Decidable Verification under a Causally Consistent
Shared Memory

Ori Lahav
Tel Aviv University
Israel
orilahav@tau.ac.il

Abstract

Causal consistency is one of the most fundamental and
widely used consistency models weaker than sequential con-
sistency. In this paper, we study the verification of safety
properties for finite-state concurrent programs running un-
der a causally consistent shared memory model. We estab-
lish the decidability of this problem for a standard model of
causal consistency (called also “Causal Convergence” and
“Strong-Release-Acquire”). Our proof proceeds by developing
an alternative operational semantics, based on the notion of
a thread potential, that is equivalent to the existing declara-
tive semantics and constitutes a well-structured transition
system. In particular, our result allows for the verification of
a large family of programs in the Release/Acquire fragment
of C/C++11 (RA). Indeed, while verification under RA was re-
cently shown to be undecidable for general programs, since
RA coincides with the model we study here for write/write-
race-free programs, the decidability of verification under RA
for this widely used class of programs follows from our result.
The novel operational semantics may also be of independent
use in the investigation of weakly consistent shared memory
models and their verification.

CCS Concepts: « Software and its engineering — Soft-
ware verification; Concurrent programming languages;
« Theory of computation — Concurrency; Logic and
verification; Program verification; « Information sys-
tems — Distributed database transactions.

Keywords: weak memory models, causal consistency, re-
lease/acquire, shared-memory, concurrency, verification, de-
cidability, well-structured transition systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI 20, June 15-20, 2020, London, United Kingdom

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7613-6/20/06...$15.00
https://doi.org/10.1145/3385412.3385966

Udi Boker
Interdisciplinary Center (IDC) Herzliya
Israel

udiboker@idc.ac.il

ACM Reference Format:

Ori Lahav and Udi Boker. 2020. Decidable Verification under a
Causally Consistent Shared Memory . In Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI °20), June 15-20, 2020, London,
United Kingdom. ACM, New York, NY, USA, 24 pages. https://doi.
org/10.1145/3385412.3385966

1 Introduction

Suppose that one wants to verify that a given sequential
program satisfies a certain safety specification (e.g., that
it never crashes). If the data domain is bounded, we can
represent the program as a finite-state transition system,
and this verification problem is trivially decidable. Moving
to concurrent programs, assuming (non-realistic) sequen-
tially consistent shared memory semantics, does not change
much—the memory constitutes another finite-state system,
and its synchronization with the interleaving of the systems
representing the different threads is easily expressible as a
finite-state system as well. On the other hand, if the memory
does not ensure sequential consistency, but rather provides
weaker consistency guarantees, the decidability of the safety
verification problem is completely unclear.

In this paper, we are interested in the safety verification
problem under causally consistent shared memory. Causal
consistency is one of the most fundamental consistency mod-
els weaker than sequential consistency. It is especially com-
mon and well studied in distributed databases (see, e.g., [37]
and the mongoDB documentation [40]). Roughly speaking,
by allowing nodes to disagree on the relative order of some
memory operations, and require global consensus only on
the order of “causally related” operations, causal consistency
allows scalable, partition-tolerant and available implementa-
tions.

Nowadays, causal consistency models have become cen-
tral also in multithreaded programming. In particular, the
Release/Acquire model (RA) is a form of causal consistency
that specifies the semantics of C/C++11 for synchroniza-
tion accesses annotated with memory_order_release and
memory_order_acquire [14, 23, 24]. A stronger form of
causal consistency, called SRA (for Strong Release/Acquire),
which is equivalent to the standard causal consistency model

https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3385412.3385966

PLDI °20, June 15-20, 2020, London, United Kingdom

in distributed databases [18],! characterizes the guarantees
provided by “multi-copy atomic” multiprocessor architec-
tures, such as POWER. Specifically, as shown in [30], SRA
precisely captures the guarantees provided by the POWER
architecture for programs compiled from the C/C++’s re-
lease/acquire fragment.

Despite its centrality, until recently not much was known
about the safety verification problem under causal consis-
tency. The challenge arises first since the standard semantics
of causal consistency models is declarative (identifying pro-
gram behaviors with partially ordered execution histories
that obey certain formal consistency constraints), while veri-
fication is typically applied on operational models. Moreover,
operational versions of causal consistency are inherently
infinite-state, as threads may generally read from an un-
bounded past. In fact, the reduction of Atig et al. [11] from
reachability in lossy FIFO channel machines to safety veri-
fication under x86-TSO semantics can be straightforwardly
adapted to causally consistent models (specifically, RA and
SRA). This implies a non-primitive recursive lower bound on
the safety verification problem under causal consistency.
Very recently, Abdulla et al. [3] proved that the safety verifi-
cation problem is undecidable under one instance of causal
consistency, namely the the RA model.

Our main contribution in this paper is to establish the
decidability of safety verification under the SRA model. If
one is specifically interested in verification under RA, our
result provides a (rather tight) under-approximation (a bug
under SRA implies a bug under RA), and, since RA and SRA
coincide on write/write-race-free programs, we obtain the
decidability of safety verification under RA for this large and
widely used class of programs.

To obtain decidability, we use the framework of well-
structured transition systems [2, 7, 22]. Intuitively speaking,
this framework allows one to establish decidability of infinite-
state “lossy” systems, where (i) states may non-deterministi-
cally forget some information they include; and (ii) the rela-
tion determining whether one state is obtained from another
by losing information constitutes a well-quasi-ordering. This
approach, however, cannot be applied for (an operationalized
version of) SRA directly, whose natural states are execution
histories. First, forgetting information from the history re-
sults, in many cases, in strictly weaker causality constraints
that allow outcomes that cannot be obtained without los-
ing the information. Second, execution histories are only
partially ordered and embedding between (general) partial
orders is not a well-quasi-ordering.

Our solution is to develop a novel operational semantics
that is equivalent to SRA, for which we can use the frame-
work of well-structured transition systems. The key idea in

IThis equivalence excludes the atomicity of read-modify-writes, which
is crucial in multithreaded programming but is not provided by causal
consistency as defined in [18] (see also §3.1).

Ori Lahav and Udi Boker

this semantics is to maintain the potential of future reads
of each thread in the machine state. This semantics can be
straightforwardly made “lossy”, as losing some parts of the
possible potential never allows for additional behaviors. In
addition, potentials can be represented using total orders,
whose embedding relation (based on the ordinary subse-
quence relation) is a well-quasi-ordering. In this semantics,
read transitions are very simple, they only consume a prefix
of the potential. The complexity is left for write transitions
that need to properly increase the potentials of the different
threads in a way that ensures causal consistency. Our funda-
mental observation is that the way the potential of a certain
thread increases when another thread writes to memory can
be defined solely in terms of the existing potentials of the
two threads. This intuition is made precise in our formalized
(and mechanized in Coq) correspondence proofs, which es-
tablish simulations (forward for one direction and backward
for the converse) between the novel lossy semantics and the
straightforward “operationalization” of SRA’s declarative
semantics.

Related Work. Causally consistent shared memory mod-
els, their verification problems and approaches to address
these problems were recently outlined in [29], where the
problem we resolve is left open. As mentioned above, Ab-
dulla et al. [3] proved that safety verification under RA is
undecidable. Operational “message-passing” semantics for
SRA was developed in [30]. It is inadequate for our purposes
as it cannot be made “lossy” without affecting its allowed
outcomes.

The safety verification problem was previously investi-
gated under TSO—the “total store ordering” model of x86
multiprocessors, which, being multi-copy-atomic, is stronger
than any of the models studied here. Atig et al. [11, 12] estab-
lish the decidability of this problem (and the non-primitive
recursive lower bound) by reducing it to (and from) reach-
ability in lossy channel systems. Since causal consistency
models are not multi-copy atomic and they lack any notion
of a global mapping from locations to values, the idea be-
hind their reduction cannot be applied for SRA. Notably,
SRA cannot be fully explained by program transformations
(instruction reordering and merging) [33], whereas, with
the exception of the recent undecidability in [3], all existing
results (of [12] in particular) are for models that are fully
accounted for by such transformations.

More recently, Abdulla et al. [4] greatly simplified previous
proofs for TSO (and demonstrated much better practical
running times on certain benchmarks) by developing and
utilizing a “load-buffer” semantics for TSO. Load-buffers are
roughly similar to our potential lists, but while load buffers
are FIFO queues, our lists necessarily allow the insertion of
future reads at different positions, subject to certain (novel)
conditions ensuring that causal consistency is not violated.
In addition, the “load-buffer” semantics for TSO includes

Decidable Verification under a Causally Consistent Shared Memory

a global machine memory, while our semantics does not
employ any such notion.

Verification of programs under causal consistency (espe-
cially under RA) has received considerable amount of atten-
tion in recent years. The different approaches include (non-
automated) program logics [21, 25, 32, 48, 49], (bounded)
model checking based on partial order reduction [3, 5, 27, 35]
and robustness verification [17, 31, 41]. The latter approach
reduces the verification problem to the verification under
sequential consistency and the verification of the program’s
robustness against causal consistency. Thus, this approach
cannot work for programs that meet their safety specification
but still exhibit non-sequentially-consistent behaviors.

Finally, the problem asking whether a given implementa-
tion provides causal consistency guarantees was studied in
[16]. It is, however, independent from verification of client
programs assuming causal consistency, as we study here.

Outline. The rest of this paper is organized as follows. In
§2 we provide preliminary definitions. In §3 we present the
SRA model and its safety verification problem, and prove
that RA and SRA coincide for write/write-race-free programs.
In §4 we present a straightforward operational version of
SRA’s declarative semantics. In §5 we introduce our novel
operational semantics of SRA. In §6 we show how this se-
mantics is used to decide the safety verification problem.
We conclude in §7. The appendices to this paper, publicly
available in [1], provide full proofs. Mechanized Coq proofs
of the equivalence of the two semantics of SRA are available
in the artifact accompanying this paper.

2 Preliminaries

SRA is a declarative memory model, defined by imposing
certain consistency constraints on execution graphs. The latter
describe the (partially ordered) history of a program run. In
this section, we provide the preliminaries for declarative
memory model: We introduce a toy programming language
(§2.1), interpret its programs as transition systems (§2.2) and
associate these systems with execution graphs (§2.3).

2.1 Programming Language

Let Val € N, Loc C {x,y,...}, Reg C {a,b,...} be finite sets
of values, (shared) memory locations, and register names.
Figure 1 presents our toy language. Its expressions are con-
structed from registers (local variables) and values. Instruc-
tions include assignments and conditional branching, as well
as memory operations. Intuitively speaking, an assignment
r := e assigns the value of e to register r (involving no mem-
ory access); if e goto n sets the program counter to n iff
the value of e is not 0; a “write” x := e stores the value of
e in x; a “read” r := x loads the value of x to register r;
r := FADD(x,) atomically increments x by the value of e
and loads the old value of x to r; r := XCHG(x, e) atomically
swaps x to the value of e and loads the old value of x to r;

PLDI °20, June 15-20, 2020, London, United Kingdom

and r := CAS(x, eR, ey) atomically loads the value of x to r,
compares it to the value of eg, and if the two values are equal,
replaces the value of x by the value of ey.

A sequential program S is a function from a set of the form
{0,1,...,N} (the possible values of the program counter) to
instructions. We denote by SProg the set of all sequential
programs. A (concurrent) program P is a top-level parallel
composition of sequential programs, defined as a mapping
from a finite set Tid C {Ty, Ty, ...} of thread identifiers to
SProg. In our examples, we often write sequential programs
as sequences of instructions delimited by line breaks, use ‘||’
for parallel composition, and refer to the program threads
as Ty, Ty, ... following their left-to-right order in the program
listing (see, e.g., Ex. 3.5 on Page 6).

2.2 From Programs to Labeled Transition Systems

Sequential and concurrent programs induce labeled transi-
tion systems.

Labeled transition systems. A labeled transition system
(LTS) A over an alphabet X is a triple (Q, Qo, T), where Q
is a set of states, Qy C Q is the set of initial states, and
T € QXX XQ is a set of transitions. We denote by A.Q,
A.Qp and A.T the components of an LTS A; write 2,4 for
the relation {(g,q’) | {(g,0,q’) € AT} and— 4 for Uy ez —a.
A state ¢ € A.Q is reachable in A if g9 —, q for some

qo € A.Qo. A sequence oy, ...,0, is a trace of A if gy 2
. im q for some ¢y € A.Qy and q € A.Q. The set of pre-
decessors of a set S € A.Q wr.t. a symbol o € X, denoted
by pred§(S), is given by {g € AQ|3q' € S.q ZA4q'}. We
define pred 4 (S) £ Ugyes pred%(S).
For sequential programs the alphabet is the set of labels
(extended with ¢ for silent transitions), as defined next.

Definition 2.1. A labelis either R(x, vr) (read label), W(x, vy)
(write label) or RMW(x, vg, vy) (read-modify-write label), where
x € Loc and vg, vy € Val. We denote by Lab the set of all la-
bels. The functions typ, loc, valg, and valy return (when
applicable) the type (R/W/RMW), location, read value and writ-
ten value of a given label [.

A sequential program S € SProg induces an LTS over
Lab U {e}. Its states are pairs s = (pc, ¢) where pc € N
(called program counter) and ¢ : Reg — Val (called local
store, and extended to expressions in the obvious way). Its
only initial state is (0, Ar € Reg.0) and its transitions are
given in Fig. 2, following the informal description above. (In
particular, a read instruction in S induces |Val| transitions
with different read labels.) We identify sequential programs
with their induced LTSs (when writing, e.g., S.Q and —).

In turn, a concurrent program P is identified with an LTS
over Tid X (LabU {¢}). Its states are functions, often denoted
by p, assigning a state in P(7).Q to every 7 € Tid; its initial
states set is {p | V7. p(r) € P(r).Qo}; and its transitions are

PLDI °20, June 15-20, 2020, London, United Kingdom

veValC N values

x,y,z € Loc C {x,y,...} locations

r € Reg C {a,b, ...} registers

7,7, € Tid C {T1, Ty, ...} thread identifiers

S € SProg = {0,1,...,N} — Inst sequential programs

Ori Lahav and Udi Boker

ex=r | v | et+te|e=e|e#te| ..

Inst > inst :==r:=e | if egoton | x:=e | r:==x |

r:= FADD(x,e) | r:= XCHG(x,e) | r :=CAS(x,e,e)

P : Tid — SProg (concurrent) programs
Figure 1. Domains, metavariables and programming language syntax.
S(pe)y=r:=e S(pc) = if e goton S(pc) = if e goton S(pe) =x:=¢e S(pe) =r:=x
¢" = lr— (e)] p(e) #0 $(e) =0 L=W(x, §(e)) I=R(x,0) ¢’ =g¢[r— o]

(pe. ¢y S (pe+1,¢") (pe. ¢y 5 (n, ¢)

S(pc) = r := FADD(x, e)
I =RMW(x, 0,0 + ¢(e))
¢' = ¢[r 0]

(pe,$) 5 (pe+1,4")

S(pc) = r := XCHG(x, e)
I =RMW(x,0,¢(e))
¢' = ¢[r 0]

(pe,d) L (pe+1,4")

(pe.§) 5 (pe+1,4)

(pe, §) > (pe+1,) (pe.$) L (pe+1,4")

S(pc) = r := CAS(x, eR, ey)
I'=RMW(x, ¢ (er), ¢ (ew))
9" =¢lr - ¢(er)]

(pe,$) L (pe+1,4")

S(pc) = r := CAS(x, eR, ey)
I =R(x,0) v # P(er)
9" =¢lr 0]

(e,) L (pe+1,4")

Figure 2. Transitions of LTS induced by a sequential program S € SProg.

“interleaved transitions” of P’s components, given by:

letab p(0) bper s’

P(1) Spiry s

P plre sl

P Blre o]

2.3 From LTSs to Execution Graphs

We present the general notions used to assign declarative
semantics to concurrent programs. First, we define execution
graphs, starting with their nodes, called events.

Definition 2.2. An event is a triple e = (z,n,1), where
7 € Tid is a thread identifier, n € N is a serial number
and [€ Lab is a label (Def. 2.1). The function tid returns the
thread identifier of an event. The functions typ, loc, valg,
and valy are lifted to events in the obvious way. We denote by
E the set of all events, and use R, W, RMW for its subsets: R =
{e | typ(e) € {R,RMW}}, W £ {e| typ(e) € {W,RMW}} and
RMW = RN W. Sub/superscripts are used to restrict these
sets to certain location (e.g., Wy = {w € W | loc(w) = x})
and/or thread identifier (e.g., E* = {e € E | tid(e) = 7}).

Our representation of events induces a partial order < on
them: events of the same thread are ordered according to
their serial numbers (i.e., (t;,n1, L) < (o, ny,) iff 11 = 1,
and n; < ny). In turn, an execution graph consists of a set of
events, a reads-from mapping that determines the write event
from which each read event reads its value, and a modification
order that totally orders the writes to each location.

Definition 2.3. A relation rf is a reads-from relation for a

set E of events if the following hold:

o If (w,r) € rf,thenw € ENW,r € ENR, loc(w) = loc(r)
and valy(w) = valg(r).

o If (wy,7),{wy,r) € rf, then w; = wy (that is, rf™! =
{{r,w) | {w,r) € rf} is functional).

e Vr € ENR. 3w. (w,r) € rf (each read event reads from
some write event).

Definition 2.4. A relation mo is a modification order for a
set E of events if 701s a disjoint union of relations {
where each moy is a strict total order on E N W,.

x}xELoc

Definition 2.5. An execution graphisatriple G = (E, rf, mo)
where E is a finite set of events, f is a reads-from relation for
E and mo is a modification order for E. We denote by EGraph
the set of all execution graphs. The components of G are
denoted by G.E, G.rf and G.mo, and G.po denotes the restric-
tion of < to G.E (i.e., G.po = {{ej,e;) € EXE | e; < e5}). For
aset E C E, we write G.E for G.ENE (e.g., G.Wy = G.ENWy).

The next definition is used to associate execution graphs
to programs. Multiple examples below (on Page 6) illustrate
execution graphs of different programs.

Notation 2.6. For a set E of events, thread identifier 7 € Tid
and label [€ Lab, NextEvent(E, 7, 1) denotes the event given
by (r,1+ max({n € N | 3’ € Lab. (r,n,I") € E}),).

Definition 2.7. An execution graph G is generated by a
program P with final state p if (p,, Go) —* (p, G) for some
Py € P.Qy, where Gg denotes the empty execution graph
(given by Gp = (0, 0, 0)) and — is defined by:

5 hpp E' =EU{NextEvent(E 7,1)}

rf € rf’ c mo’ P5p D
(D, (E, rf, mo)y — B, (E', rf", mo”)) P,Gy — (p,G)

Decidable Verification under a Causally Consistent Shared Memory

3 The Strong Release/Acquire Model

Declarative memory models, such as Strong Release/Acquire
(SRA), are formulated by a collection of constraints on ex-
ecution graphs, which determine the consistent execution
graphs—the ones allowed by the model. In this section, we
formulate the constraints of SRA and define the safety veri-
fication problem under SRA, discuss equivalent alternative
formulations (§3.1), provide several examples (§3.2), and in-
vestigate the relation between SRA and RA (§3.3).

Notation 3.1 (Relations). Given a relation R, dom(R) de-
notes its domain; R? and R* denote its reflexive and transitive
closures; and R™! denotes its inverse. The (left) composition
of relations Ry, R, is denoted by Ry ; R,. We denote by [A] the
identity relation on a set A, and so [A] ;R; [B] = RN (A X B).

Causal consistency models are based on the following
basic derived “happens-before” relation:

G.hb 2 (G.poU G.rf)*

The happens-before relation captures the “causality relation”
in execution graphs. In words, hb is the smallest transitive
relation that contains the program order (po) and the reads-
from (rf) relations. We note that all reads synchronize with
the writes they read from (rf C hb), in contrast to more
elaborate models like RC11 [34], where only certain reads-
from edges induce synchronization.

Given hb, the SRA model consists of three constraints,
each of which forbids a certain pattern in execution graphs.
The three disallowed patterns are illustrated as follows:

W W Wx Wx
(hb Umo)* AN AN
R rf . / hb rf .
4 A Ay
E<-” Ry RMW
irr-hb-mo read-coherence atomicity

irr-hb-mo. This constraint requires that the modification
order mo “agrees” with the causality order:

(G.hbUG. (irr-hb-mo)

)* is irreflexive

In particular, it implies that G.hb is indeed a partial order.
Thus, SRA forbids so-called “load-buffering” behaviors [39],
which, unless restricted appropriately, lead to the infamous
“out-of-thin-air” problem [13, 26].

read-coherence. This constraint intuitively requires that
“a thread cannot read a value when it is aware of a later value
written to the same location”. Identifying “thread 7 being
aware of some write event w” with an hb-path from w to
(some event of) 7, and using the modification order mo to
interpret one write being “later” than another, the precise
condition requires that:

G.mo ; G.hb ; G.rf7 1 is irreflexive (read-coherence)

PLDI °20, June 15-20, 2020, London, United Kingdom

Indeed, if aread event r reads from a write event wy, while be-
ing aware of an mo-later write event w; to the same location,
we have (w1, wy) € mo, {(wy, r) € hb and (r,w;) € rf™L,

atomicity. This condition ensures that RMWs are stronger
than a read followed by a write. It requires that RMWs read
from their immediate mo-predecessors:

G.no ; G.mo ; G.rf~! is irreflexive (atomicity)

In words, if an RMW event e is reading from a write event
w, then no write event can intervene mo-between w and e.

We refer to execution graphs that meet the three condi-
tions above as SRA-consistent. With this definition, we can
formally present the reachability problem under SRA, which
we prove to be decidable in this paper.

Definition 3.2. We call a state p of a program P reachable
under SRA if some SRA-consistent execution graph is gener-
ated by P with final state p (see Def. 2.7).

Definition 3.3 (SRA Reachability). The reachability prob-
lem under SRA is given by:

Input: a program P and a “bad” state p € P.Q.

Question: is p reachable under SRA?

A lower complexity bound to this problem is achieved by
reduction from reachability in lossy FIFO channel machines,
straightforwardly following the analogous reduction of Atig
et al. [11] to safety verification under x86-TSO.

Theorem 3.4. SRA reachability is non-primitive-recursive.

3.1 Other Formulations of SRA

Our presentation above follows [30], where SRA is intro-
duced as a strengthening of RA. The latter is the fragment
of the C/C++11 model [14, 34] consisting of release stores,
acquire reads and acquire-release RMWs. In addition, SRA
appears (in multiple disguises) in the literature:

POWER. As proved in [30], SRA precisely coincides with
the POWER model of [9], when the latter is restricted to
programs that result from compiling C/C++11 programs in
the release/acquire fragment, using the standard compilation
scheme [38] (that is, placing lwsync before every store and
ctrl+isync after every load).

Distributed Key-Value Stores. Ignoring RMWs, the SRA
model is equivalent to the causal convergence model, denoted
by CCyv, of [16] (when applied to the standard read/write
memory sequential specification), as well as to the causal con-
sistency model of [37] when restricted to single-instruction
transactions. These models are formulated in [18, 20] in
terms of visibility (vis) and arbitration (ar) relations. One
direction of the correspondence follows by setting vis = hb
and taking ar to be some total order extending hb U mo. For
the converse, one takes rf to relate each read r with the
ar-maximal write to the same location that is vis-before r,

PLDI °20, June 15-20, 2020, London, United Kingdom

and sets M0 = U e 0c [Wx] ; ar; [Wy]. Furthermore, our pro-
gram order (po) corresponds to session order (so), and SRA’s
consistency ensures strong session guarantees (so C vis) [47].

RMWs in distributed databases require expensive global
coordination. A naive implementation of RMWs as transac-
tions that read and write from/to the same location does not
guarantee atomicity, as it allows the lost update anomaly
(e.g., it will allow the outcome in Ex. 3.9 below). In the partic-
ular case when a certain location is only accessed by RMWs,
its accesses are totally ordered by hb, which corresponds
to marking of certain transactions as serializable, as in the
Red-Blue model of [15, 36].

Parallel-Snapshot-Isolation. When all store instructions
are implemented using atomic exchanges (implementing
x := e as r := XCHG(x, e)), SRA precisely captures the par-
allel snapshot isolation model (PSI) [10, 15, 19, 43, 45] when
restricted to single-instruction transactions. Hence, our de-
cidability result for SRA entails the decidability for PSI with
single-instruction transactions.

3.2 Examples

We list some well-known litmus tests to demonstrate SRA
(some of which are revisited in the sequel). To simplify the
presentation, instead of referring to reachable program states,
we consider possible program outcomes assigning final values
to (some) registers. An outcome O : Reg — Val is allowed
for a program under the declarative model SRA if some state
in which the registers are assigned their values in O is reach-
able under SRA (see Def. 3.2). We use program comment
annotations (“/”) to denote particular outcomes.

Remark 1. To simplify our presentation, we require explicit
initialization of memory locations and adapt the examples to
include explicit initialization. Reading from an uninitialized
location blocks the thread. (For example, only the initial
execution graph G is generated by a program consisting
of a single thread that reads from some location, without
previously writing to it.) This is only a presentation matter:
one may always achieve implicit initialization by augmenting
the program with an additional thread that sets all variables
to their initial value, and then signals all other thread (using
an additional flag) to start running.

Example 3.5 (Store buffering). The following program out-
come is allowed by SRA.

x:=0 y:=0 Wix, (\)) W/(y, 0)
x:=1 y:==1 N
amy/ollbmx /o MK OUWED(SB)
rf,” \\rfi
v'SRA R(,0) R(x0)

In its execution graph the rf-edges are forced because of
the read values, whereas the mo-edges are forced due to irr-
hb-mo. It can be easily verified that the execution graph is
SRA-consistent.

Ori Lahav and Udi Boker

Example 3.6 (Message passing). SRA supports the very
common “flag-based” synchronization. That is, the following
outcome is disallowed:

W(x,0)
a=y/1 \\\
L ||b=xz0 WD) L RO (MP)
. rv~
XSRA Wy.1) R(x.0)

An execution graph for this outcome must have rf and mo-
edges as depicted above. However, we have mo from W(x, 0)
to W(x, 1), hb from W(x, 1) to R(x,0) and rf from W(x,0) to
R(x,0). Hence, read-coherence does not hold, and the execu-
tion graph is not SRA-consistent.

Example 3.7 (Transitive message passing). po and rf edges
equally contribute to hb in causal consistency. Hence, as in
Ex. 3.6, the following outcome is disallowed by SRA.

x:=0|la:=y /1||lb:==x/1

y=1|x:=1 c:=x/0 X SRA
W(x,0) _ _ R(y,1) R(x,1) (MP-trans)
ST rf_-»
Celrf &f”ﬂ
W(y, 1) W(x, 1) ZR(x,0)

Example 3.8 (Independent reads of independent writes). A
main difference between SRA and the x86-TSO model [42]
is that the former is non-multi-copy-atomic. Namely, differ-
ent threads may observe different stores in different orders.
Thus, unlike x86-TSO, the SRA model allows the following
outcome, in which T, observes W(x, 1) but not W(y, 1), while
T3 observes W(y, 1) but not W(x, 1).

x:=0||la=x/1llc:=y /1||ly:=0

x:=1||b:=y /0||d:=x /0|y =1 / SRA
W(0) R(x1) R W0 (IRIW)
W(x1) R(y,00° “R(x0) W(y,1)

Example 3.9. For the implementation of locks, it is crucial
that two RMWs never read from the same write:

X:=0 W(x.0)

a:= b .= ’/ $rf

CAS(x,0,1) /0||CAS(x,0,1) /0 ' \l " (2RMW)
X SRA RMW (x, 0, 1) RMW (X, 0, 1)

Since mo must order the two RMWs and irr-hb-mo dictates
that mo ; rf is irreflexive, any order of the RMWs entails a
violation of atomicity.

Example 3.10. RMWs to an otherwise-unused location can
be used as fences, as the consistency constraints imply that hb
must totally order G.W, when, except for one (initialization)
write event, all write events to x in G are RMWs. For example,
placing such fences forbids the weak outcome of the SB
program (Ex. 3.5). An execution graph for this outcome must
have the edges as depicted on the right, and any choice of

Decidable Verification under a Causally Consistent Shared Memory

the missing rf-edges (to the two RMW events) will violate a
condition of SRA.

z:=0 W(i’o)
x:=0 y:=0 W(x, 0) W(y,0)
x:=1 y:=1 A Y
\ W
a := FADD(2,0) || a := FADD(z, 0) W(ﬁ’ SANE ({’ D (SBE)
b=y /0 c=x/0 RMW (2, 0,0). " RMW (2, 0, 0)
v o« Sa ¥
XSRA R(y.0) R(x,0)

3.3 Relation to the RA Model

The RA model is weaker than SRA. It imposes read-coherence
and atomicity, just like SRA, but instead of irr-hb-mo, it only
disallows the following patterns:

Wy
Q hb) hb
E Wy
irr-hb write-coherence

First, irr-hb requires hb to be a partial order:

G.hb is irreflexive (irr-hb)

Second, instead of a global agreement between mo and hb,

RA only requires a local agreement:

G.mo ; G.hb is irreflexive (write-coherence)

In words, if hb orders two writes to the same location, then
must follow the same order.

Example 3.11. Cycles in hbUmo involving only one location
are disallowed by write-coherence (using the fact that mo is
total on writes to the same location). In contrast, irr-hb-mo
(of SRA) restricts the relation between [Wy] ; mo ; [W] and

[Wy] ;mo; [Wy] also when x # y. The following example
(adapted from [50]) demonstrates the difference:
W(x, 1) W(y. 1)
x:=1 y = N .
y:=2 X:=2 W(y.2) \\y// W(x2) (2+2W)
a:==y/1||la:=x/1 Y L X
v RA XSRA e’ N
R(y,1) R(x,1)

An execution graph for this outcome must have rf and mo-
edges as depicted above (to satisfy read-coherence), and it
contains a (hb U mo)-cycle, which is allowed by RA and dis-
allowed by SRA.

Since irr-hb-mo implies both irr-hb and write-coherence,
the following trivially holds:

Proposition 3.12. SRA-consistency implies RA-consistency.

Reachability under RA is defined analogously to reach-
ability under SRA (replacing “SRA” with “RA” in Def. 3.2).
Then, we clearly have that all states of a program P that are
reachable under SRA are also reachable under RA. The con-
verse does not hold in general, but it does hold for the large
and widely used class of write/write-race-free programs. In-
spired by DRF models [8], we show that write/write-race

PLDI °20, June 15-20, 2020, London, United Kingdom

freedom of SRA-consistent execution graphs suffices, so that
programmers may adhere to a safe programming discipline
without even understanding RA.

Definition 3.13. An execution graph G is write/write-race
free if for every wi,w, € G.W with loc(w;) = loc(wy),
we have w; = wy, (wy,w2) € G.hb or (wy, w;) € G.hb. A
program P is write/write-race free under SRA if every SRA-
consistent execution graph that is generated by P (with some
final state) is write/write-race free.

Theorem 3.14. Let P be a program that is write/write-race
free under SRA. Then, the sets of states of P that are reachable
under SRA and RA coincide.

Proof. Using Prop. 3.12, it suffices to show that reachability
under RA implies reachability under SRA. Let G be the set
of all RA-consistent but SRA-inconsistent execution graphs
that are generated by P. To show that every state of P that is
reachable under RA is also reachable under SRA, it suffices
to show that G is empty.

Suppose otherwise and let G be a minimal element in
G, in the sense that every proper G.hb-prefix of G is not
in G. (A proper G.hb-prefix of G is an execution graph
of the form (E,, [Ey] ; G.rf; [Ep], [Epl ; G.mo; [Ep]) where
E, ¢ G.E and dom(G.hb;[E,]) C E,.) Since the empty
execution graph Gy is trivially SRA-consistent, G cannot
be empty. Let e be a G.hb-maximal event in G.E, and let
E’ = G.E \ {e}. The minimality of G ensures that G’ =
(E',[E'] ; G.rf 5 [E’], [E’] ; G.mo ; [E']) (the restriction of G
to E’) is SRA-consistent. Hence, our assumption on P en-
sures that G’ is write/write-race free, thus using irr-hb-mo,
it follows that G’.mo € G’.hb € G.hb.

Now, since G is RA-consistent but not SRA-consistent, G
does not satisfy irr-hb-mo. Since G’ satisfies irr-hb-mo, it
must be the case that there exists w € E’ such that (e, w) €
G.mo and (w, e) € (G.hb U G’.mo)*. Since G’.mo C G.hb, it
follows that (e, e) € G.mo ; G.hb. Hence, G does not satisfy
write-coherence, which contradicts the fact that it is RA-
consistent.]

4 Operationalizing the SRA Model

In this section, we present an operational semantics for SRA,
formulating it as a memory system. While the formulation in
§3 is declarative, it is straightforward to “operationalize” it.
Indeed, instead of first generating a program execution graph
and then checking for SRA-consistency, one may impose
consistency at each step of an incremental construction of
the execution graph. This results in an equivalent operational
presentation, which is arguably simpler and easier to relate
to the alternative semantics we define in §5.

Definition 4.1. A memory systemis a (possibly infinite) LTS
over the alphabet (Tid X Lab) U {¢}.

PLDI °20, June 15-20, 2020, London, United Kingdom

WRITE READ
G = (E, rf, mo)
e = NextEvent(G.E, 7,W(x, vy))
G’ =(EU{e}, 1f, moU (G.Wy X {e}))

G = (E, 1f,

e = NextEvent(G.E, 7,R(x, vR))
G’ =(EU {e}, 1f U {(w,e)}, mo)

Ori Lahav and Udi Boker

RMW
G =(E, rf, mo)
e = NextEvent(G.E, 7, RMW(x, oR, vy))
G’ =(EU{e}, 1f U {{w,e)}, moU (G.Wx x {e}))

w € G.Wy valy(w) = R w € G.Wy valy(w) =R
w & dom(mo; G.hb” ; [E7]) w & dom(mo)
G ZHxe0, opsRA G’ ERAIGLIN opsRA G’ G [, opsra G’

Figure 3. Transitions of opSRA.

The alphabet symbols of the memory system are pairs in
Tid X Lab, representing the thread identifier and the label of
the operation, or ¢ for internal (silent) memory actions.

Example 4.2. The most well-known memory system is the
one of sequential consistency, denoted here by SC. This
memory system simply tracks the most recent value writ-
ten to each location (or L for uninitialized locations). For-
mally, it is defined by SC.Q = Loc — (Val U {1}), SC.Qy =
{Ax € Loc. 1L} and —gc is given by:

H(x) = oR
p= plx - oy p(x) = vg p = plx oy
W (x,0n) , 7,R (x,0R) 7,RMW (x,0R, o) ,
—SC H H——scH H——"—>scH

Note that SC is oblivious to the thread that takes the action
8 . g . . s
(4 2y iff g Zosc), and it has no silent transitions.

By synchronizing a program and a memory system, we
obtain a concurrent system:

Definition 4.3. A program P and a memory system M form
a concurrent system, denoted by Pys. It is an LTS over (Tid X
(Lab U {¢})) U {e} whose set of states is P.Q X M.Q; its initial
states set is P.Qg X M.Qp; and its transitions are “synchronized
transitions” of P and M, given by:

lelab pZhpp
7l — e —

s s £
m—>Mm' p—pp m—>Mm'

— ,l —/ ’ — 5 —/ — — ’
p.my Zpy, @om’y (pom) Zp, Bom) B.my Sp,, Bom')

Next, we present the memory system opSRA that is equiv-
alent to SRA (in the sense that is made formal in Thm. 4.5).
We also refer the reader to Fig. 5 on Page 12, which illustrates
a run of opSRA for the SB example.

The states of opSRA are execution graphs capturing (par-
tially ordered) histories of executed actions (opSRA.Q =
EGraph); the (only) initial state is the empty execution graph
Go (0pSRA.Qy = {Go}); and the transitions are given in Fig. 3.
A WRITE step by thread 7 adds a corresponding fresh write
event e to the graph placed after all events of thread r and
extends mo to order e after all existing writes to the same
location. A READ step by thread 7 adds a corresponding fresh
read event and justifies it with a reads-from edge. Its source
w must be a write event to the same location (w € G.W,),

writing the value being read (valy(w) = vR), and the thread
executing the read is not aware of an mo-later write to the
same location (w ¢ dom(mo ; hb” ; [ET])). An RMW step com-
bines a READ and a WRITE, but it is enforced to pick the

-maximal write to the relevant location in the current
graph as the reads-from source of the freshly added RMW.

This semantics exploits the fact that hb U mo is acyclic in
SRA-consistent execution graphs (as per irr-hb-mo). Hence,
to generate an SRA-consistent execution graph in a run of an
operational semantics, we can follow a total order extending
hbUmo, which guarantees that writes are executed following
their mo-order. In turn, since RMWs should read from their
immediate mo-predecessor, we require that RMWs read from
the current mo-maximal write.

The next definition and simple theorem formalize the
correspondence between SRA and opSRA.

Definition 4.4. A state p of a program P is reachable under
a memory system M if (p, m) is reachable in Py for some
m e M.Q.

Theorem 4.5. A statep of program P is reachable under SRA
(see Def. 3.2) iff it is reachable under opSRA.

Proof. Given an SRA-consistent execution graph G, one ob-
tains a run of opSRA by following any total order extending
G.hb U G.mo. The preconditions required by each step follow
directly from the fact that G is SRA-consistent. For the con-
verse, it suffices to note that all reachable states of opSRA are
SRA-consistent execution graphs. Hence, if (p, G) is reach-
able in opSRA, then G is an SRA-consistent execution graph
that is generated by P with final state p. O

Remark 2. Following [27], our formulation of opSRA does
not directly refer to the consistency predicates, but rather
articulate necessary and sufficient conditions that ensure
that the target state is a consistent execution graph. It is
possible to take a step further and develop an equivalent
semantics with more compact states that may feel “more
operational” and intuitive. Indeed, it suffices to maintain a
partially ordered set of write events, together with a mapping
of which writes each thread is aware of (the “observed writes
set” of [21]). This can be implemented using timestamps,
messages and thread views, as was done, e.g., in [25].

Decidable Verification under a Causally Consistent Shared Memory

5 Making Strong Release/Acquire Lossy

For resolving the reachability problem under SRA, we intro-
duce an alternative memory system, which we call [oSRA
(for “lossy-SRA”). In this section, we present loSRA, estab-
lish its equivalence to opSRA, and show how it is used to
decide the reachability problem. We begin with an intuitive
discussion to motivate our definitions.

A memory state of [oSRA maintains a collection of “read-
option” lists for each thread, called the potential of the thread,
where each read option o contains a location loc(o), a value
val(o) and two other components that are explained below.
Each read-option list stands for a sequence of possible future
reads of the thread, listing the writes that it may read in
the order that it may read them. For example, the list o5 -
0y allows the thread to read val(o;) from location loc(o;)
and then val(o;) from location loc(o0,). These lists do not
ascribe mandatory continuations, but rather possible futures
(hence, read options). In the beginning, the empty list is
assigned to all threads—before any write is executed, no reads
are possible (recall that we assume explicit initialization,
see Remark 1). In addition, the semantics is designed so that
read-option lists are “lossy”, allowing a non-deterministic
step that removes arbitrary options from the lists.

The read-option lists in the potentials dictate the possible
READ steps threads can take: for a thread 7 to read v from x,
an option o with val(o) = v and loc(o) = x must be the first
in each of 7’s lists. Then, to progress to the next option in
the list, the thread may consume these options, and discard
the first element from each of its lists.

A WRITE step is more involved, encapsulating the require-
ments of opSRA. First, since opSRA performs write events
following their mo-order, when a thread writes to x, it cannot
later read x from a write that was already performed (this
would violate read-coherence). Accordingly, we do not allow
a thread to write to x if some read option o with loc(o) = x
appears in its potential. Second, when a thread performs a
write of v to x, it allows future reads from this write. That
is, read options o with loc(o) = x and val(o) = v may be
added to every list of every thread. This makes the write step
in loSRA (unlike the one of opSRA) non-deterministic—the
writer essentially has to “guess” what thread will read from
the new write and when.

But, where in the lists should we allow to add such op-
tions? The following examples demonstrate two possible
cases. We write in them oY for a read option of value v from
location x.

Example 5.1. Consider the IRIW program with its (SRA-
allowed) outcome in Ex. 3.8. Clearly, the first step may only
be a write by T or T4. Suppose, w.l.o.g., that Ty begins. Since
T3 reads 0 from X, a read option og should be added in the
lists of T3. Now, before reading 0 from x, T5 has to read 1
from y. Hence, when T4 writes 1 to y, a read option o;, should
be placed before 0? in the lists of Ts.

PLDI °20, June 15-20, 2020, London, United Kingdom

Example 5.2. Consider the MP program with its outcome
in Ex. 3.6. It is forbidden under SRA, and so we need to avoid
the following scenario: First, T; writes 0 to x and adds a
corresponding option oY to the (initially empty) list of T,,
and then writes 1 to x without adding any option to any list
(no thread reads 1 from x in this program outcome). Then,
T, further writes 1 to y and adds a corresponding option o;
in the list of T; placed before 09. Finally, T, may run: read 1

from y (consuming o;) and then 0 from x (consuming 09).

The restriction we impose on the positions of the added
read options stems from the following key observation:*

Shared-memory causality principle: After thread r reads
from a certain write executed by thread t, it can perform a
sequence of operations only if thread t could perform the same
sequence immediately after it executed the write.

Indeed, if thread 7 has just performed a write w, then after
thread 7 reads from w, it “synchronizes” with r and it is
thus confined by the sequences of reads that 7 may perform.
Hence, to allow the addition of a read option o in certain
positions of a list L of some thread 7, we require a justifica-
tion: the suffix of L after the first occurrence of o should be
a subsequence of a read-option list of the writing thread .
This guarantees that after 7 reads from a write w of z, it will
not be able to read something that 7 could not read at the
time that it wrote w. (Revisiting Ex. 5.2, the read option o,
cannot be placed before 02, because T; cannot have 0! in its
lists at the point of writing 1 to y.)

Now, since the potential of thread 7 is used both for (i) dic-
tating future reads of r, and (ii) justifying placement of read
options that are generated by 7’s write steps, we may need
more than one option list for each thread. We also allow to
discard existing lists in silent moves of the memory system.
This is demonstrated in the following example.

Example 5.3. Consider the following program, whose an-
notated outcome is allowed under SRA:

x:=0 y:=0 z:=0
x:=1 y:=1 z:=1
31::Z//1 b1::x//1 c1::y//1
as =y /0||by:=2z /0||co :==x /0

dy:=x/1l|ler:==y /1||f1:==2z /1
dy =y /1|ley:=z /1||fa:=x/1
d3:=2z /0||es:=x /0||fs:=y /0

Suppose that it can be obtained by the memory system out-
lined above with one read-option list per thread (i.e., single-
ton potentials). Suppose, w.l.o.g., that z := 1 is the last write
performed in the execution. Later, Ts has to read 1 from y
and 0 from x. Hence, its read-option list must include 031/ and
0% in this order. In addition, a read option 0. should be placed
in T¢’s list before o} - o). The justification for it requires oy - 0
to be a subsequence of T3’s list. This implies that T5’s list
should contain some interleaving of oy - 0} and oy - 0. But, no
such interleaving is a possible future for T5 (and thus cannot
be generated by loSRA): reading o, does not allow T5 to read

2 A weaker observation, which only considers single reads, was essential for
the soundness of OGRA—an Owicki Gries logic for RA introduced in [32].

PLDI °20, June 15-20, 2020, London, United Kingdom

o) later; and reading o, does not allow Ts to read o}, later. By
allowing more than one read-option list per thread, we can
have oy - 0} and o, - 0} in two separate lists in the potential of
Ts—both are possible continuations for it after z := 1. Then,
after executing z := 1, T3 may “lose” the justifying list o} - o),
and choose to continue with o§ - 09 for its own reads.

Another complication arises due to the fact that read op-
tions do not uniquely identify write events in the execution
graph (this is unavoidable: for the decision procedure, we
need the alphabet of read options to be finite):

Example 5.4. Consider the following program:

21|
1 3 i % XSRA (2MP)
x 7047 Y

=0

Ol|ly:
1||y:
1||z:

N X X

a:
1)||w:
1{|b:

Its annotated outcome is disallowed under SRA. Indeed, since
T3 reads x = 0 after z = 1, the read of z must read from the
write of T,. But then, T4, after reading w = 1 (from T3) cannot
read y = 0. However, the semantics described so far allows
this outcome as in the following snippet:

T T T2 T2 T

{e}[[{e} || {e} || {e}
W(x0) W(x1) W(y,0) Wyl W(zl)

{09}]| {02} || {0% 0202} || {02} W—(T—: {00} || {02} || {0202, 0209} || {00}

T {00} |42} || 0% 0%} || {00} — s {0}]| {02} || {0% 0%} || {olol} ...
R(z1) W(w,1)

What went wrong? The problem arises when T3 reads 1 from
1,0

z. At this point it has two possible futures, 0}o} and o}oy.
Since read options, consisting of location and value, do not
uniquely identify writes, it may read 1 from z, and remain
with both 0% and 03. Now, it uses one of these options to
justify the position of o} in the list of Ty, and the other for its
own read. However, in a single run of opSRA, when reading
1 from z, T3 must pick which write event to read from, and
then, either it cannot read x = 0 or it cannot read y = 0.

To remedy this problem, we make read options to be more
informative. Together with location and value, read options
also include the thread identifier that performed the write.
When a thread writes, it adds options with its own thread
identifier in the different lists. For a thread 7 to read v from
x, a read option o with val(o) = v and loc(0) = x and some
unique writing thread identifier must be the first in every
read-option list of 7. In this example, the two o} options will
have different thread identifiers, which forces T5 to discard
one of its lists before reading.

Even with thread identifiers, read options do not uniquely
identify write events. Nevertheless, as our proof shows, an
ambiguity inside the writing thread does not harm the ade-
quacy of the semantics. Roughly speaking, it can be resolved
by picking the po-earliest write event, as reading from it
enforces the weakest constraints for the rest of the run.

Finally, RMWs behave like an atomic combination of a read
and a write, with a slight adaptation of the above semantics.

Ori Lahav and Udi Boker

Recall that in opSRA, an RMW may only read from the mo-
maximal write to the relevant location. To achieve this in
IoSRA, we include an additional field in read options, which
is a binary flag that can be set to either R or RMW. Intuitively,
an RMW value means that the read option is set to read from
the mo-maximal write. Accordingly, an RMW step may only
consume read options marked as RMW. Since WRITE steps to
x replace the mo-maximal write to x in the execution graph,
they may choose to mark any of the added read options as
RMW, but they can only execute when no read option (of any
thread) with location x is marked as an RMW.

Next, we turn to the formal definitions.

Notation 5.5 (Sequences). We use € to denote the empty
sequence. The length of a sequence s is denoted by |s| (in
particular |e| = 0). We often identify sequences with their
underlying functions (whose domain is {1, ...,|s|}), and write
s(k) for the symbol at position 1 < k < |s| in s. We write
o € sif o appearsins, thatisif s(k) = o for some 1 < k < |s|.
We use “-” for the concatenation of sequences, which is lifted
to concatenation of sets of sequences in the obvious way.
We identify symbols with sequences of length 1 or their
singletons when needed (e.g., in expressions like o - S).

Definition 5.6. Read options, read-option lists and potentials
are defined as follows:

1. A read option is a quadruple o = (, x, v, u), where 7 € Tid,
x € Loc, v € Val and u € {R,RMW}. The functions tid,
loc, val and rmw return the thread identifier (z), location
(x), value (v), and RMW flag (u) of a given read option.

2. A read-option list L is a sequence of read options.

3. A potential B is a finite non-empty set of read-option lists.

We define an ordering on read-option lists, which extends
to potentials and to assignments of potentials to threads.

Definition 5.7. The (overloaded) relation C is defined by:

1. on read-option lists: L & L’ if L is a (not necessarily
contiguous) subsequence of L’;

2. on potentials: B € B’ if VL € B. 9L’ € B’. L £ L’
(ak.a. “Hoare ordering”);

3. on functions from Tid to the set of potentials: B C B’ if
B(r) € B'(r) for every t € Tid.

The [0SRA memory system is formally defined as follows.
Figure 5 illustrates a run of IoSRA for the SB program (Ex. 3.5)
together with the corresponding run of opSRA.

Definition 5.8. [0SRA is defined by: IoSRA.Q is the set of
functions B assigning a potential to every 7 € Tid; loSRA.Qy =
{Ar € Tid. {€}};® and the transitions are given in Fig. 4.

3To achieve implicit initialization of all locations to 0, one should take
IoSRA.Qp to consist of all functions assigning to each thread sequences
consisting of read options of the form (Ty, x, 0, u) where Ty is a distinguished
thread identifier that is not used in programs (corresponds to the initializing
thread, see Remark 1).

Decidable Verification under a Causally Consistent Shared Memory

PLDI °20, June 15-20, 2020, London, United Kingdom

WRITE
Vr e Tid, L’ € B'(r). An > 0,uy, ... ,un, Ly, ... ,.Lp. RMW
L' =Ly-(r,x,00,u1) - Ly -...- \T, X, 0w,) - Lp REaAD loc(o) = x val(o) = o
ALy Ly € B(m) A L. Ly € B(1) loc(o) = x rmw(o) = RMW
A(r=1 = VYoelLy-..-L,. loc(o) # x) val(o) = vr B =Bnialt = 0 Bmia(D] |
AVo€Ly-..-Ln. loc(o) = x = rmw(0) =R B =8'[r— 0-B' ()] Bnid o, on B B'CB
g S, losrA B’ g SR, losra B’ g SN0, losrA B’ B Siosra B’

Figure 4. Transitions of [oSRA.

The definition of the WRITE step generally follows the
intuitive explanation above. Every read-option list after the
WRITE transition is obtained from some previous list, with
the addition of n > 0 read options of the current write,
provided that: (i) the suffix of the existing list right after
the position of the first added option is a read-option list of
the writing thread; (ii) the lists of the writing thread (which
are not discarded in this transition) cannot have options
to read from x besides the ones that are currently added;
and (iii) the original lists (which are not discarded in this
transition) cannot have an RMW option for x. Note that since
the universal quantification is on lists of the new state, the
step allows to “duplicate” lists before modifying them, as
well as to “discard” complete lists (as often useful when a
certain list is needed only as a justification for positioning a
read option). We also note that several RMW options can be
added, but only one of them may be later fulfilled, due to
condition (iii).

Remark 3. Our formal WRITE step insists on having a jus-
tification in the form of a complete read-option list of the
writing thread (L; -...- L, € B(7)). It suffices, however, for the
suffix after the first added read option to be a subsequence
of some list of the writing thread ({L; -...- L,} € B(r)). In-
deed, this less restrictive step is derivable by combining a
LOWER step and a WRITE step. Note also that for 7 = 7
(adding read options in the lists of the thread that performed

the write), this means that no justification is needed (since
Ly -...- L, € B(r) implies {L; -...- L,} C B(1)).

The READ step requires the first option in all lists in the
executing thread’s potential the read to be the same, and
consumes it from all these lists. Note that, by definition, the
potential 8B’(7) is non-empty, and so the set B(r) as defined
in the step is non-empty. When all options are consumed,
7’s potential consists of a single empty list.

Remark 4. Our formal READ step always discards the first
option from the lists, which was used to justify the read. An
alternative semantics that keeps the lists unchanged in read
steps (allowing to discard the first option using the LOWER
step) would be completely equivalent. Indeed, the write step
that added the consumed option could always add multiple
identical consecutive read options.

The RMW step is an atomic sequencing of READ and WRITE
to the same location. The READ part can only be performed
provided that the first option in all lists is marked with RMW.

The LOWER transition allows to remove read options, as
well as full read-option lists, at any point. It also allows to add
new lists, provided that each new list is “at most as powerful”
as some existing list (as used in Remark 3). Intuitively, LOWER
can only reduce the possible traces, while it allows us to show
that loSRA is a well-structured transition system.

Example 5.9. Consider the 2+2W program with its (SRA-
disallowed) outcome in Ex. 3.11. To see that this outcome
cannot be obtained by loSRA, consider the last write executed
in a run of this program. Suppose, w.l.o.g., that it is y := 2
by T;. Before executing this write, T; may not have any read
options of location y in its lists. Hence, a read option of the
form (m,y, 1,u) should be added to T;’s potential after Ty
executed y := 2. This contradicts our assumption that y := 2
was the last executed write.

Example 5.10. Consider the 2RMW program with its (SRA-
disallowed) outcome in Ex. 3.9. To try to obtain this out-
come in loSRA, the x := 0 by T; must add a read option
(T1, X, 0, RMW) in both its own list and in a list of T,. But, the
execution of the first RMW, which consumes one of these
options, can only proceed after the other option marked with
RMW is discarded. Hence, the second RMW cannot read 0, and
this outcome cannot be obtained by [oSRA.

Next, we establish the equivalence of loSRA and opSRA.
To do so, we define a relation v C loSRA.Q X opSRA.Q,
formalizing the intuitive simulation discussed so far between
IoSRA’s lists and opSRA’s execution graphs. For defining v,
we first define a “write list” linking the read options in a
read-option list L to write events in an execution graph G.

Definition 5.11. A write list is a sequence W of write events.
A write list W is a (G, L)-write-list if |[L| = |W| and the
following hold for every 1 < k < |W| with L(k) = (7, x,v, u):
e W(k) € G.W.
e tid(W(k)) =7, loc(W(k)) = x an