Non-deterministic Matrices for Semi-canonical Deduction Systems

Ori Lahav

The Blavatnik School of Computer Science Tel Aviv University

IEEE 42nd International Symposium on Multiple-Valued Logic ISMVL-2012 May 14-16, Victoria, BC, Canada

Using Multiple Values for Characterizing Sequent Systems

Sequent Systems

- Sequent systems are formal calculi that manipulate sequents.
- Sequents are objects of the form $\Gamma \Rightarrow \Delta$, where Γ and Δ are finite *sets* of formulas.

Intuition:

$$\Gamma \Rightarrow \Delta \qquad \iff \qquad \bigwedge \Gamma \supset \bigvee \Delta$$

LK [Gentzen 1934]

Identity Rules

(id)
$$A \Rightarrow A$$
 (cut) $\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \Delta}$

Weakening Rules

$$(W \Rightarrow) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \qquad (\Rightarrow W) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow A, \Delta}$$

Logical Rules

$$(\supset \Rightarrow) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} \qquad (\Rightarrow \supset) \quad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$
$$(\land \Rightarrow) \quad \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} \qquad (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta}$$

LK [Gentzen 1934]

Identity Rules

(id)
$$A \Rightarrow A$$
 (cut) $\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \Delta}$

Weakening Rules

$$(W \Rightarrow) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \qquad (\Rightarrow W) \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow A, \Delta}$$

Logical Rules

$$(\supset \Rightarrow) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} \qquad (\Rightarrow \supset) \quad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$
$$(\land \Rightarrow) \quad \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} \qquad (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta}$$

Theorem

$$\mathcal{T} \vdash_{\mathit{cl}} A \;\; \mathit{iff} \;\; \{ \; \Rightarrow B \mid B \in \mathcal{T} \} \;\; \vdash_{\mathit{LK}} \; \Rightarrow A$$

Canonical Rules [Avron, Lev 2001]

Logical Rules

$$(\supset \Rightarrow) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} \qquad (\Rightarrow \supset) \quad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$
$$(\land \Rightarrow) \quad \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} \qquad (\Rightarrow \land) \quad \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta}$$

Logical rules of an "ideal" type:

- Exactly one connective is introduced
- The active formulas of the premises are immediate subformulas of the principal formula
- Context-independence

Canonical Rules [Avron, Lev 2001]

Logical Rules

$$\begin{array}{ll} (\supset\Rightarrow) & \frac{\Gamma\Rightarrow A, \Delta & \Gamma, B\Rightarrow \Delta}{\Gamma, A\supset B\Rightarrow \Delta} & (\Rightarrow\supset) & \frac{\Gamma, A\Rightarrow B, \Delta}{\Gamma\Rightarrow A\supset B, \Delta} \\ (\land\Rightarrow) & \frac{\Gamma, A, B\Rightarrow \Delta}{\Gamma, A\land B\Rightarrow \Delta} & (\Rightarrow\land) & \frac{\Gamma\Rightarrow A, \Delta & \Gamma\Rightarrow B, \Delta}{\Gamma\Rightarrow A\land B, \Delta} \end{array}$$

Logical rules of an "ideal" type:

- Exactly one connective is introduced
- The active formulas of the premises are *immediate subformulas* of the principal formula
- Context-independence

$$(\leadsto\Rightarrow) \quad \frac{\Gamma\Rightarrow A, \Delta \quad \Gamma, B\Rightarrow \Delta}{\Gamma, A\leadsto B\Rightarrow \Delta} \qquad (\Rightarrow\leadsto) \quad \frac{\Gamma\Rightarrow B, \Delta}{\Gamma\Rightarrow A\leadsto B, \Delta}$$

Canonical Systems

A Canonical System =

The two identity rules
+
The two weakening rules
+

A (finite) set of canonical rules

Prominent Examples:

- LK
- Primal Logic [Gurevich,Neeman 2009] (∼ instead of ⊃)

Canonical Systems

A Canonical System =

The two identity rules

The two weakening rules

(finite) set of

A (finite) set of canonical rules

Prominent Examples:

- LK
- Primal Logic [Gurevich, Neeman 2009] (

 instead of

)

Theorem (Avron, Lev 2001)

\land	F	Т
F	F	F
Т	F	\mathbf{T}

$$v(A \wedge B) = \wedge (v(A), v(B))$$

\land	F	Т
F	F	F
Т	F	\mathbf{T}

$$v(A \wedge B) = \wedge (v(A), v(B))$$

\land	F	Т
F	F	F
Т	F	\mathbf{T}

$$v(A \wedge B) = \wedge (v(A), v(B))$$

\land	F	Т
F	F	F
Т	F	\mathbf{T}

$$v(A \wedge B) = \wedge (v(A), v(B))$$

\land	F	Т
F	{F}	$\{F,T\}$
Т	$\{F,T\}$	$\{T\}$

$$v(A \wedge B) \in \wedge(v(A), v(B))$$

Theorem (Avron, Lev 2001)

Theorem (Avron, Lev 2001)

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$$

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

Theorem (Avron, Lev 2001)

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$$

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

Theorem (Avron, Lev 2001)

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$$

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

Theorem (Avron, Lev 2001)

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$$

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

\supset	F	${ m T}$
F	$\{F,T\}$	$\{F,T\}$
Т	{F, 7 ′}	$\{F,T\}$

Theorem (Avron, Lev 2001)

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$$

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

\supset	F	${ m T}$
F	$\{F,T\}$	$\{F,T\}$
\mathbf{T}	{F, 7 ∕}	$\{F,T\}$

Theorem (Avron, Lev 2001)

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$$

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

Theorem (Avron, Lev 2001)

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$$

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

\supset	F	Т
F	{T}	{T}
T	{F}	$\{T\}$

Theorem (Avron, Lev 2001)

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$$

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

$$\begin{array}{c|cccc} \supset & F & T \\ \hline F & \{\not\!F,T\} & \{\not\!F,T\} \\ T & \{F,\not\!T\} & \{\not\!F,T\} \end{array}$$

\supset	F	${ m T}$
F	{T}	{T}
Т	{F}	$\{T\}$

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \sim B \Rightarrow \Delta}$$

$$\Gamma \rightarrow B, \Delta$$

$$\frac{\Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \leadsto B, \Delta}$$

Theorem (Avron, Lev 2001)

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$$

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

$$\begin{array}{c|cccc} \supset & F & T \\ \hline F & \{\rlap/F,T\} & \{\rlap/F,T\} \\ T & \{F,\rlap/F\} & \{\rlap/F,T\} \\ \end{array}$$

\supset	F	Т
F	$\{T\}$	$\{T\}$
Т	{F}	$\{T\}$

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \sim B \Rightarrow \Delta}$$

$$\frac{\Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \sim B, \Delta}$$

\sim	F	${ m T}$
F	$\{F,T\}$	{ ⊮ , т}
Т	$\{\mathrm{F}, 7'\}$	$\{ {f F}, { m T} \}$

Theorem (Avron, Lev 2001)

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$$

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

$$\begin{array}{|c|c|c|c|} \hline \supset & F & T \\ \hline F & \{\rlap/r,T\} & \{\rlap/r,T\} \\ T & \{F,\rlap/r\} & \{\rlap/r,T\} \\ \hline \end{array}$$

\supset	F	Т
F	{T}	$\{T\}$
Т	{F}	$\{T\}$

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \sim B \Rightarrow \Delta}$$

$$\frac{\Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \sim B, \Delta}$$

\sim	F	Т
F	$\{F,T\}$	{ ⊮ , т}
Т	{F, 7 ′}	$\{{f F}^{\!$

$ \begin{array}{c ccc} F & \{F,T\} & \{T\} \\ T & \{F\} & \{T\} \end{array} $	\sim	F	Т
	F	$\{F,T\}$	{T}
	Т		$\{T\}$

Identity Rules

(id)
$$A \Rightarrow A$$
 (cut) $\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \Delta}$

Identity Rules

(id)
$$A \Rightarrow A$$
 (cut) $\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \Delta}$

A Canonical System =

The two identity rules

+

The two weakening rules

A (finite) set of canonical rules

Identity Rules

(id)
$$A \Rightarrow A$$
 (cut) $\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \Delta}$

A Canonical System =

The two identity rules

+

The two weakening rules

+

A (finite) set of canonical rules

A Semi-canonical System =

Any subset of the identity rules

+

The two weakening rules

A (finite) set of canonical rules

Identity Rules

(id)
$$A \Rightarrow A$$
 (cut) $\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \Delta}$

A Canonical System =

The two identity rules

The two weakening rules

.

A (finite) set of canonical rules

A Semi-canonical System =

Any subset of the identity rules

The two weakening rules

A (finite) set of canonical rules

- Discarding (cut) is useful for the study of cut-admissibility
- Discarding (id) is useful for proof-theoretic analysis of logic programming [Hösli, Jäger 1994]

Identity Rules

(id)
$$A \Rightarrow A$$
 (cut) $A \Rightarrow A \Rightarrow A$

- Using only T and F:
 - Every valuation is model of $A \Rightarrow A$
 - No valuation is a model both of $A \Rightarrow$ and of $\Rightarrow A$

Identity Rules

$$(id) \quad A \Rightarrow A \qquad \qquad (cut) \quad \xrightarrow{A \Rightarrow \Rightarrow A}$$

- Using only T and F:
 - Every valuation is model of $A \Rightarrow A$
 - No valuation is a model both of $A \Rightarrow$ and of $\Rightarrow A$
- Idea:
 - Without (id) add a value ⊥

$$v(A) = \perp \iff v \text{ is not a model of } A \Rightarrow A$$

Without (cut) - add a value ⊤

$$v(A) = \top \iff v \text{ is a model of both } A \Rightarrow \text{and } \Rightarrow A$$

The Truth-Values

The Truth-Values

v is a model of $\Gamma \Rightarrow \Delta$ if $v(A) \geq F$ for some $A \in \Gamma$ or $v(A) \geq T$ for some $A \in \Delta$

The Truth-Values

v is a model of $\Gamma \Rightarrow \Delta$ if $v(A) \ge F$ for some $A \in \Gamma$ or $v(A) \ge T$ for some $A \in \Delta$

$$v(A) = \bot \iff v \text{ is not a model of } A \Rightarrow A$$
 $v(A) = \top \iff v \text{ is a model of both } A \Rightarrow \text{and } \Rightarrow A$

The Truth-Values

v is a model of $\Gamma \Rightarrow \Delta$ if $v(A) \ge F$ for some $A \in \Gamma$ or $v(A) \ge T$ for some $A \in \Delta$

$$v(A) = \bot \iff v \text{ is not a model of } A \Rightarrow A$$
 $v(A) = \top \iff v \text{ is a model of both } A \Rightarrow \text{and } \Rightarrow A$

$$(id) \Longrightarrow omit \perp$$

 $(cut) \Longrightarrow omit \perp$

What are the Truth-Tables?

Theorem

Some simple semi-canonical systems (e.g. LK-(id) or LK-(cut)) do not have a finite (ordinary) matrix.

What are the Truth-Tables?

Theorem

Some simple semi-canonical systems (e.g. LK-(id) or LK-(cut)) do not have a finite (ordinary) matrix.

Theorem

Every (consistent) semi-canonical system has a three or four valued non-deterministic matrix.

In fact, we provide a method to obtain such a matrix.

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} \qquad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} \qquad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

\supset		F	Т	Т
上	$\{\bot, F, T, \top\}$			
F	$\{\bot, F, T, \top\}$			
Т	$\{\bot, F, T, \top\}$			
T	$\{\bot, F, T, \top\}$			

$$\begin{array}{c|c} \Gamma \Rightarrow A, \Delta & \Gamma, B \Rightarrow \Delta \\ \hline \Gamma, A \supset B \Rightarrow \Delta & \Gamma, A \Rightarrow B, \Delta \\ \hline \end{array}$$

\supset		F	Т	Т
	$\{\bot, F, T, \top\}$			
F	$\{\bot, F, T, \top\}$			
T	$\{\bot, F, T, \top\}$			
T	$\{\bot, F, T, \top\}$			

$$\begin{array}{c|c} \Gamma \Rightarrow A, \Delta & \Gamma, B \Rightarrow \Delta \\ \hline \Gamma, A \supset B \Rightarrow \Delta & \Gamma, A \Rightarrow B, \Delta \\ \hline \end{array}$$

\supset		F	Т	Т
	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$
F	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{\bot, {\scriptscriptstyle \mathrm{F}}, {\scriptscriptstyle \mathrm{T}}, \top\}$
Т	$\{\bot, F, T, \top\}$	$\{ \not\perp, {\scriptscriptstyle \mathrm{F}}, \not\neg\!$	$\{\bot, F, T, \top\}$	$\{ \not\perp, \mathrm{F}, \not\uparrow, \top \}$
T	$\{\bot, F, T, \top\}$	{ ∠ , F, 7 , ⊤}	$\{\bot, F, T, \top\}$	{ ∠ , F, 7 , ⊤}

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} \qquad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

\supset		F	T	Т
	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$
F	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$
Т	$\{\bot, F, T, \top\}$	$\{ \not\perp, {\scriptscriptstyle\mathrm{F}}, \not\neg\!\!r, \top \}$	$\{\bot, F, T, \top\}$	$\{ \not\perp, \mathrm{F}, \not\uparrow, \top \}$
				{ ∠ , F, 7 , ⊤}

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} \qquad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

\supset		F	T	Т
	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{ \not\perp, \not\vdash, T, \top \}$	$\{ \not\perp, \not\vdash, T, \top \}$
F	$\{ \not\perp, \not\vdash, T, \top \}$	$\{ \not\perp, \not\vdash, {\scriptscriptstyle \mathrm{T}}, {\scriptscriptstyle \mathrm{T}}, \top \}$	$\{ \not\perp, \not \Vdash, {\scriptscriptstyle \mathrm{T}}, {\scriptscriptstyle \mathrm{T}} \}$	$\{ \not\perp, \not\vdash, \mathrm{T}, \top \}$
	$\{\bot, F, T, \top\}$			
Τ	$\{ \not\perp, \not\vdash, T, \top \}$	$\{ \not\perp, \not\vdash, \not\vdash, \top \}$	$\{ \not\perp, \not\vdash, T, \top \}$	{ ≠ , y , y , T ,⊤}

$$\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} \qquad \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$$

\supset		F	T	Т
	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{ \not\perp, \not\vdash, T, \top \}$	$\{ \not\perp, \not\vdash, \mathrm{T}, \top \}$
F	$\{ \not\perp, \not\vdash, T, \top \}$	$\{ \not\perp, \not\vdash, {\scriptscriptstyle \mathrm{T}}, {\scriptscriptstyle \mathrm{T}}, \top \}$	$\{ \not\perp, \not \Vdash, {\scriptscriptstyle \mathrm{T}}, {\scriptscriptstyle \mathrm{T}} \}$	$\{ \not\perp, \not\vdash, T, \top \}$
	$\{\bot, F, T, \top\}$			
Т	$\{ \not\perp, \not\vdash, T, \top \}$	$\{ \not\perp, \not p', \not T', \top \}$	$\{\not\perp,\not\!\! F,T,\top\}$	{ ≠ , y , y , ⊤ ,⊤}

\supset		F	T	Τ
\perp	$\{\bot, F, T, \top\}$	$\{\bot, F, T, \top\}$	$\{T, \top\}$	$\{T, \top\}$
F	$\{\mathtt{T}, \top\}$	$\{{\scriptscriptstyle { m T}}, \top\}$	$\{T, \top\}$	$\{T, \top\}$
Т	$\{\bot, F, T, \top\}$	$\{{\scriptscriptstyle \mathrm{F}}, \top\}$	$\{T, \top\}$	$\{\top\}$
Τ	$\{{\scriptscriptstyle { m T}}, \top\}$	$\{\top\}$	$\{T,\top\}$	$\{\top\}$

Proof-Theoretic Applications

Semantics of (id)-free and/or (cut)-free systems makes it possible to obtain simple semantic proofs of proof-theoretic properties, e.g.:

Cut-admissibility

$$\vdash \Gamma \Rightarrow \Delta \implies \vdash^{cf} \Gamma \Rightarrow \Delta$$

Axiom Expansion

$$A \Rightarrow A$$
; $B \Rightarrow B \vdash A \diamond B \Rightarrow A \diamond B$

Related Works

- [Schütte 1960], [Girard 1987] semantics of LK (cut).
- [Hösli, Jäger 1994] semantics of LK (id).
- Our framework is a unified approach: both logics can be defined by finite valued non-deterministic matrices.

Conclusions and Extensions

- We provided simple and modular semantic characterization for a natural family of sequent calculi.
- Two essential components:
 multiple values
 non-determinism
- Application: semantic proofs of proof-theoretic properties

Conclusions and Extensions

- We provided simple and modular semantic characterization for a natural family of sequent calculi.
- Two essential components:
 multiple values

non-determinism

- Application: semantic proofs of proof-theoretic properties
- Similar ideas can be applied for:
 - Many-sided systems
 - Sequent systems for intuitionistic logic and modal logics

