gK ϕ iff for every Kripke model 〈W,R, [ ]〉: if
[ψ] = W for every ψ ∈ T , then [ϕ] = W .

To formulate frame properties, we use a first-order lan-
guage, denoted by L1. Its variables are u,w1, w2, . . ., and
the binary predicate symbols R and = are its only predicate
symbols. Next, we identify a set of L1-formulas, for which
we will be able to construct hypersequent calculi.

Definition 2: An L1-formula is called n-simple if it has
the form ∀w1, . . . , wn∃uθ, where θ consists of ∧, ∨, and
atomic L1-formulas of the form wiRu or wi = u where
1 ≤ i ≤ n.

It turns out that various important and well-studied frame
properties can be formulated by n-simple L1-formulas.
These are called simple frame properties. Examples are given
in Table I.

Given a set Θ of L1-formulas, a Kripke frame 〈W,R〉
is called a Θ-frame if the first-order L1-structure naturally
induced by 〈W,R〉 is a model of every formula in Θ. A
Θ-model is any Kripke model based on a Θ-frame. `lK+Θ

and `gK+Θ denote the local and the global consequence
relations induced by Θ-models. Formally, these are defined
as follows:

Definition 3: Let Θ be a set of L1-formulas. For every
set T of formulas and formula ϕ:



Table I
SOME n-SIMPLE L1-FORMULAS AND THEIR NORMAL DESCRIPTIONS

Seriality ∀w1∃u (w1Ru) {〈{1}, ∅〉}
Reflexivity ∀w1∃u (w1Ru ∧ w1 = u) {〈{1}, {1}〉}
Directedness ∀w1, w2∃u(w1Ru) ∧ (w2Ru) {〈{1, 2}, ∅〉}
Degenerateness ∀w1, w2∃u (w1 = u ∧ w2 = u) {〈∅, {1, 2}〉}
Universality ∀w1, w2∃u (w1Ru ∧ w2 = u) {〈{1}, {2}〉}
Linearity ∀w1, w2∃u(w1Ru ∧ w2 = u) ∨ (w2Ru ∧ w1 = u) {〈{1}, {2}〉, 〈{2}, {1}〉}
Bounded Cardinality ∀w1, . . . , wn∃u

∨
1≤i<j≤n

(wi = u ∧ wj = u) {〈∅, {i, j}〉 : 1 ≤ i < j ≤ n}
Bounded Top Width ∀w1, . . . , wn∃u

∨
1≤i<j≤n

(wiRu ∧ wjRu) {〈{i, j}, ∅〉 : 1 ≤ i < j ≤ n}
Bounded Acyclic Subgraph ∀w1, . . . , wn∃u

∨
1≤i<j≤n

(wiRu ∧ wj = u) {〈{i}, {j}〉 : 1 ≤ i < j ≤ n}
Bounded Width ∀w1, . . . , wn∃u

∨
1≤i,j≤n;i6=j

(wiRu ∧ wj = u) {〈{i}, {j}〉 : 1 ≤ i, j ≤ n, i 6= j}

1) T `lK+Θ ϕ iff for every Θ-model 〈W,R, [ ]〉, and
every w ∈ W : either w 6∈ [ψ] for some ψ ∈ T , or
w ∈ [ϕ].

2) T `gK+Θ ϕ iff for every Θ-model 〈W,R, [ ]〉: if [ψ] =
W for every ψ ∈ T , then [ϕ] = W .

Example 1: Several well-known logics are particular in-
stances of `lK+Θ and `gK+Θ where Θ is a set of n-simple
L1-formulas. For example, classical logic (where 2 is an
“identity connective”) is obtained by taking the formulas for
“degenerateness“ and reflexivity; KT is obtained by taking
the formula for reflexivity; KD is obtained by taking the
formula for seriality; and S5 by the formula for universality.

Remark 1: To the best of our knowledge, the property
called “Bounded Acyclic Subgraph” in Table I was not
studied before in the context of modal logics. It is not hard to
see that this property holds (for some n ≥ 2) for 〈W,R, [ ]〉
iff R is reflexive and all acyclic directed subgraphs (of the
naturally induced directed graph, without the self-loops) are
of size < n.

Obviously, there might be more than one way to express
some frame property using an n-simple L1-formula. To
produce hypersequent rules out of simple frame properties,
we use the normal descriptions:

Definition 4: A normal description of an n-simple L1-
formula ∀w1, . . . , wn∃uθ is a non-empty finite set S of
pairs of the form 〈SR, S=〉, where SR and S= are subsets

of {1, . . . , n}, such that SR ∪ S= is non-empty, and θ is
equivalent to

∨
〈SR,S=〉∈S(

∧
i∈SR

wiRu ∧
∧
i∈S=

wi = u).
Proposition 1: Every simple L1-formula has a normal

description.
Examples of normal descriptions of n-simple L1-formulas

are given in the right column of Table I. Henceforth, for
every n-simple L1-formula θ, we denote by S(θ) some
normal description of θ.

III. FROM SIMPLE FRAME PROPERTIES TO
HYPERSEQUENT RULES

For our purposes it is most convenient to define a sequent
as an expression of the form Γ ⇒ ∆, where Γ and ∆ are
finite sets of formulas. This means in particular that the
usual structural rules of exchange, contraction and expansion
(the converse of contraction) are built-in in our calculi.
A hypersequent, in turn, is a finite set of sequents (so,
the external versions of the aforementioned rules are also
implicit). We shall use the usual hypersequent notation
s1 | . . . | sn (for {s1, . . . , sn}). We also employ the standard
abbreviations, e.g. Γ, ϕ⇒ ψ instead of Γ∪{ϕ} ⇒ {ψ}, and
H | s instead of H ∪ {s}.2

We use the hypersequent calculus HK, given in Figure 1,
as the basic calculus. As every hypersequent system, HK

2Note that expressions like Γ ⇒ ∆ are actually ambiguous between
sequents and singleton hypersequents.

(IW ⇒)
H | Γ⇒ ∆
H | Γ, ϕ⇒ ∆

(⇒ IW )
H | Γ⇒ ∆
H | Γ⇒ ∆, ϕ

(EW )
H

H | Γ⇒ ∆

(id)
ϕ⇒ ϕ

(cut)
H | Γ1 ⇒ ∆1, ϕ H | Γ2, ϕ⇒ ∆2

H | Γ1,Γ2 ⇒ ∆1,∆2

(⊃⇒)
H | Γ1 ⇒ ∆1, ϕ1 H | Γ2, ϕ2 ⇒ ∆2

H | Γ1,Γ2, ϕ1 ⊃ ϕ2 ⇒ ∆1,∆2
(⇒⊃)

H | Γ, ϕ1 ⇒ ϕ2,∆
H | Γ⇒ ϕ1 ⊃ ϕ2,∆

(⊥ ⇒) ⊥ ⇒ (⇒ 2)
H | Γ⇒ ϕ

H | 2Γ⇒ 2ϕ

Figure 1. The basic calculus HK



naturally induces two consequence relations between sets of
formulas and formulas:

1) A “local” relation, denoted by `lHK, defined by:
T `lHK ϕ if there exists a derivation of Γ ⇒ ϕ in
HK for some finite set Γ ⊆ T .

2) A “global” relation, denoted by `gHK, defined by:
T `gHK ϕ if there exists a derivation of ⇒ ϕ from
the assumptions {⇒ ψ : ψ ∈ T } in HK.

The following facts can be easily proved (in fact, they are
particular instances of the results below, obtained by taking
empty set of simple L1-formulas).

Fact 2: HK is sound and complete for the modal logic
K, i.e. `lHK=`lK and `gHK=`gK.

Fact 3: HK enjoys strong cut-admissibility, i.e. if there
exists a derivation of a hypersequent H in HK from a set
H of hypersequents, then there also exists a derivation of
H from H in HK, in which only formulas from H serve
as cut-formulas. In particular, if there exists a derivation of
H in HK with no assumptions (namely, from ∅), then there
exists a cut-free derivation of H in HK.

Now, given a normal description S of an n-simple L1-
formula θ, the hypersequent rule induced by S for HK,
denoted by rHK

S , is given by the following scheme:

{H |
⋃
i∈S=

Γi,
⋃
i∈SR

Γ′i ⇒
⋃
i∈S=

∆i : 〈SR, S=〉 ∈ S}
H | Γ1,2Γ′1 ⇒ ∆1 | . . . | Γn,2Γ′n ⇒ ∆n

This is a hypersequent rule that corresponds the the frame
property formulated by θ. Examples of the rules obtained for
the normal descriptions from Table I are given in Figure 2.

Remark 2: In all rule schemes, H is a metavariable
for hypersequents, and Γ,∆ (with or without primes or

subscripts) are metavariables for finite sets of formulas.
Given a set R of hypersequent rules, HK+R denotes the

system obtained by augmenting HK with the rules of R.
The relations `lHK+R and `gHK+R are defined as expected.
We can now formulate our first main result:

Theorem 1: Let Θ be a set of simple L1-formulas, and
let R = {rHK

S(θ) : θ ∈ Θ}. Then, (i) `lHK+R=`lK+Θ;
(ii) `gHK+R=`gK+Θ; and (iii) HK + R enjoys strong cut-
admissibility.

Remark 3: The hypersequent calculus GS5 for S5 from
[3] is different from the one constructed for S5 by this
general method (by taking the formula for universality of
the accessibility relation). It is easy to see that the rules of
our calculus are cut-free derivable in GS5. On the other
hand, cut is needed for deriving the rules of GS5 in our
calculus. Thus, our result is stronger, in some sense, as it
implies that GS5 enjoys cut-admissibility.

Theorem 1 is obtained as a corollary of Theorem 2
and Theorem 3 below. The first establishes the soundness
of HK + R for the logic of K + Θ, and the second
simultaneously provide completeness and cut-admissibility.
We shall use the following additional notion:

Definition 5: A Kripke model 〈W,R, [ ]〉 validates:
• a sequent Γ ⇒ ∆ if for every w ∈ W , either w 6∈ [ϕ]

for some ϕ ∈ Γ, or w ∈ [ϕ] for some ϕ ∈ ∆.
• a hypersequent H if it validates some Γ⇒ ∆ ∈ H .
• a set H of hypersequents if it validates every H ∈ H.
Theorem 2: Let Θ be a set of simple L1-formulas, and

let R = {rHK
S(θ) : θ ∈ Θ}. If a hypersequent H0 is derivable

in HK + R from a set H0 of hypersequents, then every
Θ-model which validates H0, also validates H0.

H | Γ′1 ⇒
H | Γ1,2Γ′1 ⇒ ∆1

Seriality

H | Γ1,Γ
′
1 ⇒ ∆1

H | Γ1,2Γ′1 ⇒ ∆1

Reflexivity

H | Γ′1,Γ′2 ⇒
H | Γ1,2Γ′1 ⇒ ∆1 | Γ2,2Γ′2 ⇒ ∆2

Directedness

H | Γ1,Γ2 ⇒ ∆1,∆2

H | Γ1,2Γ′1 ⇒ ∆1 | Γ2,2Γ′2 ⇒ ∆2

Degenerateness

H | Γ2,Γ
′
1 ⇒ ∆2

H | Γ1,2Γ′1 ⇒ ∆1 | Γ2,2Γ′2 ⇒ ∆2

Universality

H | Γ2,Γ
′
1 ⇒ ∆2 H | Γ1,Γ

′
2 ⇒ ∆1

H | Γ1,2Γ′1 ⇒ ∆1 | Γ2,2Γ′2 ⇒ ∆2

Linearity

{H | Γi,Γj ⇒ ∆i,∆j : 1 ≤ i < j ≤ n}
H | Γ1,2Γ′1 ⇒ ∆1 | . . . | Γn,2Γ′n ⇒ ∆n

Bounded Cardinality

{H | Γ′i,Γ′j ⇒ : 1 ≤ i < j ≤ n}
H | Γ1,2Γ′1 ⇒ ∆1 | . . . | Γn,2Γ′n ⇒ ∆n

Bounded Top Width

{H | Γj ,Γ′i ⇒ ∆j : 1 ≤ i < j ≤ n}
H | Γ1,2Γ′1 ⇒ ∆1 | . . . | Γn,2Γ′n ⇒ ∆n

Bounded Acyclic Subgraph

{H | Γj ,Γ′i ⇒ ∆j : 1 ≤ i, j ≤ n, i 6= j}
H | Γ1,2Γ′1 ⇒ ∆1 | . . . | Γn,2Γ′n ⇒ ∆n

Bounded Width

Figure 2. Hypersequent rules induced by normal descriptions for HK



Proof: We show that the property of being validated
by a Θ-model is preserved by applications of the rules of
HK + R. For the rules of HK, this is a routine matter.
Let r ∈ R, and let θ ∈ Θ be an n-simple L1-formula,
for which r = rHK

S(θ). Consider an application of r. Such
an application derives a hypersequent H ′ of the form
H | Γ1,2Γ′1 ⇒ ∆1 | . . . | Γn,2Γ′n ⇒ ∆n from the set
{H |

⋃
i∈S=

Γi,
⋃
i∈SR

Γ′i ⇒
⋃
i∈S=

∆i : 〈SR, S=〉 ∈ S(θ)}
of hypersequents. Assume that a Θ-model W = 〈W,R, [ ]〉
does not validate H ′. We show that W does not validate
at least one premise of this application. Our assumption
entails that for every 1 ≤ i ≤ n, there exists wi ∈ W
such that wi ∈ [ϕ] for every ϕ ∈ Γi ∪ 2Γ′i, and wi 6∈ [ϕ]
for every ϕ ∈ ∆i. Since W is a Θ-model, there exist
some u ∈ W and 〈SR, S=〉 ∈ S(θ) such that: wiRu
for every i ∈ SR, and wi = u whenever i ∈ S=. Let
s0 =

⋃
i∈S=

Γi,
⋃
i∈SR

Γ′i ⇒
⋃
i∈S=

∆i. We show that
W does not validate H | s0 (which is a premise of this
application). First, since H ⊆ H ′, W does not validate any
s ∈ H . We prove that u ∈ [ϕ] for every ϕ on the left side
of s0, and u 6∈ [ϕ] for every ϕ on the right side of s0:

1) Let ϕ ∈ Γi for some i ∈ S=. Thus wi ∈ [ϕ]. Since
u = wi, we have u ∈ [ϕ].

2) Let ϕ ∈ Γ′i for some i ∈ SR. Thus wi ∈ [2ϕ]. Since
wiRu, we have u ∈ [ϕ].

3) Let ϕ ∈ ∆i for some i ∈ S=. Thus wi 6∈ [ϕ]. Since
u = wi, we have u 6∈ [ϕ].

Consequently, W does not validate s0.
For the completeness and cut-admissibility proof, we use

the following additional definitions and notations:
Definition 6: An extended sequent is an ordered pair of

(possibly infinite) sets of formulas. Given two extended se-
quents µ1 = 〈T1,U1〉 and µ2 = 〈T2,U2〉, we write µ1 v µ2

(and say that µ2 extends µ1) if T1 ⊆ T2 and U1 ⊆ U2. An
extended hypersequent is a (possibly infinite) set of extended
sequents. Given two extended hypersequents Ω1,Ω2, we
write Ω1 v Ω2 (and say that Ω2 extends Ω1) if for every
µ1 ∈ Ω1, there is some µ2 ∈ Ω2 such that µ1 v µ2.

We shall use the same notations as above for extended
sequents and extended hypersequents. For example, we write
T ⇒ ϕ,U instead of 〈T ,U ∪ {ϕ}〉, and Ω | µ instead of
Ω ∪ {µ}. In addition, the notion of validating an extended
sequent or an extended hypersequent is defined exactly as
for ordinary sequents and hypersequents (see Definition 5).

Notation 1: Given a set R of hypersequent rules, we
write H `cfHK+R H if there exists a derivation of the hyper-
sequent H from the set H of hypersequents in HK+R, in
which only formulas from H serve as cut-formulas.

Definition 7: Let Ω be an extended hypersequent, R be
a set of hypersequent rules, and H be a set of (ordinary)
hypersequents. Ω is called:

1) 〈R,H〉-provable if H `cfHK+R H for some (ordinary)
hypersequent H v Ω. Otherwise, it is called 〈R,H〉-
unprovable.

2) 〈R,H〉-maximal w.r.t. a formula ϕ if the following
hold for every T ⇒ U ∈ Ω:
• If ϕ 6∈ T then Ω | T , ϕ⇒ U is 〈R,H〉-provable.
• If ϕ 6∈ U then Ω | T ⇒ ϕ,U is 〈R,H〉-provable.

3) 〈R,H〉-maximal w.r.t. an extended sequent µ if either
{µ} v Ω, or Ω | µ is 〈R,H〉-provable.

4) 〈R,H〉-maximal if it is 〈R,H〉-unprovable, and
〈R,H〉-maximal w.r.t. any formula and any extended
sequent.

Proposition 2: Let Ω be an 〈R,H〉-maximal extended
hypersequent for some set R of hypersequent rules and set
H of hypersequents.

1) For every T ⇒ U ∈ Ω and formula ϕ: if ϕ 6∈ T
(respectively, ϕ 6∈ U) then H `cfHK+R H | Γ, ϕ⇒ ∆

(H `cfHK+R H | Γ⇒ ϕ,∆) for some hypersequent
H v Ω and sequent Γ⇒ ∆ v T ⇒ U .

2) For every µ1, µ2 ∈ Ω: if µ1 v µ2, then µ1 = µ2.
3) For every extended sequent µ: if {µ} 6v Ω, then
H `cfHK+R H | s for some hypersequent H v Ω and
sequent s v µ.

Proof: Immediately follows from the definitions, using
the availability of external and internal weakenings.

The following lemma plays a central role in the complete-
ness proof. Due to space limitations, the proof is omitted.

Lemma 1: Let R be a set of hypersequent rules, andH be
a set of hypersequents. Every 〈R,H〉-unprovable extended
hypersequent Ω can be extended to an 〈R,H〉-maximal
extended hypersequent.

Theorem 3: Let Θ be a set of simple L1-formulas, and
let R = {rHK

S(θ) : θ ∈ Θ}. Let H0 be a set of hypersequents,
and Ω0 be an 〈R,H0〉-unprovable extended hypersequent.
Then, there exists a Θ-model W which validates H0, but
not Ω0.

Proof: By Lemma 1, there exists an 〈R,H0〉-maximal
hypersequent Ω that extends Ω0. Define W = 〈W,R, [ ]〉,
as follows:
• W = {T ⊆ FrmL : ∃U ⊆ FrmL. T ⇒ U ∈ Ω}.
• T1RT2 iff 2-1T1 ⊆ T2.
• For every p ∈ AtL: [p] = {T ∈W : p ∈ T }.

We show that W is a Θ-model. Let θ be an n-simple
L1-formula in Θ. We show that for every T1, . . . , Tn ∈ W ,
there exists some T ∈ W , and 〈SR, S=〉 ∈ S(θ), such that
TiRT for every i ∈ SR and Ti = T for every i ∈ S=.
Let T1, . . . , Tn be elements of W . Let U1, . . . ,Un be sets
of formulas such that Ti ⇒ Ui ∈ Ω for every 1 ≤ i ≤ n.
We claim that there exists some 〈S0

R, S
0
=〉 ∈ S(θ)

such that Ω |
⋃
i∈S0

=
Ti,

⋃
i∈S0

R
2-1Ti ⇒

⋃
i∈S0

=
Ui

is 〈R,H0〉-unprovable. To see this, assume for a
contradiction that Ω |

⋃
i∈S=

Ti,
⋃
i∈SR

2-1Ti ⇒
⋃
i∈S=

Ui
is 〈R,H0〉-provable for every 〈SR, S=〉 ∈ S(θ).
By Proposition 2 (and using weakenings), there
exist a hypersequent H v Ω, and finite sets



Γ1 ⊆ T1, . . . ,Γn ⊆ Tn, Γ′1 ⊆ 2-1T1, . . . ,Γ
′
n ⊆ 2-1Tn,

and ∆1 ⊆ U1, . . . ,∆n ⊆ Un, such that
H0`cfHK+R H |

⋃
i∈S=

Γi,
⋃
i∈SR

Γ′i ⇒
⋃
i∈S=

∆i for every
〈SR, S=〉 ∈ S(θ). By applying the rule rHK

S(θ), we obtain
that H0`cfHK+R H | Γ1,2Γ′1 ⇒ ∆1 | . . . | Γn,2Γ′n ⇒ ∆n.
But Ω extends this hypersequent, and this contradicts the
fact Ω is 〈R,H0〉-unprovable. Now, let µ0 be the extended
sequent

⋃
i∈S0

=
Ti,

⋃
i∈S0

R
2-1Ti ⇒

⋃
i∈S0

=
Ui. Since Ω is

〈R,H0〉-maximal, {µ0} v Ω. Thus there exists some
T ⇒ U ∈ Ω such that µ0 v T ⇒ U . For every i ∈ S0

R,
we have 2-1Ti ⊆ T , and so TiRT . In addition, for every
i ∈ S0

=, Ti ⊆ T and Ui ⊆ U . By Proposition 2, Ti = T in
this case.

Next, we show that for every T ∈ W : (a) T ∈ [ϕ] for
every ϕ ∈ T ; and (b) T 6∈ [ϕ] for every formula ϕ for
which {T ⇒ ϕ} v Ω. (a) and (b) are proved together by a
simultaneous induction on the complexity of ϕ. Let T ∈W .

• Suppose that ϕ = p is an atomic formula. Our
construction ensures that T ∈ [ϕ] iff ϕ ∈ T . This
proves (a). For (b), note that H0 `cfHK+R ϕ ⇒ ϕ (for
every formula ϕ), and since Ω is 〈R,H0〉-unprovable,
{T ⇒ ϕ} v Ω implies that ϕ 6∈ T .

• Suppose that ϕ = ⊥. Then (b) is trivially true. On
the other hand, (a) is vacuously true. To see this, note
that H0 `cfHK+R ⊥ ⇒ . Hence {⊥ ⇒ } 6v Ω, and so
⊥ 6∈ T .

• Suppose that ϕ = ϕ1 ⊃ ϕ2. Assume that ϕ ∈ T .
Let U ⊆ FrmL such that T ⇒ U ∈ Ω. Then
ϕ1 ∈ U or ϕ2 ∈ T . To see this, suppose that
ϕ1 6∈ U and ϕ2 6∈ T . Then by Proposition 2
(and using weakening), H0 `cfHK+R H | Γ⇒ ∆, ϕ1

and H0 `cfHK+R H | Γ, ϕ2 ⇒ ∆ for some hyperse-
quent H v Ω and sequent Γ ⇒ ∆ v T ⇒ U . By
applying (⊃⇒), we obtain H0 `cfHK+R H | Γ, ϕ⇒ ∆.
But since ϕ ∈ T , Ω extends H | Γ, ϕ ⇒ ∆, and
this contradicts the fact that Ω is 〈R,H0〉-unprovable.
By the induction hypothesis, T 6∈ [ϕ1] or T ∈ [ϕ2].
Consequently, T ∈ [ϕ].
Next, assume that {T ⇒ ϕ} v Ω. Let U ⊆ FrmL such
that T ⇒ U ∈ Ω and ϕ ∈ U . Then ϕ1 ∈ T and ϕ2 ∈ U .
To see this, suppose that ϕ1 6∈ T or ϕ2 6∈ U . Then
by Proposition 2, either H0 `cfHK+R H | Γ, ϕ1 ⇒ ∆

or H0 `cfHK+R H | Γ⇒ ϕ2,∆ for some hypersequent
H v Ω and sequent Γ ⇒ ∆ v T ⇒ U . By (possibly)
applying internal weakening and (⇒⊃), we obtain
H0 `cfHK+R H | Γ⇒ ϕ,∆. But since ϕ ∈ U , Ω ex-
tends H | Γ ⇒ ϕ,∆, and this contradicts the fact that
Ω is 〈R,H0〉-unprovable. By the induction hypothesis,
T ∈ [ϕ1] and T 6∈ [ϕ2]. Consequently, T 6∈ [ϕ].

• Suppose that ϕ = 2ψ. Assume that ϕ ∈ T , and let
T ′ ∈W such that T RT ′. Thus ψ ∈ T ′, and by the
induction hypothesis, T ′ ∈ [ψ]. It follows that T ∈ [ϕ].
Assume now that {T ⇒ ϕ} v Ω. Let µ = 2-1T ⇒

ψ. Then {µ} v Ω. (Otherwise, by Proposition 2 we
have H0 `cfHK+R H | Γ ⇒ ψ for some hypersequent
H v Ω and finite set Γ ⊆ 2-1T . By applying (⇒ 2),
we obtain that H0 `cfHK+R H | 2Γ ⇒ ϕ. But since
{T ⇒ ϕ} v Ω, Ω extends H | 2Γ ⇒ ϕ, and this
contradicts the fact that Ω is 〈R,H0〉-unprovable.) Thus
there exists T ′ ⇒ U ′ ∈ Ω, such that µ v T ′ ⇒ U ′.
By the induction hypothesis, T ′ 6∈ [ψ]. In addition, the
definition of R ensures that T RT ′. Thus T 6∈ [ϕ].

Using (a) and (b), we show that W validates H0, but
not Ω0. Since Ω0 v Ω, it immediately follows that W
does not validate Ω0. On the other hand, let H ∈ H0.
Obviously H0`cfHK+R H , and so H 6v Ω. Thus, there
exists some sequent Γ⇒ ∆ ∈ H such that {Γ⇒ ∆} 6v Ω.
We show that W validates Γ ⇒ ∆. Let T ∈ W , and let
U ⊆ FrmL such that T ⇒ U ∈ Ω. Since {Γ ⇒ ∆} 6v Ω,
either Γ 6⊆ T or ∆ 6⊆ U . We consider only the first
case (the second case is similar). Thus there is some
ϕ ∈ Γ such that ϕ 6∈ T . By Proposition 2, there exist a
hypersequent H ′ v Ω, and sequent Γ′ ⇒ ∆′ ⊆ T ⇒ U
such that H0`cfHK+R H ′ | Γ′, ϕ⇒ ∆′. It follows that
we must have ϕ ∈ U . (Otherwise, there exist a
hypersequent H ′′ v Ω, and sequent Γ′′ ⇒ ∆′′ ⊆ T ⇒ U
such that H0`cfHK+R H ′′ | Γ′′ ⇒ ∆′′, ϕ. Using
weakenings and cut on ϕ we would obtain that
H0`cfHK+R H ′ | H ′′ | Γ′,Γ′′ ⇒ ∆′,∆′′. But, Ω extends
this hypersequent.) Therefore, {T ⇒ ϕ} v Ω, and by (b),
we have that T 6∈ [ϕ].

Finally, Theorem 1 is a simple corollary of Theorem 2
and Theorem 3 using our definitions. We leave the details
to the reader.

IV. TRANSITIVE MODAL LOGICS

Unfortunately, several important frame properties are
not simple in the sense defined above. This includes,
first and foremost, transitivity, defined by the L1-formula
θtr = ∀w1, w2, w3((w1Rw2 ∧ w2Rw3) ⊃ w1Rw3), which
is a property widely studied and used in applications. To
see that transitivity cannot be captured by an n-simple L1-
formula, note that, unlike transitivity, simple properties are
monotone increasing, namely they are preserved under the
addition of accessibilities (enrichment of R). To handle
transitive modal logics, we change our basic calculus to a
one that characterizes K4, the basic transitive modal logic,
and reproduce the above results for transitive modal logics.

We denote by `lK4 and `gK4 the local and global con-
sequence relations of the modal logic K4 for the lan-
guage L. Note that `lK4=`lK+{θtr}, and `gK4=`gK+{θtr}.
By enforcing more restrictions formulated by n-simple L1-
formulas, we are able to handle more well-known modal
logics. Among others, this includes: S4, S4.3, K4D, K4.2,
and K4.3. We denote by `lK4+Θ and `gK4+Θ the local
and global consequence relations (respectively) induced by
transitive Θ-models. As the basic hypersequent calculus, we



use the calculus HK4, obtained from HK by replacing
(⇒ 2) with the rule:

(⇒ 24)
H | Γ,2Γ⇒ ϕ
H | 2Γ⇒ 2ϕ

All notations used for HK are adapted for HK4 in the
obvious way.

Fact 4: HK4 is sound and complete for the modal logic
K4, i.e. `lHK4=`lK4 and `gHK4=`gK4.

Fact 5: HK4 enjoys strong cut-admissibility.
Given a normal description S of an n-simple L1-formula,

the hypersequent rule induced by S for HK4, denoted by
rHK4
S , is given by the first scheme in Figure 3. Examples of

the rules obtained for some of the normal descriptions from
Table I are also given in Figure 3.

Theorem 4: Let Θ be a set of simple L1-formulas, and
let R = {rHK4

S(θ) : θ ∈ Θ}. Then, (i) `lHK4+R=`lK4+Θ;
(ii) `gHK4+R=`gK4+Θ; and (iii) HK4 + R enjoys strong
cut-admissibility.

Proof (Outline): The proof is similar to the proof
of Theorem 1. The soundness proof is easily adapted for
the transitive case using the fact that w ∈ [2ϕ] implies
that u ∈ [2ϕ] for every world u such that wRu. The
completeness and cut-admissibility proof requires several
modifications. The construction of an 〈R,H0〉-maximal
hypersequent is the same, but it is done with HK4 (instead
of HK). The refuting model W is also the same, except for
the accessibility relation which is now defined by: T1RT2

iff 2-1T1 ∪22-1T1 ⊆ T2 (note that 22-1T1 is the set of
all 2-formulas in T1). It is easy to see that R is transitive.
We show that W is a Θ-model. Let θ be an n-simple L1-
formula in Θ. We show that for every T1, . . . , Tn ∈ W ,
there exists some T ∈ W , and 〈SR, S=〉 ∈ S(θ), such
that TiRT for every i ∈ SR and Ti = T for every
i ∈ S=. Let T1, . . . , Tn be elements of W . Let U1, . . . ,Un
be sets of formulas such that Ti ⇒ Ui ∈ Ω for every
1 ≤ i ≤ n. As in the proof for HK + R, it is possible to
show that for some 〈SR, S=〉 ∈ S(θ), the extended hyper-
sequent Ω |

⋃
i∈S=

Ti,
⋃
i∈SR

2-1Ti ∪22-1Ti ⇒
⋃
i∈S=

Ui

is 〈R,H0〉-unprovable. Let µ0 be the extended sequent⋃
i∈S=

Ti,
⋃
i∈SR

2-1Ti ∪22-1Ti ⇒
⋃
i∈S=

Ui. Since Ω is
〈R,H0〉-maximal, {µ0} v Ω. Thus there exists some
T ⇒ U ∈ Ω such that µ0 v T ⇒ U . Now, for every i ∈ SR,
we have 2-1Ti ∪ 22-1Ti ⊆ T , and so TiRT . In addition,
for every i ∈ S=, Ti ⊆ T and Ui ⊆ U . By Proposition 2,
we have Ti = T in this case.

Finally, the proof that W validates H0, but not Ω0 is
identical, except for the case of ϕ = 2ψ in the inductive
proof of property (b). This case is now handled as follows:

Assume that {T ⇒ ϕ} v Ω. Let µ = 2-1T ,22-1T ⇒ ψ.
Then {µ} v Ω. (Otherwise, by Proposition 2 and possibly
using weakening we have H0 `cfHK+R H | Γ,2Γ ⇒ ψ
for some hypersequent H v Ω and finite set Γ ⊆ 2-1T . By
applying (⇒ 24), we obtain that H0 `cfHK+R H | 2Γ⇒ ϕ.
But since {T ⇒ ϕ} v Ω, Ω extends H | 2Γ ⇒ ϕ, and
this contradicts the fact that Ω is 〈R,H0〉-unprovable.) Thus
there exists T ′ ⇒ U ′ ∈ Ω, such that µ v T ′ ⇒ U ′. By the
induction hypothesis, T ′ 6∈ [ψ]. In addition, the definition of
R ensures that T RT ′. Thus T 6∈ [ϕ].

V. SYMMETRIC MODAL LOGICS

The property of symmetricity, defined by the L1-formula
θsym = ∀w1, w2(w1Rw2 ⊃ w2Rw1), is another frame
property which is widely studied and used in applications.
As transitivity, symmetricity is not captured by any n-
simple L1-formula, and again, we have to change our basic
calculus. In this section we switch to a basic calculus that
characterizes KB, the basic symmetric modal logic, and
provide a general construction of hypersequent calculi for
symmetric modal logics satisfying an arbitrary finite collec-
tion of simple properties. The main difference with respect
to the previous sections is that here we cannot construct cut-
free calculi. In fact, even for KB itself, there is no known
(standard) cut-free hypersequent calculus. However, we do
guarantee that all generated calculi still have the subformula
property, that is: if there exists a derivation of a hypersequent
H from a set H of hypersequents, then there also exists a
derivation of H fromH, consisting solely of the subformulas

{H |
⋃
i∈S=

Γi,
⋃
i∈SR

Γ′i ∪2Γ′i ⇒
⋃
i∈S=

∆i : 〈SR, S=〉 ∈ S}
H | Γ1,2Γ′1 ⇒ ∆1 | . . . | Γn,2Γ′n ⇒ ∆n

General Form of the Hypersequent Rule Induced by S for HK4

H | Γ′1,2Γ′1 ⇒
H | Γ1,2Γ′1 ⇒ ∆1

Seriality

H | Γ1,Γ
′
1,2Γ′1 ⇒ ∆1

H | Γ1,2Γ′1 ⇒ ∆1

Reflexivity

H | Γ′1,2Γ′1,Γ
′
2,2Γ′2 ⇒

H | Γ1,2Γ′1 ⇒ ∆1 | Γ2,2Γ′2 ⇒ ∆2

Directedness

H | Γ2,Γ
′
1,2Γ′1 ⇒ ∆2 H | Γ1,Γ

′
2,2Γ′2 ⇒ ∆1

H | Γ1,2Γ′1 ⇒ ∆1 | Γ2,2Γ′2 ⇒ ∆2

Linearity

{H | Γi,Γj ⇒ ∆i,∆j : 1 ≤ i < j ≤ n}
H | Γ1,2Γ′1 ⇒ ∆1 | . . . | Γn,2Γ′n ⇒ ∆n

Bounded Cardinality

Figure 3. Hypersequent rules induced by normal descriptions for HK4



of the formulas in H and H . This property, called also
“analyticity”, is of-course weaker than cut-admissibility, but
might serve as a sufficient substitute for performing proof-
search (see, e.g., [13]). In particular, in the cases that we
study, the fact that some logic has an analytic calculus
automatically entails its decidability.

We denote by `lKB and `gKB the local and global con-
sequence relations of the modal logic KB for the language
L. Note that `lKB=`lK+{θsym}, and `gKB=`gK+{θsym}. By
enforcing more restrictions formulated by n-simple L1-
formulas, we are able to handle more well-known modal
logics. Among others, this includes KTB and KDB.
`lKB+Θ and `gKB+Θ denote the local and global conse-
quence relations (respectively) induced by symmetric Θ-
models. The hypersequent calculus HKB is obtained from
HK by replacing (⇒ 2) with the following rule:

(⇒ 2B)
H | Γ⇒ ϕ,2∆
H | 2Γ⇒ 2ϕ,∆

All notations used for HK are adapted for HKB in the
obvious way.

Fact 6: HKB is sound and complete for the modal logic
KB, i.e. `lHKB=`lKB and `gHKB=`gKB.

Fact 7: HKB is analytic (namely, it has the subformula
property).

Given a normal description S of an n-simple L1-formula,
the hypersequent rule induced by S for HKB, denoted by
rHKB
S , is given by the first scheme in Figure 4. Examples

of the rules obtained for some of the normal descriptions
from Table I are also given in Figure 4.

The following soundness theorem is easily proved sim-
ilarly to the proof of Theorem 2 (using the fact that in a
symmetric Kripke model 〈W,R, [ ]〉, if w ∈ [2ϕ] and uRw
then u ∈ [ϕ]).

Theorem 5: Let Θ be a set of simple L1-formulas, and
let R = {rHKB

S(θ) : θ ∈ Θ}. If a hypersequent H0 is derivable
in HKB + R from a set H0 of hypersequents, then every
symmetric Θ-model, which validates H0, also validates H0.

For completeness, together with analyticity, we use the
following notation and adapt the notions and methods of
Section III:

Notation 2: Given a set R of hypersequent rules, and
a set F of formulas, we write H `FHKB+R H if there

exists a derivation of the hypersequent H from the set H of
hypersequents in HKB + R, consisting solely of formulas
from F .

Definition 8: Let R be a set of hypersequent rules, H be
a set of (ordinary) hypersequents, and F be a set of formu-
las. The notions of 〈R,H,F〉-(un)provability, 〈R,H,F〉-
maximality w.r.t. a formula or an extended sequent are
defined as 〈R,H〉-(un)provability and 〈R,H〉-maximality
(see Definition 7) where `FHKB+R is used instead of
`cfHK+R. In addition, an extended hypersequent Ω is called
〈R,H,F〉-maximal if it consists only of formulas from F , it
is 〈R,H,F〉-unprovable, and 〈R,H,F〉-maximal w.r.t. any
formula in F and any extended sequent consisting only of
formulas from F .

Proposition 3: Let Ω be an 〈R,H,F〉-maximal extended
hypersequent for some set R of hypersequent rules, set H
of hypersequents, and set F of formulas.

1) For every T ⇒ U ∈ Ω and formula ϕ ∈ F : if ϕ 6∈ T
(respectively, ϕ 6∈ U) thenH `FHKB+R H | Γ, ϕ⇒ ∆
(H `FHKB+R H | Γ⇒ ϕ,∆) for some hypersequent
H v Ω and sequent Γ⇒ ∆ v T ⇒ U .

2) For every µ1, µ2 ∈ Ω: if µ1 v µ2, then µ1 = µ2.
3) For every extended sequent µ consisting only of for-

mulas from F : if {µ} 6v Ω, then H `FHKB+R H | s
for some hypersequent H v Ω and sequent s v µ.

Lemma 2: Let R be a set of hypersequent rules, H be a
set of hypersequents, and F be a set of formulas. Let Ω be
an 〈R,H,F〉-unprovable extended hypersequent consisting
only of formulas from F . Then, Ω can be extended to an
〈R,H,F〉-maximal extended hypersequent.

Theorem 6: Let Θ be a set of simple L1-formulas, and let
R = {rHKB

S(θ) : θ ∈ Θ}. Let H0 be a set of hypersequents, F
be a set of formulas closed under subformula containing the
subformulas of H0, and Ω0 be an 〈R,H0,F〉-unprovable
extended hypersequent consisting only of formulas from F .
Then, there exists a symmetric Θ-model W which validates
H0, but not Ω0.

Proof: By Lemma 2, there exists an 〈R,H0,F〉-
maximal hypersequent Ω that extends Ω0. Define W =
〈W,R, [ ]〉, as follows:
• W = {T ⊆ F : ∃U ⊆ F . T ⇒ U ∈ Ω}.
• T1RT2 iff 2-1T1 ⊆ T2 and 2-1T2 ⊆ T1.
• For every p ∈ AtL: [p] = {T ∈W : p ∈ T }.

{H |
⋃
i∈S=

Γi,
⋃
i∈SR

Γ′i ⇒
⋃
i∈S=

∆i,
⋃
i∈SR

2∆′i : 〈SR, S=〉 ∈ S}
H | Γ1,2Γ′1 ⇒ ∆1,∆

′
1 | . . . | Γn,2Γ′n ⇒ ∆n,∆

′
n

General Form of the Hypersequent Rule Induced by S for HKB

H | Γ′1 ⇒ 2∆′1
H | Γ1,2Γ′1 ⇒ ∆1,∆

′
1

Seriality

H | Γ1,Γ
′
1 ⇒ ∆1,2∆′1

H | Γ1,2Γ′1 ⇒ ∆1,∆
′
1

Reflexivity

{H | Γi,Γj ⇒ ∆i,∆j : 1 ≤ i < j ≤ n}
H | Γ1,2Γ′1 ⇒ ∆1,∆

′
1 | . . . | Γn,2Γ′n ⇒ ∆n,∆

′
n

Bounded Cardinality

Figure 4. Hypersequent rules induced by normal descriptions for HKB



Clearly, R is symmetric. We further claim that for every
two elements T1 ⇒ U1 and T2 ⇒ U2 of Ω, if 2-1T1 ⊆ T2

and F ∩ 2U1 ⊆ U2 then T1RT2. Thus we prove that
F ∩2U1 ⊆ U2 implies that 2-1T2 ⊆ T1. Let ϕ ∈ 2-1T2.
Hence 2ϕ ∈ T2 (and, in particular, 2ϕ ∈ F), and so
2ϕ 6∈ U2 (since `FHKB+R 2ϕ⇒ 2ϕ). The assumption that
F∩2U1 ⊆ U2 entails that ϕ 6∈ U1. This implies that ϕ ∈ T1.
Indeed, otherwise, by Proposition 3 (and using weakenings),
there exist a hypersequent H v Ω, and sets of formulas
Γ ⊆ T1 and ∆ ⊆ U1, such that H0`FHKB+RH | Γ ⇒ ϕ,∆
and H0`FHKB+RH | Γ, ϕ⇒ ∆ (note that ϕ ∈ F since F is
closed under subformula). By applying cut on ϕ, we obtain
that H0`FHKB+RH | Γ ⇒ ∆. But this contradicts the fact
that Ω is 〈R,H,F〉-unprovable.

We show that W is a Θ-model. Let θ be an n-simple
L1-formula in Θ, and let T1, . . . , Tn be elements of
W . We show that there exists some T ∈ W , and
〈SR, S=〉 ∈ S(θ), such that TiRT for every i ∈ SR
and Ti = T for every i ∈ S=. Let U1, . . . ,Un ⊆ F
such that Ti ⇒ Ui ∈ Ω for every 1 ≤ i ≤ n. We
claim that there exists some 〈S0

R, S
0
=〉 ∈ S(θ) such that

Ω |
⋃
i∈S0

=
Ti,

⋃
i∈S0

R
2-1Ti ⇒

⋃
i∈S0

=
Ui,

⋃
i∈S0

R
2Ui

is 〈R,H0,F〉-unprovable. To see this, assume for
a contradiction that Ω |

⋃
i∈S=

Ti,
⋃
i∈SR

2-1Ti ⇒⋃
i∈S=

Ui,
⋃
i∈SR

2Ui is 〈R,H0,F〉-provable for
every 〈SR, S=〉 ∈ S(θ). By Proposition 3 (and
using weakenings), there exist a hypersequent
H v Ω, and finite sets Γ1 ⊆ T1, . . . ,Γn ⊆ Tn,
Γ′1 ⊆ 2-1T1, . . . ,Γ

′
n ⊆ 2-1Tn, ∆1 ⊆ U1, . . . ,∆n ⊆ Un,

and ∆′1 ⊆ U1, . . . ,∆
′
n ⊆ Un such that H0 `FHKB+R

H |
⋃
i∈S=

Γi,
⋃
i∈SR

Γ′i ⇒
⋃
i∈S=

∆i,
⋃
i∈SR

2∆′i
for every pair 〈SR, S=〉 in S(θ). Now, by applying
the rule rHKB

S(θ) , we obtain that H0 `FHKB+R

H | Γ1,2Γ′1 ⇒ ∆1,∆
′
1 | . . . | Γn,2Γ′n ⇒ ∆n,∆

′
n. But Ω

extends this hypersequent, and this contradicts the fact that
Ω is 〈R,H0,F〉-unprovable. Let µ0 be the extended sequent⋃
i∈S0

=
Ti,

⋃
i∈S0

R
2-1Ti ⇒

⋃
i∈S0

=
Ui,

⋃
i∈S0

R
F ∩2Ui. Note

that µ0 consists only of formulas from F , and we have
that Ω | µ0 is 〈R,H0,F〉-unprovable. Thus, since Ω is
〈R,H0,F〉-maximal, we have {µ0} v Ω. Hence there
exists some T ⇒ U ∈ Ω such that µ0 v T ⇒ U . Now, for
every i ∈ S0

R, we have 2-1Ti ⊆ T and F ∩ 2Ui ⊆ U . It
follows that TiRT for every i ∈ S0

R. In addition, for every
i ∈ S0

=, Ti ⊆ T and U0
i ⊆ U . By Proposition 3, we have

Ti = T in this case.
It remains to show that W validates H0, but not Ω0. As

in the proof of Theorem 3, this follows from the fact that
for every T ∈ W : (a) T ∈ [ϕ] for every ϕ ∈ T ; and (b)

T 6∈ [ϕ] for every formula ϕ for which {T ⇒ ϕ} v Ω.
(a) and (b) are proved together by a simultaneous induction
on the complexity of ϕ. We do here only the case ϕ = 2ψ
(the other cases are handled as in the proof of Theorem 3).
Suppose that ϕ = 2ψ. Let T ∈W . Assume that ϕ ∈ T , and
let T ′ ∈W such that T RT ′. Thus ψ ∈ T ′. By the induction
hypothesis, T ′ ∈ [ψ]. It follows that T ∈ [ϕ]. Next, assume
that {T ⇒ ϕ} v Ω. Thus, there exists some U ⊆ F , such
that T ⇒ U ∈ Ω and ϕ ∈ U . Let µ = 2-1T ⇒ ψ,F ∩2U .
Then {µ} v Ω. (Otherwise, by Proposition 3 and possibly
using weakening we have H0 `FHKB+R H | Γ ⇒ ψ,2∆
for some hypersequent H v Ω and finite sets Γ ⊆ 2-1T
and ∆ ⊆ U . By applying (⇒ 2B), we obtain that
H0 `FHKB+R H | 2Γ⇒ ϕ,∆. But since {T ⇒ U} v Ω, Ω
extends H | 2Γ⇒ ϕ,∆, and this contradicts the fact that Ω
is 〈R,H0,F〉-unprovable.) Thus there exists T ′ ⇒ U ′ ∈ Ω,
such that µ v T ′ ⇒ U ′. By the induction hypothesis,
T ′ 6∈ [ψ]. In addition, since 2-1T ⊆ T ′ and F ∩2U ⊆ U ′,
we have T RT ′. Consequently, T 6∈ [ϕ].

Theorems 5 and 6 together entail the following corollary.
Corollary 1: Let Θ be a set of simple L1-formulas, and

let R = {rHKB
S(θ) : θ ∈ Θ}. Then, (i) `lHKB+R=`lKB+Θ;

(ii) `gHKB+R=`gKB+Θ; and (iii) HKB + R is analytic.
Finally, we note that extending the results to modal logics

characterized by both transitive and symmetric frames (and
any finite set of simple properties) is straightforward. In this
case, the following rule is used instead of (⇒ 2):

(⇒ 24B)
H | Γ,2Γ⇒ ϕ,2∆,22-1∆

H | 2Γ⇒ 2ϕ,∆

Denote by HK4B the obtained calculus. A scheme of the
hypersequent rule induced by a given normal description
S of an n-simple L1-formula for HK4B is presented
in Figure 5. Soundness, completeness and analyticity are
proved in a similar manner as the corresponding results for
symmetric modal logics. In particular, in the completeness
proof, the following transitive and symmetric accessibility
relation can be used: T1RT2 iff 2-1T1 ⊆ T2, 2-1T2 ⊆ T1,
22-1T1 ⊆ T2, and 22-1T2 ⊆ T1.

VI. CONCLUDING REMARKS AND FURTHER RESEARCH

In this work we identified a family of frame properties that
can be translated into hypersequent rules. We provided the
necessary definitions to construct a hypersequent calculus
for every modal logic characterized by a finite set of prop-
erties of this family, and proved a general cut-admissibility
theorem, applicable for every calculus produced by these
definitions. The results were extended to transitive modal

{H |
⋃
i∈S=

Γi,
⋃
i∈SR

Γ′i ∪2Γ′i ⇒
⋃
i∈S=

∆i,
⋃
i∈SR

2∆′i ∪22-1∆′i : 〈SR, S=〉 ∈ S}
H | Γ1,2Γ′1 ⇒ ∆1,∆

′
1 | . . . | Γn,2Γ′n ⇒ ∆n,∆

′
n

Figure 5. General Form of the Hypersequent Rule Induced by S for HK4B



logics and symmetric ones (in the latter case, we have
analyticity rather than full cut-admissibility). The results
of this papers may be used to develop new and improved
automated reasoning algorithms for modal logics. In addi-
tion, since the produced hypersequent calculi are relatively
simple and well-behaved, they may play an important role in
the investigation of modal logics, alongside with the usual
semantic tools. In particular, decidability is an immediate
corollary:

Corollary 2: The local and global consequence relations
(and theoremhood in particular) of every modal logic charac-
terized by a finite set simple frame properties are decidable.
The same holds for transitive modal logics and for symmet-
ric modal logics.

Proof: All hypersequent calculi obtained by our method
have the subformula property. Now, since there is a (com-
putable) bound on the number of hypersequents consisting
of a given finite set of formulas, derivability in any of these
calculi is obviously decidable (simply, by checking one by
one all possible candidates for proofs). The decidability of
the corresponding consequence relations follows directly.

While we only considered modal logics with one modal
operator, we believe that some of the methods of this paper
can be extended to multimodal logics as well. This should
allow a much wider variety of properties, involving more
than one accessibility relation. Another natural question for
further research is whether this method can be extended to
non-simple frame properties. More generally, it is interest-
ing to understand which modal logics can be handled by
hypersequent calculi. Negative results, showing that some
modal logic has no (either cut-free or analytic) hypersequent
calculus, would be a major breakthrough. For that, one has
to precisely define the general structure of well-behaved
hypersequent rules. At this point we can only conjecture
that dealing with non-simple properties, if possible, would
require much more complicated hypersequent rules, than
those needed for simple properties.
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