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The Big Picture

o Goals:

o Characterization of important proof-theoretic properties of calculi:
cut-admissibility, the subformula property, invertibility of rules,...

e Understanding the dependencies between them

o Tighten the relations between proof-theory and semantics

@ Tool: Non-deterministic semantics

o Goes back to [Schiitte 1960], [Tait 1966]
o Formalized and studied in [Avron,Lev 2001]

@ Framework: Canonical labelled sequent calculi
o Labelled = many-sided
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A propositional language £
A finite set of labels C cc{mm m. .}
Labelled formula:=0: A where A€ Frmy, and d € C

Sequent:= a finite set of labelled formulas
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Labelled Sequent Calculi

A propositional language £
A finite set of labels C cc{mm m. .}
Labelled formula:=0: A where A€ Frmy, and d € C

Sequent:= a finite set of labelled formulas

C={mu  m} {M:p;,M:—p}

{W:p} {m:p}
{M:-p,W:—p1}  {W:-py, [ opr}
{M:—p}

pL,prOp2=p2 v {M:p,W:p DpM:pr}



Canonical Labelled Calculi

@ All standard structural rules
(exchange, contraction, weakening)

@ A finite set of primitive rules

© A finite set of canonical logical rules
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Canonical Rules

o ‘“ldeal” logical introduction rules [Avron, Lev 2001]:

e Introduce exactly one connective.
e The active formulas are immediate subformulas of the principal formula.
e The application is context-independent.
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Canonical Rules

o ‘“ldeal” logical introduction rules [Avron, Lev 2001]:

e Introduce exactly one connective.
e The active formulas are immediate subformulas of the principal formula.
e The application is context-independent.

r=AA IIB=A
ASB= A

o In Labelled Calculi [Avron, Zamansky 2009]:

{W:A}Us {M:B}Us
{M:ADB}Us

e May introduce a connective with more than one label.

{m:AM:Bjus {/ :BR:C,HR:C}Us
{m:Q(AB,C),R:Q(AB,C)}Us
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Semantics

@ The value of A determines which of the labelled formulas
H:AN:A ' A ... istrue.

o In general, there are 2/l possible options.

@ Primitive rules forbid some of them.

@ Logical rules are used to determine the values of compound formulas.



Semantics

@ The value of A determines which of the labelled formulas
H:AN:A ' A ... istrue.

o In general, there are 2/l possible options.

@ Primitive rules forbid some of them.

@ Logical rules are used to determine the values of compound formulas.

Formalization

@ The set of truth-values 7g C P(C) is determined according to the
primitive rules of G.

e A valuation v : Frmy — Tg is a model of O : Aif O € v(A).

@ A valuation is a model of a sequent s if it is a model of some labelled
formula in s.
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C={mm }

{":A}Us rn {W:Aus { :A}Usr
{m:AN:AlUs s 2

Te = {{ }7{.}7{.}7E i{.a.hi.’f I{.’ }’m
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The Truth-Tables

The table for a connective is algorithmically extracted from its logical rules.

For example:

{M:AtUs {Mm:B}Us

Te = {{m}, {W}} {m} | {m} {m}
{M:AM:B}Us
(M:A>B}Us ILARLHEL

A legal valuation should respect the table:
v(o(A1, ..., An)) =3(v(A1),...,v(An))
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@ Non truth-functional connectives,
e.g. primal implication [Gurevich, Neeman 2009]:

{M:AtUs {M:B}Us
{M:ADB}Us

Te = {{m}, {m}}
{M:B}Us

{M:ADB}Us

How to determine S({M}, {M})?
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Non-determinism

@ More than one option satisfies the conclusion, e.g.

{W:AlUs {M:B}Us
{M:ADB}Us

Te = {{-}7{.}7{-7.}}
{W:AM:B}Us

{M:ADB}Us

How to determine S({M}, {M})?

Non-deterministic Truth-Tables [Avron, Lev 2001]

A table of an n-ary connective ¢ is a function 3 : 7" — P*(T).
A legal valuation satisfies: v(¢(A1,...,An)) € 3(v(A1),...,v(An))
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Example: Construction of a Non-deterministic Truth-Table

C={mm } T ={0,{m M}, (W }} o is a binary connective
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What Can Go Wrong?

o Contradictions between rules, e.g.

_ {M:B}Us {m:A}Us
To = {{m}, {m}} {M:AoB}Us {M:AoB}Us

How to determine S({M}, {M})?

S {m} {m} an cannot be use
{m} | {{m}} {{m} {m}} Ey.ihe sfi\r‘r{:}\‘/aIuatiotn.b ‘

| 0 {{m}}
Partial Non-deterministic Truth-Tables

Allow empty entries: 3 : T" — P(T).




The Semantic Framework

Partial Non-deterministic Matrices
A PNmatrix M for £ and C consists of:
o A set T of truth-values.

@ A function D : C — P(T) assigning a set of designated truth-values for
every label.

@ A partial non-deterministic truth-table & : 7" — P(T) for every n-ary
connective of L.

A valuation v : Frmz — T is:
@ a model (in M) of a sequent s if v(A) € D(0J) for some O : Ain s.

o M-legal if v(o(A1,...,Ap)) € 3(v(A1),...,v(Ap)) for every
<>(A1, R ,An) € Frmg.



Main Result

Theorem

For every canonical labelled calculus G, there exists a strongly characteristic
PNmatrix Mg (i.e. Qg s iff every Mg-legal valuation which is a model of
every sequent in Q is also a model of s).

Moreover, we provide a uniform algorithm to obtain Mg from G.



Main Result

Theorem

For every canonical labelled calculus G, there exists a strongly characteristic
PNmatrix Mg (i.e. Qg s iff every Mg-legal valuation which is a model of
every sequent in Q is also a model of s).

Moreover, we provide a uniform algorithm to obtain Mg from G.

In many cases, the obtained semantics coincides with a known one:
@ Propositional fragment of LK
@ LK without cut [Girard 1987]
@ LK without identity axiom [Hosli,Jager 1994]
@ Two-sided canonical systems [Avron,Lev 2001]
@ Labelled calculi studied in [Baaz et al. 1998] and [Avron,Zamansky 2009]



Effectiveness

Semantic consequence relations induced by PNmatrices are decidable.

Corollary

All canonical labelled calculi are decidable.




Effectiveness

Theorem
Semantic consequence relations induced by PNmatrices are decidable.

Proof Outline.

@ Usual method: To decide whether s is valid in M, check one-by-one all
M-legal partial valuations defined on the subformulas of s, and look for
one which is not a model of s.

o Hidden assumption: All M-legal partial valuations can be extended to
full ones (semantic analyticity).
But, it does not hold for PNmatrices (recall 3({M}, {M}) =01).

@ Lemma: It is decidable whether an M-legal partial valuation can be
extended to a full one.

@ Solution: Check one-by-one all M-legal partial valuations defined on
the subformulas of s, and look for one which is both extendable and
not a model of s.



Application - “Almost”-Canonical Calculi

Consider the following non-canonical calculus for the basic LF/ called BK:

rAB=A
=) FANB=A =n
NMA=A ILB=A
(V=) LAVB= A (=V)
(5=) r=AA INNB=A (=D)
A>B= A
(=)
Fr=AA = -A A
(=) FoA= A (=)
A=A T=AA
(cut) r=a @) Fasana

r=AAT=AB

Fr=AAANB
= AAB

r=AAVB

rA= B,A

r=A>B,A

NA= A

YR

MA —A = A

[ =oAA

M= A

e rrs s



Application - “Almost”-Canonical Calculi

oo BAESE ) s
e L I o
@) B mo) GRE
iy A
e
(cut) {I:A}USS{I:A}US (id) WARTA (weak) e



Translation into a Canonical Labelled Calculus

@ Add two labels: B, and H_.
@ Replace the logical rules:

{W:AlUus {E:Alus {B:-AlUs {E:AMNE:-A}Us
{W:-A}Us {M:0A}Us {M:0A}Us

by the rules:

{W:Atus {M:A}Us {B.:A}Us {H:AMN_.:A}Us
{W- :A}Us {M:0A}Us {M:0A}Us

@ Add cut and axiom:

{W_:AlUs {M-:A}Us
s {W-: AN :A}Us

@ Add extra logical rules:

{W-:A}lUs {H_.:A}Us
{Wm:-A}Us {B:-A}Us




Translation into Canonical Labelled Calculi

@ Now, we can use the previous method to obtain a PNmatrix for this
calculus, and use it in a decision procedure.

@ This translation is possible for every canonical calculus with additional
logical rules of the form:

M=%, A .. [Nyp=%,A
conc ©

where:
e conc has one of the following forms (for some n-ary connective ¢):

o T,o(A1,...,A) = A

o = o(A...,A), A

o IN,xo(Ay,...,A,) = A for some unary connective *
o = xo(As,...,An), A for some unary connective *.

e [T's and ¥'s consist of A;'s and formulas of the form xA; for some unary
connective *.
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Cut-Admissibility in Canonical Labelled Calculi

A cut is a primitive rule of the form:

{O0:A...;,0:Atus ... {O:A,...,0:A}Us

{M:AlUus {B:A}Us

{m:AMB:AtUs {I :A}Us {M:A}Us

@ A is called the cut-formula.

@ s is called the cut-context.
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A cut is a primitive rule of the form:

{O0:A...;,0:Alus ... {O:A...,0:A}Us

Many-Sided Strong Cut-Admissibility

Q Fg s = there is a derivation of s from Q in G in which: the cut-formula
of each cut occurs either in Q or in the cut-context.



Cut-Admissibility in Canonical Labelled Calculi

A cut is a primitive rule of the form:

{O0:A...;,0:Alus ... {O:A...,0:A}Us

Many-Sided Strong Cut-Admissibility

Q Fg s = there is a derivation of s from Q in G in which: the cut-formula
of each cut occurs either in Q or in the cut-context.

Theorem

A canonical labelled calculus G enjoys many-sided strong cut-admissibility
iff
Mg does not include empty entries



Summary

@ We provided effective and modular semantic characterization for
canonical labelled sequent calculi using partial non-deterministic
matrices.

@ Application: effective semantics for “almost”-canonical calculi via
translation to canonical labelled calculi.

@ Application: semantic characterization of proof-theoretic properties.

Thank you!



