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Abstract—We use non-deterministic finite-valued matrices to
provide uniform effective semantics for a large family of logics,
emerging from “well-behaved” sequent systems in which the
cut rule and/or the identity-axiom are not present. We exploit
this semantics to obtain important proof-theoretic properties of
systems of this kind, such as cut-admissibility. Non-determinism
is shown to be essential for these purposes, since the studied logics
cannot be characterized by ordinary finite-valued matrices. Our
results shed light on the dual semantic roles of the cut rule
and the identity-axiom, showing that they are crucial for having
deterministic (truth-functional) finite-valued semantics.

I. INTRODUCTION

Non-deterministic multi-valued matrices (Nmatrices) (intro-
duced in [2], surveyed in [3]) are a natural generalization
of ordinary multi-valued matrices, in which the truth-value
of a complex formula can be chosen non-deterministically
out of some non-empty set of options. That is, the strict
truth-functionality principle is relaxed, and non-deterministic
semantics are used instead. Under these non-deterministic
semantics, the meaning of a compound formula is restricted,
rather than uniquely determined, by the meanings of its
subformulas. Nmatrices have proved to be a powerful tool,
the use of which preserves all the advantages of ordinary
multi-valued matrices, but is applicable to a much wider range
of logics. Indeed, there are many useful propositional logics,
which have no finite-valued characteristic matrices, but do
have finite-valued characteristic Nmatrices.

A particular important use of Nmatrices is to uniformly pro-
vide effective valuation semantics for various logics originally
emerging from different proof systems. Indeed, it was shown
in [2], that two-valued Nmatrices can be used to semantically
characterize the family of canonical systems. The systems
of this family are all “ideal” Gentzen-type sequent systems,
which include the cut rule, the standard identity-axiom, the
weakening rule, and each of their other rules is a “well-
behaved” logical rule, where exactly one occurrence of a
connective is introduced and no other connective is involved.
The best-known system of this family is of-course Gentzen’s
LK for classical logic. Obviously, an ordinary matrix suffices
for LK. However, for other useful canonical systems (e.g. the
system for primal logic in [6]), Nmatrices are necessary. In
such systems, some sort of underspecification in the derivation
rules can induce non truth-functional connectives, and the use
of Nmatrices becomes inevitable.

In this paper, we provide a new application of Nmatrices in
the same spirit. We investigate semi-canonical systems, which
are sequent systems obtained from canonical systems by omit-
ting the cut rule and/or the identity-axiom. We show that the
semantics of logics induced by semi-canonical systems cannot
be captured using ordinary finite-valued matrices. Importantly,
unlike in canonical systems, the inability to capture these log-
ics is not a result of having non truth-functional connectives.
In fact, semantics induced by semi-canonical systems obtained
from LK cannot be captured using ordinary finite-valued
matrices as well. Next we prove that three-valued and four-
valued Nmatrices do suffice for this matter. Moreover, these
Nmatrices are algorithmically constructed from the derivation
rules of a given semi-canonical system. In addition, we show
that the Nmatrix semantics of semi-canonical systems is easily
applicable to establish some properties of canonical systems
and semi-canonical systems. This includes new general strong
cut-admissibility for some families of semi-canonical systems
without identity-axioms.

Semantics for sequent systems without cut or identity-axiom
was studied in previous works. Following Schütte (see [8]),
Girard (in [5]) studied the cut-free fragment of LK, and
provided semantics for this fragment using (non-deterministic)
three-valued valuations.1 Together with better understanding of
the semantic role of the cut rule, this three-valued semantics
was applied for proving several generalizations of the cut-
elimination theorem (such as Takeuti’s conjecture, see [5]).
Later, the axiom-free fragment of LK was studied by Hösli
and Jäger in [7]. As noted in [7], axiom-free systems play
an important role in the proof-theoretic analysis of logic
programming and in connection with the so called negation
as failure. Hösli and Jäger provided a dual (non-deterministic)
three-valued valuation semantics for axiom-free derivability in
LK. With respect to [5] and [7], the current work contributes
in four main aspects:2

• Our results apply to the broad family of semi-canonical

1Note that cut-elimination implies that provability and cut-free provability
coincide for LK. However, it is well-known that cut-elimination fails in the
presence of extra “non-logical” axioms (assumptions), and so the derivability
relation induced by LK (which allows non-empty set of assumptions) is
different from the one induced by its cut-free fragment.

2It should be mentioned, however, that [5] and [7] concerned also the usual
quantifiers of LK, while we only investigate propositional logics, leaving the
more complicated first-order case (and beyond) to a future work.



systems, of which the cut-free and the axiom-free frag-
ments of LK is just a particular example. For these
systems, we obtain practically the same semantics that
was suggested in [5] and [7].

• While the focus of [5] and [7] was on derivability between
sequents, we also study the consequence relation between
formulas induced by cut-free and axiom-free systems.

• We formulate the two kinds of three-valued valuation
semantics inside the well-studied framework of (three-
valued) Nmatrices, exploiting some known general prop-
erties of Nmatrices.

• In [7], it seems that the two dual kinds of three-valued
valuation semantics cannot be combined. However, in this
paper we show that a combination of them is obtained
using four-valued Nmatrices. To the best of our knowl-
edge, systems with neither cut nor identity-axiom were
not studied before.

The structure of this paper is as follows: Section II provides
the necessary background concerning Nmatrices and canonical
systems. In Section III we define the family of semi-canonical
systems and the logics induced by them. Our main results are
given in Section IV, where we provide the general construction
of Nmatrices for semi-canonical systems, and use it to prove
some properties of these systems. Final remarks and further
research topics are given in Section V.

II. PRELIMINARIES

In what follows, L denotes an arbitrary propositional lan-
guage, and FrmL denotes its set of wffs. We assume that
p1, p2, . . . are the atomic formulas of any propositional lan-
guage. An L-substitution is a function σ : FrmL → FrmL,
such that σ(�(ψ1, . . . , ψn)) = �(σ(ψ1), . . . , σ(ψn)) for every
n-ary connective � of L. Substitutions are extended to sets of
formulas in the obvious way.

Definition 1: A Tarskian consequence relation (tcr) ` for
L is a binary relation between sets of L-formulas and L-
formulas, satisfying the following conditions:
Reflexivity: if ψ ∈ T then T ` ψ.
Monotonicity: if T ` ψ and T ⊆ T ′, then T ′ ` ψ.
Transitivity: if T ` ψ and T ′, ψ ` ϕ, then T , T ′ ` ϕ.

Definition 2: A binary relation ` between sets of L-
formulas and L-formulas is structural if for every L-
substitution σ and every T and ψ, if T ` ψ then σ(T ) ` σ(ψ).
` is finitary if whenever T ` ψ, there exists some finite
Γ ⊆ T , such that Γ ` ψ. ` is consistent (or non-trivial) if
there exist some non-empty T and some ψ such that T 6` ψ.

Definition 3: A (Tarskian propositional) logic is a pair
〈L,`〉, where L is a propositional language, and ` is a
structural, finitary, consistent tcr for L.

A. Non-Deterministic Matrices

The most standard method for defining propositional logics
is by using multi-valued (deterministic) matrices (see e.g. [9]).
The following natural generalization was introduced in [2]:

Definition 4: A non-deterministic matrix (Nmatrix) M for
L consists of: (i) a non-empty set VM of truth-values, (ii)
a non-empty proper subset DM ⊆ VM of designated truth-
values, and (iii) a function �M : VMn → P (VM) \ {∅} for
every n-ary connective � of L.

Ordinary (deterministic) matrices correspond to the case
when each �M is a function taking singleton values only (then
it can be treated as a function �M : VMn → VM). An Nmatrix
M is finite-valued if VM is finite. By an nNmatrix (n ∈ N)
we shall mean an Nmatrix for which |VM| = n.

Definition 5: A valuation in an Nmatrix M (for L) is a
function v from FrmL to VM, such that for every com-
pound formula �(ψ1, . . . , ψn) ∈ L, v(�(ψ1, . . . , ψn)) ∈
�M(v(ψ1), . . . , v(ψn)). v in M is a model of a formula ψ
if v(ψ) ∈ DM. v is a model of a set T of formulas if v is a
model of every ψ ∈ T . In addition, `M, the tcr induced by
M, is defined by: T `M ψ, if every valuation v in M which
is a model of T is also a model of ψ.

Following [2], we have that 〈L,`M〉 is a logic for every
finite-valued Nmatrix M for L.

In general, in order for a denotational semantics of a propo-
sitional logic to be useful and effective, it should be analytic.
This means that to determine whether a formula ϕ follows
from a theory T , it suffices to consider partial valuations,
defined on the set of all subformulas of the formulas in
T ∪{ϕ}. The semantics of Nmatrices is analytic in this sense:

Definition 6: A partial valuation in an Nmatrix M (for
L) is a function v from some subset E of FrmL, which
is closed under subformulas, to VM, such that for every
compound formula �(ψ1, . . . , ψn) ∈ E , v(�(ψ1, . . . , ψn)) ∈
�M(v(ψ1), . . . , v(ψn)). The notion of a model is defined for
partial valuations exactly like it is defined for valuations.

Proposition 1 ([3]): Every partial valuation in some Nma-
trix M can be extended to a (full) valuation in M.

Corollary 1: Let M be an Nmatrix for L, and T ∪ {ψ} be
a set of L-formulas. Denote by E the set of subformulas of
T ∪ {ψ}. Then, T `M ψ iff every partial valuation v in M,
defined on E , which is a model of T is also a model of ψ.

As a result of the last corollary, we obtain that logics
characterized by finite-valued Nmatrices are decidable (see
Theorem 28 in [3]).

B. Canonical Systems

The proof-theoretical common way to define logics is based
on the notion of a proof in some formal deduction system.
In this paper we study sequent systems. A sequent system
(for L) is an axiomatic system that manipulates higher-level
constructs, called sequents, rather than the formulas them-
selves. There are several variants of what exactly constitutes
a sequent. Here it is convenient to take it to be an expression
of the form Γ⇒∆, where Γ and ∆ are finite sets of formulas,
and ⇒ is a new symbol, not occurring in L. Each sequent
system induces a derivability relation between sets of sequents
and sequents. We shall write S `seqG s if the sequent s is



derivable in a sequent system G from the set of sequents
S . The sequents of S are called assumptions. If `seqG s (or
formally, ∅ `seqG s), we say that s is provable in G. There are
two natural ways to obtain a relation between sets of formulas
and formulas from a given sequent system (see [1]):

Definition 7: Let G be a sequent system.
1) T `vG ϕ if {⇒ψ | ψ ∈ T } `seqG ⇒ϕ.
2) T `tG ϕ if `seqG Γ⇒ϕ for some finite Γ ⊆ T .

For many natural sequent systems, we have `vG=`tG (see
[1]). However, this usually does not hold for the cut-free
and axiom-free systems investigated in this paper, where the
difference between `vG and `tG becomes crucial. While it is
evident that `vG is a tcr for every sequent system G (without
any assumptions on the derivation rules of G), the status of `tG
is different. Obviously, `tG is always monotone. Its reflexivity
and transitivity, however, are not guaranteed. For example, if
G does not include any axiomatic derivation rule (a rule with
an empty set of premises) then clearly p1 6`tG p1, and `tG is
not reflexive. Thus we will focus on the relation `vG, leaving
for a future work the task of identifying the exact conditions
under which `tG is a tcr, and providing a similar study of it.

Henceforth, we shall write `G instead of `vG.

The general framework of sequent systems is perhaps too
broad to obtain any interesting general results. Thus we study
narrower families of sequent systems with “well-behaved”
derivation rules. In fact, we consider three variants of canon-
ical systems, a family of sequent systems that was introduced
in [2]. The rest of this subsection is devoted to review relevant
definitions and results concerning canonical systems.

The derivation rules of canonical systems are divided to
structural rules and logical rules. The structural rules are fixed,
and they consist of the following three rules:
• The cut rule (CUT): allows to infer sequents of the form

Γ1,Γ2⇒∆1,∆2 from Γ1⇒ϕ,∆1 and Γ2, ϕ⇒∆2 (ϕ is
called the cut-formula).

• The identity-axiom (ID): allows to infer sequents of the
form ϕ⇒ϕ (without any premises).

• The weakening rule (Weak): allows to infer sequents of
the form Γ,Γ′⇒∆,∆′ from Γ⇒∆.

On the other hand, the logical rules of canonical systems
are not pre-determined. All of them should be “well-behaved”
rules, as precisely defined below:

Definition 8: An n-clause is a sequent consisting only of
formulas from {p1, . . . , pn}.

Definition 9: A canonical rule for an n-ary connective
� (of L) is an expression of the form S/C, where S
is a finite set of n-clauses (called premises), and C is
either ⇒ �(p1, . . . , pn) or �(p1, . . . , pn) ⇒ . When C is
⇒�(p1, . . . , pn) the rule is called a right rule, and when C is
�(p1, . . . , pn)⇒ the rule is called a left rule. An application of
a canonical rule {Π1⇒Σ1, . . . ,Πm⇒Σm}/⇒�(p1, . . . , pn)
is any inference step inferring a sequent of the
form Γ1, . . . ,Γm⇒σ(�(p1, . . . , pn)),∆1, . . . ,∆m from

Γi, σ(Πi)⇒ σ(Σi),∆i for every 1 ≤ i ≤ m, where σ is an
L-substitution. Applications of left rules are defined similarly.

Example 1: The usual derivation rules for the classical con-
nectives can all be presented as canonical rules. For example,
the usual rules for ⊃, ∧ and ¬ are the following:
{⇒p1; p2⇒}/p1 ⊃ p2⇒ {p1⇒p2}/⇒p1 ⊃ p2
{p1, p2⇒}/p1 ∧ p2⇒ {⇒p1;⇒p2}/⇒p1 ∧ p2
{⇒p1}/¬p1⇒ {p1⇒}/⇒¬p1
Applications of the rules for ⊃ have the form:

Γ1⇒ψ,∆1 Γ2, ϕ⇒∆2

Γ1,Γ2, ψ ⊃ ϕ⇒∆1,∆2

Γ, ψ⇒ϕ,∆
Γ⇒ψ ⊃ ϕ,∆

Example 2: An alternative implication connective (denoted
here by  ), was studied in [6], and shown there to be useful
for access-control applications. It is defined by the two canon-
ical rules: {⇒p1; p2⇒}/p1  p2⇒ and {⇒p2}/⇒p1  p2
Applications of the left rule have the same form as application
of the left rule for ⊃. On the other hand, applications of the
right rule allow to infer Γ⇒ψ  ϕ,∆ from Γ⇒ϕ,∆.

A canonical system is in turn a sequent system that in-
cludes (CUT), (ID), and (Weak), and each of its other rules
is a canonical rule. Clearly, the propositional fragment of
Gentzen’s LK can be presented as a canonical system. This is
the most important example of a canonical system, but many
more canonical systems can be introduced with various new
connectives. Not all combinations of canonical rules, however,
are meaningful. A natural demand is that the premises of
a right rule and a left rule for the same connective are
contradictory. This is captured by the coherence criterion:

Definition 10: A canonical system G is called coher-
ent if S1 ∪ S2 is classically unsatisfiable whenever G
includes two rules of the form S1/⇒�(p1, . . . , pn) and
S2/ � (p1, . . . , pn)⇒ , for some connective �.

Finally, the following result (see [2]) shows that coherence
is a minimal demand from every canonical system:

Theorem 1: A canonical system G for L is coherent iff
〈L,`G〉 is a logic.

III. SEMI-CANONICAL SEQUENT SYSTEMS

In this paper, we study semi-canonical sequent systems,
defined as follows:

Definition 11: A semi-canonical system is a system ob-
tained from a canonical system by omitting (CUT) and/or (ID).
Notation: We shall refer to sequent systems that include
(CUT) as (+C)-systems. Similarly, (+A)-systems are sequent
systems that include (ID). We also use (-C), (-A), and their
combinations (for example, (-C-A)-systems include neither
(CUT) nor (ID)). Given a (+C)-system G, we denote by G-C
the system obtained from G by omitting (CUT). Similarly,
G-A stands for omitting (ID), and G-C-A stands for omitting
both (CUT) and (ID).

Remark 1: Semi-canonical (-A)-systems may look strange
at first sight. Indeed, (-A)-systems, in which each canonical
rule has a non-empty set of premises, have no provable
sequents ( 6`seq s for every sequent s). However, the interest in



such systems arises when we consider derivations from non-
empty sets of assumptions.

It is easy to verify that `G is structural and finitary for
every semi-canonical system G. Semi-canonical (-C)-systems
trivially have the global subformula property (i.e. if S `seqG

s, then there exists a derivation of s from S that contains
only subformulas of formulas occurring in S and s), and so
clearly p1 6`G p2. Thus for every semi-canonical (-C)-system
G for L, `G is consistent, and 〈L,`G〉 is a logic. The task
of the next section will be to provide an adequate semantics
for logics of this sort. The next proposition shows that finite-
valued matrices do not suffice for this purpose:

Theorem 2: Suppose that L contains an unary connective
denoted by ¬. Let G be a semi-canonical (-C)-system, whose
rules for ¬ are the usual rules. There is no finite-valued
(ordinary) matrix M such that `G=`M.

Proof Outline: Let M be an (ordinary) matrix, such that
`G=`M. Note that for every n ≥ 0, {¬ip1 | i > n} 6`G ¬np1
(this can be easily verified using the Nmatrix semantics of the
next section). Consequently, {¬ip1 | i > n} 6`M ¬np1. For
every n ≥ 0, let vn be a valuation in M, which is a model of
{¬ip1 | i > n}, and not a model of ¬np1. Next, one shows
that vn(p1) 6= vm(p1) for every n > m ≥ 0. It follows that
M has infinite number of truth-values.

On the other hand, in semi-canonical (+C-A)-systems the
consistency of `G is not guaranteed. The coherence criterion
(defined exactly as for canonical systems) is naturally required
here also. However, there are non-coherent semi-canonical
(+C-A)-systems that induce logics. These systems can be
excluded by the next proposition:

Proposition 2: Let G be a semi-canonical (-A)-system, in
which every left rule has at least one premise of the form Π⇒ .
Let G′ be the semi-canonical (-A)-system obtained from G
by omitting all left rules. Then, `G′=`G.
Assumption: Henceforth, we assume that every semi-canonical
(-A)-system either has no left rules, or has at least one left
rule with no premises of the form Π⇒ .

With this assumption, we can have the following:
Proposition 3: Let G be a semi-canonical (+C-A)-system.

`G is consistent iff G is coherent.
Proof Outline: Obviously `G⊆`G+A (G+A is the canon-

ical system obtained from G by adding (ID)). The consistency
of `G then follows from Theorem 1. Based on the assumption
above, the proof of the converse is an adaptation of the
corresponding proof concerning canonical systems in [2].

Thus, we now have that for every semi-canonical (+C-A)-
system G for L, G is coherent iff 〈L,`G〉 is a logic. Nma-
trix semantics for logics induced by coherent semi-canonical
(+C-A)-systems will be developed in the next section. Again,
it is possible to show that even in simple cases there does not
exist an adequate finite-valued matrix:

Theorem 3: Suppose that L contains a unary connective
denoted by ¬. Let G be a coherent semi-canonical (-A)-
system, whose rules for ¬ are the usual rules. There is no
finite-valued (ordinary) matrix M such that `G=`M.

IV. NON-DETERMINISTIC MATRICES FOR
SEMI-CANONICAL SYSTEMS

In this section, which is the heart of this paper, we construct
Nmatrices for all logics induced by semi-canonical systems.
These Nmatrices are based on the four truth-values t, f,>,
and ⊥, used in Dunn-Belnap matrix (see [4]). We also
use Dunn-Belnap “knowledge” partial order on {t, f,>,⊥},
denoted here by ≤. According to ≤, ⊥ is the minimal
element, > – the maximal one, and t, f are intermediate
incomparable values (≤ is the transitive reflexive closure
of {〈⊥, t〉, 〈⊥, f〉, 〈t,>〉, 〈f,>〉}). In addition, the following
definitions and propositions are used:

Definition 12: Let M be an Nmatrix, such that VM ⊆
{t, f,>,⊥}. A valuation v in M is a model of a sequent
Γ⇒∆ if either v(ψ) ≥ f for some ψ ∈ Γ, or v(ψ) ≥ t for
some ψ ∈ ∆. v is a model of a set S of sequents if it is a
model of every s ∈ S. In addition, `seqM , the relation induced
by M between sets of sequents and sequents, is defined as
follows: S `seqM s, if every valuation v in M which is a model
of S is also a model of s.

Proposition 4: Let M be an Nmatrix, such that VM ⊆
{t, f,>,⊥}, and DM = VM ∩ {t,>}. Let G be a sequent
system, such that `seqM =`seqG . Then, `M=`G.

Definition 13: Let x1, ..., xn ∈ {t, f,>,⊥}. 〈x1, . . . , xn〉
satisfies an n-clause Π⇒Σ if there exists either some pi ∈
Π such that xi ≥ f , or some pi ∈ Σ such that xi ≥ t.
〈x1, . . . , xn〉 fulfils a canonical rule r for an n-ary connective,
if it satisfies every premise of r.

The structure of the rest of this section is as follows. We
begin with the known construction of 2Nmatrices for coherent
canonical systems. Next, we separately investigate (-C+A)-
systems, coherent (+C-A)-systems, and (-C-A)-systems.

A. Canonical Systems

A general construction of 2Nmatrices to characterize logics
induced by coherent canonical systems was given in [2]. For
the sake of completeness, we review this construction.3

Definition 14: Let G be a coherent canonical system for
L. MG is the 2Nmatrix for L defined by VMG

= {t, f},
DMG

= {t}, and for every n-ary connective � of L,
�MG

(x1, . . . , xn) = {t} iff 〈x1, . . . , xn〉 fulfils some right rule
of G for �, �MG

(x1, . . . , xn) = {f} iff 〈x1, . . . , xn〉 fulfils
some left rule of G for �, and otherwise �MG

(x1, . . . , xn) =
{t, f}.

The following proposition ensures that MG is well-defined.
Proposition 5: Let G be a coherent semi-canonical system,

and let x1, ..., xn ∈ {t, f,⊥}. 〈x1, ..., xn〉 cannot fulfil both a
right rule and a left rule of G for some n-ary connective �.

Example 3: Suppose that the rules for ⊃ and  in some
coherent canonical system G are those given in Examples 1
and 2. The following truth-tables represent ⊃MG

and  MG
:

3While this is not the exact formulation used in [2], it is easy to see that
the same Nmatrix is obtained.



⊃MG t f

t {t} {f}
f {t} {t}

 MG t f

t {t} {f}
f {t} {t, f}

Theorem 4 ([2]): For every coherent canonical system G,
`seqG =`seqMG

and `MG
=`G.

B. (-C+A)-Systems

Semantics for semi-canonical (-C+A)-systems is given in
the form of 3Nmatrices, using the truth-values t, f and >:

Definition 15: Let G be a semi-canonical (-C+A)-system
for L. MG is the 3Nmatrix defined by VMG

= {t, f,>},
DMG

= {t,>}, and for every n-ary connective � of L,
�MG

(x1, . . . , xn) = {t,>} iff 〈x1, . . . , xn〉 fulfils some right
rule of G for � and does not fulfil any left rule of G for
�, �MG

(x1, . . . , xn) = {f,>} iff 〈x1, . . . , xn〉 fulfils some
left rule of G for � and does not fulfil any right rule of G
for �, �MG

(x1, . . . , xn) = {>} iff 〈x1, . . . , xn〉 fulfils both
some left rule and some right rule of G for �, and otherwise
�MG

(x1, . . . , xn) = {t, f,>}.
Example 4: Suppose that the rules for ⊃ and ∧ in some

semi-canonical (-C+A)-system G are the usual rules. The
following truth-tables represent ⊃MG

and ∧MG
:

⊃MG t f >
t {t,>} {f,>} {>}
f {t,>} {t,>} {t,>}
> {t,>} {>} {>}
∧MG t f >
t {t,>} {f,>} {>}
f {f,>} {f,>} {f,>}
> {>} {f,>} {>}

More intuition about this construction can be gained from
the field of logical circuits. Consider a noisy circuit in which
the logical gates (or the wires themselves) might produce
borderline output values (> represents a borderline value).
Having this in mind, the gates are designed to recognize
borderline inputs, calculate the output using this information,
and in some cases intentionally produce a borderline output.
An AND gate of this type is described by the right table above.
For example, when both inputs are t the output should be t,
but noise might make it >. On the other hand, when one of the
inputs is t and the other is >, the output cannot be calculated,
so a borderline output is produced by the gate.

Theorem 5: For every semi-canonical (-C+A)-system G,
`seqG =`seqMG

and `MG
=`G.

Proof Outline: It suffices to prove that `seqG =`seqMG

(`MG
=`G then follows from Proposition 4). Soundness is

proved by usual induction on the length of derivations in G
(note that every valuation over {t, f,>} is a model of every
sequent derived by (ID)). Now, suppose that S 6`seqG Γ0⇒∆0.
It is a routine matter to obtain maximal sets of formulas T ,U
such that Γ0 ⊆ T and ∆0 ⊆ U , and S 6`seqG Γ ⇒ ∆ for
every finite Γ ⊆ T and ∆ ⊆ U . Let v : FrmL → {t, f,>}
defined by v(ψ) = t iff ψ ∈ T , v(ψ) = f iff ψ ∈ U , and
v(ψ) = > otherwise. The availability of (ID) ensures that v
is well-defined. Next, one shows that v is a valuation in MG,
which is a model of S but not of Γ0⇒∆0.

Next, we use the previous results to provide a new proof of
the fact that (CUT) is admissible in every coherent canonical
system (originally proved in [2]).

Theorem 6: Let G be a coherent canonical system, and let
s be a sequent. If every valuation in MG is a model of s, then
so does every valuation in MG-C.

Proof Outline: Suppose that there exists a valuation v′

in MG-C which is not a model of s. We recursively construct
a valuation v in MG, such that v(ψ) ≤ v′(ψ) for every
ψ ∈ FrmL. For atomic formulas, we (arbitrarily) choose v(p)
to be either t or f , so that v(p) ≤ v′(p) would hold. Now,
let � be an n-ary connective of L, and suppose v(ψi) was
defined for every 1 ≤ i ≤ n. We choose v(�(ψ1, . . . , ψn)) to
be equal to v′(�(ψ1, . . . , ψn)), if the latter is either t or f .
Otherwise, we choose v(�(ψ1, . . . , ψn)) to be some element
of �MG

(v(ψ1), . . . , v(ψn)). Using the definitions of MG and
of MG-C, it is possible to prove that v is indeed a valuation
in MG. Clearly, v is not be a model of s.

The following is an easy corollary of Theorems 4, 5 and 6:
Corollary 2: Every coherent canonical system enjoys cut-

admissibility, i.e. `seqG s implies `seqG-C s.

C. (+C-A)-Systems

Semantics for coherent semi-canonical (+C-A)-systems is
given in the form of 3Nmatrices:

Definition 16: Let G be a coherent semi-canonical (+C-A)-
system for L. MG is the 3Nmatrix obtained from MG+A

(see Definition 14) by adding the truth-value ⊥ to VMG
, and

replacing {t, f} by {t, f,⊥} in all truth-tables.
Example 5: Suppose that the rules for ⊃ and ∧ in some

coherent semi-canonical (+C-A)-system G are the usual rules.
The following truth-tables represent ⊃MG

and ∧MG
(V stands

for {t, f,⊥}):
⊃MG t f ⊥

t {t} {f} V
f {t} {t} {t}
⊥ {t} V V

∧MG t f ⊥
t {t} {f} V
f {f} {f} {f}
⊥ V {f} V

Again, the truth-tables above can be interpreted as specifi-
cations of logical gates (compare with Example 4). Consider
a circuit with noisy inputs, that can either be t, f or ⊥ (⊥
represents a noisy input). The logical gates cannot always
recognize the noisy inputs. In these cases they treat them either
as t or as f . An AND gate of this type is described by the
right table above. For example, when one input is f and the
other is noisy, the output is f regardless of the value that
was recognized for the noisy input. On the other hand, when
both inputs are noisy the output can be t (if both inputs are
recognized as t), f (if at least one input is recognized as f )
or ⊥ (otherwise, i.e. when one of the outputs is recognized as
noisy, and the other one is not recognized as f ).

Theorem 7: For every coherent semi-canonical (+C-A)-
system G, `seqG =`seqMG

, and `MG
=`G.

Proof Outline: It suffices to prove that `seqG =`seqMG

(`MG
=`G then follows from Proposition 4). Soundness is left

to the reader. For completeness, suppose that S 6`seqG Γ0⇒∆0.



It is a routine matter to obtain sets of formulas T ,U , as in
the proof of Theorem 5. We construct a valuation v in MG

as follows. For atomic formulas v(p) = ⊥ iff p ∈ T ∩ U ,
v(p) = t iff p ∈ T and p 6∈ U , and otherwise v(p) = f .
Now let � be an n-ary connective of L, and suppose that
v(ψ1), . . . , v(ψn) were defined. v(�(ψ1, . . . , ψn)) = x if
�MG

(v(ψ1), . . . , v(ψn)) = {x} (for x ∈ {t, f}), and other-
wise v(�(ψ1, . . . , ψn)) is defined like v(p) is defined above.
Now, it is possible to prove the following properties: (a) if
ϕ ∈ T then v(ϕ) 6= f ; and (b) if ϕ ∈ U then v(ϕ) 6= t. Using
these properties, we show that v is a model of S, but not of
Γ0⇒∆0. For the latter, note that since Γ0 ⊆ T and ∆0 ⊆ U ,
(a) and (b) imply that v is not a model of Γ0⇒∆0. Now let
Γ⇒∆ be a sequent of S. If Γ⇒∆ is a sequent of the form
ϕ⇒ ϕ, then ϕ 6∈T ∩ U , and so v(ϕ) 6= ⊥. It follows that v
satisfies Γ⇒∆. Otherwise, the availability of (CUT) entails
that for every ψ ∈ Γ ∪ ∆ either ψ ∈ T or ψ ∈ U . Since
S0 `seqG Γ ⇒ ∆, there exists either some ψ ∈ Γ such that
ψ 6∈T and ψ ∈ U , or some ψ ∈ ∆ such that ψ ∈ T and ψ 6∈U .
From (a) and (b) (and since v(ψ) = ⊥ only if ψ ∈ T ∩ U),
we obtain that v satisfies Γ⇒∆.

Since only cuts on formulas occurring in
S \ {ψ⇒ψ | ψ ∈ FrmL} are needed in the last proof,
it follows that coherent semi-canonical (-A)-systems enjoy
the following strong form of cut-admissibility:

Corollary 3: Let G be a coherent semi-canonical (+C-A)-
system. If S `seqG s, then there exists a derivation of
s from S in G, in which only formulas occurring in
S \ {ψ⇒ψ | ψ ∈ FrmL} serve as cut-formulas.

D. (-C-A)-Systems

Finally, semantics for semi-canonical (-C-A)-systems is
given in the form of 4Nmatrices:

Definition 17: Let G be a semi-canonical (-C-A)-system
for L. MG is the 4Nmatrix obtained from MG+A (see Defi-
nition 15) by adding the truth-value ⊥ to VMG

, and replacing
{t, f,>} by {t, f,>,⊥} in all truth-tables.

Example 6: Suppose that the rules for ⊃ in some semi-
canonical (-C-A)-system G are the usual rules. The following
truth-table represents ⊃MG

:
⊃MG t f > ⊥

t {t,>} {f,>} {>} {t, f,>,⊥}
f {t,>} {t,>} {t,>} {t,>}
> {t,>} {>} {>} {t,>}
⊥ {t,>} {t, f,>,⊥} {t,>,⊥} {t, f,>,⊥}

Theorem 8: For every semi-canonical (-C-A)-system G,
`seqG =`seqMG

and `MG
=`G.

The proof goes along the lines of the previous cases, and
is omitted here.

V. CONCLUSIONS AND FURTHER RESEARCH

The results of this paper shed light on the semantic roles of
(CUT) and (ID) in sequent systems. The availability of each of
these two components rules out one truth-value (> or ⊥), and
reduces the level of non-determinism in the induced Nmatrix.

The presence of both of them (as happens in LK) is crucial
for having deterministic semantics.

Besides possible proof-theoretic applications of semi-
canonical systems and their semantics (e.g. Corollary 3),
Examples 4 and 5 roughly suggest other possible applications
of semi-canonical systems, e.g. as a tool for reasoning about
uncertain logical circuits. Combining different sorts of uncer-
tainties in logical circuits naturally requires extensions of the
current framework (e.g. to handle cases in which (CUT) and/or
(ID) may apply only on some formulas).

From a proof-theoretic perspective, it would be interesting
and useful to extend the results of this paper to broader
families of sequent (and higher-level objects) systems without
(CUT) and/or (ID). This can include first-order canonical
systems, many-sided sequent systems, and systems allowing
a larger variety of logical rules. Finally, a natural question,
arising from the definition of semi-canonical systems, concerns
the necessity of the weakening rule. It would be interesting to
understand the semantic effect of (Weak) in canonical systems,
and develop semantics for systems lacking this rule. However,
following the next final proposition, finite-valued Nmatrices
semantics does not suffice for this purpose:

Proposition 6: Suppose that L contains two binary connec-
tives denoted by ∨1 and ∨2. Let G be a sequent system con-
sisting only on (CUT), (ID) and the following three canonical
rules: {⇒ p1, p2}/⇒ p1 ∨1 p2 , {⇒ p1}/⇒ p1 ∨2 p2 , and
{⇒ p2}/⇒ p1 ∨2 p2. There is no finite-valued Nmatrix M
such that `G=`M.
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