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Using Multiple Values
for
Characterizing Sequent Systems




Sequent Systems

o Sequent systems are formal calculi that manipulate sequents.

o Sequents are objects of the form I = A, where I and A are finite sets
of formulas.

Intuition:

r=A s Aro\a



LK [Gentzen 1934]

Identity Rules

NMA=A T=AA
= A

(id) A=A (cut)

Weakening Rules

= A = A
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Logical Rules
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( ) NMADB=A ( ) = ADB,A
MAB=A Fr=AA =BA

A=) T A E=a (& W) F= AAB,A



LK [Gentzen 1934]

Identity Rules

NMA=A T=AA
= A

(id) A=A (cut)

Weakening Rules

= A = A

W=) +aza

Logical Rules

L.y =AA 1B=4A s A= B,A
( ) NMADB=A ( ) = ADB,A
MAB=A r=AA = BA
A=) T A E=a (& W) F= AAB,A
Theorem

TraA iff {=B|BeT} Fik=A



Canonical Rules [Avron,Lev 2001]

Logical Rules

&) r=AA INB=A =) A= B,A
FASB= A F=A>SB,A
rAB=A r=AA I=>BA

A=) T A E=A (&) F= AAB,A

Logical rules of an “ideal” type:

o Exactly one connective is introduced
o The active formulas of the premises are immediate subformulas of the
principal formula

o Context-independence



Canonical Rules [Avron,Lev 2001]

Logical Rules

&) r=AA INB=A =) A= B,A
FASB= A F=A>SB,A
rAB=A r=AA I=>BA

A=) T A E=A (&) F= AAB,A

Logical rules of an “ideal” type:

o Exactly one connective is introduced
o The active formulas of the premises are immediate subformulas of the
principal formula

o Context-independence

ooy T=AA TE=A = B,A
A~ B= A = A~ B,A




Canonical Systems

A Canonical System =

The two identity rules
_l’_
The two weakening rules
_l’_
A (finite) set of canonical rules

Prominent Examples:

o LK
o Primal Logic [Gurevich,Neeman 2009] (~ instead of D)



Canonical Systems

A Canonical System =
The two identity rules
+
The two weakening rules

+
A (finite) set of canonical rules

Prominent Examples:

o LK
o Primal Logic [Gurevich,Neeman 2009] (~ instead of D)

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministic
semantics.
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Non-deterministic Matrices by Example

AN|lF T A\ F T

FIF F F {F} {FaT}

T|F T T | {F,T} {T}
v(AA B) = A(v(A), v(B)) v(AA B) € A(v(A), v(B))

vV —— outy

in1

in2

in3
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Theorem (Avron,Lev 2001)
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Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministic

matrix.

r=AA ILB=A
NMA>DB=A

A= B,A
= A>B,A

r=AA ILB=A
A~ B=A

r=B,A
= A~ B,A

F T

e5|

{#, 1} {¥, 7}
{1} {F.1}

F T

5|

{ry {r}
{r} {1}

F T

e|

{r, 1} {F, T}
{r 1} {¥, 1}




Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministic
matrix.

r=AA ILB=A

NMA>DB=A S F T ST 7 -
A= B A P {1 {F 1} F{T} {1}
T=ASBA T | {r 1} {F,T} T | {r} {7}

r=AA ILB=A
NA~ B=A ~ F T — F T
= B,A {r, 1} {F, 1} F | {F, T} {7}
Fr=A~ B,A T | {r, 1} {¥ 1} T | {r} {1}

e|
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What is the Role of the Identity Rules?

Identity Rules

NMA=A TT=AA

(id) A=A (cut) r=A
A Canonical System = A Semi-canonical System =
The two identity rules Any subset of the identity rules
aF aF
The two weakening rules The two weakening rules
aF aF
A (finite) set of canonical rules A (finite) set of canonical rules

o Discarding (cut) is useful for the study of cut-admissibility

o Discarding (id) is useful for proof-theoretic analysis of logic
programming [Hosli, Jager 1994]
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o No valuation is a model both of A= and of = A



Semantics of Semi-canonical Systems

Identity Rules

A= =A

(id) A=A (cut) =

o Using only T and F:

o Every valuation is model of A= A
o No valuation is a model both of A= and of = A

o ldea:
o Without (id) - add a value L

v(A) =L — v is not a model of A= A
o Without (cut) - add a value T

v(A)=T = v is a model of both A= and = A



Semantics of Semi-canonical Systems

The Truth-Values
T
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Semantics of Semi-canonical Systems

The Truth-Values
T

v is a model of I = A if v(A) > F for some
A€l or v(A) > T for some A€ A

v(A) =1 = v is not a model of A= A

v(A)=T = v is a model of both A= and = A



Semantics of Semi-canonical Systems

The Truth-Values

=
s T v is a model of [ = A if v(A) > F for some
A€l or v(A) > T for some A€ A
L
v(A) =1 = v is not a model of A= A
v(A)=T = v is a model of both A= and = A

(id) = omit L
(cut) = omit T
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Some simple semi-canonical systems (e.g. LK —(id) or LK —(cut)) do not
have a finite (ordinary) matrix.



What are the Truth-Tables?

Theorem

Some simple semi-canonical systems (e.g. LK —(id) or LK —(cut)) do not
have a finite (ordinary) matrix.

Theorem

Every (consistent) semi-canonical system has a three or four valued
non-deterministic matrix.

In fact, we provide a method to obtain such a matrix.



Example: Implication without (id) and (cut)

r=AA ILB=A A= B,A
LASDB= A F=A>B,A




Example: Implication without (id) and (cut)

r=AA INB=A A= B A
rNA>DB=A r=A>B,A
L F T T

{L,r1, T} {LF 7T} {LrT T} {LF7TT}
{L,F,7, T} {L,F,T, T} {L,F,T, T} {L,FT, T}
{L,p,T, T} {L,p,1, T} {L,F,7, T} {L,F,T,T}
{L,F,7, T} {L,F,T, T} {L,F,T, T} {L,FT, T}

=== U
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M= AA ILB=A NNA= B,A
[MADB=A = AD>BA
1 F T T
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=== U




Example: Implication without (id) and (cut)

M= AA ILB=A NNA= B,A
[MADB=A = AD>BA
1 F T T

{L,F,7, T} {L,F,7, T} {L,Fr,T7,T} {L,F,T,T}
{L,F,7, T} {L,F,T, T} {L,F,T, T} {L,FT, T}
{L,r,T, T} {LF7* T} {L,r1, T} {LFT T}
{L,r,T, T} {L,Fr7*, T} {L,FrT, T} {LFT T}

=== U
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Example: Implication without (id) and (cut)

r=AA INB=A A= B A
rNA>DB=A r=A>B,A
L F T T

{L,Fr,7, T} {L,F,1, T} {LFT, T} {LFT,T}
{l,y‘,T,T} {‘L’y7T7T} {7‘1/‘7?‘7'—[‘7—'—} {‘L?y7T7T}
{J_7 F’ T7T} {7‘1/_’ F? 7‘7 T} {7‘1/_7?" T7T} {7‘1/_’ F? ;‘7 T}
{LFr T {ALFEATH {LFT T {LFEAT)

=== U




Example: Implication without (id) and (cut)

r=AA ILB=A A= B,A

LAS>B=A F=A>B,A

1 F T

-

H= U

{J_7
{£
{J_7
{£

F,T, T {L,F,1, T} {LFT,T}
F‘7T7—|—} {_,l/_,}?(,T,T} {7‘1/‘7?‘7T7T}
F’ T7T} {7,1/_’ F? 7‘7 T} {7‘1/—7?‘7 T7T}
For, T {LF T {LFT, T

{LFm, T}
{L,F, T, T}
{LF, 1, T}
{LF X, T}

1 F T

T

+H5 = U

{L,r,7, T} {L,F,71, T} {T,T}
{1, T} {T, T} {1, T}
{L,Fr,T, T} {Fr, T} {T, T}
{r, T} {1} {r, T}

{r, T}
{r, T}
{1}
{1}




Proof-Theoretic Applications

Semantics of (id)-free and/or (cut)-free systems makes it possible to obtain
simple semantic proofs of proof-theoretic properties, e.g.:

O Cut-admissibility

Fr=A =  rtr=aA

@ Axiom Expansion

A=A; B=B F AcB=A¢B



Related Works

o [Schiitte 1960],[Girard 1987] - semantics of LK — (cut).
o [Hosli, Jager 1994] - semantics of LK — (id).

o Our framework is a unified approach: both logics can be defined by
finite valued non-deterministic matrices.



Conclusions and Extensions

o We provided simple and modular semantic characterization for a
natural family of sequent calculi.

o Two essential components:
multiple values non-determinism

o Application: semantic proofs of proof-theoretic properties



Conclusions and Extensions

o We provided simple and modular semantic characterization for a
natural family of sequent calculi.

o Two essential components:
multiple values non-determinism

o Application: semantic proofs of proof-theoretic properties

o Similar ideas can be applied for:

o Many-sided systems
o Sequent systems for intuitionistic logic and modal logics



Thank you!



