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Implicit Polarized F: local type inference for impredicativity

ANONYMOUS AUTHOR(S)

System F, the polymorphic lambda calculus, features the principle of impredicativity: polymorphic types may

be (explicitly) instantiated at other types, enabling many powerful idioms such as Church encoding and data

abstraction. Unfortunately, type applications need to be implicit for a language to be human-usable, and the

problem of inferring all type applications in System F is undecidable. As a result, language designers have

historically avoided impredicative type inference.

We reformulate System F in terms of call-by-push-value, and study type inference for it. Surprisingly,

this new perspective yields a novel type inference algorithm which is extremely simple to implement (not

even requiring unification), infers many types, and has a simple declarative specification. Furthermore, our

approach offers type theoretic explanations of how many of the heuristics used in existing algorithms for

impredicative polymorphism arise.

1 INTRODUCTION
System F, the polymorphic lambda calculus, was invented in the early 1970s by John Reynolds [16]

and Jean-Yves Girard [6], and has remained one of the fundamental objects of study in the theory

of the lambda calculus ever since.

Syntactically, it is a tiny extension of the simply-typed lambda calculus with type variables and

quantification over them, with only five typing rules for the whole calculus. Despite its small size,

it is capable of modeling inductive data types via Church encodings
1
, and supports reasoning about

data abstraction and modularity via the theory of parametricity [17, 25].

Offering a combination of parsimony and expressive power, System F has been important in

the study of semantics, and has also served as inspiration for much work on language design [21].

However, practical languages have historically shied away from adopting the distinctive feature of

System F — full impredicative polymorphism. This is because the natural specification for type

inference for full System F is undecidable.

To understand this specification, consider the following two variables:

fst : ∀𝛼, 𝛽. (𝛼 × 𝛽) → 𝛼

pair : Int × String

Here, fst has the polymorphic type of the first projection for pairs, and pair is a pair with a concrete

type Int × String. To project out the first component in System F, we would write:

fst [Int] [String] pair
Note that each type parameter must be given explicitly. This is a syntactically heavy discipline:

even in this tiny example, the number of tokens needed for type arguments equals the number of

tokens which compute anything! Instead, we would prefer to write:

fst pair

1
Indeed, any first-order function provably total in second-order arithmetic can be expressed in System F.
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2 Anon.

Leaving the redundant type arguments implicit makes the program more readable. But how can we

specify this? In the application fst pair, the function fst has the type ∀𝛼, 𝛽. (𝛼 × 𝛽) → 𝛼 , but we

wish to use it at a function type (Int × String) → Int.
The standard technical device for using one type in the place of another is subtyping. With

subtyping, the application rule is:

Θ, Γ ⊢ f : 𝐴 Θ ⊢ 𝐴 ≤ 𝐵 → 𝐶 Θ, Γ ⊢ v : 𝐵

Θ, Γ ⊢ f v : 𝐶

As long our subtype relation shows that ∀𝛼, 𝛽. (𝛼 × 𝛽) → 𝛼 ≤ (Int × String) → Int, we are in the

clear! Since we want subtyping to instantiate quantifiers, we can introduce subtyping rules for the

universal type which reflect the specialization order :

Θ ⊢ 𝐴 type Θ ⊢ [𝐴/𝛼]𝐵 ≤ 𝐶

Θ ⊢ ∀𝛼. 𝐵 ≤ 𝐶
∀L

Θ, 𝛼 ⊢ 𝐵 ≤ 𝐶

Θ ⊢ 𝐵 ≤ ∀𝛼.𝐶
∀R

Θ ⊢ 𝑋 ≤ 𝐴 Θ ⊢ 𝐵 ≤ 𝑌

Θ ⊢ 𝐴 → 𝐵 ≤ 𝑋 → 𝑌

𝛼 ∈ Θ

Θ ⊢ 𝛼 ≤ 𝛼

Since a more general type like ∀𝛼, 𝛽. (𝛼 × 𝛽) → 𝛼 can be used in the place of a more specific type

like (Int × String) → Int, we take the standard subtyping rules for functions and base types, and

add rules reflecting the principle that a universal type is a subtype of all of its instantiations.

This subtype relation is small, natural, and expressive. Thus, it has been the focus of a great deal of

research in subtyping. Unfortunately, that research has revealed that this relation is undecidable [4,

22]. This has prompted many efforts to understand the causes of undecidability and to develop

strategies which work around it. To contextualize our contributions, we briefly describe some of

these efforts, but delay extended discussion of the related work until the end of the paper.

Impredicativity. One line of research locates the source of the undecidability in the fact that the

∀L rule is impredicative — it permits a quantifier to be instantiated at any type, including types

with quantifiers in them.

For example, the identity function id can be typed in System F at ∀𝛼. 𝛼 → 𝛼 , and impredicativity

means that self-application is typeable with a polymorphic type:

id [∀𝛼. 𝛼 → 𝛼] id : ∀𝛼. 𝛼 → 𝛼

A perhaps more useful example is the low-precedence application function in Haskell:

($) : ∀𝛼.∀𝛽. (𝛼 → 𝛽) → 𝛼 → 𝛽

($) f x = f x

This function simply applies a function to an argument, and is used in languages like Haskell and

OCaml to avoid parentheses.

In Haskell, impredicative instantiation in the apply operator, for example in expressions like

runST $ (return True) 2, is important enough that GHC, the primary Haskell compiler, has a special

case typing rule for it [19]. However, this special case typing rule is non-modular and can lead to

surprising results. For example, if we define an alias app for $, then runST $ (return True) typechecks,
but runST ‵app‵ (return True) does not (unless the user is using the ImpredicativeTypes extension).

2
Here, runST has type ∀𝛼. (∀𝛽. ST 𝛽 𝛼) → 𝛼 , which ensures that the internal state 𝛽 is confined within the ST monad

and remains inaccessible to the rest of the program. This polymorphic parameter of runST necessitates impredicative

instantiation of $.
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Implicit Polarized F: local type inference for impredicativity 3

The reason for this special case rule is that GHC’s type inference has built on a line of work [5, 11,

13] which restricts the ∀L rule to be predicative: universally quantified types can only be instantiated
at monotypes (i.e. types which do not contain any quantifiers). This recovers decidability of

subsumption, but at the price of giving up any inference for uses of impredicative types.

Type Syntax. Another line of work sites the difficulty of type inference in the inexpressivity of

the type language of System F. The work on ML
F
[1, 15] extends System F with a form of bounded

quantification. These bounds are rich enough that the grammar of types can precisely record exactly

which types a polymorphic quantifier might be instantiated at, which is enough to make the type

inference problem tractable once more.

Of course, not just any language of bounds will work — the ML
F
system was very carefully

crafted to make inference both decidable and expressive, and is startlingly successful at this

goal, only requiring type annotations on variables which are used at two different polymorphic

types. Unfortunately, the ML
F
algorithm is somewhat notorious for its implementation complexity,

with multiple attempts to integrate it into GHC [7, 24] failing due to the difficulty of software

maintenance.

Heuristic Approaches. A third line of work observes that type inference is actually easy in most

cases, and that an algorithm which only does the easy things and fails otherwise may well suffice

to be an algorithm which works in practice.

One of the oldest such approaches is that of Cardelli [2], which was invented as part of the

implementation of F<:, a language with impredicative polymorphism and recursive types. The

heuristic algorithm Cardelli proposed was to permit impredicative instantiation without tracking

bounds — his algorithm simply took any bound it saw as an equation telling it what to instantiate

the quantifier to. Pierce and Turner [14], seeing how well this algorithm worked in practice,

formalized it and proved it sound (naming it local type inference), but were not able to give a clear

non-algorithmic specification.

1.1 Contributions
Historically, approaches to impredicative type inference have been willing to pay a high cost in

complexity in order to achieve high levels of expressiveness and power of type inference. In this

paper, we rethink that historical approach by focusing upon the opposite tradeoff. We prioritize

simplicity — of implementation, specification, and connections to existing type theories — over the

expressiveness of type inference.

By being willing to make this sacrifice, we discover a easy-to-implement type inference algorithm

for impredicative polymorphism, which has a clear declarative specification and is even easier to

implement than traditional Damas-Milner type inference. Our algorithm sheds light on a classical

implementation technique of Cardelli, and works over a foundational calculus, call-by-push-value.

Call-by-push-value was invented to study the interaction of evaluation order and side-effects,

and has been used extensively in semantics. In this paper, we show that it is also well-adapted to

being a kernel calculus for type inference by introducing Implicit Polarized F, a polarized variant

of System F.

Specifically, our contributions are:

• To model type inference declaratively, we first introduce a subtyping relation for Implicit

Polarized F that models the specialization order. Our subtyping relation is extremely simple,

and is almost the “off-the-shelf” relation that one would first write down. The only unusual

restriction is that subtyping for shifts (the modalities connecting value and computation

types) is invariant rather than covariant.
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4 Anon.

We then give a type system for our variant of call-by-push-value, using subtyping as a

component. Surprisingly, features of call-by-push-value invented for semantic or type-

theoretic reasons turn out to be perfectly suited for specifying type inference.

For example, argument lists (sometimes called spines in the literature [3, 20]) are commonly

used in practical type inference systems [7, 18, 19]. They also arise in call-by-push-value

due to the shift structure mediating between functions and values. This lets us naturally

scope inference to individual function applications. So we infer types for fully unambiguous

function calls, and otherwise require type annotations.

This illustrates our commitment to simplicity over powerful inference, and also results

in very regular and predictable annotation behavior — our language looks like ordinary

(polarized) System F, except that many of the “obvious” type instantiations are implicit.

• We give algorithmic subtyping rules corresponding to the specialization order, and algorith-

mic typing rules corresponding to declarative typing.

Both of these algorithms are startlingly simple, as well — neither algorithm even needs uni-

fication, making them simpler than traditional Hindley-Damas-Milner [10] type inference!

We prove that our algorithm is decidable, and that it is sound and complete with respect to

the declarative specification.

• In fact, the combination of spine inference plus specialization yields an algorithm that is

very similar to Cardelli’s inference algorithm for bounded System F (as well as Pierce and

Turner’s local type inference). It has been known for decades that Cardelli’s algorithm

works extremely well in practice. However, its type-theoretic origins have not been fully

understood, nor has it been understood how to characterize the kinds of problems that

Cardelli’s algorithm succeeds on using a declarative specification.

The restrictions we impose to recover decidability of specialization turn out to be natural

both from the perspective of type theory and implementation, and thereby offer a theoreti-

cally motivated reconstruction of Cardelli’s algorithm. Polarity also ends up shedding light

on many of the design choices underpinning a number of other type inference algorithms

for System F [7, 18, 19].

An explicit non-contribution of this work is to propose a practical type inference algorithm for

any existing language. For example, we work with a call-by-push-value calculus, which is a type

structure no practical language currently has. Furthermore, we make no attempt to infer the types

of arguments to functions; instead we focus solely on inferring type applications in a (polarized)

variant of System F. Restricting the scope so much lets us isolate the key design issues underpinning

a foundational problem in type inference.

2 IMPLICIT POLARIZED F
We first present Implicit Polarized F, a language with type inference that combines call-by-push-

value style polarization with System F style polymorphism
3
.

Like call-by-push-value, Implicit Polarized F partitions terms into values and computations, as-

cribing positive types to values and negative types to computations. Levy [9] described the difference

between values and computations in terms of the operational semantics: “a value is, whereas a

computation does”. Another rule of thumb for differentiating between values and computations

is to look at how we eliminate them: we tend to eliminate values by using pattern matching and

computations by supplying an argument. For example, datatypes are values because they are

3
Adding polarization does not result in us losing any expressiveness compared to typed System F: we demonstrate in the

appendix that typeable System F can be embedded within Implicit Polarized F.
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Implicit Polarized F: local type inference for impredicativity 5

Values 𝑣 ::= 𝑥 | {𝑡}
Computations 𝑡 ::= 𝜆𝑥 : 𝑃 . 𝑡 | Λ𝛼. 𝑡 | return 𝑣 |

let 𝑥 = 𝑣 (𝑠); 𝑡 | let 𝑥 : 𝑃 = 𝑣 (𝑠); 𝑡
Argument lists 𝑠 ::= 𝜖 | 𝑣, 𝑠
Positive types 𝑃 ::= 𝛼 | ↓𝑁
Negative types 𝑁 ::= 𝑃 → 𝑁 | ∀𝛼. 𝑁 | ↑𝑃

Typing contexts Θ ::= · | Θ, 𝛼
Typing environments Γ ::= · | Γ, 𝑥 : 𝑃

Fig. 1. Implicit Polarized F

eliminated by pattern matching, whereas functions are computations because they are eliminated

by supplying arguments.

We present the term language for Implicit Polarized F in Figure 1. Terms are split between values

and computations as follows:

• Variables 𝑥 are values, since this is one of the invariants of call-by-push-value.

• Lambda abstractions 𝜆𝑥 : 𝑃 . 𝑡 are computations, not values, since they are eliminated by

passing an argument. We can think of a lambda abstraction as a computation 𝑡 of type 𝑁

with holes in it representing the (positive) bound variable, so lambda abstractions have the

negative type 𝑃 → 𝑁 .

• Thunks {𝑡} are values that suspend arbitrary computations. Surrounding a computation 𝑡

of type 𝑁 with braces suspends that computation, giving us a thunk {𝑡} of type ↓𝑁 .

To create a traditional function value, we make a lambda abstraction 𝜆𝑥 : 𝑃 . 𝑡 into a thunk

{𝜆𝑥 : 𝑃 . 𝑡}. Traditional thunks therefore have the type ↓(𝑃 → 𝑁 ).
• System-F style type abstractions Λ𝛼. 𝑡 are computations of type ∀𝛼. 𝑁 . Our choice of

polarities for the types of polymorphic terms is motivated by the correspondence between

function abstraction 𝜆𝑥 : 𝑃 . 𝑡 and type abstraction Λ𝛼. 𝑡 .

• The let forms let 𝑥 = 𝑣 (𝑠); 𝑡 and let 𝑥 : 𝑃 = 𝑣 (𝑠); 𝑡 are sequencing computations that operate

much like the bind operation in a monad. Each form takes the thunked computation 𝑣 ,

passes it the arguments 𝑠 it needs, binds the result to the variable 𝑥 and continues the

computation 𝑡 .

• return 𝑣 is a trivial computation that just returns a value, completing the sequencing monad.

We can also use return to return values from a function — in fact since all the terminal

symbols for terms live in the grammar of values, the syntax mandates that functions

eventually return a value. The type structure of returned values is symmetric to that of

thunks: returned values have type ↑𝑃 .

Besides the addition of type annotations to guide inference and some differences to the syntax,

our language is nothing more than call-by-push-value plus polymorphism. Our use of argument

lists serves only to reverse the order of argument lists from Levy’s original work so that our syntax

matches traditional languages with n-ary functions like JavaScript and C. Just like those languages,

all of a function’s arguments must be passed at once in Implicit Polarized F.
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6 Anon.

Θ; Γ ⊢ 𝑒 : 𝐴 The term 𝑒 synthesizes the type 𝐴

Θ; Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀
When passed to a head of type 𝑁 , the argument list 𝑠 synthesizes

the type𝑀

𝑥 : 𝑃 ∈ Γ

Θ; Γ ⊢ 𝑥 : 𝑃
Dvar

Θ; Γ ⊢ 𝑡 : 𝑁

Θ; Γ ⊢ {𝑡} : ↓𝑁
Dthunk

Θ; Γ, 𝑥 : 𝑃 ⊢ 𝑡 : 𝑁

Θ; Γ ⊢ 𝜆𝑥 : 𝑃 . 𝑡 : 𝑃 → 𝑁
D𝜆abs

Θ, 𝛼 ; Γ ⊢ 𝑡 : 𝑁

Θ; Γ ⊢ Λ𝛼. 𝑡 : ∀𝛼. 𝑁
Dgen

Θ; Γ ⊢ 𝑣 : 𝑃

Θ; Γ ⊢ return 𝑣 : ↑𝑃
Dreturn

Θ; Γ ⊢ 𝑣 : ↓𝑀 Θ; Γ ⊢ 𝑠 : 𝑀 ≫ ↑𝑄 Θ ⊢ ↑𝑄 ≤− ↑𝑃 Θ; Γ, 𝑥 : 𝑃 ⊢ 𝑡 : 𝑁

Θ; Γ ⊢ let 𝑥 : 𝑃 = 𝑣 (𝑠); 𝑡 : 𝑁
Dambiguouslet

Θ; Γ ⊢ 𝑣 : ↓𝑀 Θ; Γ ⊢ 𝑠 : 𝑀 ≫ ↑𝑄
Θ; Γ, 𝑥 : 𝑄 ⊢ 𝑡 : 𝑁 ∀𝑃 . if Θ; Γ ⊢ 𝑠 : 𝑀 ≫ ↑𝑃 then Θ ⊢ 𝑄 �+ 𝑃

Θ; Γ ⊢ let 𝑥 = 𝑣 (𝑠); 𝑡 : 𝑁
Dunambiguouslet

Θ; Γ ⊢ 𝜖 : 𝑁 ≫ 𝑁
Dspinenil

Θ; Γ ⊢ 𝑣 : 𝑃 Θ ⊢ 𝑃 ≤+ 𝑄 Θ; Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀

Θ; Γ ⊢ 𝑣, 𝑠 : (𝑄 → 𝑁 ) ≫ 𝑀
Dspinecons

Θ ⊢ 𝑃 type
+ Θ; Γ ⊢ 𝑠 : [𝑃/𝛼]𝑁 ≫ 𝑀

Θ; Γ ⊢ 𝑠 : (∀𝛼. 𝑁 ) ≫ 𝑀
Dspinetypeabs

Fig. 2. Declarative type system

2.1 Declarative typing
We present in Figure 2 a declarative type system for Implicit Polarized F. Our system has simple,

mostly syntax directed rules, with its main complexity lying in the unusual premise to Dunambigu-
ouslet and the rules for typing argument lists.

The system has five main judgments:

• Θ; Γ ⊢ 𝑣 : 𝑃 : In the context Θ and typing environment Γ, the value 𝑣 synthesizes the positive
type 𝑃 .

• Θ; Γ ⊢ 𝑡 : 𝑁 : In the context Θ and typing environment Γ, the computation 𝑡 synthesizes the

negative type 𝑁 .

• Θ; Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀 : In the context Θ and typing environment Γ, and when passed to a head

of type 𝑁 , the argument list 𝑠 synthesizes the type𝑀 .

• Θ ⊢ 𝑃 ≤+ 𝑄 : In the context Θ, 𝑃 is a positive subtype of 𝑄 .

• Θ ⊢ 𝑁 ≤− 𝑀 : In the context Θ, 𝑁 is a negative subtype of𝑀 . We reverse the alphabetical

order of𝑀 and 𝑁 in the negative judgment to better indicate the symmetry between positive

and negative subtyping — we will see what this symmetry is in Section 4.1.
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Implicit Polarized F: local type inference for impredicativity 7

When we want to be ambiguous between values and computations, we write Θ; Γ ⊢ 𝑒 : 𝐴 and

Θ ⊢ 𝐴 ≤± 𝐵.

Our inference rules are the following:

• Dvar lets us reference variables within the type environment Γ.
• Dthunk states that if we know that a computation has type 𝑁 , then thunking it produces a

value of type ↓𝑁 .

• D𝜆abs is the standard typing rule for lambda abstraction. The value hypothesis 𝑥 : 𝑃 in this

rule maintains the invariant that the type environment only contains bindings to values.

• Dgen is to D𝜆abs as type abstraction is to function abstraction. We add a type variable to

the typing context, as opposed to adding a variable binding to the typing environment.

• Dreturn complements Dthunk: if a value has type 𝑃 , then returning it produces a computa-

tion of type ↑𝑃 .
• Dambiguouslet allows us to let-bind the results of function applications.

– In the first premise, Θ; Γ ⊢ 𝑣 : ↓𝑀 , we require 𝑣 to be a thunked computation.

– We then take the type 𝑀 of this computation and use the spine judgment Θ; Γ ⊢ 𝑠 :

𝑀 ≫ ↑𝑄 to type the function application 𝑣 (𝑠). The requirement that the argument list

produces an upshifted type ↑𝑄 means that the type has to be maximally applied. This

encodes the fact that partial application is forbidden.

Typically 𝑣 will be a downshifted function and 𝑠 will be the argument list to pass to that

function. For example, 𝑣 could be a function stored within the type environment, e.g. 𝑓

when 𝑓 : ↓(𝑃 → 𝑁 ) ∈ Γ, or one written inline {𝜆𝑥 : 𝑃 . 𝑡}. However we can also use an

embedded value {return 𝑣} as a head along with an empty argument list to let-bind

values.

– Now that we have the type ↑𝑄 that the argument list takes the head to, we use the

subtyping judgment Θ ⊢ ↑𝑄 ≤− ↑𝑃 to check that the type synthesized by the function

application is compatible with the annotation 𝑃 . For our algorithm to work, we need

to check the stronger compatibility constraint that ↑𝑄 is a subtype of ↑𝑃 , rather than
just checking that 𝑄 is a subtype of 𝑃 .

– Finally, Θ; Γ, 𝑥 : 𝑃 ⊢ 𝑡 : 𝑁 tells us that the type of the let term is given by the type of 𝑡

in the type environment Γ extended with 𝑥 bound to 𝑃 .

• Dunambiguouslet is a variant ofDambiguouslet that lets us infer the return types of function
applicationswhen they are unambiguous. The first and second premises are identical to those

of Dambiguouslet, and the third premise is the same as the last premise of Dambiguouslet
except that it binds 𝑥 directly to the type synthesized by the function application.

However the final premise is unusual, and one might wonder whether it is in fact well

founded. This premise encodes the condition that in order to omit the annotation, the return

type of the function application must be unambiguous. By quantifying over all possible

inferred types, we check that there is only one type (modulo isomorphism) that can be

inferred for the return type of the function application. If every inferred type is equivalent

to𝑄 , then we can arbitrarily choose𝑄 to bind 𝑥 to, since any other choice would synthesize

the same type for the let-binding.

The well-foundedness of our rule stems from the use of a syntactically smaller subterm in

the premise of Dunambiguouslet compared to the conclusion. In Θ; Γ ⊢ 𝑠 : 𝑀 ≫ ↑𝑃 , 𝑠 is
a smaller subterm than let 𝑥 = 𝑣 (𝑠); 𝑡 , and every subderivation of that premise acts on a

smaller subterm too.

A consequence of this unusual premise is that the soundness and completeness theorems

end up being mutually recursive.
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Θ ⊢ 𝐴 type
±

In the context Θ, 𝐴 is a well-formed positive/negative type

𝛼 ∈ Θ

Θ ⊢ 𝛼 type
+ Twfuvar

Θ ⊢ 𝑁 type
−

Θ ⊢ ↓𝑁 type
+ Twfshift↓

Θ, 𝛼 ⊢ 𝑁 type
−

Θ ⊢ ∀𝛼. 𝑁 type
− Twfforall

Θ ⊢ 𝑃 type
+ Θ ⊢ 𝑁 type

−

Θ ⊢ 𝑃 → 𝑁 type
− Twfarrow

Θ ⊢ 𝑃 type
+

Θ ⊢ ↑𝑃 type
− Twfshift↑

Fig. 3. Well-formedness of declarative types

Θ ⊢ 𝐴 ≤± 𝐵 In the context Θ, 𝐴 is a positive/negative declarative subtype of 𝐵

Θ ⊢ 𝛼 type
+

Θ ⊢ 𝛼 ≤+ 𝛼
≤±Drefl

Θ ⊢ 𝑀 ≤− 𝑁 Θ ⊢ 𝑁 ≤− 𝑀

Θ ⊢ ↓𝑁 ≤+ ↓𝑀
≤±Dshift↓

Θ, 𝛼 ⊢ 𝑁 ≤− 𝑀

Θ ⊢ 𝑁 ≤− ∀𝛼.𝑀
≤±Dforallr

Θ ⊢ 𝑃 type
+ Θ ⊢ [𝑃/𝛼]𝑁 ≤− 𝑀

Θ ⊢ ∀𝛼. 𝑁 ≤− 𝑀
≤±Dforalll

Θ ⊢ 𝑄 ≤+ 𝑃 Θ ⊢ 𝑁 ≤− 𝑀

Θ ⊢ 𝑃 → 𝑁 ≤− 𝑄 → 𝑀
≤±Darrow

Θ ⊢ 𝑄 ≤+ 𝑃 Θ ⊢ 𝑃 ≤+ 𝑄

Θ ⊢ ↑𝑃 ≤− ↑𝑄
≤±Dshift↑

Fig. 4. Declarative subtyping

The last three rules teach us how to type function applications:

• Dspinenil states that an empty argument list does not change the type of the head of a

function application.

• Dspinecons tells us how to type a non-empty argument list. The argument list 𝑣, 𝑠 takes

𝑄 → 𝑁 to 𝑀 if the value 𝑣 synthesizes a type 𝑃 , this type 𝑃 is either 𝑄 or a subtype of it,

and the remaining argument list 𝑠 takes 𝑁 to𝑀 .

• Dspinetypeabs lets us instantiate the head that an argument list can be passed to by replacing

a type variable 𝛼 with a well-formed (see Figure 3) type 𝑃 . Note that the instantiation is

implicit — there is no annotation for 𝑃 , so we are doing inference here.

2.2 Subtyping
To enable implicit type application, our type system uses a subtyping relation Θ ⊢ 𝐴 ≤± 𝐵 which

reifies the specialization order, expressing when a term of type 𝐴 can be safely used where a term

of type 𝐵 is expected. This relation is defined in Figure 4 and consists of the following rules:

• ≤±Drefl is the standard rule for type variables: if we are expecting a term of type 𝛼 , then

the only terms we can safely use in its place are those that also have type 𝛼 .

• ≤±Darrow is the classic rule for function subtyping: we can replace a term of type 𝑄 → 𝑀

with a function that takes inputs that are at least as general as 𝑄 and produces outputs that

are at least as specific as𝑀 .
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Implicit Polarized F: local type inference for impredicativity 9

Θ ⊢ 𝐴 �± 𝐵 In the context Θ, the types 𝐴 and 𝐵 are isomorphic

Θ ⊢ 𝐴 �± 𝐵 iff Θ ⊢ 𝐴 ≤± 𝐵 and Θ ⊢ 𝐵 ≤± 𝐴.

Fig. 5. Isomorphic types

• ≤±Dforalll and ≤±Dforallr correspond to the left and right rules governing ∀ quantifiers

in the LK sequent calculus system. Surprisingly, the ≤±Dforalll rule does not have any

restrictions beyondwell-formedness: 𝑃 is an arbitrarywell-formed type, so full impredicative

instantiation is possible.

• ≤±Dshift↓ and ≤±Dshift↑ are unusual since the standard denotational and operational

semantics of shifts both give rise to covariant rules. However using these covariant rules

would lead to an undecidable system [4, 22]. To restore decidability, we use more restrictive

invariant shift rules.

This idea is motivated by a similar restriction that Cardelli [2] introduced as a heuristic

for type inference in an implementation of System F<:. Instead of using subtyping to infer

the types assigned to type parameters, Cardelli used first-order unification to “synthesize”

these types.

Since the goal of unification is to make expressions equal, an equivalent notion of Cardelli’s

restriction in our system is requiring the types to be isomorphic. We say that types 𝐴 and

𝐵 are isomorphic, denoted as Θ ⊢ 𝐴 �± 𝐵, if both Θ ⊢ 𝐴 ≤± 𝐵 and Θ ⊢ 𝐵 ≤± 𝐴 hold (see

Figure 5). Indeed, this requirement corresponds exactly to the premises of the shift rules. To

our knowledge, this is the first time that Cardelli’s restriction has been presented as part of

a declarative specification of typing.

3 EXAMPLES
In this section we characterize the behavior of our system by giving some examples of terms and

subtyping relationships that are permitted and some that are not.

3.1 Subtyping
• Our subtyping relation allows us to swap quantifiers at identical depths. As indicated by the

subtyping in both directions below, we can substitute a term of either of the types below

for a term of the other type:

∀𝛼, 𝛽. ↓(𝛼 → ↑𝛽) → [𝛼] → ↑[𝛽] ≤−

≤− ∀𝛽, 𝛼 . ↓(𝛼 → ↑𝛽) → [𝛼] → ↑[𝛽]

• Subtypes can push in quantifiers as long as those quantifiers do not cross a shift boundary:

∀𝛼. 𝛼 → (∀𝛽. 𝛽 → ↑(𝛼 × 𝛽)) ≤− ∀𝛼, 𝛽. 𝛼 → 𝛽 → ↑(𝛼 × 𝛽)
• Unusually, our subtyping relation allows the instantiations of type variables to be im-

predicative. For example, here we can instantiate the 𝛼 in [𝛼] to be an identity function

∀𝛽. 𝛽 → ↑𝛽 , giving us a list of polymorphic identity functions. Predicative systems would

allow us to produce a list of identity functions that are all parameterized over the same type,

i.e. ∀𝛽. [𝛽 → ↑𝛽], but the list produced by our system [∀𝛽. 𝛽 → ↑𝛽] is truly polymorphic

with each element of the list having its own type variable.
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10 Anon.

head : ↓(∀𝛼. [𝛼] → ↑𝛼) inc : ↓(Int → ↑Int)
tail : ↓(∀𝛼. [𝛼] → ↑[𝛼]) choose : ↓(∀𝛼. 𝛼 → 𝛼 → ↑𝛼)
[] : ↓(∀𝛼. ↑[𝛼]) poly : ↓(↓(∀𝛼. 𝛼 → ↑𝛼) → ↑(Int × Bool))
(::) : ↓(∀𝛼. 𝛼 → [𝛼] → ↑[𝛼]) auto : ↓(↓(∀𝛼. 𝛼 → ↑𝛼) → (∀𝛼. 𝛼 → ↑𝛼))
single : ↓(∀𝛼. 𝛼 → ↑[𝛼]) auto’ : ↓(∀𝛼. ↓(∀𝛽. 𝛽 → ↑𝛽) → 𝛼 → ↑𝛼)
append : ↓(∀𝛼. [𝛼] → [𝛼] → ↑[𝛼]) app : ↓(∀𝛼, 𝛽. ↓(𝛼 → ↑𝛽) → 𝛼 → ↑𝛽)
length : ↓(∀𝛼. [𝛼] → ↑Int) revapp : ↓(∀𝛼, 𝛽. 𝛼 → ↓(𝛼 → ↑𝛽) → ↑𝛽)
map : ↓(∀𝛼, 𝛽. ↓(𝛼 → 𝛽) → [𝛼] → ↑[𝛽]) flip : ↓(∀𝛼, 𝛽,𝛾 . ↓(𝛼 → 𝛽 → ↑𝛾) → 𝛽 → 𝛼 → ↑𝛾)
id : ↓(∀𝛼. 𝛼 → ↑𝛼) runST : ↓(∀𝛼. ↓(∀𝛽. ST 𝛽 𝛼) → ↑𝛼)
ids : [↓(∀𝛼. 𝛼 → ↑𝛼)] argST : ↓(∀𝛼. ST 𝛼 Int)
a9 : ↓(∀𝛼. ↓(𝛼 → ↑𝛼) → [𝛼] → ↑𝛼) c8 : ↓(∀𝛼. [𝛼] → [𝛼] → ↑𝛼)
h : ↓(Int → (∀𝛼. 𝛼 → ↑𝛼)) k : ↓(∀𝛼. 𝛼 → [𝛼] → ↑𝛼)
lst : [↓(∀𝛼. Int → 𝛼 → ↑𝛼)] r : ↓(↓(∀𝛼. 𝛼 → ∀𝛽. 𝛽 → ↑𝛽) → ↑Int)

Fig. 6. Environment for the examples from Serrano et al. [19], translated into Implicit Polarized F

∀𝛼. ↑[𝛼] ≤− ↑[↓(∀𝛽. 𝛽 → ↑𝛽)]

• An important restriction of our system that is essential to decidability is that types under-

neath shifts must be isomorphic. For example, we must establish both𝑀 ≤− 𝑁 and 𝑁 ≤− 𝑀

before we can infer that ↓𝑀 ≤+ ↓𝑁 .

This means that terms of either of the types below may not be substituted for terms of

the other type. While ∀𝛼, 𝛽. 𝛼 → 𝛽 → ↑(𝛼 × 𝛽) is indeed a subtype of Int → String →
↑(Int × String), the subtyping does not hold the other way around. Therefore in this example

where we zip a list of integers and a list of strings together, the type of the pairing function

↓(Int → String → ↑(Int × String)) is neither a subtype nor a supertype of the type of the
generic pairing function ↓(∀𝛼, 𝛽. 𝛼 → 𝛽 → ↑(𝛼 × 𝛽)).

↓(Int → String → ↑(Int × String)) → [Int] → [String] → ↑[Int × String]

̸≤
− ̸≤−

↓(∀𝛼, 𝛽. 𝛼 → 𝛽 → ↑(𝛼 × 𝛽)) → [Int] → [String] → ↑[Int × String]

3.2 Typing
To illustrate Implicit Polarized F’s type system, we translate the examples used in the comparison

of type systems in Serrano et al. [19] (GI) to Implicit Polarized F and investigate which of these

translations (a) typecheck without needing additional annotations beyond the GI example, (b)

typecheck but require additional annotations beyond the GI example, and (c) do not typecheck.

These examples make use of a few common functions whose types we give in Figure 6.

Despite the extreme bias towards simplicity that is reflected in our straightforward local heuristic,

surprisingly many of these examples typecheck. We discuss a few characteristic ones below; the

full set are in Figure 7.

, Vol. 1, No. 1, Article . Publication date: March 2022.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Implicit Polarized F: local type inference for impredicativity 11

GI example Implicit Polarized F translation
A1 const2 = 𝜆x y. y let const2 = {return {Λ𝛼.Λ𝛽. 𝜆x : 𝛼. 𝜆y : 𝛽. return y}}; . . . Ann

A2 choose id 𝜆x : ↓(∀𝛼. 𝛼 → ↑𝛼). (let t = choose id x; return t) Ann

A3 choose [] ids let n : [↓(∀𝛼. 𝛼 → ↑𝛼)] = []; let t = choose n ids; return t Ann

A4 𝜆x : (∀𝛼. 𝛼 → 𝛼). x x 𝜆x : (∀𝛼. 𝛼 → ↑𝛼) . (let y = x x; return y) ✓
A5 id auto let t = id auto; return t ✓
A6 id auto′ let t = id auto′; return t ✓
A7 choose id auto let t = choose id auto; return t ×
A8 choose id auto′ let t = choose id auto′; return t ×
A9 a9 (choose id) ids let f = {return {𝜆x : ↓(∀𝛼. 𝛼 → ↑𝛼) .

let y = choose id x; return y}};
let t = a9 f ids; return t

Ann

A10 poly id let t = poly id; return t ✓
A11 poly (𝜆x. x) let t = poly {Λ𝛼. 𝜆x : 𝛼. return x}; return t Ann

A12 id poly (𝜆x. x) let x = id poly; let t = x {Λ𝛼. 𝜆y : 𝛼. return y}; return t Ann

B1 𝜆f. (f 1, f True) 𝜆f : ↓(∀𝛼. 𝛼 → ↑𝛼). (let l = f 1; let r = f true; return (l, r)) Ann

B2 𝜆xs. poly (head xs) 𝜆xs : [↓(∀𝛼. 𝛼 → ↑𝛼)] . (let x = head xs; let y = poly x; return y) Ann

C1 length ids let t = length ids; return t ✓
C2 tail ids let t = tail ids; return t ✓
C3 head ids let t = head ids; return t ✓
C4 single id let t = single id; return t ✓
C5 cons id ids let t = cons id ids; return t ✓
C6 cons (𝜆x. x) ids let t = cons {Λ𝛼. 𝜆x : 𝛼. return x} ids; return t Ann

C7 append (single inc)
(single ids)

let x = single inc; let y = single id; let t = append x y; return t ×

C8 c8 (single id) ids let x = single id; let t = c8 x ids; return t ✓
C9 map poly (single id) let x = single id; let t = map poly x; return t ✓
C10 map head (single ids) let x = single ids; let t = map head x; return t ×
D1 app poly id let t = app poly id; return t ✓
D2 revapp id poly let t = revapp id poly; return t ✓
D3 runST argST let t = runST argST; return t ✓
D4 app runST argST let t = app runST argST; return t ×
D5 revapp argST runST let t = revapp argST runST; return t ×
E1 k h lst let t = k h lst; return t ×
E2 k (𝜆𝑥 . ℎ 𝑥) lst let f = {return {Λ𝛼. 𝜆y : Int.

return {𝜆x : 𝛼. let z = h y z; return z}}};
let t = k f lst; return t

×

E3 r (𝜆𝑥 𝑦.𝑦) let t = r {Λ𝛼.Λ𝛽. 𝜆x : 𝛼. 𝜆y : 𝛽. return y}; return t ×

Fig. 7. Examples used in the comparison of type systems in Serrano et al. [19] along with their translations
to Implicit Polarized F. In the right hand column:

• ✓ indicates that an example typechecks without needing additional annotations beyond the GI
example.

• Ann indicates that the example typechecks, but additional annotations are required beyond the GI
example.

• × indicates that the example does not typecheck in Implicit Polarized F.
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12 Anon.

Shifts make types much more fine-grained. The shift structure in Implicit Polarized F types makes

them much more fine-grained compared to systems like GI. For example, in Implicit Polarized F

the number of arguments we can pass to a function is encoded in its type. If we instantiate id at

↓(∀𝛼. 𝛼 → ↑𝛼), it still takes only a single argument. In contrast, in systems like GI, instantiating id
at ∀𝛼. 𝛼 → 𝛼 gives us a function that can take two arguments: first id and then an arbitrary value.

As a result, while id instantiated at ∀𝛼. 𝛼 → 𝛼 and auto represent the same thing in systems like

GI, id instantiated at ↓(∀𝛼. 𝛼 → ↑𝛼) and auto represent fundamentally different things in Implicit

Polarized F. Therefore in A7 we can not synthesize a consistent return type for choose id auto and

so it does not typecheck.

Examples A8, C7, and E2 do not work for similar reasons. For instance, in C7 our use of invariant

shifts prevents us from using single ids at a less polymorphic type.

Another example of the shift structure in Implicit Polarized F making types much more fine-

grained is A3: a direct translation let t = choose [] ids; return t will not typecheck since [] has a
shift at its top-level while ids does not. As a result, we need to unwrap the top-level shift in the

type of [] using a let-binding like so: let n : [↓(∀𝛼. 𝛼 → ↑𝛼)] = [].

Hyperlocal inference. Inference in Implicit Polarized F refuses to incorporate far away information.

As encoded in the last premise of the Dunambiguouslet rule, we must annotate a let-bound variable

unless its type is completely determined by the application 𝑣 (𝑠).
For example, in A3 there are many types we can infer for the empty list constructor [], for instance

[Int], [∀𝛼. 𝛼], and ∀𝛼. [𝛼]. We can see from the later application choose n ids that [↓(∀𝛼. 𝛼 → ↑𝛼)]
is the right choice for this type. However, Implicit Polarized F only considers the immediate context

of the function application. In this context the type for n is ambiguous, so we need to annotate the

let-binding.

While A3 needs an annotation, examples like C4 do not. While the type [↓(∀𝛼. 𝛼 → ↑𝛼)] that is
synthesized for the let-bound variable in C4 contains universal quantification, this quantification

occurs underneath a shift. Since shifts are invariant, we can not perform subtyping underneath

them, so this type is the only one modulo isomorphism that we can infer for the let-bound variable.

We sometimes need to eta-expand terms to get them to type check. An example of this is C10

map head (single ids). Here map expects an argument of type ↓(𝛼 → ↑𝛽), but head has type

↓(∀𝛼. [𝛼] → ↑𝛼). Since shifts are invariant in Implicit Polarized F, these types are incompatible.

We can remedy this by eta-expanding the term, for instance for C10 we can create a new term

𝜆𝑥 : ↓(∀𝛼. 𝛼 → ↑𝛼). let 𝑦 = head 𝑥 ; return 𝑦 that specializes head to the type ↓([↓∀𝛼. 𝛼 → ↑𝛼] →
↑↓(∀𝛼. 𝛼 → ↑𝛼)). Examples D4, D5, E1, and E3 fail to typecheck for similar reasons.

Another situation where eta-expansion is necessary is when replicating partial application. Since

Implicit Polarized F does not allow partial application, partial applications like choose id in GI

must be represented as 𝜆𝑥 : ↓(∀𝛼. 𝛼 → ↑𝛼). let 𝑦 = choose id 𝑥 ; return 𝑦 in Implicit Polarized F.

Since we syntactically require users to annotate lambda-bound variables, these examples all require

annotations in Implicit Polarized F. This affects examples A2, A9, and E2.

Implicit Polarized F tends to prefer inferring impredicative types to inferring type schemes. Adding

impredicativity to Hindley-Milner style systems means that, without changes to the type language

like the introduction of bounded quantification, terms are no longer guaranteed to have a most

general type. For instance, when typing single id we find that [∀𝛼. 𝛼 → 𝛼] and ∀𝛼. [𝛼 → 𝛼] are
equally general. Due to its simple local heuristic, Implicit Polarized F will instantiate the type

variable in single impredicatively, thereby typing single as [∀𝛼. 𝛼 → 𝛼]. In GI, the choice we make

depends on whether the type variable 𝛼 in the definition of single appears under a type constructor
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Implicit Polarized F: local type inference for impredicativity 13

Positive types 𝑃 ::= . . . | 𝛼
Contexts Θ ::= . . . | Θ, 𝛼 | Θ, 𝛼 = 𝑃

Fig. 8. Additions to declarative types and contexts to form their algorithmic counterparts

in any of the arguments to it. Since it does not, GI assigns 𝛼 a “top-level monomorphic” type,

thereby typing single as ∀𝛼. [𝛼 → 𝛼].
Implicit Polarized F’s preference for inferring impredicative types is not an unquestionable pro

or con: while it allows us to infer examples like C8 and C9 that systems that prefer type schemes

can not, systems that prefer type schemes can deal better with eta-reduced terms.

4 ALGORITHMIC TYPING
In this section, we discuss how to implement our declarative system algorithmically.

There are two rules that prevent us from directly implementing the declarative system. These

are Dspinetypeabs and ≤±Dforalll, both of which have a type 𝑃 that appears in the premises but

not in the conclusion of each rule. As a result, a direct implementation of type inference would

need to somehow invent a type 𝑃 out of thin air.

To get an algorithm, we follow Dunfield and Krishnaswami [5] in replacing these types 𝑃 with

existential type variables 𝛼 . These represent unsolved types that the algorithm will solve at a later

stage. Since type variables and their solutions are positive, existential type variables must also be

positive.

The introduction of existential variables has some knock-ons on our system: each judgment

needs to be adapted to manage existential variables and their instantiation. For instance, as shown

in Figure 8, the contexts of algorithmic judgments will contain not only type variables, but also

solved and unsolved existential type variables.

4.1 Algorithmic subtyping
We first describe the algorithmic judgments for subtyping. These will be used to solve all relevant

existential type variables.

Our algorithm for subtyping consists of two mutually recursive judgments Θ ⊢ 𝑃 ≤+ 𝑄 ⊣ Θ′
and

Θ ⊢ 𝑁 ≤− 𝑀 ⊣ Θ′
. Each judgment takes an input context Θ, checks that the left-hand side type is a

subtype of the right-hand side type, and produces an output context Θ′
. The shape of this output

context is identical to that of the corresponding input context: the only difference between them

is that the output context contains the solutions to any newly solved existential variables. Since

existential type variables can only have a single solution, output contexts can only solve existential

variables that are unsolved in the input context.

As a result of polarization, existential type variables only appear on the left-hand side of negative

subtyping judgments and the right-hand side of positive subtyping judgments. This groundness

invariant is critical to the workings of our algorithm. Since we will frequently make use of this

invariant, we briefly introduce some terminology related to it. We call types that do not contain

any existential variables ground. The side of a judgment that can not contain any existential type

variables is the ground side, and the opposite side is the non-ground side. We will observe symmetries

between properties of the positive and negative judgments based on the groundness of the types

(see Lemma 6.1 for instance). This is why we swap the alphabetical order of𝑀 and 𝑁 when writing

negative judgments.
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14 Anon.

Θ ⊢ 𝐴 ≤± 𝐵 ⊣ Θ′ In the context Θ, 𝐴 checks algorithmically as a subtype of 𝐵,

producing the context Θ′

Θ𝐿, 𝛼,Θ𝑅 ⊢ 𝛼 ≤+ 𝛼 ⊣ Θ𝐿, 𝛼,Θ𝑅

≤±Arefl
Θ𝐿 ⊢ 𝑃 type

+ 𝑃 ground

Θ𝐿, 𝛼,Θ𝑅 ⊢ 𝑃 ≤+ 𝛼 ⊣ Θ𝐿, 𝛼 = 𝑃,Θ𝑅

≤±Ainst

Θ ⊢ 𝑀 ≤− 𝑁 ⊣ Θ′ Θ′ ⊢ 𝑁 ≤− [Θ′]𝑀 ⊣ Θ′′

Θ ⊢ ↓𝑁 ≤+ ↓𝑀 ⊣ Θ′′ ≤±Ashift↓

Θ, 𝛼 ⊢ [𝛼/𝛼]𝑁 ≤− 𝑀 ⊣ Θ′, 𝛼 [= 𝑃] 𝑀 ≠ ∀𝛽. 𝑀 ′

Θ ⊢ ∀𝛼. 𝑁 ≤− 𝑀 ⊣ Θ′ ≤±Aforalll

Θ, 𝛼 ⊢ 𝑁 ≤− 𝑀 ⊣ Θ′, 𝛼

Θ ⊢ 𝑁 ≤− ∀𝛼.𝑀 ⊣ Θ′ ≤±Aforallr
Θ ⊢ 𝑄 ≤+ 𝑃 ⊣ Θ′ Θ′ ⊢ [Θ′]𝑁 ≤− 𝑀 ⊣ Θ′′

Θ ⊢ 𝑃 → 𝑁 ≤− 𝑄 → 𝑀 ⊣ Θ′′ ≤±Aarrow

Θ ⊢ 𝑄 ≤+ 𝑃 ⊣ Θ′ Θ′ ⊢ [Θ′]𝑃 ≤+ 𝑄 ⊣ Θ′′

Θ ⊢ ↑𝑃 ≤− ↑𝑄 ⊣ Θ′′ ≤±Ashift↑

Fig. 9. Algorithmic subtyping

We present our algorithmic subtyping rules in Figure 9.

• ≤±Arefl is identical to our declarative rule for type variables, however we have moved the

Θ ⊢ 𝛼 type
+
judgment into an equivalent requirement that the input and output contexts

have the form Θ𝐿, 𝛼,Θ𝑅 .

• ≤±Ainst is a new rule that describes how to solve existential type variables. The idea is that

if we reach a subtyping judgment like 𝑃 ≤+ 𝛼 , then there is no further work to be done,

and we can just set 𝛼 to be equal to 𝑃 . Since this rule is the only way we solve existential

variables, all solutions to existential variables are ground.

The premises of ≤±Ainst ensure that the rule preserves well-formedness: as shown in

Figure 14, our contexts are ordered, and a solution 𝑃 to an existential variable 𝛼 must

be well-formed with respect to the context items prior to 𝛼 , i.e. Θ𝐿 . This means that the

solution for 𝛼 can only contain type variables that were in scope when 𝛼 was introduced:

an important property for the soundness of the system.

• ≤±Aforalll implements the strategy we described to make the ≤±Dforalll rule algorithmic:

rather than replacing the type variable 𝛼 with a ground type 𝑃 , we procrastinate deciding

what 𝑃 should be and instead replace 𝛼 with a fresh existential type variable 𝛼 . The bracketed

𝛼 [= 𝑃] in the output context indicates that the algorithm doesn’t have to solve 𝛼 : we will

later see in Section 6.1.1 that it solves 𝛼 if and only if the type variable 𝛼 appears in the

term 𝑁 .

The second premise of ≤±Aforalll states that the right-hand side must not be a prenex

polymorphic form. We introduce this premise to ensure that the system is strictly syntax-

oriented: we have to eliminate all the quantifiers on the right with ≤±Aforallr before
eliminating any quantifiers on the left with ≤±Aforalll. In general, introducing a premise

like this could be problematic for completeness, as in completeness (see Theorem 7.2) we

want to be able to take apart the declarative derivation in the same order that the algorithmic
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Implicit Polarized F: local type inference for impredicativity 15

[Θ]𝐴 Applying a context Θ, as a substitution, to a type 𝐴

[·]𝐴 = 𝐴

[Θ, 𝛼]𝐴 = [Θ]𝐴
[Θ, 𝛼]𝐴 = [Θ]𝐴

[Θ, 𝛼 = 𝑃]𝐴 = [Θ] ( [𝑃/𝛼]𝐴)

Fig. 10. Applying a context to a type

system would derive the term. Thankfully, the invertibility of ≤±Dforallr ensures that we
can transform declarative derivations concluding with ≤±Dforalll into equivalent ones that,

like the algorithmic systems, use ≤±Dforallr as much as possible to eliminate all the prenex

quantifiers on the right-hand side before using ≤±Dforalll.
• ≤±Aforallr is almost an exact copy of ≤±Dforalll. The forall rules must preserve the ground-

ness invariant, so while ≤±Aforalll can introduce existential type variables when eliminating

a quantifier on the left-hand side, ≤±Aforallr can not introduce any existential variables

while eliminating a quantifier on the right-hand side. This ensures that𝑀 remains ground

from the conclusion of the rule to its premise.

• ≤±Aarrow describes how to check function types. This rule is interesting since it has

multiple premises. After checking the first premise Θ ⊢ 𝑄 ≤+ 𝑃 ⊣ Θ′
, we have an output

context Θ′
that might solve some existential variables that appear in 𝑃 . Since some of these

existential variables might also appear in 𝑁 , we need to ensure that we propagate their

solutions when we check 𝑁 ≤− 𝑀 . We do this by substituting all the existential variables

that appear in the possibly non-ground 𝑁 by their solutions in Θ′
. We denote this operation

as [Θ′]𝑁 and define it formally in Figure 10.

• ≤±Ashift↓ and the symmetric ≤±Ashift↑ are our shift rules. In these rules the groundness

invariant defines the order in which the premises need to be be checked. For instance, in

≤±Ashift↓ only 𝑁 is ground in the conclusion, therefore we need to check𝑀 ≤− 𝑁 first. As

we will see in Section 6.1.1, checking this gives us an algorithmic context Θ′
that solves

all the existential variables that appear in 𝑀 . We can use this context to complete 𝑀 by

substituting all the existential variables in𝑀 by their solutions in Θ′
, giving us the ground

type [Θ′]𝑀 . Now that we have a ground type [Θ′]𝑀 , we can check 𝑁 ≤− 𝑀 by verifying

Θ′ ⊢ 𝑁 ≤− [Θ′]𝑀 ⊣ Θ′′
.

4.2 Algorithmic type system
With a mechanism to solve existential variables in hand, we can now construct an algorithmic

system to implement our declarative typing rules. We present our algorithmic type system in

Figure 11.

• Most of the rules (Avar, A𝜆abs, Agen, Athunk, Areturn, Aspinenil, and Aspinecons) are
identical to their declarative counterparts, modulo adding output contexts and applying

output contexts to subsequent premises.

• We split the declarative Dspinetypeabs rule into two rules depending on whether the new

universal variable 𝛼 appears in the type we are quantifying over 𝑁 . If it does not, as in

Aspinetypeabsnotin, then we do not need to introduce a new existential variable. If it does,

as in Aspinetypeabsin, then as with ≤±Aforalll we introduce a fresh existential variable 𝛼

to replace 𝛼 . Note that unlike most rules, Aspinetypeabsin adds a new existential variable

to the output context of the conclusion that does not appear in its input context. This will

prove to be important in the Aunambiguouslet and Aambiguouslet rules.
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16 Anon.

Θ; Γ ⊢ 𝑒 : 𝐴 ⊣ Θ′
The term 𝑒 synthesizes the type 𝐴, producing the context Θ′

Θ; Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀 ⊣ Θ′ When passed to a head of type 𝑁 , the argument list 𝑠 synthesizes

the type𝑀 , producing the context Θ′

𝑥 : 𝑃 ∈ Γ

Θ; Γ ⊢ 𝑥 : 𝑃 ⊣ Θ
Avar

Θ; Γ, 𝑥 : 𝑃 ⊢ 𝑡 : 𝑁 ⊣ Θ′

Θ; Γ ⊢ 𝜆𝑥 : 𝑃 . 𝑡 : 𝑃 → 𝑁 ⊣ Θ′ A𝜆abs
Θ, 𝛼 ; Γ ⊢ 𝑡 : 𝑁 ⊣ Θ′, 𝛼

Θ; Γ ⊢ Λ𝛼. 𝑡 : ∀𝛼. 𝑁 ⊣ Θ′ Agen

Θ; Γ ⊢ 𝑡 : 𝑁 ⊣ Θ′

Θ; Γ ⊢ {𝑡} : ↓𝑁 ⊣ Θ′ Athunk
Θ; Γ ⊢ 𝑣 : 𝑃 ⊣ Θ′

Θ; Γ ⊢ return 𝑣 : ↑𝑃 ⊣ Θ′ Areturn

Θ; Γ ⊢ 𝑣 : ↓𝑀 ⊣ Θ′ Θ′
; Γ ⊢ 𝑠 : 𝑀 ≫ ↑𝑄 ⊣ Θ′′ Θ′′ ⊢ 𝑃 ≤+ 𝑄 ⊣ Θ′′′

Θ′′′ ⊢ [Θ′′′]𝑄 ≤+ 𝑃 ⊣ Θ(4) Θ(5) = Θ(4) ↾ Θ Θ(5)
; Γ, 𝑥 : 𝑃 ⊢ 𝑡 : 𝑁 ⊣ Θ(6)

Θ; Γ ⊢ let 𝑥 : 𝑃 = 𝑣 (𝑠); 𝑡 : 𝑁 ⊣ Θ(6) Aambiguouslet

Θ; Γ ⊢ 𝑣 : ↓𝑀 ⊣ Θ′ Θ′
; Γ ⊢ 𝑠 : 𝑀 ≫ ↑𝑄 ⊣ Θ′′

FEV(𝑄) = ∅ Θ′′′ = Θ′′↾ Θ Θ′′′
; Γ, 𝑥 : 𝑄 ⊢ 𝑡 : 𝑁 ⊣ Θ(4)

Θ; Γ ⊢ let 𝑥 = 𝑣 (𝑠); 𝑡 : 𝑁 ⊣ Θ(4) Aunambiguouslet

Θ; Γ ⊢ 𝜖 : 𝑁 ≫ 𝑁 ⊣ Θ
Aspinenil

Θ; Γ ⊢ 𝑣 : 𝑃 ⊣ Θ′ Θ′ ⊢ 𝑃 ≤+ [Θ′]𝑄 ⊣ Θ′′ Θ′′
; Γ ⊢ 𝑠 : [Θ′′]𝑁 ≫ 𝑀 ⊣ Θ′′′

Θ; Γ ⊢ 𝑣, 𝑠 : 𝑄 → 𝑁 ≫ 𝑀 ⊣ Θ′′′ Aspinecons

Θ; Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀 ⊣ Θ′ 𝛼 ∉ FUV(𝑁 )
Θ; Γ ⊢ 𝑠 : (∀𝛼. 𝑁 ) ≫ 𝑀 ⊣ Θ′ Aspinetypeabsnotin

Θ, 𝛼 ; Γ ⊢ 𝑠 : [𝛼/𝛼]𝑁 ≫ 𝑀 ⊣ Θ′, 𝛼 [= 𝑃] 𝛼 ∈ FUV(𝑁 )
Θ; Γ ⊢ 𝑠 : (∀𝛼. 𝑁 ) ≫ 𝑀 ⊣ Θ′, 𝛼 [= 𝑃]

Aspinetypeabsin

Fig. 11. Algorithmic type system

• The first, second, and last premises of Aambiguouslet are the same as their declarative

counterparts. The third and fourth just inline the algorithmic ≤±Ashift↑ rule corresponding
to the declarative premise Θ ⊢ ↑𝑄 ≤− ↑𝑃 in Dambiguouslet.
We saw in the Aspinetypeabsin rule that performing type inference on spines can introduce

new existential variables. To simplify our proofs, we do not want these to leak. Therefore

we introduce a notion of context restriction in Figure 12. The fifth premise Θ(5) = Θ(4) ↾ Θ
creates a new context that restricts the context Θ(4)

to contain only the existential variables

in Θ. So if Θ(4)
contains new existential variables compared to Θ, then these will not be
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Θ′↾ Θ Θ′
restricted to only contain existential variables which appear in Θ

·↾ · = ·
↾empty

Θ′↾ Θ = Θ′′

Θ′, 𝛼 ↾ Θ, 𝛼 = Θ′′, 𝛼
↾uvar

Θ′↾ Θ = Θ′′

Θ′, 𝛼 [= 𝑃] ↾ Θ, 𝛼 [= 𝑄] = Θ′′, 𝛼 [= 𝑃]
↾guessin

Θ′↾ Θ = Θ′′ 𝛼 [= 𝑄] ∉ Θ

Θ′, 𝛼 [= 𝑃] ↾ Θ = Θ′′ ↾guessnotin

Fig. 12. Definition of context restriction

present in Θ(5)
. However any new solutions in Θ(4)

to existential variables already in Θ
will be present in Θ(5)

, so the algorithm will not solve any existential variable as two

incompatible solutions.

• The first, second, and last premises of Aunambiguouslet are lifted from the declarative rule

Dunambiguouslet. We replace the quantification in the last premise of Dunambiguouslet
with a statement that there are no existential variables left in the type 𝑄 , i.e. FEV(𝑄) = ∅.
Since no instantiations are possible, there are not any other types left that 𝑄 could have.

Like Aambiguouslet, we restrict the output context of the spine judgment to remove any

existential variables newly introduced by the spine.

Our algorithm is really easy to implement — we wrote a bare-bones implementation in 250 lines

of OCaml.

5 PROPERTIES OF DECLARATIVE TYPING
Implicit Polarized F should support the full complement of metatheoretic properties, but in this

paper we focus on the properties needed to establish our theorems about type inference. For

example, we will only prove substitution at the type level, and totally ignore term-level substitution.

5.1 Subtyping
Because we use subtyping to model type instantiation, we need to know quite a few properties

about how subtyping works. For example, we are able to show that the subtyping relation admits

both reflexivity and transitivity:

Lemma 5.1 (Declarative subtyping is reflexive). If Θ ⊢ 𝐴 type
±
then Θ ⊢ 𝐴 ≤± 𝐴.

Lemma 5.2 (Declarative subtyping is transitive). If Θ ⊢ 𝐴 type
±
, Θ ⊢ 𝐵 type

±
, Θ ⊢ 𝐶 type

±
,

Θ ⊢ 𝐴 ≤± 𝐵, and Θ ⊢ 𝐵 ≤± 𝐶 , then Θ ⊢ 𝐴 ≤± 𝐶 .

Because of impredicativity, transitivity is surprisingly subtle to get right. We discuss the needed

metric in Section 6.2 as this metric is also used to show the decidability of algorithmic subtyping.

We also show that subtyping is stable under substitution, which is useful for proving properties

of type instantiation:

Lemma 5.3 (Declarative subtyping is stable under substitution). If Θ𝐿,Θ𝑅 ⊢ 𝑃 type
+
, then:

• If Θ𝐿, 𝛼,Θ𝑅 ⊢ 𝑄 type
+
, Θ𝐿, 𝛼,Θ𝑅 ⊢ 𝑅 type

+
, and Θ𝐿, 𝛼,Θ𝑅 ⊢ 𝑄 ≤+ 𝑅, then Θ𝐿,Θ𝑅 ⊢

[𝑃/𝛼]𝑄 ≤+ [𝑃/𝛼]𝑅.
• If Θ𝐿, 𝛼,Θ𝑅 ⊢ 𝑁 type

−
, Θ𝐿, 𝛼,Θ𝑅 ⊢ 𝑀 type

−
, and Θ𝐿, 𝛼,Θ𝑅 ⊢ 𝑁 ≤− 𝑀 , then Θ𝐿,Θ𝑅 ⊢

[𝑃/𝛼]𝑁 ≤− [𝑃/𝛼]𝑀 .
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18 Anon.

Θ ⊢ Γ1 � Γ2 In the context Θ, the environments Γ1 and Γ2 are isomorphic

Θ ⊢ · � ·
Eisoempty

Θ ⊢ Γ1 � Γ2 Θ ⊢ 𝑃 �+ 𝑄

Θ ⊢ Γ1, 𝑥 : 𝑃 � Γ2, 𝑥 : 𝑄
Eisovar

Fig. 13. Isomorphic environments

Θ ctx Θ is a well-formed context

· ctx

Cwfempty
Θ ctx

Θ, 𝛼 ctx

Cwfuvar
Θ ctx

Θ, 𝛼 ctx

Cwfunsolvedguess

Θ ctx Θ ⊢ 𝑃 type
+ 𝑃 ground

Θ, 𝛼 = 𝑃 ctx

Cwfsolvedguess

Fig. 14. Well-formedness of contexts

5.2 Typing
We also show an important property about our typing judgment. Suppose we have two types 𝐴

and 𝐵 that are isomorphic, i.e. Θ ⊢ 𝐴 �± 𝐵. Then, by the intuitive definition of subtyping, it should

be possible to safely use any term of type A where a term of type B is expected, and vice versa.

Concretely, the map function can be given both the type 𝑃 = ↓(∀𝛼, 𝛽. ↓(𝛼 → 𝛽) → [𝛼] → ↑[𝛽])
and also the type 𝑄 = ↓(∀𝛽, 𝛼 . ↓(𝛼 → 𝛽) → [𝛼] → ↑[𝛽]), and there is no reason to prefer one to

the other. Therefore if we have an environment Γ where map : 𝑃 and an environment Γ′ where
map : 𝑄 , the inference we get within each environment should be the same.

We formalize this idea with the following lemma, whichmakes use of the isomorphic environment

judgment we define in Figure 13:

Lemma 5.4 (Isomorphic environments type the same terms). If Θ ⊢ Γ � Γ′, then:

• If Θ; Γ ⊢ 𝑣 : 𝑃 then ∃𝑃 ′
such that Θ ⊢ 𝑃 �− 𝑃 ′

and Θ; Γ′ ⊢ 𝑣 : 𝑃 ′
.

• If Θ; Γ ⊢ 𝑡 : 𝑁 then ∃𝑁 ′
such that Θ ⊢ 𝑁 �− 𝑁 ′

and Θ; Γ′ ⊢ 𝑡 : 𝑁 ′
.

• If Θ; Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀 and Θ ⊢ 𝑁 �− 𝑁 ′
, then ∃𝑀 ′

such that Θ ⊢ 𝑀 �− 𝑀 ′
and Θ; Γ ⊢ 𝑠 :

𝑁 ′ ≫ 𝑀 ′
.

This lemma tells us that regardless of which type we give the variablemap, any term which uses

it will have the same type (up to isomorphism).

6 PROPERTIES OF ALGORITHMIC TYPING
6.1 Well-formedness
We first establish some of the invariants our type system maintains.

6.1.1 Subtyping.

Context well-formedness. A simple property that our algorithm maintains is that any solutions

the algorithm chooses are well-formed: they are ground and only contain universal variables in
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Θ ⊢ 𝐴 type
±

In the context Θ, 𝐴 is a well-formed positive/negative type

𝛼 ∈ EV(Θ)
Θ ⊢ 𝛼 type

+ Twfguess

Fig. 15. Additional well-formedness rules for algorithmic types. EV(Θ) contains all the existential type
variables in Θ, independently of whether they are solved or unsolved.

Θ −→ Θ′ Θ extends to Θ′

· −→ ·
Cempty

Θ −→ Θ′

Θ, 𝛼 −→ Θ′, 𝛼
Cuvar

Θ −→ Θ′

Θ, 𝛼 −→ Θ′, 𝛼
Cunsolvedguess

Θ −→ Θ′

Θ, 𝛼 −→ Θ′, 𝛼 = 𝑃
Csolveguess

Θ −→ Θ′ ∥Θ∥ ⊢ 𝑃 �+ 𝑄
Θ, 𝛼 = 𝑃 −→ Θ′, 𝛼 = 𝑄

Csolvedguess

Fig. 16. Context extension

∥Θ∥ The declarative context corresponding to the algorithmic context Θ

∥·∥ = · ∥Θ, 𝛼 ∥ = ∥Θ∥ , 𝛼 ∥Θ, 𝛼 ∥ = ∥Θ∥ ∥Θ, 𝛼 = 𝑃 ∥ = ∥Θ∥

Fig. 17. Producing a declarative context from an algorithmic context

scope at the time of the corresponding existential variable’s creation. We formalize this notion of

the well-formedness of contexts in Figures 14 and 15.

Output context solves all existential variables. Another property of our algorithm is that given

well-formed inputs, the algorithm will solve all the necessary solutions: in other words, the output

context contains solutions to all existential variables appearing in the non-ground type.

Context extension. Finally, we want to show that the algorithm produces an output context that

only adds solutions to the input context. For instance, our algorithm should not change an existing

solution to an incompatible one. We formalize this idea with a context extension judgment based

on the earlier work of Dunfield and Krishnaswami [5]. This judgment Θ −→ Θ′
, as defined in

Figure 16, indicates information gain: Θ′
must contain at least as much information as Θ.

Most of the rules defining context extension are homomorphic. The exceptions are Csolveguess,
which allows the algorithm to solve an existential variable, and Csolvedguess, which allows the

algorithm to change the solution 𝑃 for an existential variable 𝛼 to an isomorphic type 𝑄 . This

ability is not crucial to the algorithm; in fact the algorithm will maintain syntactically identical

solutions. However since the declarative system can invent any solutions it likes when instantiating

quantified types, we need this little bit of flex to prove completeness.

Solutions to existential types are ground, so we do not need to introduce a new notion of

isomorphism over algorithmic types. However since the context Θ is algorithmic rather than

declarative, we do need to introduce a simple operation ∥Θ∥ that converts an algorithmic context
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Θ =⇒ Θ′
The context Θ′

weakly extends the context Θ′

· =⇒ ·
Wcempty

Θ =⇒ Θ′

Θ, 𝛼 =⇒ Θ′, 𝛼
Wcuvar

Θ =⇒ Θ′

Θ, 𝛼 =⇒ Θ′, 𝛼
Wcunsolvedguess

Θ =⇒ Θ′

Θ, 𝛼 =⇒ Θ′, 𝛼 = 𝑃
Wcsolveguess

Θ =⇒ Θ′ ∥Θ∥ ⊢ 𝑃 �+ 𝑄
Θ, 𝛼 = 𝑃 =⇒ Θ′, 𝛼 = 𝑄

Wcsolvedguess

Θ =⇒ Θ′

Θ =⇒ Θ′, 𝛼
Wcnewunsolvedguess

Θ =⇒ Θ′

Θ =⇒ Θ′, 𝛼 = 𝑃
Wcnewsolvedguess

Fig. 18. Weak context extension. We highlight the rules that are “new” compared with context extension.

Θ ⊢ Γ env The environment Γ is well-formed with respect to the context Θ

Θ ⊢ · env

Ewfempty
Θ ⊢ Γ env Θ ⊢ 𝑃 type

+ 𝑃 ground

Θ ⊢ Γ, 𝑥 : 𝑃 env

Ewfvar

Fig. 19. Well-formedness of typing environments

into a declarative one by dropping all the context items involving existential variables. This

operation is defined in Figure 17.

We formalize all these properties in the well-formedness statement about the algorithmic sub-

typing relation below.

Lemma 6.1 (Algorithmic subtyping is w.f.).

• If Θ ⊢ 𝑃 ≤+ 𝑄 ⊣ Θ′
, Θ ctx, 𝑃 ground, and [Θ]𝑄 = 𝑄 , then Θ′

ctx, Θ −→ Θ′
, and [Θ′]𝑄

ground.

• If Θ ⊢ 𝑁 ≤− 𝑀 ⊣ Θ′
, Θ ctx, 𝑀 ground, and [Θ]𝑁 = 𝑁 , then Θ′

ctx, Θ −→ Θ′
, and [Θ′]𝑁

ground.

The premises of each case encode our expectations about the inputs to the subtyping algorithm:

the input context should be well-formed, the type on the ground side should be ground, and the

type on the non-ground side should not contain any existential variables that have already been

solved. We prove that when given these inputs, the subtyping algorithm produces an output context

that is well-formed, is compatible with the input context, and that solves all the existential variables

that appear in the input types.

6.1.2 Typing. The well-formedness statement for typing is very similar to the one for subtyping.

However stating well-formedness for the spine judgment is more complex because this judgment

(specifically the Aspinetypeabsin rule) can introduce new existential variables that do not appear

within its input context.

To tackle this, we introduce a new notion of context extension, weak context extension, in

Figure 18. This is identical to normal context extension, except it has two additional rules to

permit adding new existential variables: Wcnewunsolvedguess lets it add an unsolved variable,
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|𝐴|
nq

The size of a type 𝐴, ignoring quantification

|𝛼 |
nq

= 1

|𝛼 |
nq

= 1

|↓𝑁 |
nq

= |𝑁 |
nq

+ 1

|∀𝛼. 𝑁 |
nq

= |𝑁 |
nq

|𝑃 → 𝑁 |
nq

= |𝑃 |
nq

+ |𝑁 |
nq

+ 1

|↑𝑃 |
nq

= |𝑃 |
nq

+ 1

NPQ(𝐴) The number of prenex quantifiers in a type 𝐴

NPQ(𝛼) = 0

NPQ(𝛼) = 0

NPQ(↓𝑁 ) = 0

NPQ(∀𝛼. 𝑁 ) = 1 + NPQ(𝑁 )
NPQ(𝑃 → 𝑁 ) = 0

NPQ(↑𝑃) = 0

Fig. 20. Definitions used in the decidability metric for Implicit Polarized F

and Wcnewsolvedguess lets it add a solved variable. We also extend in Figure 19 our notion of the

well-formedness of algorithmic contexts to typing environments in the obvious way, with Ewfvar
paralleling Cwfsolvedguess.

With this weaker notion of context extension we can state well-formedness of typing as follows:

Lemma 6.2 (Algorithmic typing is w.f.). Given a typing context Θ and typing environment Γ
such that Θ ctx and Θ ⊢ Γ env:

• If Θ; Γ ⊢ 𝑣 : 𝑃 ⊣ Θ′
, then Θ′

ctx, Θ −→ Θ′
, Θ′ ⊢ 𝑃 type

+
, and 𝑃 ground.

• If Θ; Γ ⊢ 𝑡 : 𝑁 ⊣ Θ′
, then Θ′

ctx, Θ −→ Θ′
, Θ′ ⊢ 𝑁 type

−
, and 𝑁 ground.

• IfΘ; Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀 ⊣ Θ′
,Θ ⊢ 𝑁 type

−
, and [Θ]𝑁 = 𝑁 , thenΘ′

ctx,Θ =⇒ Θ′
,Θ′ ⊢ 𝑀 type

−
,

[Θ′]𝑀 = 𝑀 , and FEV(𝑀) ⊆ FEV(𝑁 ) ∪ (FEV(Θ′) \ FEV(Θ)).

In addition to the standard postconditions, we also prove in the spine judgment case that the

free existential variables in the output type𝑀 either come from the input type 𝑁 or were added to

the context by Aspinetypeabsin while instantiating universal quantifiers.

6.2 Determinism and decidability
Since our system is syntax-directed, determinism of algorithmic typing follows from straightforward

rule inductions on the typing and subtyping rules. However, decidability is more intricate.

6.2.1 Subtyping. Our goal in proving the decidability of subtyping is finding a metric that decreases

from the conclusion to each premise of the algorithmic rules. However the obvious metrics do

not work. For instance, a metric based on the size of the type will not work because types can

get bigger when we instantiate type variables. Predicative systems might use the lexicographic

ordering of the number of prenex quantifiers followed by the size of the type as a metric. But while

instantiations will not increase the number of quantifiers in predicative systems, they can do in

impredicative systems.

In order to find a metric that works, we go back to the declarative system. Our declarative

subtyping relation has the property that (using a size metric |_|
nq

for terms that ignores quantifiers),

a well-formed
4 Θ ⊢ 𝑃 ≤+ 𝑄 judgment implies that |𝑄 |

nq
≤ |𝑃 |

nq
, and similarly a well-formed

Θ ⊢ 𝑁 ≤− 𝑀 judgment implies that |𝑁 |
nq

≤ |𝑀 |
nq
. The intuition behind this property is that

subtyping reflects the specialization order, and when a polymorphic type is instantiated, occurrences

of type variables 𝛼 get replaced with instantiations 𝑃 . As a result, the size of a subtype has to

be smaller than its supertypes. In ordinary System F, this intuition is actually false due to the

contravariance of the function type. However, in Implicit Polarized F, universal quantification is

4
One for which the well-formedness assumptions in Lemma 6.1 (Algorithmic subtyping is w.f.) hold.
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a negative type of the form ∀𝛼. 𝑁 , and ranges over positive types. Since positive type variables 𝛼

are occurring within a negative type 𝑁 , each occurrence of 𝛼 must be underneath a shift, which is

invariant in our system. As a result, the intuitive property is true.

Now, note that our algorithm always solves all of the existential problems in a well-formed

subtyping problem. In particular, given an algorithmic derivation Θ ⊢ 𝑃 ≤+ 𝑄 ⊣ Θ′
, we know

that [Θ′]𝑄 will be ground. So we therefore expect [Θ′]𝑄 to be the same size as it would be in a

declarative derivation. This gives us a hint about what to try for the metric.

Since the size of the ground side (e.g. 𝑃 ) bounds the size of the completed non-ground side (e.g.

[Θ′]𝑄), we will incorporate the size of the ground side into our metric. This size decreases between

the conclusions and the premises of all of the rules apart from ≤±Aforalll and ≤±Aforallr, where it
stays the same. ≤±Aforalll and ≤±Aforallr both however pick off a prenex quantifier, so we can take

the lexicographic ordering of this size followed by the total number of prenex quantifiers in the

subtyping judgment. This is (|𝑃 |
nq

,NPQ(𝑃) + NPQ(𝑄)) for positive judgments Θ ⊢ 𝑃 ≤+ 𝑄 ⊣ Θ′

and (|𝑀 |
nq

,NPQ(𝑀) + NPQ(𝑁 )) for negative judgments Θ ⊢ 𝑁 ≤− 𝑀 ⊣ Θ′
. We give formal

definitions of |_|
nq

and NPQ(_) in Figure 20.

Note that this is somewhat backwards from a typical metric for predicative systems where we

count quantifiers first, then the size.

We prove that this metric assigns a total ordering to derivations in the algorithmic subtyping

system. In each rule with multiple hypotheses, we invoke the bounding property described above,

which we formalize in the following lemma:

Lemma 6.3 (Completed non-ground size bounded by ground size).

• If Θ ⊢ 𝑃 ≤+ 𝑄 ⊣ Θ′
, Θ ctx, 𝑃 ground, and [Θ]𝑄 = 𝑄 , then | [Θ′]𝑄 |

nq
≤ |𝑃 |

nq
.

• If Θ ⊢ 𝑁 ≤− 𝑀 ⊣ Θ′
, Θ ctx,𝑀 ground, and [Θ]𝑁 = 𝑁 , then | [Θ′]𝑁 |

nq
≤ |𝑀 |

nq
.

As a result of our key tactic for deriving this metric coming from the declarative system, it turns

out that this metric assigns total orderings to derivations both in the algorithmic and the declarative

subtyping systems. This allows us to reuse it in both the proof of completeness and the proof of

transitivity, where in both cases using the height of the derivation as an induction metric is too

weak.

6.2.2 Typing. The decidability of algorithmic typing ends up being relatively straightforward.

Almost every rule decreases in the standard structural notions of size |_| on terms and spines. The

Dspinetypeabs rule however preserves the size of the spine involved, so taking this size alone is

insufficient. Therefore when comparing two spine judgments, we take the lexicographic ordering

of ( |𝑠 |,NPQ(𝑁 )), where 𝑠 is the spine and 𝑁 is the input type. We prove that this metric assigns a

total ordering to algorithmic typing derivations, thus demonstrating that our typing algorithm is

decidable. Alongside our proof, we include an exact statement of this metric in the appendix.

Note that, as with subtyping, this metric assigns a total ordering not only to algorithmic typing

derivations but also to declarative typing derivations. Therefore we reuse this metric in the proofs

of soundness, completeness, and the behavior of isomorphic types. In each of these cases, using the

height of the derivation as an induction metric is too weak.

7 SOUNDNESS AND COMPLETENESS
We have now set out declarative subtyping and typing systems for Implicit Polarized F as well as

algorithms to implement them. In this section, we will demonstrate that the algorithms are sound

and complete with respect to their declarative counterparts. Proofs of all of these results are in the

appendix.
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7.1 Subtyping
7.1.1 Soundness. Consider the algorithmic subtyping judgment Θ ⊢ 𝑃 ≤+ 𝑄 ⊣ Θ′

. The non-ground

input 𝑄 might contain some unsolved existential variables, which are solved in Θ′
. For soundness,

we want to say that no matter what solutions are ever made for these existential variables, there

will be a corresponding declarative derivation. To state this, we introduce a notion of a complete

context. These are algorithmic contexts which contain no unsolved existential variables:

Complete contexts Ω ::= · | Ω, 𝛼 | Ω, 𝛼 = 𝑃

We can now use the context extension judgmentΘ′ −→ Ω to state that Ω is a complete context that

contains solutions to all the unsolved existential variables in Θ′
. Applying this complete context to

𝑄 gives us our hoped-for declarative subtyping judgment ∥Θ∥ ⊢ 𝑃 ≤+ [Ω]𝑄 . (The ∥Θ∥ judgment

(defined in Figure 17) drops the existential variables to create a declarative context.)

This gives us the following statement of soundness, which we prove in the appendix:

Theorem 7.1 (Soundness of algorithmic subtyping). Given a well-formed algorithmic context

Θ and a well-formed complete context Ω:

• If Θ ⊢ 𝑃 ≤+ 𝑄 ⊣ Θ′
, Θ′ −→ Ω, 𝑃 ground, [Θ]𝑄 = 𝑄 , Θ ⊢ 𝑃 type

+
, and Θ ⊢ 𝑄 type

+
,

then ∥Θ∥ ⊢ 𝑃 ≤+ [Ω]𝑄 .
• If Θ ⊢ 𝑁 ≤− 𝑀 ⊣ Θ′

, Θ′ −→ Ω,𝑀 ground, [Θ]𝑁 = 𝑁 , Θ ⊢ 𝑁 type
−
, and Θ ⊢ 𝑀 type

−
,

then ∥Θ∥ ⊢ [Ω]𝑁 ≤− 𝑀 .

The side conditions for soundness are similar to those of well-formedness (Lemma 6.1), except

we also require the complete context and the types in the algorithmic judgment to be well-formed.

7.1.2 Completeness. Completeness is effectively the reverse of soundness. For each positive declar-

ative judgment ∥Θ∥ ⊢ 𝑃 ≤+ [Ω]𝑄 where Θ −→ Ω we want to find a corresponding algorithmic

derivation Θ ⊢ 𝑃 ≤+ 𝑄 ⊣ Θ′
, and likewise for negative judgments. No matter what declarative

solutions we had for a solved type, the algorithmic system infers compatible solutions.

Since context extension Θ −→ Ω now appears in the premise, we need to strengthen our

induction hypothesis to prove completeness for rules with multiple premises. To do this, we prove

that the algorithm’s output context Θ′
is also compatible with Ω, i.e. Θ′ −→ Ω. This gives us the

following statement of completeness, in which the side conditions are identical to soundness.

Theorem 7.2 (Completeness of algorithmic subtyping). If Θ ctx, Θ −→ Ω, and Ω ctx, then:

• If ∥Θ∥ ⊢ 𝑃 ≤+ [Ω]𝑄 , Θ ⊢ 𝑃 type
+
, Θ ⊢ 𝑄 type

+
, 𝑃 ground, and [Θ]𝑄 = 𝑄 , then ∃Θ′

such that

Θ ⊢ 𝑃 ≤+ 𝑄 ⊣ Θ′
and Θ′ −→ Ω.

• If ∥Θ∥ ⊢ [Ω]𝑁 ≤− 𝑀 , Θ ⊢ 𝑀 type
−
, Θ ⊢ 𝑁 type

−
,𝑀 ground, and [Θ]𝑁 = 𝑁 , then ∃Θ′

such

that Θ ⊢ 𝑁 ≤− 𝑀 ⊣ Θ′
and Θ′ −→ Ω.

7.2 Typing
Due to the unusual implication withinDunambiguouslet, soundness and completeness of typing are

mutually recursive in our system. In soundness we use completeness while proving this implication,

and in completeness we use soundness while unpacking the implication. We justify each of these

uses by only applying either soundness or completeness to a judgment involving a subterm.

7.2.1 Soundness. Soundness of typing is formulated in the same way as soundness of subtyping.

We introducing a complete context Ω which the output context extends to. For the spine judgment

we allow the completed output type [Ω]𝑀 to be isomorphic to the declarative output type𝑀 ′
.
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Theorem 7.3 (Soundness of algorithmic typing). If Θ ctx, Θ ⊢ Γ env, Θ′ −→ Ω, and Ω ctx,

then:

• If Θ; Γ ⊢ 𝑣 : 𝑃 ⊣ Θ′
, then ∥Θ∥ ; Γ ⊢ 𝑣 : [Ω]𝑃 .

• If Θ; Γ ⊢ 𝑡 : 𝑁 ⊣ Θ′
, then ∥Θ∥ ; Γ ⊢ 𝑡 : [Ω]𝑁 .

• If Θ; Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀 ⊣ Θ′
, Θ ⊢ 𝑁 type

−
, and [Θ]𝑁 = 𝑁 , then ∃𝑀 ′

such that ∥Θ∥ ⊢ [Ω]𝑀 �−
𝑀 ′

and ∥Θ∥ ; Γ ⊢ 𝑠 : [Ω]𝑁 ≫ 𝑀 ′
.

7.3 Completeness
The main challenge in stating completeness of typing is taking into account the fact that spine

judgments can introduce new existential variables. Practically, the introduction of new existential

variables means that the output context of the algorithmic spine judgment Θ′
will not necessarily

extend to the complete context Ω. To deal with this, we make use of weak context extension

and instead require there to exist some new complete context Ω′
containing the new existential

variables. The original complete context Ω should then weakly extend to Ω′
, and the output context

of the spine judgment Θ′
should strongly extend to Ω′

.

This gives us the following statement of the completeness of typing:

Theorem 7.4 (Completeness of algorithmic typing). If Θ ctx, Θ ⊢ Γ env, Θ −→ Ω, and Ω ctx,

then:

• If ∥Θ∥ ; Γ ⊢ 𝑣 : 𝑃 then ∃Θ′
such that Θ; Γ ⊢ 𝑣 : 𝑃 ⊣ Θ′

and Θ′ −→ Ω.
• If ∥Θ∥ ; Γ ⊢ 𝑡 : 𝑁 then ∃Θ′

such that Θ; Γ ⊢ 𝑡 : 𝑁 ⊣ Θ′
and Θ′ −→ Ω.

• If ∥Θ∥ ; Γ ⊢ 𝑠 : [Ω]𝑁 ≫ 𝑀 , Θ ⊢ 𝑁 type
−
, and [Θ]𝑁 = 𝑁 , then ∃Θ′,Ω′

and 𝑀 ′
such that

Θ; Γ ⊢ 𝑠 : 𝑁 ≫ 𝑀 ′ ⊣ Θ′
, Ω =⇒ Ω′

, Θ′ −→ Ω′
, ∥Θ∥ ⊢ [Ω′]𝑀 ′ �− 𝑀 , [Θ′]𝑀 ′ = 𝑀 ′

, and

Ω′
ctx.

8 RELATEDWORK
There has been considerable research into working around the undecidability of type inference

for System F. Broadly, it falls into three main categories: enriching the language of types to make

inference possible, restricting the subtype relation, and using heuristics to knock off the easy cases.

Enriching the Type Language. The “gold standard” for System F type inference is the ML
F
system

of Botlan and Rémy [1]. They observe that type inference for System F is complicated by the lack of

principal types. To create principal types, they extend the type language of System F with bounded

type constraints, and show that this admits a type inference algorithm with a simple and powerful

specification: only arguments to functions used at multiple parametric types need annotation.

Unfortunately, ML
F
is notoriously difficult to implement (see Rémy and Yakobowski [15] for the

state-of-the-art), and there have been multiple attempts to find simpler subsystems. FPH (Vytiniotis

et al. [24]) attempted to simplify ML
F
by limiting the user-visible language of types to the standard

System F types and only using ML
F
-style constrained types internally within the type checker.

Another attempt to simplify ML
F
was HML (Leijen [8]). Unlike FPH, HML exposes part of the ML

F

machinery (flexible types) to the user, which changes the language of types but also types more

programs. Both FPH and HML require annotations only for polymorphic arguments, however

unfortunately, both approaches proved too intricate to adapt to GHC.

Restricting the subtype relation. The most widely used approach for System F type inference

simply abandons impredicativity. This line of work was originated by Odersky and Läufer [11], who

proposed restricting type instantiation in the subtype relation to monotypes. This made subtyping

decidable, and forms the basis for type inference in Haskell [13]. Dunfield and Krishnaswami [5]

give a simple variant of this algorithm based on bidirectional typechecking.
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This style of inference omits impredicativity from the subtype relation altogether. Boxy types [23]

combine predicative subtyping with a generalization of bidirectional typechecking to support

impredicativity. Vytiniotis et al. introduce a new type system feature, boxes, which merge the

synthesis and checking judgments from bidirectional typechecking into marks on types (i.e. the

boxes) which indicate whether part of a type came from inference or annotation. (This is somewhat

reminiscent of “colored local type inference” [12].) Unfortunately, boxy types lack a clear non-

algorithmic specification of when type annotations are required.

HMF [7] introduced another approach to restricting the specialization relation. It restricted

subtyping for the function type constructor — instead of being contravariant, function types

were invariant. This meant that inference could be done with only a modest modification to the

Damas-Milner algorithm. Our work retains function contravariance, and only imposes invariance

at shifts.

Heuristic Approaches.Many of the type inference problems which arise in practice are actually

easy to solve. Cardelli [2] invented one of the oldest such techniques while constructing a type

inference algorithm for a language with F-bounded impredicative polymorphism. Rather than

doing anything difficult, Cardelli’s algorithm simply instantiated each quantifier with the first type

constraint it ran into. Pierce and Turner [14] formalized Cardelli’s approach, and noticed that it did

not need unification to implement. To make their algorithm work, they needed to use a seemingly

ad-hoc representation of types, with a single type constructor that was simultaneously an 𝑛-ary

small and big lambda. Furthermore, while they proved that inference was sound, they did not offer

a declarative characterization of inference.

Serrano et al. [19] recently revisited the idea of controlling inference with heuristics with their

system GI. They restrict impredicative instantiation to guarded instantiations, which are (roughly

speaking) the cases when the type variable being instantiated is underneath a type constructor.

This restriction is automatically achieved in our setting via the presence of shifts, which suggests

that this syntactic restriction actually arises for deeper type-theoretic reasons. In follow up work,

Serrano et al. [18] further simplify their approach, making some dramatic simplifications to the type

theory (e.g., giving up function type contravariance) in order to achieve a simpler implementation.

Conclusions.Many researchers have noticed that type inference algorithms benefit from being able

to look at the entire argument list to a function. From the perspective of plain lambda calculus, this

looks ad-hoc and non-compositional. For example, HMF was originally described in two variants,

one using argument lists and one without, and only the weaker algorithm without argument lists

has a correctness proof. However, from the perspective of polarized type theory, argument lists are

entirely type-theoretically natural: they mark the change of a polarity boundary!

This explains why Pierce and Turner’s use of “jumbo” function types which combine multiple

quantifiers and arguments makes sense: the merged connectives are all negative, with no interposed

shifts. Making shifts explicit means that small connectives can have the same effect, which makes

it possible to give a clear specification for the system.

We have also seen that many algorithms omit function contravariance from the specialization

order to support impredicative inference. Our work clarifies that contravariance per se is not

problematic, but rather that the benefits for inference arise from controlling the crossing of polarity

boundaries. This again permits a simpler and more regular specification of subtyping.
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