
Separation Logic for a Higher-Order Typed Language

[Extended Abstract]

Neelakantan Krishnaswami
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

neelk+@cs.cmu.edu

John Reynolds
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

jcr+@cs.cmu.edu

Jonathan Aldrich
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

jcr+@cs.cmu.edu

ABSTRACT
Separation logic is an extension of Hoare logic which per-
mits reasoning about low-level imperative programs that use
shared mutable heap structure. In this work, we create an
extension of separation logic that permits effective, modu-
lar reasoning about typed, higher-order functional programs
that use aliased mutable heap data, including pointers to
code.

Categories and Subject Descriptors
D.3.0 [Programming Languages]: General; F.3.1 [Logic
and Meaning of Programs]: Specifying and Verifying
and Reasoning About Programs

General Terms
Separation Logic

Keywords
Separation logic, specification logic, imperative, functional,
aliasing, monads, ML, call-by-value

1. INTRODUCTION
Traditionally, pointer programs – programs which make

use of aliased, mutable data values – have been difficult to
analyze, for two reasons. First, aliasing allows an assign-
ment to a pointer to nonlocally affect other variables that
contain the same pointer. This requires specifications to
explicitly enumerate all the possible interference patterns
between mutable variables and fields – and the number of
possible interference clauses can rise quadratically with the
number of such objects in a program. Second, the heap is a
global data structure, and changes to it are visible to every
part of a program, greatly complicating efforts at modular
reasoning.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPACE2006 Charlestown, SC USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Separation logic, originally developed by John Reynolds
and Peter O’Hearn [18, 10, 8], and elaborated by many
others, is a powerful extension of Hoare logic for reasoning
about pointer programs. To handle the difficulties described
above, separation logic extends the assertion language of
Hoare logic with spatial connectives. They are spatial in
the sense that they permit formulas to range over just part
of the heap: a spatial proposition p ∗ q, written using the
“separating conjunction”, holds when p holds for one part of
the heap, and q holds for the other part of it. Thus, aliasing
between p and q is implicitly forbidden, removing the need
to write tedious and extensive noninterference conditions.
Separation further enables local reasoning about the heap:
If one command in a program does its job in a heap frag-
ment described by a proposition p, and another does its job
in a fragment described by q, then we can safely combine
the commands to work together in a heap described by p ∗ q
— the separating conjunction’s disjointness property means
that the two subroutines cannot interfere with each other.

However, most of the work on separation logic has fo-
cused on low-level languages, which are strictly first-order
and where features like the precise layout of data in memory
and identity of pointers as integers are visible.

In this work, we define a specification logic for a a high-
level language: a monadic lambda calculus in which pointers
are a separate data type. Pointers may contain values of any
type, including code (denoted by closures), such as functions
and frozen monadic computations. Thus, our programming
language resembles a subset of ML, except for the use of
monadic form to make effects and their order of execution
more explicit. Our program logic uses separation logic as the
essential mechanism for reasoning about imperative compu-
tations, and simultaneously permits us to use the equational
theory of the lambda calculus to reason about the functional
aspect of programs.

In Section 2, we give the static and dynamic semantics
of our language, and then in Section 3 define an assertion
language with the separating conjunction and implication
in it and give its semantics. Finally, in Section 4 we define
a notion of Hoare triple for our language, and then build a
specification logic on top of that, which uses triples (contain-
ing separation logic formulas) as its atomic formulas. This
gives us a two-level logic in which we can relatively easily
write program specifications.

2. THE MONADIC LANGUAGE
The programming language we work with is a monadic



call-by-value lambda calculus. Following Davies and Pfen-
ning [7], we stratify the language into two syntactic cate-
gories, expressions and computations, which are described
in Figure 1. Expressions are the purely functional fragment
of the language, where evaluation always terminates and
corresponds to the beta-rule of the lambda calculus.

We type expressions using the typing judgement Γ ` e : τ ,
described in Figure 2. Expressions include the usual in-
troduction and elimination forms for sum, product, and
function types. Additionally, we have reference types and
monadic types.

The type ref τ classifies references that point to a value
of type τ . Departing slightly from the usual presentation,
pointer values take on the form lτ – that is, a pointer is
tagged with the type of the value it points to. This simplifies
the semantics of the separation logic assertions, which will
be described in the next section. A computation c that
produces a value of type τ , can be suspended and turned
into a first-class value [c] of the monadic type©τ . A value of
monadic type is a frozen computation and does not evaluate
any further, which keeps side-effects from infecting the pure
part of the language.

Neither reference values nor frozen computations have any
elimination rules in the expression language, which ensures
that no expression can have a side-effect. We make this syn-
tactically apparent in the dynamic semantics of expressions,
given in Figure 5, by simply leaving out the store altogether
from its reduction relation (e ; e′).

We have a judgement Γ ` c÷ τ , given in Figure 3, which
characterizes well-formed computations. A computation is
either an expression (which becomes a computation with-
out side-effects); reading (!e), writing (e := e′), or creating
(newτe) a reference; or sequencing two computations via
monadic sequencing with the form letv x = e in c.1 Se-
quencing takes an expression of type ©τ , evaluates it to a
value [c′], and then executes c′ and passes the result (a value
plus side-effects) to c.

As an example, consider the following program, which is
a computation of type nat.

letv r = [new 5] in

letv dummy = [r := 17] in

letv n = [!r] in

(n - 5)

Here, we have a computation which creates a new pointer,
pointing to 5, and then updates it to point to 17, and then
dereferences the pointer and returns the dereferenced value
minus 5, for a final result of 12. We freeze basic commands
and turn them into monadic values when we put them in
brackets (e.g., [!r]), and then we can run them in the se-
quential order using the monadic let-binding construct.

We also have a judgement σ ok in Figure 4 to characterize
well-typed heaps. Unlike the usual presentation of adding
references to the lambda calculus [13], this judgement ex-
plicitly does not check whether or not there are dangling
pointers in the heap – it permits dangling pointers as long
as the pointers are themselves well-typed.

The reduction relation for commands, 〈c; σ〉 ; 〈c′; σ〉, is
given in Figure 6 and takes a program state, i.e. a pair of
a computation and a heap, into another program state. If
evaluation would read or write a pointer not in the heap,
then we transition into the abort state 〈e; σ〉 ; abort.
1This is equivalent to the bind operation in Haskell.

The decision to explicitly model what would happen with
dangling pointers ends up substantially simplifying the se-
mantics of the new connectives of the assertion language
of separation logic, as we will see in the next two sections.
Informally, we use separation logic to reason about heap
fragments, and the abort state lets the reduction relation
“tell us” when a partial heap did not contain enough data
for evaluation to proceed.

Also, one standard choice still worth drawing attention
to is that dynamic allocation via newτv is nondeterministic.
The evaluation rule for allocation promises to return a new
pointer not in the domain of the heap, but does not say what
value that pointer will take on. This is important, because it
is necessary in order for the frame property discussed below
to hold.

The metatheory of this language is fairly standard. The
only wrinkle is that we have to prove soundness twice, one
for each of the two judgements for expressions and compu-
tations. We have the usual proof of type soundness for the
expression language via the progress and type preservation
lemmas.

Proposition 1 (Expression Progress). If � ` e : τ ,
then either e is a value or there exists an e′ such that e ; e′.

Proposition 2 (Expression Subject Reduction).
If � ` e : τ and e ; e′, then � ` e′ : τ .

These are proved by structural induction on typing deriva-
tions and evaluation derivations, respectively.

Additionally, we also show that expressions always reduce
to a value. We take e ;∗ v to be the transitive closure of
the one-step evaluation relation.

Proposition 3 (Termination). If � ` e : τ , then there
exists a v such that e ;∗ v.

We prove this using a straightforward logical relations ar-
gument [17], though it also follows immediately from the
fact that the simply typed lambda calculus is strongly nor-
malizing.

Once we have soundness for our expression language, we
can use it to prove soundness for computation terms.

Proposition 4 (Partial Computation Progress).
If � ` c÷τ and σ ok, then either c is a value v, or there exists
a c′ and σ′ such that 〈c; σ〉 ; 〈c′; σ′〉, or 〈c; σ〉 ; abort.

Proposition 5 (Computation Subject Reduction).
If � ` c ÷ τ and σ ok and 〈c; σ〉 ; 〈c′; σ′〉, then � ` c′ ÷ τ
and σ′ok.

The progress lemma includes the possibility of the compu-
tation aborting if it tries to access a dangling pointer. We
can restore the full safety of the conventional type-safety
theorem if we introduce the notion of a closed state . We
say a state 〈c; σ〉 is closed if all of the pointers in c and
in each of the values in the range of σ are members of the
domain of σ.

Proposition 6 (Full Computation Progress). If � `
c÷ τ , σ ok, and 〈c; σ〉 is closed, then either c is a value v,
or there exists a c′ and σ′ such that 〈c; σ〉 ; 〈c′; σ′〉 and
〈c′; σ′〉 is closed.



Types τ ::= 1 | τ × τ ′ | τ + τ ′ | τ → τ ′ | ref τ | © τ

Expressions e ::= () | (e1, e2) | π1e | π2e
| inl e | inr e | case(e, x′. e′, x′′. e′′)
| λx : τ. e | x | e1 e2 | lτ | [c]

Computations c ::= e | letv x = e in c | !e | e := e′

| newτe

Values v ::= () | (v1, v2) | inl e | inr e
| λx : τ. e | lτ | [c]

Contexts Γ ::= � | Γ, x : τ

Heaps σ ::= � | σ, lτ : v

Figure 1: The Basic Syntactic Categories

Although we have no explicit operator for term-level re-
cursion, nontermination is possible in the computation lan-
guage, because we have higher-order state – that is, pointers
to functions. We can code an imperative fixpoint if we up-
date a function pointer so that a function body contains a
pointer to itself. (This is Landin’s technique of “tying a
knot in the heap” to construct a recursive function.) As a
concrete example, consider the following computation:

letv r = [ref (fun x:unit. [x])] in

letv f = [fun y:unit. [letv recur = [!r] in

recur ()]] in

letv dummy = [r := f] in

letv looper = f() in

(unreached code)

First, we create a function pointer r initially containing a
pointer to some dummy value of type 1 → ©1. Next, we
create a function f , whose body is a frozen computation that
dereferences r and invokes that function. Third, we update
r to point to f . Finally, when we call f , r is dereferenced
and binds its contents – f itself – to the variable recur, and
finally calls f . This gives us an infinite loop, and shows
that we have introduced nontermination into our monadic
language.

Finally, we can devise a big step semantics for both the ex-
pression and computation language, and prove their agree-
ment with the small-step semantics. We will write e ⇓ v
for expression evaluation, and 〈e; σ〉 ⇓ 〈v′; σ′〉 or 〈e; σ〉 ⇓
abort for the big-step computation evaluation. These judge-
ments are primarily a technical convenience, and for space
reasons we do not give them; the rules are the obvious ones.

3. THE ASSERTION LANGUAGE AND ITS
SEMANTICS

The assertion language in this paper, described in Figure
8, is a multi-sorted first order logic with equality, extended
with the additional spatial connectives ∗ and −∗. The sorts
of the language are drawn form the types of the program-
ming language, and we define a judgement Γ ` p : assert
which ensures that any programming language terms that
appear in an assertion are well-typed. The equality e =τ e′

Γ ` e : τ

x : τ ∈ Γ
Γ ` x : τ Γ ` () : 1

Γ ` e : τ1

Γ ` inl e : τ1 + τ2

Γ ` e : τ2

Γ ` inr e : τ1 + τ2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2

Γ ` πie : τi

Γ, x : τ ′ ` e : τ

Γ ` λx : τ ′. e : τ ′ → τ

Γ ` e : τ ′ → τ Γ ` e′ : τ ′

Γ ` e e′ : τ

Γ ` lτ : ref τ

Γ ` c÷ τ

Γ ` [c] : ©τ

Γ ` e : τ1 + τ2
Γ, x1 : τ1 ` e1 : τ
Γ, x2 : τ2 ` e2 : τ

Γ ` case(e, x1. e1, x2. e2) : τ

Figure 2: Static Semantics of Expressions

Γ ` c÷ τ

Γ ` e : τ
Γ ` e÷ τ

Γ ` e : ©τ ′ Γ, x : τ ′ ` c÷ τ

Γ ` letv x = e in c÷ τ

Γ ` e : ref τ
Γ `!e÷ τ

Γ ` e : τ
Γ ` newτe÷ ref τ

Γ ` e1 : ref τ Γ ` e2 : τ

Γ ` e1 := e2 ÷ 1

Figure 3: Static Semantics of Computations

σ ok

� ok

σ ok � ` v : τ lτ 6∈ dom(σ)

σ, lτ : v ok

Figure 4: Heap Well-Typing



e ; e′

e1 ; e′1

e1 e2 ; e′1 e2

e2 ; e′2

v e2 ; v e′2

e1 ; e′1

(e1, e2) ; (e′1, e2)

e2 ; e′2

(v, e2) ; (v, e′2)

e ; e′

inl e ; inl e′
e ; e′

inr e ; inr e′

(λx : τ. e)v ; [v/x]e

Figure 5: Small-step Dynamic Semantics of Expres-
sions

and the points-to assertion e ↪→τ e′ are both indexed by
types, but we will normally elide this annotation. Finally,
we lift substitution of values for variables to assertions in
the completely predictable way.

The semantics of a well-formed assertion p (that is, Γ `
p : assert) is given with a forcing relation of the form

γ, σ ok |= p

Here γ is an environment, a function mapping the free
variables in Γ to closed values of the appropriate type. We
will write γ(x) to apply the function to a variable, and we
will abuse notation and write γ(e) to represent the appli-
cation of an appropriately lifted function that substitutes
values for the free variables of an expression e, consistently
with γ. Likewise, we will write γ(c), γ(p) and so on to for
liftings to computations, assertions, and so on.

We write σ ok to denote a derivation that a heap σ is
well-typed. Using a derivation differs from the traditional
presentation of separation logic, where the heap itself models
a proposition. We make this choice in order to ensure that
we only consider well-typed heaps. It also explains why our
heap well-typing judgement in the previous section does not
contain a closure condition that forbids dangling pointers:
we want to be able to split and merge derivations in the
same way that we can split and merge heaps.2

We use the following notation to represent this idea (taken
from [8]):

• σ#σ′ indicates that the domains of σ and σ′ are dis-
joint.

• σ·σ′ indicates the union of disjoint heaps, that is, when
σ#σ′ have disjoint domains, we take the concatenation
of the two heaps.

• σ w σ′ indicates that σ is an extension of σ′; that
is, σ contains all of the pointer/value pairs of σ′ and
possibly some additional ones.

2The appropriate intuition is that the two rules for typing a
heap give rise to a list datatype with a nil and a cons, and
that lists form a monoid, which lets us use the monoidal
resource semantics of BI [15].

〈c; σ〉 ; 〈c′; σ′〉

〈c; σ〉 ; abort

e ; e′

〈e; σ〉 ; 〈e′; σ〉

e ; e′

〈letv x = e in c; σ〉 ; 〈letv x = e′ in c; σ〉

〈c1; σ〉 ; 〈c′1; σ′〉
〈letv x = [c1] in c; σ〉 ; 〈letv x = [c′1] in c; σ′〉

〈letv x = [v] in c; σ〉 ; 〈[v/x]c; σ〉

〈c1; σ〉 ; abort

〈letv x = [c1] in c; σ〉 ; abort

e ; e′

〈newτe; σ〉 ; 〈newτe′; σ〉

lτ 6∈ dom(σ) σ′ = σ, lτ : v

〈newτv; σ〉 ; 〈lτ ; σ′〉

e ; e′

〈!e; σ〉 ; 〈!e′; σ〉

lτ : v ∈ σ

〈!lτ ; σ〉 ; 〈v; σ〉

lτ 6∈ dom(σ)

〈!lτ ; σ〉 ; abort

e1 ; e′1

〈e1 := e2; σ〉 ; 〈e′1 := e2; σ〉

e2 ; e′2

〈lτ := e2; σ〉 ; 〈lτ := e′2; σ〉

lτ ∈ dom(σ) σ′ = [σ|lτ : v]

〈lτ := v; σ〉 ; 〈(); σ′〉

lτ 6∈ dom(σ)

〈lτ := v; σ〉 ; abort

Figure 6: Dynamic Semantics of Computations



p ::= e =τ e′ | e ↪→τ e′ | p ∧ p′ | p ⊃ p′ | p ∗ p′ | p−∗p′

| > | ⊥ | p ∨ p′ | ∀x : τ. p | ∃x : τ. p

Γ `: > : assert Γ `: ⊥ : assert

Γ ` e : τ Γ ` e′ : τ

Γ ` e = e′ : assert

Γ ` e : ref τ Γ ` e′ : τ

Γ ` e ↪→ e′ : assert

Γ ` p : assert Γ ` q : assert Op ∈ {∧,⊃,∨, ∗,−∗}
Γ ` p Op q : assert

Γ, x : τ ` p : assert Q ∈ ∀,∃
Γ ` Qx : τ. p : assert

Figure 7: Syntax of Separation Logic Assertions

Since every heap well-typing derivation σ ok identifies a
unique heap (up to permutation), we can overload our nota-
tion and write (σ ok) # (σ′ ok) or (σ ok) · (σ′ ok) without
confusion. We will also sometimes say that a proposition
“holds in a heap”, with the understanding that we really
mean the derivation that proves the heap well-typed.

We give the cases of the forcing relation in figure 7. This
semantics satisfies the Kripke monotonicity condition, which
is that if γ, σ ok |= p and σ′ ok w σ ok, then γ, σ′ ok |= p.

This means that we have chosen to use the intuitionistic
semantics of separation logic [8], in which if a proposition
holds in a heap, it continues to hold in all extensions of
that heap. There is no technical obstacle to using the classi-
cal semantics; however, we choose this version of separation
logic because our language does not contain a command for
de-allocating pointers.3

The equality connective e =τ e′ holds when e and e′ are
equal. The notion of equality that we choose is beta-eta
equality for the functional subset, and the monad laws for
computations. For space reasons, we only give a subset of
these rules in Figure 9.

Our choice raises a couple of interesting issues. First,
in the previous section, we gave an operational semantics,
rather than a denotational semantics, for our language. This
means that we have a relatively free choice for what we define
equality to mean, as long as we prove that evaluation of
expressions preserve equality – that is, if Γ ` e1 = e2 : τ ,
and e1 ; e′1, then Γ ` e′1 = e2 : τ . Verifying this is a
straightforward induction on the reduction relation.

Second, we have to consider what it means for two compu-
tations to be equal; that is, if we have the assertion [c] = [c′],
then we have to judge whether Γ ` [c] = [c′] : ©τ , and hence
whether Γ ` c = c′÷ τ . To our knowledge, this question has
not appeared in other presentations of separation logic, since
for the most part they do not have heaps that contain code.
Obviously, we cannot give a full characterization of equality
of computations – it is because of the weakness of imperative
programs’ equational theory that we are trying to devise a
separation logic at all. Instead, we take a conservative ap-

3In a real implementation, memory will be collected using
garbage collection. Giving a garbage-collection aware se-
mantics for separation logic is quite subtle [6], and so we
ignore garbage collection in our operational semantics and
defer further consideration of this point for future work.

proach, and take only the monad laws as our equational
theory of computations. These are the rules given for the
judgement Γ ` c = c ÷ τ in Figure 9. (The monad laws
are the natural transformations of a Kleisli triple in cat-
egory theory [9], and are the commuting conversions in a
proof-theoretic presentation of lax logic [1].) Verifying that
the computation reduction rules for states agree with these
monad laws is again straightforward. It may be possible to
give a richer notion of equality of computations employing
more of the particular algebraic structure of heaps, e.g. [14],
but we have not yet investigated this possibility.

The connective e ↪→τ e′ looks one deep into the heap. It
is true exactly when the heap contains a pairing lτ : v, such
that e equals lτ and e′ = v. As noted above, our points-to
connective is intuitionistic; it only asks whether there is at
least a memory location e in the heap pointing to e′ – there
can be more cells.

The separating conjunction p1 ∗p2 holds whenever a heap
typing σ ok can be split into two disjoint subheaps σ1 and
σ2, in which p1 and p2 hold separately. For example, with
this definition, the proposition l1nat ↪→ 0 ∗ l2nat ↪→ 5 holds of
any extension of the heap σ = l1nat : 0, l2nat : 5.

With this semantics, we can prove soundness for the logic.
We do this by defining the semantic consequence relation
p BΓ q to hold between well-formed formulas Γ ` p : assert
and Γ ` q : assert if and only if for all γ that are well-
typed environments under Γ, and for all heap typings σ ok,
if γ, σ ok |= p holds then γ, σ ok |= q holds.

Proposition 7 (Assertion Soundness). The usual rules
of intuitionistic logic are sound for the semantic consequence
relation, along with the following rules:

• ∗ is associative and commutative, with unit >.

• If p BΓ q, and Γ′ extends Γ, then p BΓ′ q.

• ∗ supports weakening: p ∗ q BΓ p

• The following inference rules hold:

p′ BΓ p q′ BΓ q

p′ ∗ q′ BΓ p ∗ q

r BΓ p−∗q
r ∗ p BΓ q

r BΓ p−∗q r′ BΓ p

r ∗ r′ BΓ q

4. SPECIFICATION LOGIC
With a semantics for the assertion language in hand, we

now consider how to construct a specification language from
it. Our general approach closely mirrors specification logic
[16] for Algol, in which Reynolds took a Hoare logic for
commands and integrated it with a call-by-name functional
programming language. Our language is call-by-value, but
the critical property we retain is that the full beta rule is a
valid notion of equality (intuitively, the monadic type dis-
cipline ensures that function application won’t change the
side effects of an expression).

To begin, we analyze Hoare triples and see what changes
we will need to make. First, and most simply, a computation
in our language will return a value in addition to having side
effects. That is why the syntax for triples in our specification
language is of the form {p}c{x : τ . q} – the x is a binder



γ, σ ok |= e = e′ iff � ` γ(e) = γ(e′) : τ

γ, σ ok |= e ↪→ e′ iff
� ` γ(e) = lτ : ref τ and
� ` γ(e′) = v : τ and
lτ : v ∈ σ

γ, σ ok |= p1 ∧ p2 iff
γ, σ ok |= p1 and
γ, σ ok |= p2

γ, σ ok |= p1 ∨ p2 iff
γ, σ ok |= p1 or
γ, σ ok |= p2

γ, σ ok |= p1 ⊃ p2 iff
for all σ′ ok w σ ok.
if γ, σ′ ok |= p1

then γ, σ′ ok |= p2

γ, σ ok |= p1 ∗ p2 iff

there exist σ1 ok, σ2 ok.
σ = σ1 · σ2 and σ1#σ2 and
γ, σ1 ok |= p1 and
γ, σ2 ok |= p2

γ, σ ok |= p1 −∗p2 iff
for all σ1 ok.
if σ#σ1 and γ, σ1 ok |= p1

then (γ, σ1 · σ) ok |= p2

γ, σ ok |= ∀x : τ. p iff
for all � ` v : τ.
γ, σ ok |= p[v/x]

γ, σ ok |= ∃x : τ. p iff
there exists � ` v : τ.
γ, σ ok |= p[v/x]

γ, σ ok |= > iff always

γ, σ ok |= ⊥ iff never

Figure 8: Semantics of Assertions

Γ ` e = e′ : τ

Γ ` e : τ
Γ ` e = e : τ

Refl

Γ ` e = e′ : τ Γ ` e′ = e′′ : τ

Γ ` e = e′′ : τ
Trans

Γ ` e′ = e : τ

Γ ` e = e′ : τ
Sym

Γ, x : τ ′ ` e1 = e′1 : τ Γ ` e2 = e′2 : τ ′

Γ ` (λx : τ ′. e1)e2 = [e′2/x]e′1 : τ
FunBeta

Γ, x : τ ′ ` ex = e′x : τ

Γ ` e = e′ : τ ′ → τ
FunExt

Γ ` c = c′ ÷ τ

Γ ` c÷ τ

Γ ` c = c÷ τ
Refl

Γ ` c = c′ ÷ τ Γ ` c′ = c′′ ÷ τ

Γ ` c = c′′ ÷ τ
Trans

Γ ` c′ = c÷ τ

Γ ` c = c′ ÷ τ
Sym

Γ ` e = e′ : τ ′

Γ ` e = e′ ÷ τ

Γ ` c÷ τ

Γ ` c = letv x = [c] in x÷ τ

y 6∈ FV(c′′) Γ ` letv x = [letv y = e in c′] in c′′ ÷ τ

Γ ` letv x = [letv y = e in c′] in c′′ =
letv y = e in letv x = c′ in c′′ ÷ τ

Γ ` letv x = [v] in c÷ τ

Γ ` letv x = [v] in c = [v/x]c÷ τ

Figure 9: Selected Rules of Typed Equality for Ex-
pressions and Computations



for the value the computation will return, and should not
shadow any variables in p or c.

Secondly, it’s not sufficient to give a semantics for triples
as a relation between states, because free variables in a
higher-order program might be bound to functions or sus-
pended computations, which both contain code. Consider
the following small program:

{true}

letv n = fact(k) in

(k+1) * n

{x:nat. x = (k+1)!}

Whether this triple is true for this program depends on
what value fact is bound to. So, we begin by giving the
semantics of a triple as a function of its free variables. If
Γ ` {p}c{x : τ . q} : spec, then we give meaning to the triple
as a function of type-correct environments γ:

[[{p}c{x : τ . q}]]γ =

∀σ ok. ∀σ′ ok. ∀v.
if γ, σ ok |= p then
〈γ(c); σ〉 6⇓ abort
and

(if 〈γ(c); σ〉 ⇓ 〈v; σ′〉
then γ, σ′ ok |= [v/x]q)

The type of this semantic function is that it takes envi-
ronments to booleans; it is not a relation between heaps.
Heap typings appear in the definition, but we universally
quantify over all of them. Also, note that is a partial cor-
rectness criterion. Likewise, we give a semantics for triples
over suspended monadic computations as follows:

[[〈p〉e〈x : τ . q〉]]γ =

∀σ ok. ∀σ′ ok. ∀v.∀c.
if γ, σ ok |= p

and � ` γ(e) = [c] : ©τ
then
〈c; σ〉 6⇓ abort
and

(if 〈c; σ〉 ⇓ 〈v; σ′〉
then γ, σ′ ok |= [v/x]q)

This is essentially a duplicate of the previous semantic
equation, but is needed for two reasons. First, a let-binding
letv x = [c] in c′ in the monadic language will evaluate the
expression of monadic type [c] before substituting the value,
so it is convenient to have a primitive triple that can be
used directly with monadic expressions when giving an in-
ference rule for sequencing. Secondly, all of the variables in
our monadic language are expression variables; there are no
variables that range over computations.

Once we have these basic triples, we can compose the
triples themselves with logical connectives to construct more
complex specifications, and inductively build up a meaning
for the composite formulas:

[[S1 and S2]]γ = [[S1]]γ and [[S2]]γ

[[S1 or S2]]γ = [[S1]]γ or [[S2]]γ

[[S1 implies S2]]γ = if [[S1]]γ then [[S2]]γ

[[∀x : τ. S]]γ = ∀(� ` v : τ). [[[v/x]S]]γ

[[∀x : τ. S]]γ = ∃(� ` v : τ). [[[v/x]S]]γ

Thus, we have turned triples into the atomic propositions
of yet another logic. This means that we have a two-level
logic, in which we have propositions of separation logic ap-
pearing in triples, and the triples themselves are proposi-
tions in another logic. This permits us to characterize the
behavior of free variables in a specification. For example,
revisiting the factorial example, we might write:

(forall m:nat. <true>fact(m)<\x:nat. x = m!>)

implies

({true}

letv n = fact(k) in (k+1) * n

{x:nat. x = (k+1)!})

This specification is substantially more satisfying than be-
fore, because we have a clear idea of what the fact function
is supposed to do. We can read this specification as saying,
“If fact computes the factorial function, then the conse-
quent will compute (k + 1)!.” However, we still have free
variables in this spec, and we must ask under what circum-
stances we can use such a specification – are there imple-
mentations of fact or values of k for which the specification
will be falsified?

The approach we will take towards answering this ques-
tion is to come up with inference rules for deriving specifi-
cations which remain true in all type-correct environments.
Following Reynolds [16], we will call such specifications uni-
versal. For a well-formed specification Γ ` S : spec, we
say:

S is universal iff ∀γ.[[S]]γ

In Figures 12 and 13, we give a collection of deduction
rules for inferring universal specifications. The rules are
written in a sequent style, but semantically a sequent of
the form Γ;∆ ` S, where ∆ = S1, . . . Sn, is interpreted
as the specification (S1 and . . . and Sn) implies S with free
variables in Γ.

Proposition 8 (Soundness of Specification Logic).
Every derivation Γ;∆ ` S using the rules in Figures 12 and
13 derives a universal specification.

We prove this with an induction on the derivation. Most
of the cases are routine, except for the base cases, the rule
Frame, and the Substitution rule.

The base cases can all be proven with a straightforward
appeal to the semantics, but are noteworthy because they
are all “small” or “tight”. In O’Hearn’s terminology [10],
they enable local reasoning because the preconditions and
postconditions refer to no other pointers than the ones that
are accessed.



S ::= {p}c{x : τ . q} | 〈p〉e〈x : τ . q〉
| S and S | S or S′ | S implies S′

| ∀x : τ. S | ∃x : τ. S

∆ ::= � | ∆, S

Figure 10: Syntax of Specifications

To prove the Frame rule, we first show that the opera-
tional semantics validates the safety monotonicity and frame
properties.[11] Informally, safety monotonicity is the prop-
erty that if a particular program and heap do not evaluate
to an abort, then that program will not abort with any ex-
tension of the heap, and the frame property is the local
reasoning property – a program will not modify any state
outside of its footprint.

The Substitution rule arises from the basic substitution
principle that if Γ, x : τ ′ ` e : τ and Γ ` e′ : τ ′, then
Γ ` [e′/x]e : τ , lifted first through the syntax of assertions
and then lifted again to specifications, with a small extra
bit of complexity arising from the use of environments in
the semantics.

It is the combination of the frame rule and the substitution
property that enables genuinely modular reasoning about
programs.

We can prove a client programs that use an imperative
module if we specify its interfaces in a hypothetical specifi-
cation of the form Γ, x1 : τ1, . . . , xn : τn;∆, Si ` Sc. Here,
we take Si to be the signature of the module, naming the
data and operations in its interface with the variables. Si

does not have to mention any of the client’s data – whenever
Sc uses an operation from Si, it can use the Frame rule to
assert that its data is untouched.

Then, we can derive a concrete implementation of that
module, if we prove a program with a specification Γ;∆ `
∃x1 : τ1, . . . ,∃xn : τn. Si, using the local reasoning property
to consider only the module’s data. Then, we can easily
compose the pieces using the existential elimination rule.

The existential elimination rule is only provable because
the programming language is consistent with the beta-reduction
rule of the lambda calculus, and so permits us to freely sub-
stitute expressions for variables without changing the mean-
ing of a program.

A crucial part of the success of this methodology arises
from the clear separation of the language into pure and
imperative parts via a monad. The first benefit is that it
greatly simplifies the assertion language: there is no need
for definedness predicates to assert that a term terminates,
nor for nested specifications within assertions, to cope with
possibly effectful expressions within an assertion. The sec-
ond benefit is that it permits the use of an extremely gen-
eral substitution principle, which allows a simple method of
combining specifications to work correctly.

5. RELATED AND FUTURE WORK
In spirit, this work is a direct descendent of Reynolds’

work on specification logic for Idealized Algol [16]. It was
the two observations that the full beta-rule is a valid rea-
soning principle in Idealized Algol, and that Algol’s com-
mand type completely separates the imperative and func-
tional parts of the language [19], that spawned the hypoth-

Γ ` p : assert Γ ` c÷ τ Γ, x : τ ` q : assert

Γ ` {p}c{x : τ . q} : spec

Γ ` p : assert Γ ` e : ©τ Γ, x : τ ` q : assert

Γ ` 〈p〉e〈x : τ . q〉 : spec

Γ ` S : spec Γ ` S′ : spec op ∈ {and, or, implies}
Γ ` S op S′ : spec

Γ, x : τ ` S : spec Q ∈ {∀,∃}
Γ ` Qx : τ. S : spec

Figure 11: Well-Formedness of Specifications

Γ;∆ ` S

Γ ` newτe÷ ref τ

Γ;∆ ` {>}newτe{x : ref τ . x ↪→ e} New

Γ `!e÷ τ Γ ` e′ : τ

Γ;∆ ` {e ↪→τ e′}!e{x : τ . e ↪→τ e′ ∧ x = e′}
Deref

Γ ` e := e′′ ÷ 1

Γ;∆ ` {e ↪→ −}e := e′′{x : 1. e ↪→ e′′}
Assign

Γ;∆ ` 〈p〉e〈x : τ . q〉
Γ, x : τ ;∆ ` {q}c{y : τ ′. r} x 6∈ FV(r)

Γ;∆ ` {p}letv x = e in c{y : τ ′. r}
Seq

Γ ` e : τ
Γ;∆ ` {>}e{x : τ . x = e} Pure

Γ;∆ ` {p}c{x : τ . q}
Γ;∆ ` 〈p〉[c]〈x : τ . q〉 Monad

Γ;∆ ` {p}c′{x : τ . q} Γ ` c = c′ ÷ τ

Γ;∆ ` {p}c{x : τ . q}
CompEq

Γ;∆ ` 〈p〉e′〈x : τ . q〉 Γ ` e = e′ : ©τ

Γ;∆ ` 〈p〉e〈x : τ . q〉
MonadEq

Γ;∆ ` {p}c{x : τ . q} Γ ` r : assert

Γ;∆ ` {p ∗ r}c{x : τ . q ∗ r} Frame1

Γ;∆ ` 〈p〉e〈x : τ . q〉 Γ ` r : assert

Γ;∆ ` 〈p ∗ r〉e〈x : τ . q ∗ r〉 Frame2

p BΓ p′ Γ;∆ ` {p′}c{x : τ . q′} q′ BΓ,x:τ q

Γ;∆ ` {p}c{x : τ . q}
Consequence

Figure 12: Universal Specification Inference Rules



Γ;∆ ` S

Γ;∆, S ` S
Hyp

Γ;∆ ` S′ Γ;∆, S′ ` S

Γ;∆ ` S
Cut

Γ, x : τ ;∆ ` S Γ ` e : τ

Γ; [e/x]∆ ` [e/x]S
Substitute

Γ;∆ ` S Γ;∆ ` S′

Γ;∆ ` S and S′ AndIntro

Γ;∆ ` S1 and S2

Γ;∆ ` S1
AndElim1

Γ;∆ ` S1 and S2

Γ;∆ ` S2
AndElim2

Γ;∆ ` S1 Γ ` S2 : spec

Γ;∆ ` S1 or S2
OrIntro1

Γ;∆ ` S2 Γ ` S1 : spec

Γ;∆ ` S1 or S2
OrIntro2

Γ;∆ ` S1 or S2 Γ;∆, S1 ` S Γ;∆, S2 ` S

Γ;∆ ` S
OrElim

Γ;∆, S′ ` S

Γ;∆ ` S′ implies S
ImpIntro

Γ;∆ ` S′ implies S Γ; ∆ ` S′

Γ;∆ ` S
ImpElim

Γ, x : τ ;∆ ` S x 6∈ FV(∆)

Γ;∆ ` ∀x : τ. S
UnivIntro

Γ;∆ ` ∀x : τ. S

Γ, x : τ ;∆ ` S
UnivElim

Γ;∆ ` [e/x]S Γ ` e : τ

Γ;∆ ` ∃x : τ. S
ExistIntro

Γ;∆ ` ∃x : τ. S′ Γ, x : τ ; ∆, S′ ` S

Γ; ∆ ` S
ExistElim

Figure 13: Universal Specifications, Continued

esis that the same idea could apply to a monadic language.
This combination turned out to be especially pleasant to
work with, because the decision to remove assignable vari-
ables and put all aliasing into the heap, meant that we could
simply dispense with the complex interference conditions of
specification logic, which described whether variables in two
expressions might interfere with one another. Instead, we
could use separation logic to reason about aliasing.

Birkedal, Torp-Smith and Yang [5] have done work on
a version of separation logic for a restricted variant of Al-
gol: like us, they remove variable assignment and put all
aliasing into the heap. The heap, as in Algol but in the
current work, is merely a first-order map of integers. This
system doesn’t distinguish the type system from the specifi-
cation language: command types can contain preconditions
and postconditions written in separation logic in a fashion
similar to refinement types. However, they support a very
powerful kind of hypothetical frame rule in their language.

Parkinson [12] has built a version of separation logic for a
programming language embodying a core subset of Java. As
in this work, he used an intuitionistic variant of separation
logic. However, the the lack of pure higher-order functions
sharply limits the program expressions that can appear in
assertions. He also introduces the notion of an abstract pred-
icate, in which a kind of assertion variable is used to conceal
the concrete predicate used to implement an object’s state.

Our version of separation logic supports reasoning with
procedures, but it does not support information hiding in
procedures, either in the sense of having a hypothetical
frame rule in the sense of O’Hearn, Yang and Reynolds [11],
or as with Parkinson’s abstract predicates. Instead of di-
rectly adding features to address this deficiency, we are in-
stead considering moving to a higher-order variant of separa-
tion logic, such as Biering, Birkedal and Torp-Smith propose
in [3]. Then, modules and their clients could communicate
through existentially quantified assertions, as proposed in
[4]. The latter paper also develops a specification logic using
universal specifications (which they call valid) for a simple
first-order programming language.

Additionally, it would be interesting to add polymorphism
and existential types to the underlying programming lan-
guage – the combination of existential types concealing the
exact term representations of an ADT and existential sep-
aration predicates concealing the exact heap layout could
be very illuminating about the nature of encapsulation. We
also plan on adding recursive types and term-level recursion
operators to the programming language, and to add recur-
sively defined assertions to the assertion language.

Finally, Berger, Honda and Yoshida recently described a
new logic for analysing aliasing in imperative functional pro-
grams [2]. Like separation logic, they added connectives to a
first-order logic, but their new additions are modal operators
that can be interpreted as quantification over the possible
content of a pointer. Also, they work in a setting where
effects are not confined to a monad, and their operators re-
quire explicitly require tracking the write set of a procedure.
They noted that one of the difficulties that hindered com-
parison with separation logic is that the languages the two
approaches targetted were so different; we hope the current
work will enable a better point of comparison.

6. ACKNOWLEDGMENTS
I would like to thank John Reynolds and Jonathan Aldrich



for their advice, encouragement, and patience. This work
was supported in part by NASA cooperative agreements
NCC-2-1298 and NNA05CS30A, and National Science Foun-
dation Grants CCR-0204242 and CCR-0204047.

7. REFERENCES
[1] P. Benton, G. Bierman, and V. D. Paiva.

Computational types from a logical perspective.
Journal of Functional Programming, 8(2):177–193,
March 1998.

[2] M. Berger, K. Honda, and N. Yoshida. A logical
analysis of aliasing in imperative higher-order
functions. In Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional Programming,
pages 280–293. ACM Press, September 2005.

[3] B. Biering, L. Birkedal, and N. Torp-Smith. BI
Hyperdoctrines and Higher-Order Separation Logic. In
Programming Languages and Systems: 14th European
Symposium on Programming, ESOP 2005, volume
3444/2005, pages 233–247, Edinburgh, UK, April
2005. Springer-Verlag GmbH.

[4] B. Biering, L. Birkedal, and N. Torp-Smith.
BI-hyperdoctrines, higher-order separation logic, and
abstraction. Technical Report ITU-TR-2005-69, IT
University of Copenhagen, July 2005.

[5] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics
of separation-logic typing and higher-order frame
rules. In P. Panangaden, editor, Proceedings of the
Twentieth Annual IEEE Symp. on Logic in Computer
Science, LICS 2005, pages 260–269. IEEE Computer
Society Press, June 2005.

[6] C. Calcagno, P. W. O’Hearn, and R. Bornat. Program
logic and equivalence in the presence of garbage
collection. Theoretical Computer Science,
298(3):557–581, April 2003.

[7] R. Davies and F. Pfenning. A judgemental
reconstruction of modal logic. Mathematical Structures
in Computer Science, 11(4):511–540, 2001.

[8] S. S. Ishtiaq and P. W. O’Hearn. BI as an Assertion
Language for Mutable Data Structures. In POPL,
pages 14–26, 2001.

[9] E. Moggi. Notions of computation and monads.
Information and Computation, 93(1):55–92, 1991.

[10] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local
reasoning about programs that alter data structures.
In L. Fribourg, editor, Computer Science Logic,
volume 2142 of Lecture Notes in Computer Science,
pages 1–19, Berlin, 2001. Springer-Verlag.

[11] P. W. O’Hearn, H. Yang, and J. C. Reynolds.
Separation and information hiding. In Conference
Record of POPL 2004: The 31st ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 268–280, New York,
2004. ACM Press.

[12] M. Parkinson. Local Reasoning for Java. PhD thesis,
University of Cambridge, November 2005.

[13] B. C. Pierce. Types and Programming Languages. MIT
Press, Cambridge MA, 2002.

[14] G. D. Plotkin and A. J. Power. Computational effects
and operations: An overview. Electr. Notes Theor.
Comput. Sci, 73:149–163, 2004.

[15] D. J. Pym, P. W. O’Hearn, and H. Yang. Possible
worlds and resources: the semantics of bi. Theoretical
Computer Science, 315(1):257–305, 2004.

[16] J. C. Reynolds. The Craft of Programming.
Prentice-Hall International, London, 1981.

[17] J. C. Reynolds. Types, abstraction and parametric
polymorphism. In R. E. A. Mason, editor, Information
Processing 83, pages 513–523, Amsterdam, 1983.
Elsevier Science Publishers B. V. (North-Holland).

[18] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proceedings Seventeenth
Annual IEEE Symposium on Logic in Computer
Science, pages 55–74, Los Alamitos, California, 2002.
IEEE Computer Society.

[19] S. Weeks and M. Felleisen. On the orthogonality of
assignments and procedures in Algol. In Conference
record of the Twentieth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 57–70, 1993.


