
Automated and Foundational
Verification of Low-Level Programs

Dissertation zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

vorgelegt von
Michael Sammler

Saarbrücken, 2023

Tag des Kolloquiums
4. Dezember 2023

Dekan der Fakultät für Mathematik und Informatik
Prof. Dr. Jürgen Steimle

Prüfungsausschuss
Vorsitzender: Prof. Dr. Holger Hermanns
Gutachter: Prof. Dr. Derek Dreyer

Prof. Dr. Deepak Garg
Prof. Dr. Ranjit Jhala
Dr. Viktor Vafeiadis

Akademischer Mitarbeiter: Dr. Aïna Linn Georges

Abstract

Formal verification is a promising technique to ensure the reliability of low-level programs like operating systems
and hypervisors, since it can show the absence of whole classes of bugs and prevent critical vulnerabilities.
However, to realize the full potential of formal verification for real-world low-level programs one has to overcome
several challenges, including: (1) dealing with the complexities of realistic models of real-world programming
languages; (2) ensuring the trustworthiness of the verification, ideally by providing foundational proofs (i.e.,
proofs that can be checked by a general-purpose proof assistant); and (3) minimizing the manual effort required
for verification by providing a high degree of automation.

This dissertation presents multiple projects that advance formal verification along these three axes: RefinedC
provides the first approach for verifying C code that combines foundational proofs with a high degree of
automation via a novel refinement and ownership type system. Islaris shows how to scale verification of
assembly code to realistic models of modern instruction set architectures—in particular, Armv8-A and RISC-V.
DimSum develops a decentralized approach for reasoning about programs that consist of components written
in multiple different languages (e.g., assembly and C), as is common for low-level programs. RefinedC and
Islaris rest on Lithium, a novel proof engine for separation logic that combines automation with foundational
proofs.

Zusammenfassung

Formale Verifikation ist eine vielversprechende Technik, um die Verlässlichkeit von grundlegenden Programmen
wie Betriebssystemen sicherzustellen. Um das volle Potenzial formaler Verifikation zu realisieren, müssen jedoch
mehrere Herausforderungen gemeistert werden: Erstens muss die Komplexität von realistischen Modellen von
Programmiersprachen wie C oder Assembler gehandhabt werden. Zweitens muss die Vertrauenswürdigkeit
der Verifikation sichergestellt werden, idealerweise durch maschinenüberprüfbare Beweise. Drittens muss die
Verifikation automatisiert werden, um den manuellen Aufwand zu minimieren.

Diese Dissertation präsentiert mehrere Projekte, die formale Verifikation entlang dieser Achsen weiteren-
twickeln: RefinedC ist der erste Ansatz für die Verifikation von C Code, der maschinenüberprüfbare Beweise
mit einem hohen Grad an Automatisierung vereint. Islaris zeigt, wie die Verifikation von Assembler zu
realistischen Modellen von modernen Befehlssatzarchitekturen wie Armv8-A oder RISC-V skaliert werden
kann. DimSum entwickelt einen neuen Ansatz für die Verifizierung von Programmen, die aus Komponenten in
mehreren Programmiersprachen bestehen (z.B., C und Assembler), wie es oft bei grundlegenden Programmen
wie Betriebssystemen der Fall ist. RefinedC und Islaris basieren auf Lithium, eine neue Automatisierungstechnik
für Separationslogik, die maschinenüberprüfbare Beweise und Automatisierung verbindet.

iii

Acknowledgements

The past years in which I worked towards this dissertation have been
an incredibly rewarding journey and I had the joy to meet and work
with many great people—this dissertation would not have been possible
without their support.

First and foremost I would like to thank my advisors Derek Dreyer
and Deepak Garg, who helped me grow at every step of the way, from
not knowing much about research to writing this dissertation. Out of
many things, I, in particular, would like to thank Derek for teaching me
that the best technical results are not worth much without a clear and
understandable presentation—even though I might not have felt that way
when rewriting an introduction for the fourth time—and I would like to
thank Deepak for sharing his broad knowledge and encouraging me to
look at the broader picture—his ability to point out deep connections to
other work after some technical presentation always impressed me. I am
also thankful for their patience whenever I excitedly shared the sketches
of some new idea and for guiding me towards turning these ideas into
clear research directions.

Next, I thank my examiners, Ranjit Jhala and Viktor Vafeiadis, for
reviewing my dissertation, and Holger Hermanns and Aïna Linn Georges
for serving as chair and academic member of my committee, respectively. I
also thank Simon Spies, Rose Hoberman, Thibault Dardinier, Mete Polat,
Ike Mulder, Kimaya Bedarkar, Laila Elbeheiry, and Sacha-Élie Ayoun for
reading and giving feedback on this dissertation. Additionally, I would
like to thank the MPI-SWS office and IT staff for always being available
to help when I encountered organizational or IT-related problems. I also
thank Tadeusz Litak for the SemProg course at FAU and the subsequent
supervision that got me started on the path towards this dissertation by
sparking my interest in the Coq proof assistant.

The work described in this dissertation would not have been possible
without the work of my amazing collaborators Rodolphe Lepigre, Simon
Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Peter
Sewell, Angus Hammond, Kayvan Memarian, Brian Campbell, and Jean
Pichon-Pharabod. Additionally, I would like to thank Peter Sewell for
initiating and leading the pKVM verification project that motivated much
of the work in this dissertation.

I also would like to express my gratitude to the students that welcomed
me at MPI—I cherished our common lunches or extended chats over tea.
In particular, to Ralf Jung, for his work on Rust and RustBelt, which is
the reason I got me interested in the MPI and doing a PhD in the first

v

place, and for his mentorship when I started my PhD; to Rodolphe Lepigre,
for his OCaml hacking skills that made many of the projects described
in this dissertation possible; to Jan-Oliver Kaiser, for sharing his vast
knowledge of Coq with me; to Hai Dang, for showing me what complicated
proofs really look like; to Anjo Vahldiek-Oberwagner, for introducing me
to systems research; and to David Swasey, for providing the work that
my first project was built on. Additionally, I would like to thank Simon
Spies for supporting me with his writing and presentation skills on many
occasions and making travel to conferences much more enjoyable (e.g., by
preventing me from being arrested by CBP), and all the other students,
postdocs, and interns, including Lennard Gäher, Youngju Song, Emanuele
D’Osualdo, Jan Menz, Kimaya Bedarkar, Laila Elbeheiry, Andrew Hirsch,
Hei Li, Paul Zhu, George Pîrlea, Ignacio Tiraboschi, Johannes Hostert,
Niklas Mück, Aïna Linn Georges, Benjamin Peters, Janine Lohse, Neven
Villani, Vincent Lafeychine, and all others who made the MPI a fun
place—be it through joint work on interesting projects, discussions at tea
times, or explorations of the culinary offerings of Saarbrücken.

Last, but surely not least, I thank my friends and family for their
unwavering support, for making sure that we stay connected across the
distance and a pandemic, for all the fun visits of Saarland (with and
without rain), for the board game afternoons, and for the joint travel
throughout Europe. My biggest thanks goes to my partner Kristin—for
exploring the Saarland and the world with me, for her support when I
dive into work, while making sure that I resurface, and for so much more.
I am looking forward to the many exciting adventures that await us in
the future. I dedicate this dissertation to my mother Ruth, who gave me
my love for books and learning.

Michael Sammler
Saarbrücken, December 2023

vi

Contents

Abstract iii

Zusammenfassung iii

Acknowledgements v

1 Introduction 1
1.1 RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types 2
1.2 Islaris: Verification of Machine Code Against Authoritative ISA Semantics 3
1.3 DimSum: A Decentralized Approach to Multi-language Semantics and Verification 3
1.4 Overview . 4
1.5 Publications . 4
1.6 Collaborations . 4

I Lithium 7

2 Introduction 9
2.1 Separation Logic Primer . 11

3 Lithium by Example 13
3.1 Lithium Basics . 14
3.2 Operational Model . 15
3.3 Modular Verification via Inhale, Exhale, and Quantifiers . 15
3.4 Continuations . 17
3.5 Separation Logic . 18
3.6 Reasoning about Abstract Predicates . 21
3.7 Verifying Higher-order Functions . 24
3.8 Foundational Proofs via a Semantic Model . 27

4 Lithium in Detail 31
4.1 Avoiding Backtracking . 31
4.2 Handling of Existentials . 32
4.3 Complete Definition of Lithium . 33

5 Related Work 37

II RefinedC 43

6 Introduction 45

vii

7 RefinedC by Example 49
7.1 A Simple Memory Allocator . 49
7.2 Thread-Safe Allocator Using a Spinlock . 51
7.3 Deallocation Using a List of Free Chunks . 53

8 RefinedC Frontend and Caesium 57

9 RefinedC Type System 59
9.1 RefinedC Types . 59
9.2 Model of RefinedC Types . 60
9.3 Examples of RefinedC Typing Rules . 61

10 Evaluation and Case Studies 67

11 Related Work 71

12 Limitations and Future Work 75

III Islaris 77

13 Introduction 79

14 Overview of the Islaris Approach 85
14.1 Background: Symbolic Execution with Isla . 85
14.2 Our Contribution: Islaris . 88
14.3 Islaris Separation Logic . 88
14.4 Intra-instruction Branching . 89
14.5 Verification of a Complete C Function: memcpy . 90
14.6 Installing and Using an Exception Vector . 92
14.7 RISC-V . 93
14.8 Verification Workflow . 93

15 Isla Trace Language 95

16 Islaris Separation Logic 99
16.1 Assertions and Rules . 99
16.2 Adequacy of the Islaris Separation Logic . 99
16.3 Islaris Proof Automation . 100

17 Translation Validation for RISC-V 103

18 Evaluation 105

19 Related Work 109

IV DimSum 113

20 Introduction 115
20.1 Principles of Decentralization . 116
20.2 DimSum . 118

viii

21 Key Ideas 121
21.1 Event-Based Semantics . 122
21.2 The Proof Strategy . 125
21.3 Semantic Language Wrappers . 129

22 Modules and Refinement 133
22.1 Modules and Refinement in the Abstract . 133
22.2 Angelic and Demonic Non-Determinism . 134
22.3 Combinators . 137

23 Instantiations of DimSum 141
23.1 The Language Asm . 141
23.2 The Language Rec . 142
23.3 Coroutine Linking M1 ⊕coro M2 . 143

24 Compiler 145

25 Related Work 149

26 Conclusion 153

ix

Chapter 1

Introduction

Low-level systems software like operating systems and hypervisors forms
the foundation of modern computer systems. Such systems software often
provides critical components that ensure the reliability and security of the
overall system. On the flip side, this means that bugs and vulnerabilities
in such low-level systems software can lead to catastrophic failures and
security problems. As a consequence, detecting and preventing bugs in
low-level systems software is crucial for providing a reliable basis that the
modern computer-based world can build upon.

So how can one ensure reliability of systems software? One way to find
bugs is to use testing, but “testing shows the presence, not the absence
of bugs”.1 This dissertation instead focuses on another approach, formal
verification, as verification can ensure the absence of whole classes of bugs
and vulnerabilities.

It is well-understood that formal verification is a useful technique
for increasing the reliability of low-level systems software, so it is not
surprising that verification of systems code is a large and active area of
research. Highlights include the verification of the seL42 and CertiKOS3

kernels, push-button verification of systems code,4 and various tools and
frameworks for modular interactive and automated verification of C code.5

While the previous research achieved impressive results, verification
of systems code is far from being a “solved problem”. In particular, we6

want to highlight three important challenges when verifying systems code:
Dealing with realistic systems code and programming languages, ensuring
the trustworthiness of the verification technique, and conducting the
verification as automatically as possible. Let us consider each of these
challenges in more detail:

Challenge #1: Realism. The first step of any verification is to (formally
or informally) model the system to verify. The challenge in this step is to
realistically model the complexities of real-world languages and how they
are used. In particular, there is a wide range of possible ways to model a
program for verification. On the one hand, a language with local variables,
if statements, and while loops is sometimes called a “C-like” language.7

On the other hand, we have the complex definition of C according to the
C standard,8 with features like goto, the ability to take the address of
local variables, integer-pointer-casts, and concurrency. Thus, verification
techniques need to find a balance between making modeling tractable

1 Buxton and Randell, “Software
Engineering Techniques: Report
of a conference sponsored by the
NATO Science Committee, Rome,
Italy, 27-31 Oct. 1969, Brussels,
Scientific Affairs Division, NATO”,
1970 [BR70].

2 Klein et al., “seL4: Formal Ver-
ification of an OS Kernel”, 2009
[Kle+09]; Klein et al., “Comprehen-
sive Formal Verification of an OS
Microkernel”, 2014 [Kle+14].

3 Gu et al., “Building Certified
Concurrent OS Kernels”, 2019
[Gu+19].

4 Nelson et al., “Scaling symbolic
evaluation for automated verifica-
tion of systems code with Serval”,
2019 [Nel+19].

5 Cohen et al., “VCC: A Practical
System for Verifying Concurrent C”,
2009 [Coh+09]; Rondon et al., “Low-
Level Liquid Types”, 2010 [RKJ10];
Appel, Program Logics for Certified
Compilers, 2014 [App14]; Cao et al.,
“VST-Floyd: A Separation Logic
Tool to Verify Correctness of C
Programs”, 2018 [Cao+18]; Cuoq et
al., “Frama-C: A Software Analysis
Perspective”, 2012 [Cuo+12]; Jacobs
et al., “VeriFast: A Powerful, Sound,
Predictable, Fast Verifier for C and
Java”, 2011 [Jac+11].

6 As is standard scientific practice,
the first person plural is used to
refer to work done by the author,
independent of whether it was done
in collaboration with others. For
further details, see §1.6.

7 Wang et al., “Compiler Verification
Meets Cross-Language Linking via
Data Abstraction”, 2014 [WCC14].

8 How much the C standard agrees
with how C is used in practice is
still a topic of active discussion,
see e.g., Memarian et al., “Into the
Depths of C: Elaborating the De
Facto Standards”, 2016 [Mem+16].

1

via simplifying assumptions and capturing the relevant aspects of the
program to verify.

Challenge #2: Trustworthiness. With the model of the program in hand,
the verification technique should provide a high degree of confidence in
its trustworthiness, i.e., one should be able to trust that a successful
verification actually guarantees the desired properties hold about (the
model of) the program. The gold standard for increasing this confidence
is via foundational proofs, which allow a general-purpose proof assistant
(like Coq9 or Isabelle10) to check the result of the verification. With
foundational proofs, one only needs to trust the correctness of the core
of the proof assistant instead of the verification process that generated
the foundational proof. However, generating such proofs is not easy (e.g.,
the SMT solvers that underlie many verification tools rely on complex
heuristics that do not come with foundational correctness proofs) and
thus verification techniques might not provide foundational proofs for all
parts of the verification.

Challenge #3: Automation. Another challenge when verifying low-level
systems code is achieving a high degree of automation. Since program
verification in general is undecidable, completely automatic verification is
impossible. Instead, verification techniques often rely on the user to help
complete the verification. This help can take the form of, for example,
annotations in the source code (e.g., for preconditions, postconditions, or
loop invariants) or more detailed instructions (e.g., an interactive proof
in a proof assistant). While more help from the user simplifies the task of
the verification technique, it places additional burden on the user. Thus,
verification techniques strive to reduce the amount of help required by
providing a high degree of automation.

Contributions of this dissertation. This dissertation presents new ap-
proaches for the verification of low-level systems code that push the
boundaries on the three dimensions described above. Concretely, this
dissertation describes three projects, covering three different aspects of
the verification of low-level systems code:

1. RefinedC:11 Automating the foundational verification of C code with
refined ownership types

2. Islaris:12 Verification of machine code against authoritative ISA se-
mantics

3. DimSum:13 A decentralized approach to multi-language semantics and
verification

Let us now introduce these projects in more detail.

1.1 RefinedC: Automating the Foundational Verification of C
Code with Refined Ownership Types

The first project, RefinedC, provides the first approach for verifying C
code that combines foundational proofs with a high degree of automation.

9 Coq team, The Coq proof assis-
tant, 2023 [Coq23].

10 Isabelle team, The Isabelle proof
assistant, 2023 [Isa23].

11 Sammler et al., “RefinedC: Au-
tomating the Foundational Veri-
fication of C Code with Refined
Ownership Types”, 2021 [Sam+21b].

12 Sammler et al., “Islaris: Verifi-
cation of Machine Code Against
Authoritative ISA Semantics”, 2022
[Sam+22].

13 Sammler et al., “DimSum: A
Decentralized Approach to Multi-
language Semantics and Verifica-
tion”, 2023 [Sam+23].

2

Chapter 1: Introduction

Previous approaches for verifying C code either provide automatic proofs
but without a foundational guarantee of correctness,14 or obtain foun-
dational proofs by requiring the user to conduct interactive proofs in a
proof assistant.15 RefinedC addresses this gap by providing a type system
combining ownership types (for modular reasoning about shared state)
with refinement types (for encoding functional correctness specifications).
This type system is build on top of the Iris program logic16 in the Coq
proof assistant and is automated using Lithium, a novel language for
building automated and foundational verification tools. RefinedC has
been validated on a range of interesting C code, including code from
real-world hypervisors.

1.2 Islaris: Verification of Machine Code Against Authorita-
tive ISA Semantics

The aim of the second project, Islaris, is to scale verification of assembly
code to realistic models of modern instruction set architectures (ISAs).
Recent work used Sail to develop formal models of large real-world archi-
tectures, including Armv8-A and RISC-V.17 These models are compre-
hensive (complete enough to boot an operating system or hypervisor) and
authoritative (automatically derived from the Arm internal model and
validated against the Arm validation suite, and adopted as the official
formal specification by RISC-V International, respectively). But the
scale and complexity of these models makes them challenging to use as a
basis for verification. Islaris is the first system to support verification of
machine code against these real-world ISA models. Islaris achieves this
goal via a novel combination of SMT-based symbolic execution (to prune
irrelevant parts of the model) with automated reasoning in an Iris-based
foundational program logic (to verify code against the relevant parts
of the model). Islaris can handle Armv8-A and RISC-V machine-code
exercising a wide range of system features, including installing and calling
exception vectors, unaligned access faults, and compiled C code using
inline assembly and function pointers.

1.3 DimSum: A Decentralized Approach to Multi-language
Semantics and Verification

The previous two projects show how to verify C and assembly code in iso-
lation, but systems programs often combine C with assembly components.
The third project, DimSum, proposes a new decentralized approach to
reasoning about such multi-language programs. Decentralization means
that one can define and reason about languages independently, but also
relate different languages when necessary. This allows a tool like RefinedC
to purely focus on verification of code at the C level, while being able to
relate the C code to assembly code in an independent step. DimSum’s idea
is to take inspiration from process calculi and model program components
in a multi-language program as independent modules that communicate
via events. These modules are manipulated using combinators that can
translate modules from one set of events to another set of events and link

14 Cohen et al., “VCC: A Practical
System for Verifying Concurrent
C”, 2009 [Coh+09]; Cuoq et al.,
“Frama-C: A Software Analysis
Perspective”, 2012 [Cuo+12]; Jacobs
et al., “VeriFast: A Powerful, Sound,
Predictable, Fast Verifier for C and
Java”, 2011 [Jac+11].

15 Appel, Program Logics for Certi-
fied Compilers, 2014 [App14]; Klein
et al., “seL4: Formal Verification of
an OS Kernel”, 2009 [Kle+09]; Gu
et al., “Building Certified Concur-
rent OS Kernels”, 2019 [Gu+19].

16 Jung et al., “Iris: Monoids and
Invariants as an Orthogonal Basis
for Concurrent Reasoning”, 2015
[Jun+15]; Jung et al., “Higher-
Order Ghost State”, 2016 [Jun+16];
Krebbers et al., “The Essence of
Higher-Order Concurrent Separa-
tion Logic”, 2017 [Kre+17]; Jung
et al., “Iris from the ground up: A
modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b]; Jung, “Understanding
and Evolving the Rust Program-
ming Language”, 2020 [Jun20].

17 Armstrong et al., “ISA Seman-
tics for ARMv8-A, RISC-V, and
CHERI-MIPS”, 2019 [Arm+19a];
Armstrong et al., Sail ARMv8.5-A
ISA model, 2019 [Arm+19b]; Mund-
kur et al., Sail RISC-V ISA model,
2021 [Mun+21].

3

modules with the same events. DimSum has been applied to idealized
versions of C and assembly, which capture the core challenges that arise
when building and verifying multi-language programs.

1.4 Overview

This dissertation is composed of four parts:
Part I gives a detailed explanation of the Lithium programming lan-

guage that forms the basis of the automation for RefinedC and Islaris.
The remaining parts—Part II, Part III, and Part IV— describe the

three main projects of this dissertation—RefinedC, Islaris and DimSum—
respectively.

1.5 Publications

This dissertation contains the work of the following papers:

1. Sammler et al., “RefinedC: Automating the Foundational Verification
of C Code with Refined Ownership Types”, 2021 [Sam+21b], appeared
in PLDI 2021

2. Sammler et al., “Islaris: Verification of Machine Code Against Authori-
tative ISA Semantics”, 2022 [Sam+22], appeared in PLDI 2022

3. Sammler et al., “DimSum: A Decentralized Approach to Multi-language
Semantics and Verification”, 2023 [Sam+23], appeared in POPL 2023

This dissertation reuses much of the text of these papers, but adapts it
into a consistent presentation. In particular, the following describes the
provenance of the text of this dissertation:

• Part I contains a new presentation of Lithium, which underlies the
automation of RefinedC and Islaris. The text in this part is new,
except for §4.1, §4.2, and some parts of §5, which are adapted from the
RefinedC paper.

• Part II is based on the RefinedC paper and its appendix.18 §9.2 is new
text and §9.3 has been adapted for the new presentation of Lithium.

• Part III is based on the Islaris paper. §16.3 has been adapted for the
new presentation of Lithium.

• Part IV is based on the DimSum paper.

• §26 is mostly new text, but some parts are based on the future work
sections of the RefinedC, Islaris, and DimSum papers.

1.6 Collaborations

The projects presented in this dissertation are the result of many pro-
ductive and inspiring collaborations. Even though I19 led all these col-
laborations, these projects would not have been possible without my
collaborators. In the following, I detail my contributions to each of them:

18 Sammler et al., Artifact and
Appendix of "RefinedC: Automating
the Foundational Verification of
C Code with Refined Ownership
Types", 2021 [Sam+21a].

19 In this section, I use the first per-
son singular to clearly distinguish
my contributions from those of my
collaborators.

4

Chapter 1: Introduction

For RefinedC, I designed and implemented Caesium (in discussion
with Robbert Krebbers), Lithium (both its original form and its new
presentation used in this dissertation, the latter inspired by a discussion
with Lennard Gäher), and the type system, and led the writing. The
implementation of the frontend was spearheaded by Rodolphe Lepigre
with support from Kayvan Memarian. The verification of the case studies
was a joint effort led by me and Rodolphe Lepigre.

For Islaris, the original idea of using Isla to combine the Sail models
with Iris came from Angus Hammond. Angus Hammond and I jointly
designed and implemented the operational semantics of ITL. I developed
the automation using Lithium, the adequacy theorem, conducted the
translation validation of Isla against the Sail-generated Coq code for
RISC-V, and led the writing (the last together with Peter Sewell and
Angus Hammond). Rodolphe Lepigre (together with Angus Hammond)
developed the frontend, while Brian Campbell adapted Isla to support
Islaris. The pKVM exception handler case study was verified by Angus
Hammond (including adding the support for parametric traces), while the
rest of the case studies were a collaborative effort of Rodolphe Lepigre,
Angus Hammond, and me.

For DimSum, I developed the original idea, designed the notion of
modules and refinement (with Simon Spies, Derek Dreyer, and me jointly
simplifying my original definition of refinement to the equivalent, but
simpler definition presented in this dissertation), developed the combina-
tors, implemented the languages, implemented and verified the compiler
(except for the Mem2Reg pass, which was implemented and verified by
Simon Spies), proved the meta-level properties of the combinators, and
verified the examples (Youngju Song suggested the coroutine example and
implemented a first version of it). The writing was led jointly by me and
Simon Spies.

All projects presented in this dissertation are open-source. The imple-
mentations and evaluations of the projects can be found at the following
URLs:

• Lithium (Part I): https://gitlab.mpi-sws.org/iris/refinedc
(maintained together with RefinedC)

• RefinedC (Part II): https://gitlab.mpi-sws.org/iris/refinedc

• Islaris (Part III): https://github.com/rems-project/islaris

• DimSum (Part IV): https://gitlab.mpi-sws.org/iris/dimsum

5

https://gitlab.mpi-sws.org/iris/refinedc
https://gitlab.mpi-sws.org/iris/refinedc
https://github.com/rems-project/islaris
https://gitlab.mpi-sws.org/iris/dimsum

Part I

Lithium

Chapter 2

Introduction

This dissertation tackles the challenge of building techniques for verify-
ing realistic, low-level programs. However, before we can dive into the
details of these techniques—in particular, RefinedC (Part II) and Islaris
(Part III)—in the later parts of this dissertation, we first need to introduce
the foundations on which these techniques are built.

The first part of these foundations is separation logic.1 Separation logic
was designed as a logic for modular reasoning about pointer manipulating
programs—an ideal fit for our setting, as low-level programs naturally
contain a lot of pointer manipulation and modular reasoning enables
composing the verification of large code-bases from the independent
verifications of individual functions. Separation logic achieves this via
its key notion of ownership: Propositions in separation logic are not just
true or false, but one can acquire and give up ownership of propositions.
This feature allows separation logic propositions to describe changes in
the program state during verification. For example, verifying a write to
memory in separation logic requires giving up ownership of a “points-to”
proposition that owns the memory and afterwards, one acquires a points-to
proposition for the same memory updated to the new value.2 Separation
logic has been applied in many contexts and its principle of ownership
has proven crucial to the verification of many complex programs.3 So,
separation logic is an ideal starting point for the verification techniques
described in this dissertation.4

Recent work on using separation logic for program verification has made
advances in two different directions: On the one hand, tools like Viper5 or
VeriFast6 tackle the challenge of automatically verifying programs based
on specifications and other annotations given by the user. On the other
hand, formalizations of separation logic in proof assistants show that
separation logic enables building complex reasoning principles—e.g., for
reasoning about challenging aspects of real-world languages like C7 or for
verifying subtle concurrent algorithms8—that are trustworthy since the
soundness of the reasoning principles is ensured by a foundational (i.e.,
machine-checked) proof.

These two directions have been studied independently—e.g., VeriFast
and Viper don’t provide foundational proofs and verification using proof
assistants heavily relies on manual guidance by the user. However, building
verification tools for realistic low-level languages using separation logic
requires a foundation that provides both a high degree of automation and
trustworthiness. To provide this foundation, we developed Lithium.

1 O’Hearn et al., “Local Reason-
ing about Programs that Alter
Data Structures”, 2001 [ORY01];
Reynolds, “Separation Logic: A
Logic for Shared Mutable Data
Structures”, 2002 [Rey02].

2 §3.5 describes this reasoning
principle in more detail.

3 For example, Dang et al., “Com-
pass: Strong and Compositional
Library Specifications in Relaxed
Memory Separation Logic”, 2022
[Dan+22]; Sprenger et al., “Igloo:
Soundly Linking Compositional
Refinement and Separation Logic
for Distributed System Verification”,
2020 [Spr+20].

4 An introduction to separation logic
as used in this dissertation can be
found in §2.1.

5 Müller et al., “Viper: A Verifica-
tion Infrastructure for Permission-
Based Reasoning”, 2016 [MSS16b].

6 Jacobs et al., “VeriFast: A Power-
ful, Sound, Predictable, Fast Verifier
for C and Java”, 2011 [Jac+11].

7 Appel, Program Logics for Certi-
fied Compilers, 2014 [App14].

8 Jung et al., “The Future is Ours:
Prophecy Variables in Separation
Logic”, 2020 [Jun+20]; Dang et al.,
“Compass: Strong and Composi-
tional Library Specifications in
Relaxed Memory Separation Logic”,
2022 [Dan+22].

9

Part I: Lithium

Lithium and its philosophy. Lithium is the first programming language
for writing separation logic verification tools that are both automated
and foundational. At the core of Lithium is the philosophy that the best
way to solve a large problem—like verifying a C function—is to break the
large problem up into many small problems until each problem is so small
that its solution is straightforward. Concretely, building a verification tool
using Lithium consists of writing a set of Lithium rules that each handle
one step of the verification—e.g., decomposing an expression or verifying
a specific construct of the object language.9 Lithium then automatically
combines these rules when verifying a concrete program.

This decomposition-based approach is what enables Lithium to combine
automated and foundational verification: Since the rules only consider
one step of the verification, a small set of rules can cover a large variety
of programs, as the rules can be combined in many ways. In particular,
Lithium uses the structure of the program to automatically compose the
rules in different ways, and thus Lithium-based verification can cover a
broad range of (syntactically different) variants of a program. Additionally,
this rule-based approach enables Lithium to automatically construct a
soundness proof along with the verification by combining the soundness
proofs of the individual rules.

The decomposition bottoms out in a set of primitive instructions
provided by Lithium. These primitives are carefully chosen such that
they, on the one hand, can be efficiently automated, and, on the other
hand, are expressive enough to serve as the foundation for tools like
RefinedC or Islaris. Each of these primitives fulfills one specific purpose—
e.g., acquiring or releasing separation logic ownership, proving pure side
conditions, or splitting the verification into multiple cases.10 The purpose
of these primitives is not to provide a powerful proof search procedure for
complex separation logic entailments on their own, but instead to give the
user of Lithium the right tools to implement such a proof search procedure
for the object language they care about. In particular, the primitives
of Lithium are independent of the object language and the separation
logic assertions used to verify programs written in the object language.11

We will see in later parts of this dissertation how this flexibility enables
building both RefinedC and Islaris on top of Lithium, even though these
tools consider very different languages (C vs. assembly) and implement
different strategies for proof search (type-based vs. direct separation
logic).

Lithium is implemented as a shallowly embedded language in the Coq
proof assistant based on the Iris framework for separation logic12 and
comes with an interpreter (written in the Ltac tactic language13) for
executing Lithium programs.

§3 gives an overview of Lithium by showing how to use Lithium to
build a verification tool for a simple language. The formal definition and
semantics of Lithium are described in §4. But before we dive into the
details of Lithium, we introduce the basics of separation logic that are
used in the rest of this dissertation.

9 It is important to distinguish
the object language in which the
programs to verify are written (e.g.,
C for RefinedC), from the language
provided by Lithium, and from the
meta-level language that Lithium is
embedded in (i.e., Coq).

10 The full list of Lithium primitive
instructions is shown in §4.

11 In particular, Lithium does not
have a built-in notion of the points-
to assertion, but the points-to
assertion is treated like any other
user-defined assertion.

12 Jung et al., “Iris: Monoids and
Invariants as an Orthogonal Basis
for Concurrent Reasoning”, 2015
[Jun+15]; Jung et al., “Higher-
Order Ghost State”, 2016 [Jun+16];
Krebbers et al., “The Essence of
Higher-Order Concurrent Separa-
tion Logic”, 2017 [Kre+17]; Jung
et al., “Iris from the ground up: A
modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b]; Jung, “Understanding
and Evolving the Rust Program-
ming Language”, 2020 [Jun20].

13 Delahaye, “A Tactic Language for
the System Coq”, 2000 [Del00].

10

Chapter 2: Introduction

base logic: P,Q ::= True | False | P ∗Q | P −∗ Q | P ∧Q | P ∨Q

| ∀x. P (x) | ∃x. P (x) | ⌜ϕ⌝ | �P | R
program logic: R ::= l 7→ v | wp e {v.P} | . . .

Figure 2.1: Syntax of part of
the Iris separation logic.

2.1 Separation Logic Primer

All the work in this dissertation is based on the formalization of separation
logic provided by the Iris framework.14 Iris is an ideal basis for the work in
this dissertation since it provides an expressive, language-generic separa-
tion logic that comes with a formalization in the Coq proof assistant. The
fragment of the Iris separation logic that is relevant for this dissertation
is shown in Figure 2.1.15 First, Iris provides a language-independent base
logic. Iris propositions can be seen as predicates over some notion of
resource (e.g., memory). A separation conjunction P ∗Q asserts that P

and Q hold, but for disjoint resources. A magic wand P −∗ Q asserts
that one can give up ownership of P to obtain ownership of Q. A (non-
separating) conjunction P ∧Q states that both P and Q hold, but their
resources are not necessarily disjoint. A disjunction P ∨Q asserts that
either P or Q holds. Iris also provides higher-order universal and existen-
tial quantification (∀x. P (x) and ∃x. P (x)). The ⌜ϕ⌝ connective embeds
the pure Coq assertion ϕ (i.e., an assertion independent of resources) into
the separation logic. The persistent modality �P states that P holds for
resources that are not exclusive, which means that �P can be duplicated,
i.e., we have �P ⊢ P and �P ⊢ �P ∗�P .

In addition to the Iris base logic, Iris also provides the ability to create
a program logic for a specific object language. The exact connectives
of the program logic depend on the object language, but one common
connective is the points-to connective l 7→ v that asserts ownership of the
memory location l and states that the location l contains the value v. The
workhorse of Iris-based program verification is the weakest precondition
wp e {v.P}: It asserts that the expression e has been verified and that
after executing e the postcondition P holds for the resulting value v.
The goal of an Iris-based program verification is to prove such a weakest
precondition for the program and then use a general adequacy statement
to lift this Iris proof to a pure (Coq) proof that states that the program
is well-behaved.16 Since this lifted proof is independent of Iris, one only
needs to trust the Coq proof assistant, but not Iris itself.

14 Jung et al., “Iris: Monoids and
Invariants as an Orthogonal Basis
for Concurrent Reasoning”, 2015
[Jun+15]; Jung et al., “Higher-
Order Ghost State”, 2016 [Jun+16];
Krebbers et al., “The Essence of
Higher-Order Concurrent Separa-
tion Logic”, 2017 [Kre+17]; Jung
et al., “Iris from the ground up: A
modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b]; Jung, “Understanding
and Evolving the Rust Program-
ming Language”, 2020 [Jun20].

15 A more in depth description of
the Iris separation logic is provided
by Jung et al., “Iris from the ground
up: A modular foundation for
higher-order concurrent separation
logic”, 2018 [Jun+18b].

16 Usually, this means that e does
not trigger undefined behavior.

11

Chapter 3

Lithium by Example

This chapter explains Lithium on the example of building an automated
verifier for the language depicted in Figure 3.1.

Literal ∋ t ::= z | b | l | NULL Val ∋ v ::= #t | (v1, v2) | fn f(x) ≜ e

BinOp ∋ ⊕ ::= + | − |= | (_,_) UnOp ∋ u ::= fst(_) | snd(_)

Expr ∋ e ::= v | x | e1 e2 | u e | e⊕ e | if e1 then e2 else e3 | assert(e) | alloc | !e | e1 ← e2

let x := e1 in e2 ≜ (fn _(x) ≜ e2) e1 e1; e2 ≜ let _ := e1 in e2

(e1, e2) ≜ e1 (_,_) e2 fst(e) ≜ fst(_) e snd(e) ≜ snd(_) e

Figure 3.1: Grammar of the
language.This language1 is a simple functional language with integers z, Booleans

b, and locations l. Locations refer to memory on the heap allocated with
alloc and can be read via !e and assigned via e1 ← e2. The assert(e)
statement checks that e evaluates to true and raises an error otherwise.2

Overview of the chapter. This chapter first describes the basics of Lithium
(§3.1), introduces the operational semantics of Lithium (§3.2), shows how
the primitives of Lithium can be used to conduct modular verification
(§3.3), and explains the continuation passing style used by Lithium (§3.4).
Afterwards, we turn to separation logic: §3.5 introduces the basics of
reasoning about separation logic propositions using Lithium, and then we
see how Lithium can be used to reason about abstract predicates (§3.6)
and higher-order functions (§3.7). Finally, §3.8 describes the semantic
model of Lithium along with the guarantees provided by a successful
verification.

Formalization. A formalization of the language and the Lithium veri-
fier presented in this chapter can be found in the RefinedC repository
at the following URL: https://gitlab.mpi-sws.org/iris/refinedc/
-/tree/ci/lithium-dissertation-sammler/tutorial/lithium. The
version at this URL corresponds to the version of Lithium at the time
of writing this dissertation. Subsequent updates to the formalization
will be published on the main branch of the RefinedC repository (https:
//gitlab.mpi-sws.org/iris/refinedc).

1 This language is an adapted ver-
sion of Iris’s HeapLang language
(Jung et al., “Higher-Order Ghost
State”, 2016 [Jun+16]) and the Sim-
pLang language (Chajed, SimpLang,
2023 [Cha23]).

2 More precisely, failed asserts cause
undefined behavior.

13

https://gitlab.mpi-sws.org/iris/refinedc/-/tree/ci/lithium-dissertation-sammler/tutorial/lithium
https://gitlab.mpi-sws.org/iris/refinedc/-/tree/ci/lithium-dissertation-sammler/tutorial/lithium
https://gitlab.mpi-sws.org/iris/refinedc
https://gitlab.mpi-sws.org/iris/refinedc

Part I: Lithium

3.1 Lithium Basics

Let us get started with verifying our first program using Lithium. Con-
cretely, we tackle the problem of proving that 1 + 1 = 2 by verifying that
the assert in the following program assert_two succeeds:

assert_two ≜ let x := 1 in let y := x + 1 in assert(y = 2)

To verify this program, we first declare a Lithium function exprOk e

for verifying the expression e and returning a (potentially symbolic) value
representing the result of e. To verify assert_two, we then just need to
run the following Lithium program:

_← exprOk assert_two; done

This program first calls exprOk on assert_two and then successfully termi-
nates using done. However, if we now run this program using the Lithium
interpreter, nothing happens (i.e., the Lithium interpreter immediately
gets stuck) since we have not yet defined what exprOk should do.

expr-let
1: exprOk (let x := e1 in e2) G :-
2: v1← exprOk e1;
3: v2← exprOk (e2[x 7→ v1]);
4: returnG v2

expr-binop
1: exprOk (e1⊕ e2) G :-
2: v1← exprOk e1;
3: v2← exprOk e2;
4: v← binopOk v1⊕ v2;
5: returnG v

expr-assert
1: exprOk assert(e) G :-
2: v← exprOk e;
3: exhale ⌜v = #true⌝;
4: returnG 0

exprOk v G :- returnG v

binopOk z1 + z2 G :- returnG #(z1 + z2)

binopOk z1 − z2 G :- returnG #(z1 − z2)

binopOk z1 = z2 G :- returnG #(z1 = z2)

Figure 3.2: Basic rules for
exprOk and binopOk.

We define exprOk by giving rules for specific program constructs as
shown in Figure 3.2.3 Function definitions in Lithium are based on
pattern-matching: When Lithium needs to evaluate a call to a user-
declared function like exprOk it searches for a matching rule (i.e., where
the call matches the part of the rule before :-) and then executes the body
of the rule (i.e., the part of the rule after :-).4 When the execution reaches
a returnG instruction, it continues with the code after the call. (The
continuation G and the details of this call mechanism are explained in
§3.4.) For example, expr-let states that to verify let x := e1 in e2, we first
verify e1 and then e2 with the variable x replaced by the resulting value v1

of e1. Verifying a binary operation e1⊕ e2 (rule expr-binop) is defined as
verifying the expressions e1 and e2 and then calling a new Lithium function
binopOk with the resulting values. binopOk is defined by mapping the
binary operations of the language to their mathematical counterparts.5

The most interesting rule is the rule expr-assert for assert(e): Here we
encode the check that all assertions succeed by using Lithium’s exhale

statement to tell Lithium to prove that the value returned by e is equal to
true.6 In the case of assert_two, this exhale results in the side condition
#(1 + 1 = 2) = #true that can be trivially discharged.7 Running the
Lithium program from above with the rules from Figure 3.2 succeeds,
which means we have verified our first program using Lithium!

3 Constructs provided by Lithium
like done or return are typeset in
blue,bold, while definitions specific
to this example like exprOk are
depicted in black.

4 This style of defining functions is
reminiscent of predicate declarations
in logic programming, but with the
important difference that Lithium
uses the first matching rule and
does not backtrack on this choice.

5 The #t operator lifts the literal t
to a value, see Figure 3.1.

6 We need to turn the pure propo-
sition v = #true into a separation
logic proposition using ⌜. . .⌝ since
exhale is defined on a separation
logic propositions (see §3.5).

7 Lithium is generic over how to
solve pure side conditions—here the
standard Coq done tactic suffices.

14

Chapter 3: Lithium by Example

3.2 Operational Model

Before we discuss more of the features provided by Lithium, let us look
at how Lithium programs are executed by the Lithium interpreter. The
state of the Lithium interpreter is given by the judgment

Γ;∆ ⊩ ∃x⃗. G(x⃗)

The goal G contains the Lithium program that needs to be executed. We
have already seen some goals:8

G ::= x←F ; G | exhale H; G | . . .

The goal can depend on a (potentially empty) list of existentially quantified
variables x⃗.9 In the following, we call such a variable in x⃗ a (Lithium)
existential.10 The pure context Γ tracks binders x and pure facts ϕ,
while the resource context ∆ contains separation logic propositions A and
persistent separation logic propositions �A, i.e., we have

Γ ::= ∅ | Γ, x | Γ, ϕ ∆ ::= ∅ | ∆, A | ∆,�A

The Lithium interpreter is defined via a small-step transition relation
Γ1; ∆1 ⊩ ∃x⃗1. G1(x⃗1)⇒ Γ2; ∆2 ⊩ ∃x⃗2. G2(x⃗2).11,12

li-exhale-pure
Γ ⊢ ϕ

Γ;∆ ⊩ exhale ⌜ϕ⌝; G⇒ Γ;∆ ⊩ G

For example, exhaling a pure proposition ϕ is handled by the rule li-

exhale-pure, which uses a solver to prove ϕ using the assumptions in Γ

and then continues with the rest of the program. This rule only applies
when ϕ does not depend on existentials (note the absence of ∃x⃗. in li-

exhale-pure).13 §4.2 describes how Lithium handles side conditions that
contain existentials.

The Lithium interpreter executes the Lithium program using the ⇒
relation until it (a) reaches done and the verification succeeds or (b) it
gets stuck and the verification fails.

3.3 Modular Verification via Inhale, Exhale, and Quantifiers

Now that the basics of Lithium are out of the way, let us introduce the
most important primitives that Lithium provides: We have already seen
exhale ⌜ϕ⌝ for asserting that Lithium should prove the proposition ϕ.
Dually, the inhale ⌜ϕ⌝ instruction adds ϕ as an assumption for the further
verification. These primitives correspond to “assert” and “assume” primi-
tives in other tools that only deal with pure propositions ϕ. However, as
we will see in §3.5, exhale and inhale work not only on pure propositions,
but also allow adding and removing (separation logic) ownership, so we
follow the terminology of Chalice14 and Viper.15 Additionally, Lithium
allows introducing and providing (meta-level) variables using ∀ and ∃.
The operational semantics of these instructions are given in Figure 3.3.
The rule li-exist turns an existential quantifier into an existential that is
instantiated by the further proof search.16

8 The complete list of goals can be
found in §4.3. The left goals H are
introduced in §3.5.

9 We omit ∃x⃗. when x⃗ is empty.

10 Note that these existentials are
different from the evars ?x of the
meta-logic.

11 In the Coq implementation, these
transitions are implemented in Ltac.

12 A Lithium transition can also
step to multiple Lithium states,
which are then executed indepen-
dently. This feature is used by
Lithium’s branching constructions,
introduced in §3.4 and §3.7.

13 In the case that there are exis-
tentials x⃗ but ϕ does not depend
on them, Lithium automatically
commutes ∃x⃗. into the goal G.

14 Leino and Müller, “A Basis for
Verifying Multi-threaded Programs”,
2009 [LM09].

15 Müller et al., “Viper: A Verifica-
tion Infrastructure for Permission-
Based Reasoning”, 2016 [MSS16b].

16 §4.2 describes Lithium’s handling
of existentials in more detail.

15

Part I: Lithium

li-inhale-pure

Γ;∆ ⊩ inhale ⌜ϕ⌝; G⇒ Γ, ϕ; ∆ ⊩ G

li-all

Γ;∆ ⊩ ∀x. G(x)⇒ Γ, x; ∆ ⊩ G(x)

li-exist

Γ;∆ ⊩ ∃x⃗. ∃x. G(x, x⃗)⇒ Γ;∆ ⊩ ∃x, x⃗. G(x, x⃗)

Figure 3.3: Operational se-
mantics for inhale, ∀, and
∃.

To illustrate these operations, let us now see how these primitives can
be used to enable modular verification. For this, consider the following
simple function:

fn add1(x) ≜ x + 1

First, let us consider how we would specify this function using standard
Hoare triples:

∀varg z. {⌜varg = #z⌝}(fn add1(x) ≜ . . .) varg{vret . ⌜vret = #(z + 1)⌝}

This specification says that if the add1 function is applied to an argument
varg that is equal to some integer z, then it will execute safely and its
return value vret will be equal to z + 1. However, this is not the only way
one could write this specification, e.g., one could swap the quantifiers in
the beginning or directly specialize varg to #z. Since dealing with many
specification formats automatically is challenging, we fix one format by
defining a new fnOk predicate to specify a function v:17

fnOkA {pre} v {post} ≜ ∀varg a. {pre a varg} v varg {vret . post a vret}

With this predicate, we can specify add1 as follows:

fnOkZ {z varg . ⌜varg = #z⌝} (fn add1(x) ≜ . . .) {z vret . ⌜vret = #(z+1)⌝}

fnOkA {pre} v {post} asserts that the value v is a function that is safe
to call with an argument varg satisfying the precondition pre and the
resulting value vret will satisfy the postcondition post . The pre- and
postconditions are also parametrized by a shared parameter a of type
A18 that corresponds to a universal quantifier spanning both pre- and
postcondition (i.e., z of type Z in the Hoare triple shown initially). This
parameter can be used to transfer information from the precondition to
the postcondition. In the example above, this parameter is used to make
the value of the argument available to the postcondition: the specification
says that add1 must be called with an integer argument z and then returns
the value z + 1.

To verify that the add1 function actually satisfies this specification,
we use the rule fnok (Figure 3.4):19 To show that a function satisfies a
specification, we are first given an arbitrary parameter a, argument varg ,
and value for the recursive call vf —expressed using ∀a. ∀varg . ∀vf .—and
we assume that they satisfy the precondition pre—expressed using inhale.
Additionally, we can assume that the recursive occurrences of f already
satisfy the specification—expressed by the second inhale. Then, we use
exprOk to verify the body of the function with the argument x substituted
with varg and the recursive occurrence f substituted with vf . Finally,

17 Technically, we need to use a
slightly different definition to sup-
port verifying recursive functions,
but the intuition given by this
definition suffices for our purposes
here.

18 In the following, we write fnOk
instead of fnOkA when A can be
inferred from the context.

19 fnok is not a rule that is used by
Lithium automatically since fnOk is
not a Lithium function, but we use
it manually to create the Lithium
program for verifying a function.
§3.7 shows how to integrate this rule
into the Lithium automation.

16

Chapter 3: Lithium by Example

fnok
1: fnOk {pre} fn f(x) ≜ e {post} :-
2: ∀a. ∀varg . ∀vf .
3: inhale pre a varg ;
4: inhale fnOk {pre} vf {post};
5: vret← exprOk (e[x 7→ varg][f 7→ vf]);
6: exhale post a vret ;
7: done

expr-app
1: exprOk (e1 e2) G :-
2: varg← exprOk e2;
3: v← exprOk e1;
4: pre, post←find fnOk {−} v {−};
5: ∃a. exhale pre a varg ;
6: ∀vret . inhale post a vret ;
7: returnG vret

1: find fnOk {−} v {−} G :- pattern pre post . fnOk {pre} v {post};
2: returnG pre, post

Figure 3.4: Lithium rules
for verifying and calling a
function.

we have to show that the resulting value vret satisfies the postcondition
post—expressed using exhale.

When we call a function, the verification behaves dually as shown by
the rule expr-app: After verifying e1 and e2 and finding a specification for
v in the context,20 one first needs to provide the parameter a—expressed
using ∃a.—and show the precondition—expressed using exhale. Then
one gets an arbitrary return value—expressed using ∀vret . —and can
assume the postcondition—expressed using inhale.21

With the rules in Figure 3.4, Lithium can automatically verify that add1
satisfies the specification given above. We can then use this specification
to verify an adapted version of assert_two using the following Lithium
program:

∀vadd1. inhale fnOk {z v. ⌜v = #z⌝} vadd1 {z v′. ⌜v′ = #(z + 1)⌝};
_← exprOk (let x := 1 in let y := vadd1 x in assert(y = 2)); done

Note that the verification of this variant of assert_two does not depend
on the body of add1, but instead universally quantifies over it as vadd1.
This demonstrates how Lithium can support modular verification.

3.4 Continuations

Let us now come back to a question that was left open in §3.1: What is
the G parameter of exprOk? The answer is that function definitions in
Lithium like exprOk are written in a continuation passing style: G is a
continuation that contains the Lithium program that should be executed
after exprOk returns. Formally, this is expressed by the following rules:

li-fn
F (x. G) :-G′

Γ;∆ ⊩ x←F ; G⇒ Γ;∆ ⊩ G′
li-return

Γ;∆ ⊩ returnG x⇒ Γ;∆ ⊩ G(x)

Calling a user-defined function F (li-fn) replaces the program with the
body of a matching clause for F and the previous goal G is passed to
F as a continuation. Returning from a function (li-return) calls the
continuation with the return value.

To see why continuations are treated as explicit parameters in Lithium
instead of being handled implicitly, consider the rules for verifying an if
expression in Figure 3.5. We introduce a new Lithium function ifOk v

for verifying an if expression on v. Importantly, ifOk is parametrized by

20 find is discussed in §3.5.

21 This use of exhale and inhale to
encode the verification of function
specifications is standard, see e.g.,
Heule et al., “Verification Condition
Generation for Permission Logics
with Abstract Predicates and Ab-
straction Functions”, 2013 [Heu+13]
or Vogels et al., “Featherweight
VeriFast”, 2015 [VJP15].

17

Part I: Lithium

expr-if
1: exprOk (if e1 then e2 else e3) G :-
2: v← exprOk e1;
3: ifOk v (exprOk e2 G) (exprOk e3 G)

if-bool
1: ifOk #b G1 G2 :-
2: if b = true then
3: returnG1

4: else
5: returnG2

Figure 3.5: Rules for if expres-
sions.

two continuations G1 and G2—G1 for the then branch and G2 for the
else branch. expr-if instantiates these continuations with exprOk for the
corresponding expressions. Calling ifOk in expr-if is not handled by li-fn

since it is not stated using the sequence operator ;, so we introduce a new
Lithium step li-fn’:22

li-fn’
F :-G

Γ;∆ ⊩ F ⇒ Γ;∆ ⊩ G

if-bool uses the two continuations: It first uses Lithium’s if primitive
to perform a case-distinction on whether b is true and then returns to G1

or G2 depending on the result.

li-if-true
Γ ⊢ ϕ

Γ;∆ ⊩ if ϕ then G1 else G2 ⇒ Γ;∆ ⊩ G1

li-if-false
Γ ⊢ ¬ϕ

Γ;∆ ⊩ if ϕ then G1 else G2 ⇒ Γ;∆ ⊩ G2

li-if

Γ;∆ ⊩ if ϕ then G1 else G2 ⇒ Γ, ϕ; ∆ ⊩ G1 |Γ,¬ϕ; ∆ ⊩ G2

Figure 3.6: Operational seman-
tics for if .

Figure 3.6 shows the Lithium steps for the if primitive. Lithium first
tries to use a solver to prove which of the branches will be taken (via
li-if-true and li-if-true). If this fails, Lithium verifies both branches
with ϕ resp. ¬ϕ added to the context (li-if).23

As a concrete example, the rules for if expressions can be used to verify
the following Fibonacci function:

fn fib(x) ≜ if x = 0 then 0 else if x = 1 then 1 else fib (x− 1) + fib (x− 2)

In particular, we can prove the property that calling the Fibonacci
function on non-negative numbers results in non-negative numbers:

fnOk {_ v. ∃z. ⌜v = z⌝ ∗ ⌜0 ≤ z⌝} fn fib(x) ≜ . . . {_ v′. ∃z. ⌜v′ = z⌝ ∗ ⌜0 ≤ z⌝}

With the rules we have seen so far (and Coq’s lia tactic to solve the side
conditions), Lithium automatically verifies this specification.24

3.5 Separation Logic

So far, we have seen how Lithium can be used to verify pure programs.
Now, let us see how Lithium enables the verification of programs that
interact with the heap by leveraging separation logic.

22 Lithium actually does not use
li-fn, but first unfolds x←F ; G to
F (x.G) and then uses li-fn’, see
§4.

23 Note that li-if does not just step
to one, but to two Lithium states
(separated by “ |”) that are then
executed independently.

24 Technically, we also need to tell
Lithium that fnOk is persistent and
thus can be used multiple times.

18

Chapter 3: Lithium by Example

li-exhale-star

Γ;∆ ⊩ ∃x⃗. exhale H1(x⃗) ∗H2(x⃗); G⇒ Γ;∆ ⊩ ∃x⃗. exhale H1(x⃗); exhale H2(x⃗); G(x⃗)

li-exhale-exist

Γ;∆ ⊩ ∃x⃗. exhale ∃x. H(x, x⃗); G⇒ Γ;∆ ⊩ ∃x⃗. ∃x. exhale H(x, x⃗); G(x⃗)

li-inhale-star

Γ;∆ ⊩ inhale H1 ∗H2; G⇒ Γ;∆ ⊩ inhale H1; inhale H2; G

li-inhale-exist

Γ;∆ ⊩ inhale ∃x. H(x); G⇒ Γ;∆ ⊩ ∀x. inhale H(x); G

Figure 3.7: Operational seman-
tics for exhaling and inhaling
H1 ∗H2 and ∃x. H(x).

The principal tools of Lithium to interact with the separation logic
context are exhale H and inhale H, which don’t just work on pure
propositions, but on left goals H:

H ::= A | ⌜ϕ⌝ | H ∗H | ∃x. H(x) | �H

These left goals consist of pure propositions ϕ, atoms A, and are closed
under separating conjunction, existential quantification and the persistence
modality �. The operational semantics for existential quantification and
separating conjunction (Figure 3.7) are straightforward.25 The most
interesting part of left goals are the atoms A. These atoms are picked
by the user of Lithium as the predicates that the verification should
manipulate.26 In our running example, we have already seen one such
atom: the function specification predicate fnOk. Another atom, taken
from our next example, is the separation logic points-to assertion v1 7→ v2,
which asserts that v1 is a location that points to memory storing v2.27

expr-alloc
1: exprOk alloc G :- ∀v. inhale v 7→ #0; returnG v

expr-load
1: exprOk (!e1) G :-
2: v1← exprOk e1;
3: v2←find v1 7→ −;
4: inhale v1 7→ v2;
5: returnG v2

expr-store
1: exprOk (e1 ← e2) G :-
2: v2← exprOk e2;
3: v1← exprOk e1;
4: _←find v1 7→ −;
5: inhale v1 7→ v2;
6: returnG v2

find-points-to
1: find v1 7→ − G :- pattern v2. v1 7→ v2; returnG v2

Figure 3.8: Rules for heap
operations.

Figure 3.8 shows how this points-to assertion is used to define exprOk
for allocations, loads and stores. The rule expr-alloc for alloc uses inhale
to add a points-to fact for the newly allocated location to the context.

li-inhale-atom

Γ;∆ ⊩ inhale A; G⇒ Γ;∆, A ⊩ G

The find primitive. To discuss the rules for loads and stores, we first
need to introduce Lithium’s find primitive. The find primitive provides
the ability to search for specific assertions in the context. This primitive

25 The operational semantics of �H

are described in §4.3.

26 Lithium simply treats all proposi-
tions that don’t fall into any of the
other categories as atoms.

27 We use v1 7→ v2 instead of the
standard l 7→ v for uniformity with
the abstract predicate introduced in
§3.6.

19

Part I: Lithium

is used by the rules for loads and stores to find a points-to predicate in
the context. Concretely, find is parametrized by a (user-defined) find
function D—here v 7→ −. The intuition for the find function v 7→ − is
that it extracts a points-to assertion v 7→ v2 from the context and returns
v2. Formally, the behavior of a find functions is defined via Lithium find

rules like find-points-to. In general, find rules have the following form:

find D G :- pattern a1 . . . an. A; . . .

The operational semantics of find are given by li-find:
li-find
find D G :- pattern a. A(a); G′(a) A(b) ∈ ∆

Γ;∆ ⊩ x←find D; G⇒ Γ;∆ \ {A(b)} ⊩ G′(b)

When Lithium encounters find D, it searches for a find rule for D where
the assertion A matches an assertion in the context. a specifies holes in A

that should be filled using unification.28 Once a find rule is found where
the pattern A(_) matches an assertion A(b) in the context,29 Lithium
removes the assertion A(b) from the context and continues with the body
of the find rule. Coming back to Figure 3.8, expr-load and expr-store

use find to find a point-to assertion for v1 in the context—in the case
of load, to return the value of the memory, and, in the case of store, to
add an updated points-to assertion to the context. Note that since find

removes the found assertion from the context, expr-load also has to add
the points-to assertion back to the context (using inhale).

Exhaling separation logic assertions. To discuss the semantics of exhale
on atoms, let us consider an alternative, perfectly valid, version of the
rule for loads that uses exhale instead of find:
expr-load’
1: exprOk (!e1) G :-
2: v1← exprOk e1; ∃v2. exhale v1 7→ v2; inhale v1 7→ v2; returnG v2

When Lithium encounters an exhaleA instruction (like exhale v1 7→ v2),
it first tries to satisfy the exhale by finding and removing A from the
context (i.e., canceling A):

li-exhale-atom-cancel
A ∈ ∆

Γ;∆ ⊩ exhale A; G⇒ Γ;∆ \ {A} ⊩ G

However, in the case of expr-load’, this rule does not apply since the
atom v1 7→ v2 depends on the existential v2.30

If li-exhale-atom-cancel does not apply, Lithium tries to find a related
proposition A′ in the context and turning the exhale A into a subsumption
A′ <: A.31 The notion of related proposition is determined by the user via
a find function D. In our example, we define the propositions related to
v1 7→ v2 as the propositions found by v1 7→ −, i.e., all points-to predicates
for the same memory location. Formally, this procedure is encoded by
li-exhale-atom-subsume:
li-exhale-atom-subsume

∀x⃗. A(x⃗) related to D

find D (x. JDK(x) <: A; G) :- pattern a. A′(a); G′(a) A′(b) ∈ ∆

Γ;∆ ⊩ ∃x⃗. exhale A(x⃗); G(x⃗)⇒ Γ;∆ \ {A(b)} ⊩ G′(b)

28 We use a single hole a here
to avoid clutter, but the syntax
supports multiple holes a1 . . . an.

29 The ability to match on the sep-
aration logic context is the unique
features to find rules compared to
normal Lithium rules.

30 In general, Lithium is very careful
about how existential quantifiers
can be instantiated since a wrong
instantiation quickly leads to
a failed verification. Thus, li-
exhale-atom-cancel does
not try to instantiate existentials.
§4.2 describes how existentials are
instantiated.

31 We skip over an attempt to
simplify the goal, which is described
in §3.6.

20

Chapter 3: Lithium by Example

The subsumption JDK(x) <: A is part of the continuation passed to
the find rule. Each find function D comes with an associated atom
JDK (parametrized by the result of the find function). This atom is
used on the left-hand side of the subsumption.32 For example, we have
Jv 7→ −K(v2) ≜ v 7→ v2.

A subsumption A1 <: A2 can be seen as a form of subtyping between
atoms (i.e., given A1 prove A2) and it is handled via user-defined rules.
The atom A2 can depend on the current existentials x⃗.33 For our example,
we introduce the following subsumption rule:

1: v 7→ v1 <: v 7→ v2(x⃗) G :- ∃x⃗. exhale ⌜v1 = v2(x⃗)⌝; returnG x⃗

This rule reduces a subsumption between points-to predicates to proving
an equality between the values they point to.34 This equality can then
be used to instantiate the existential created by expr-load’, which then
behaves the same as expr-load.

3.6 Reasoning about Abstract Predicates

One important design principle of Lithium is that all atoms are treated
the same way and can be manipulated with the same mechanisms we
have seen in §3.5. This means that the expressive power that Lithium
provides to manipulate “primitive” atoms like v1 7→ v2 is also available
when reasoning about “derived” atoms (e.g., an abstract predicate for
a list). This section shows how one can leverage this to automate the
reasoning about a linked list predicate.

There are many ways how Lithium can be used to reason about abstract
predicates. The approach presented here is a simplified version of the
approach used by Islaris (described in §16.3). RefinedC uses a more
sophisticated, type-based approach (described in §9.3).

Concretely, this section describes how to use Lithium to automate
reasoning about a standard islist(v, vl) predicate:

islist(v, vl) ≜ (vl = []) ? ⌜v = #NULL⌝ : ∃v′. v 7→ (hd(vl), v′) ∗ islist(v′, tl(vl))

islist(v, vl) asserts that v contains a singly-linked list, which stores the
values vl.

Modes for islist. Before we can automate reasoning about the islist pred-
icate, we have to think about the modes for the arguments of the islist
predicate.35 In particular, we have to decide which arguments are inputs
and which are outputs following the following principle: Given the values
for the inputs, the outputs are uniquely determined.36 For example, con-
sider the points-to predicate v1 7→ v2: For a given v1, there can only be
one v2 since the memory at location v1 can only store a single value—thus
v1 is an input of the points-to predicate and v2 an output. We already
used this implicitly in the rules we have seen so far: The expr-load and
expr-store first determine the input v1 (of v1 7→ v2) by evaluating a
subexpression and then look up the output of v2 using v1 7→ −. Similarly,
the subsumption rule for v1 7→ v2 above represents the principle that if
the inputs are the same, the outputs should also be equal.37 The modes

32 This atom is also important
for the semantic model of find
described in §3.8.

33 We leave the binder for x⃗ in A2

implicit.

34 The rule also places the current
existentials x⃗ in the goal using ∃,
refers to them in v2(x⃗), and makes
them available to the continuation
G by returning x⃗.

35 This discussion of modes is
inspired by the treatment of modes
in VeriFast (Jacobs et al., “VeriFast:
A Powerful, Sound, Predictable,
Fast Verifier for C and Java”, 2011
[Jac+11]) and CN (Pulte et al.,
“CN: Verifying Systems C Code
with Separation-Logic Refinement
Types”, 2023 [Pul+23]).

36 (Logic) programming languages
with backtracking usually allow a
finite set of possible outputs for
given inputs. However, Lithium
requires outputs to be determined
uniquely since it does not backtrack.

37 Also, in the subsumption rule the
output v2 can depend on existen-
tials, but the input v1 cannot.

21

Part I: Lithium

fn empty(_) ≜ #NULL

fn cons(x) ≜ let y := alloc in y← x; y

fn mklist(_) ≜ let x := empty #0 in let x := cons (#1, x) in let x := cons (#2, x) in x

fn head(x) ≜ fst(!x)

fn length(x) ≜ if x = #NULL then #0 else let y := snd(!x) in length y +#1

fnOk {_ _. True} fn empty(_) ≜ . . . {_ v′. islist(v, [])}
fnOk {(v1, vl) v. ∃v2. ⌜v = (v1, v2)⌝ ∗ islist(v2, vl)} fn cons(x) ≜ . . . {(v1, vl) v′. islist(v′, v1 :: vl)}

fnOk {_ _. True} fn mklist(_) ≜ . . . {_ v′. islist(v′, [1, 2])}
fnOk {(v1, vl) v. ⌜v = v1⌝ ∗ islist(v, vl) ∗ ⌜0 < |vl|⌝} fn head(x) ≜ . . . {(v1, vl) v′. ⌜v′ = hd(vl)⌝ ∗ islist(v1, vl)}

fnOk {(v1, vl) v. ⌜v = v1⌝ ∗ islist(v, vl)} fn length(x) ≜ . . . {(v1, vl) v′. ⌜v′ = #|vl|⌝ ∗ islist(v1, vl)}

Figure 3.9: List functions and
specifications.

for the islist(v, vl) predicate are similar: If we know v, there can only
be one vl as v together with the underlying heap (which is implicit in
separation logic) determines vl. Thus, v is an input and vl an output. We
will use this observation when designing the automation for islist.38

One important motivation for following a consistent moding discipline
is that correct modes are important to determine the right instantiation
for existential quantifiers. One strategy to ensure that Lithium is able
to correctly instantiate existential quantifiers, is to follow the following
discipline: Existential variables (i.e., variables introduced by ∃) must
appear in an output position before appearing in an input position. The
reason this strategy works is simple: Since outputs are uniquely determined
by their inputs, existential variables that appear in output positions have
a clear instantiation.39

Verification of functions on lists. Figure 3.9 shows the list functions
with their specifications that we will verify in this section. We start by
considering how we can automatically construct the islist(v, vl) predicate.
For this, let us consider empty (for creating an empty list), cons (for
adding an element to a list), and mklist (for exercising empty and cons).
First, let us consider the case of constructing islist for the empty list.
Concretely, this case appears when proving the postcondition for empty

where Lithium reaches the following state:

∅; ∅ ⊩ exhale islist(#NULL, []); done

To make progress in this state, we define the following rule:
simpl-list-empty
1: simplify_goal islist(#NULL, vl) G :- exhale ⌜vl = []⌝; returnG

This rules states that if Lithium needs to exhale islist(#NULL, vl), it
suffices to prove that vl = []. This transformation is expressed using a
simplify_goal rule. simplify_goal rules are applied when neither li-exhale-

atom-cancel nor li-exhale-atom-subsume apply.40 A simplify_goal rule
transforms an exhale of an atom into a new goal. This is shown by

38 Unlike VeriFast and CN, Lithium
does not provide explicit support
for managing modes, but relies on
the user to keep the modes in mind
when writing rules.

39 §4.2 goes into more detail of the
handling existentials in Lithium and
describes more complex strategies
for determining their instantiation if
this simple strategy fails.

40 In the implementation, one can
specify if a specific simplify_goal
rule should be used before li-
exhale-atom-subsume or after.

22

Chapter 3: Lithium by Example

li-exhale-atom-simplify:41

li-exhale-atom-simplify
simplify_goal A G :-G′

Γ;∆ ⊩ exhale A; G⇒ Γ;∆ ⊩ G′

In summary, simpl-list-empty encodes the moding disciple for islist dis-
cussed above for the NULL case: It applies if the input is determined to
be #NULL and then enforces that the output vl has the corresponding
value []. Using simpl-list-empty, Lithium successfully verifies empty.

find-list
1: find islist(v,−) G :- pattern vl. islist(v, vl); returnG islist(v, vl)

find-list-points-to
1: find islist(v1,−) G :- pattern v2. v1 7→ v2; returnG (v1 7→ v2)

subsume-list-list
1: islist(v, vl1) <: islist(v, vl2(x⃗)) G :- ∃x⃗. exhale ⌜vl1 = vl2(x⃗)⌝; returnG x⃗

subsume-points-to-list
1: v 7→ v′ <: islist(v, vl(x⃗)) G :- ∃x⃗. ∃v1. ∃v2. ∃vl′.
2: exhale ⌜v′ = (v1, v2)⌝ ∗ islist(v2, vl′) ∗ ⌜vl(x⃗) = v1 :: vl

′⌝; returnG x⃗

Figure 3.10: Basic Lithium
rules for islist(v, vl).

Now, let us consider the case of adding an element to a list. When
verifying cons, Lithium reaches the following state (omitting Γ):

v 7→ (v1, v2), islist(v2, vl) ⊩ exhale islist(v, v1 :: vl); done

Here Lithium is stuck, since none of its rules apply. In particular, Lithium
does not automatically try to unfold the islist predicate.42 Instead, we,
as the users of Lithium, have to tell Lithium how it should handle this
case. In this case, we don’t know anything about the value v just from
looking at the goal. Thus, to get more information about v from the
context, we use Lithium’s subsumption mechanism.43 Concretely, we
introduce a find function islist(v,−) that we use to find propositions
related to islist(v,_).44 The corresponding Lithium rules are shown in
Figure 3.10. find-list defines that a islist(v,_) predicate in the context
is related to a islist(v,_) predicate in the goal, and subsume-list-list

reduces the resulting subsumption to proving equality of the lists (i.e.,
the outputs). (This subsumption is used during the verification of mklist.)
find-list-points-to states that a v 7→ _ is related to islist(v,_) and
subsume-points-to-list reduces the resulting subsumption to proving
that the islist(v,_) predicate is in the cons case. All these rules follow the
moding discipline since they use the input v to find a related predicate
in the context and then determine the output based on what they find.
With these rules, Lithium can automatically verify cons and mklist.45

Now, let us turn to automatically destructing the islist predicate. This
is necessary to verify the head function. Concretely, when Lithium reaches
the !x in head, it has to prove find v 7→ − (from expr-load), but find-

points-to does not apply since the context contains islist(v, vl) instead
of a v 7→ _ predicate. To solve this problem, we leverage Lithium’s
extensibility and the fact that the islist predicate can be manipulated

41 We omit the handling of exis-
tentials here. The full rule with
existentials is shown in §4.3.

42 This is a deliberate choice. De-
ciding when to unfold predicates is
tricky, so Lithium aims to behave
predictably and lets the user define
the heuristics for when to unfold
which predicates.

43 We could add a heuristic to
unfold the islist predicate when the
list is a cons, but this would unfold
islist to eagerly, e.g., during the
verification of mklist, and violate our
moding discipline which says that
we should key the automation on
the inputs, not the outputs.

44 Note that the input v is passed to
islist(v,−), but the output vl is not.

45 We omit the trivial rule creating
the pair in mklist.

23

Part I: Lithium

binop-eq-null
1: binopOk v = #NULL G :- b←find v null?; returnG b

find-null-points-to
1: find v null? G :- pattern v2. v 7→ v2; inhale v 7→ v2; returnG false

find-null-list
1: find v null? G :- pattern vl. islist(v, vl); inhale islist(v, vl); returnG vl = []

Figure 3.11: Lithium rules for
comparison with NULL.using the same techniques as the v1 7→ v2 predicate. Concretely, we add

a find v 7→ − rule for islist(v, vl):
find-points-to-list
1: find v 7→ − G :- pattern vl. islist(v, vl);
2: exhale ⌜0 < |vl|⌝;
3: ∀v1. ∀v2. ∀vl′. inhale ⌜vl = v1 :: vl

′⌝ ∗ islist(v2, vl′);
4: returnG (v1, v2)

Intuitively, find-points-to-list says that if we want to read from a value
that stores a list with values vl, the list must be non-empty (i.e., 0 < |vl|)
and then the resulting value will be a pair (v1, v2) where v1 is the head of
vl and v2 is a list containing the tail of vl (following the definition of islist).
With find-points-to-list, Lithium can automatically verify head.46

The example of v 7→ − shows how Lithium rules can be extended
to handle new abstract predicates like islist. Another example of this
pattern is shown in Figure 3.11 for comparing a value with NULL (as
used by length). binop-eq-null uses a new find function v null? to allow
overloading of the null check based on the context. This enables specialized
rules for custom abstract predicates like islist. find-null-list uses this
to express that a value storing a list is NULL exactly if the list is empty.
With these rules, Lithium can automatically verify the length function.

Summary. With the rules from this section Lithium is able to auto-
matically verify all functions in Figure 3.9 without explicit unfold or
fold annotations provided by the user as sometimes required by other
automated verification tools. Lithium does not achieve this by having
complex heuristics for abstract predicates built-in. Instead, Lithium relies
on the user to provide the heuristics when to unfold abstract predicates
like islist. This approach provides significant flexibility to the user and
makes the behavior of Lithium simple and predictable.

3.7 Verifying Higher-order Functions

This section demonstrates the flexibility of Lithium by showing how it can
be used to automatically verify higher-order functions. In fact, the Lithium
primitives we have seen so far are almost enough achieve this task, we just
need to introduce two more simple primitives: G1 and G2 for splitting
the verification into the two subcases G1 and G2 and drop_spatial to
remove all spatial (i.e., non-persistent) propositions from the context.

Verifying contains. As a concrete example for a higher-order function,
we verify the contains function shown in Figure 3.12. contains takes two

46 We omit the trivial rules for
fst(_) and snd(_).

24

Chapter 3: Lithium by Example

∀ϕ. {(v1, vl) v.∃ v2. ⌜v = (v1, v2)⌝ ∗ islist(v1, vl)
∗ fnOk {v′1 v′. ⌜v′1 = v′⌝ ∗ ⌜v′ ∈ vl⌝} v2 {v′1 v′. ⌜v′ = #(ϕ v′1)⌝}}

fn contains(x) ≜ let y := fst(x) in let z := snd(x) in
if y = #NULL then #false
else if z fst(!y) then #true
else contains (snd(!y), z)

{(v1, vl) v′. ⌜v′ = #(∃v ∈ vl. ϕ v)⌝ ∗ islist(v1, vl)}

Figure 3.12: contains function
and specification.

arguments: a list (stored in y) and a callback (stored in z). contains then
recursively iterates over the list until it finds an element where the callback
returns true. If it finds such an element, contains returns true, otherwise
false. The pre- and postcondition of contains are shown above and below
contains in Figure 3.12. The specification of contains is parametrized by
a pure predicate ϕ. The most interesting part of the specification is the
fnOk precondition that states that the callback v2 passed as the second
argument returns whether ϕ holds for its argument as a Boolean value.
The specification of v2 uses the ⌜v′ ∈ vl⌝ precondition to state that v2 is
only called on values from vl. The postcondition of contains states that
it returns a Boolean that reflects whether there exists a v ∈ vl such that
ϕ v holds.

The challenge when verifying contains is handling the fnOk assumption.
Using the assumption to justify the call to the callback is already handled
by the standard rule for calls expr-app since the fnOk assumption in the
precondition is treated like any other fnOk assumption. However, proving
the fnOk when performing the recursive call is non-trivial since the speci-
fication of the callback changes between the recursive calls. Concretely,
Lithium reaches the following state when proving the precondition of the
recursive call:

. . . , fnOk {. . . ∗ ⌜v′ ∈ v1 :: vl⌝} v2 {. . .} ⊩ exhale fnOk {. . . ∗ ⌜v′ ∈ vl⌝} v2 {. . .}; . . .

The fnOk assertions in the context and goal almost match up, except that
the list vl becomes smaller during the recursive call. Thus, we cannot
use li-exhale-atom-cancel to make progress. Instead, we introduce a
subsumption rule between function specifications (after declaring that
fnOk is related to a fnOk for the same value). Luckily, Lithium is ex-
pressive enough to express a strong subsumption rule between function
specifications: subsume-fn in Figure 3.13.

First, let us introduce the new Lithium primitives used by this rule:
The G1 and G2 primitive splits the verification into the two branches G1

and G2. Here, we use this primitive to spawn a subproof for proving the
subsumption on line 3 and continue with G in the main branch. At the
start of this subproof on line 3, we use the drop_spatial instruction to
remove all non-persistent propositions from the context. This is necessary,
since fnOk is persistent, so we cannot use any non-persistent resources to
prove it. Formally, Lithium handles these primitives as follows:

li-and

Γ;∆ ⊩ G1 and G2 ⇒ Γ;∆ ⊩ G1 |Γ;∆ ⊩ G2

li-drop-spatial

Γ;∆ ⊩ drop_spatial; G⇒ Γ; {�A |�A ∈ ∆} ⊩ G

25

Part I: Lithium

subsume-fn
1: fnOk {pre1} v {post1} <: fnOk {pre2} v {post2}G:-
2: do
3: drop_spatial;
4: ∀a. ∀varg . inhale pre2 a varg ;
5: ∃b. exhale pre1 b varg ;
6: ∀vret . inhale post1 b vret ;
7: exhale post2 a vret ;
8: done

9: and
10: ∃x⃗. G x⃗

simpl-fn
1: simplify_goal fnOk {pre} fn f(x) ≜e{post}G :-
2: do
3: drop_spatial;
4: ∀a. ∀varg . ∀vf .
5: inhale pre a varg ;
6: inhale fnOk {pre} vf {post};
7: vret← exprOk (e[x 7→ varg][f 7→ vf]);
8: exhale post a vret ;
9: done

10: and
11: ∃x⃗. G x⃗

Figure 3.13: Rules for fnOk.
The heart of subsume-fn are lines 4-7: To prove fnOk {pre2} v {post2}

from fnOk {pre1} v {post1}, we can first assume the precondition pre2
and then have to prove the precondition pre1. Then, we can assume the
postcondition pre1 and have to prove the postcondition pre2.47 With
subsume-fn, Lithium is able to automatically verify contains.48

Verifying a client. Next, we see how we can use Lithium to verify a
client of contains, concretely the following function contains_one, which
uses contains to check if a list of integers contains the number 1:

{(v1, z) v. ⌜v = v1⌝ ∗ islist(v,#z)}
fn contains_one(x) ≜ contains (x, (fn _(y) ≜ y = #1))

{(v1, z) v′. ⌜v′ = #(1 ∈ z)⌝ ∗ islist(v1,#z)}

To verify contains_one, we use the specification of contains instantiated
with ϕ v ≜ v = #1.49 The challenge when verifying contains_one is
proving the fnOk precondition for contains. Concretely, Lithium reaches
the following state:50

. . . ⊩ exhale fnOk {v′1 v′. ⌜v′1 = v′⌝ ∗ ⌜v′ ∈ #z⌝} fn _(y) ≜ y = #1 {v′1 v′. ⌜v′ = #(v′1 = #1)⌝}; . . .

But we have already seen in §3.3 that we can prove such a fnOk in Lithium
using fnok! All we need to do is tell Lithium to automatically apply fnok

by rephrasing it as a simplify_goal rule (using and and drop_spatial

in the same way as subsume-fn). This strategy is encoded by simpl-fn

in Figure 3.13. With simpl-fn, Lithium is able to automatically verify
contains_one.51

Summary. We have seen how Lithium can be used to automatically verify
higher-order functions. It is important to note that Lithium is completely
oblivious of the notion of higher-order functions, but its primitives can
be composed to build a verification algorithm for higher-order functions.
This fact that Lithium does not rely on a built-in notion of function
means that it can be reused for different languages with different notions
of functions—e.g., for functions with local variables as in RefinedC or for
assembly instructions with preconditions as in Islaris.

47 Note that subsume-fn is a
lot stronger than required for this
example, e.g., it allows framing
ownership from pre2 to post2.

48 We also need a strong enough
solver for the pure side conditions
about lists. All side conditions
can be solved with one line of Coq
tactics.

49 Lithium does not try to infer
specifications, so we have to manu-
ally provide ϕ.

50 Note that the ⌜v′ ∈ #z⌝ precondi-
tion is important for this goal to be
provable as the language only allows
to compare integers to other inte-
gers (e.g., comparing a pointer to an
integer causes undefined behavior).

51 We need a strong enough solver
for the pure side conditions about
lists here as well.

26

Chapter 3: Lithium by Example

3.8 Foundational Proofs via a Semantic Model

So far we have seen how Lithium provides automated verification. However,
this is only one of the two main features of Lithium discussed in §2. So
now let us see how Lithium is able to provide foundational proofs for each
successful verification.

To obtain foundational proofs, Lithium takes inspiration from the se-
mantic typing approach:52 In addition to the operational model described
in §3.2, Lithium also comes with a semantic model that translates each
Lithium construct G to a separation logic formula JGK. Additionally, each
step of Lithium comes with a proof that it maintains provability, i.e., for
each Lithium step Γ1; ∆1 ⊩ ∃x⃗1. G1(x⃗1)⇒ Γ2; ∆2 ⊩ ∃x⃗2. G2(x⃗2) we have
a proof of the following:53

Γ2; ∆2 ⊢ ∃x⃗2. JG2(x⃗2)K

Γ1; ∆1 ⊢ ∃x⃗1. JG1(x⃗1)K

These proofs are then transitively composed during the execution of
Lithium. When Lithium reaches done, it can conclude the proof since
we define JdoneK ≜ True. Overall, we obtain the following soundness
theorem for Lithium that shows that we can prove a separation logic
assertion JGK by running Lithium:54

Theorem 1 (Soundness of Lithium)

Γ;∆ ⊩ G⇒ . . .⇒ Γ′; ∆′ ⊩ done

Γ;∆ ⊢ JGK

Semantics of goals. Let us now see how JGK is defined. Figure 3.14
shows the semantics of most of the Lithium constructs we have seen in
this chapter.

Jexhale H; GK ≜ H ∗ JGK J∀x. GK ≜ ∀x. JGK JdoneK ≜ True Jx←find D; GK ≜ ∃x. JDK(x) ∗ JGK
Jinhale H; GK ≜ H −∗ JGK J∃x. GK ≜ ∃x. JGK JreturnG xK ≜ JG(x)K Jx←F ; GK ≜ JF (x. G)K

Figure 3.14: (Partial) defini-
tion of JGK.The semantics of exhale is defined as a separating conjunction since

exhale H requires proving H. Dually, the semantics of inhale is defined
as a magic wand since inhale H adds H as an assumption.55 The
quantifiers of Lithium (∃ and ∀) map to the corresponding quantifiers of
separation logic. As we have already seen before, done is defined as True
and thus allows to trivially conclude the verification. As discussed in §3.4,
returnG calls the continuation G. The semantics of find is defined using
the semantics of the find function D.56 The semantics of user-defined
functions F need to be provided by the user.57

With this definition of JGK in hand, we can already check that many
of the Lithium steps we have seen so far are sound. For example, the
soundness of li-exhale-atom-cancel reduces to the following derivable

52 Milner, “A Theory of Type
Polymorphism in Programming”,
1978 [Mil78]; Jung et al., “RustBelt:
Securing the Foundations of the
Rust Programming Language”, 2018
[Jun+18a].

53 Note that use of the separation
logic entailment ⊢ instead of the
Lithium entailment ⊩.

54 In case the execution contains
branching, all branches must end
with done.

55 This follows the definition of
exhale and inhale of Parkinson
and Summers, “The Relationship
Between Separation Logic and
Implicit Dynamic Frames”, 2012
[PS12].

56 As seen in §3.5, JDK is also used
when introducing a subsumption.

57 We will see examples for this
shortly.

27

Part I: Lithium

rule of separation logic:

A ∈ ∆ Γ;∆ \ {A} ⊢ JGK
Γ;∆ ⊢ A ∗ JGK

As another example, li-exhale-star is sound because of the associativity
of the separating conjunction:

Γ;∆ ⊢ ∃x⃗. H1(x⃗) ∗ (H2(x⃗) ∗ JG(x⃗)K)

Γ;∆ ⊢ ∃x⃗. (H1(x⃗) ∗H2(x⃗)) ∗ JG(x⃗)K

Similar arguments apply to the other rules in Figure 3.7.

Semantics of functions. Next, let us consider Figure 3.15 which shows
the definition of JF K for the functions we have seen in this chapter.

JexprOk e GK ≜ wp e {v. JG(v)K} Jsimplify_goal A GK ≜ A ∗ JGK
JbinopOk v1⊕ v2 GK ≜ wp v1⊕ v2 {v. JG(v)K} JA1 <: A2 GK ≜ A1 −∗ (∃x⃗. A2(x⃗) ∗ JG(x⃗)K)

JifOk v G1 G2K ≜ ∃b. ⌜v = #b⌝ ∗ (b ? JG1K : JG2K)

Figure 3.15: Definition of JF K.
For example, the semantics of exprOk e is defined as the weakest

precondition for e (introduced in §2.1).58 This definition formalizes the
intuitive notion that running exprOk e corresponds to verifying e. In
particular, coming back to the first example of this chapter, we have

J_← exprOk assert_two; doneK ≜ wp assert_two {_.True}

Thus, by Theorem 1 and the fact that Lithium successfully verifies this
program, we obtain a proof of wp assert_two {_.True}, which we can then
combine with the adequacy statement of Iris to obtain a foundational proof
that assert_two does not cause undefined behavior, and, in particular,
that the assert succeeds. This illustrates how we can use Lithium to
automatically obtain foundational proofs of correctness.

Semantics of Lithium rules. One final piece of the puzzle is missing: To
justify li-fn, each Lithium rule definition F :-G must come with a proof
that the semantics of the body must entail the semantics of the function,
i.e., JGK ⊢ JF K.59 For example for expr-alloc, this requires showing the
following entailment that corresponds to the standard allocation rule of
separation logic:

∀v. v 7→ #0 −∗ JG(v)K ⊢ wp alloc {v.JG(v)K}

As another example, expr-load requires a proof of the following entail-
ment, which can be proven using the standard separation logic rules for
binding a subexpression and verifying a load:

wp e {v1.∃v2. v1 7→ v2 ∗ (v1 7→ v2 −∗ JG(v2)K} ⊢ wp !e {v.JG(v)K}

58 The semantics of the other
functions is straightforward, except
for the semantics of A1 <: A2,
which is discussed later.

59 li-find is justified similarly, by
requiring rules for find functions
find D G :- pattern a. A(a); G′(a)
provide a proof of ∃a. A(a) ∗
JG′(a)K ⊢ ∃x. JDK(x) ∗ JGK.

28

Chapter 3: Lithium by Example

In some sense, the soundness proofs of the Lithium rules are the “meat” of
a Lithium-based verification, as they show that the way Lithium verifies
different expressions is sound. The main job of Lithium is to compose
these rules and their soundness proofs to construct an overall verification
of the program.

Semantics of A1 <: A2. An interesting detail is the definition of JA1 <:

A2 GK in Figure 3.15. Ignoring existentials, we have two choices: We
could define it as A1 −∗ (A2 ∗ JGK) or (A1 −∗ A2) ∗ JGK. Lithium uses the
first choice, but why? The reason is that the first choice allows us to split
the ownership contained in A1 between proving A2 and the remaining
goal G, while the second choice does not.60 Such a splitting of A1 is
useful when A1 contains more ownership than what is required to prove
A2. Concretely, consider the following subsumption rule between the islist
predicate and the points-to predicate:

1: islist(v, vl) <: v 7→ v′(x⃗) G :-
2: ∀v1. ∀v2. ∀vl′. inhale ⌜vl = v1 :: vl

′⌝ ∗ islist(v2, vl′);
3: ∃x⃗. exhale ⌜v′(x⃗) = (v1, v2)⌝; returnG x⃗

This rule is only sound with the first semantics of A1 <: A2 (used by
Lithium), as the inhale makes the ownership of the remaining list available
to the goal G.

60 Also, with the second choice it
would not be clear where to place
the existential quantifier for the
Lithium existentials.

29

Chapter 4

Lithium in Detail

After seeing how Lithium works in §3, this chapter discusses two more
aspects of Lithium—how Lithium avoids backtracking (§4.1) and how
Lithium handles existentials (§4.2)—before describing the complete defi-
nition of Lithium in §4.3.

4.1 Avoiding Backtracking

The Lithium proof search procedure is efficient in large part because it
does not backtrack. Several design choices make this possible.

First, the argument of exhale is limited to the form H, which cannot
contain ∧, ∀, and −∗. Without this restriction, handling a exhale G1; G2

would require a two-way split of the resource context ∆ to prove G1

and G2 simultaneously, requiring backtracking over possible splits of ∆.
However, when G1 is limited to the form H, we can reduce it in place
all the way down to atoms (li-exhale-exist and li-exhale-star), which
eliminates this form of backtracking.

Second, the argument of inhale in goals is also restricted to the form
H. This allows us to reduce local assumptions to atoms before adding
them to the context ∆ (li-inhale-exist and li-inhale-star). By relying
on the fact that ∆ only contains atoms, we can design find rules such
that only one of them applies at a time. For example, consider find-list

and find-list-points-to: Only one of these rules can fire at a time since
∆ can only contain one of islist(v,_) or v 7→ _, but never both.1

Third, Lithium relies on the user to ensure that existentials have a
unique instantiation (e.g., via the moding discipline described in §3.6
or via the more advanced mechanisms presented in §4.2). Thanks to
this assumption, Lithium can avoid backtracking on the instantiation of
existentials.

In principle, the need for backtracking could arise in li-fn when multiple
Lithium rules apply for a given function. However, Lithium provides the
necessary tools to write rules such that there is always enough information
to uniquely determine which rule to apply. For example, consider binop-eq-

null: Since there is not enough information how to handle a comparison
with NULL by just looking at the expression, we introduce a new find
function v null? that can match on the context to determine how to
proceed.2

1 RefinedC ensures this property by
using type assignments as atoms
and ensure that each value has at
most one type assignment at a time.

2 Lithium also offers a way to
specify priority among Lithium
rules. But once a rule is chosen,
Lithium does not backtrack on the
choice.

31

Part I: Lithium

4.2 Handling of Existentials

One important aspect of Lithium that we have not described so far is the
handling of existentials created in li-exist. In particular, Lithium must
be careful when instantiating existentials because a bad instantiation
could easily make the goal unprovable. To prevent this, most parts of
Lithium treat existentials as opaque variables. In fact, the only place
existentials can get instantiated is when solving side conditions emitted
by li-exhale-pure, at which point Lithium attempts to eliminate any
existentials in the side condition using one of the following heuristics.

First, Lithium tries to find a suitable instantiation for the existentials
by checking if the side condition is an equality and, if so, trying to unify
both sides (potentially instantiating existentials). Though this heuristic is
often effective, it may also turn a provable goal into an unprovable goal if it
unifies an existential appearing as the argument of a non-injective symbol.
For example, unifying |x| and |l| where x is an existential will lead to x

being instantiated with l, whereas the correct instantiation for x might in
fact be another list with the same length as l. In such cases, the user’s only
recourse at present is to adjust the specifications and Lithium program
to generate side conditions in an order that allows correct instantiation.
However, in our experience, this rarely causes problems. In particular, all
of RefinedC and Islaris uses this heuristic.

Second, if Lithium cannot instantiate the existentials in the side condi-
tion, it simplifies the goal using a set of user-extensible rewriting rules and
equivalences. For example, a side condition of the form xs ̸= [] where xs

is an existential is simplified to the equivalent ∃y. ∃ys. xs = y :: ys, which
leads Lithium to turn y and ys into Lithium existentials and instantiate
xs with y :: ys. The simplification rules are also used by li-inhale-pure

to normalize assumptions introduced into the context. For example, an
assumption xs ++ ys = [] is simplified to xs = [] and ys = [], which causes
both xs and ys to be substituted with []. By default, this simplification
mechanism applies equivalences and thus preserves provability, but there is
an escape hatch that lets one add implications (rather than equivalences)
as simplification rules. (Doing so can make provable goals unprovable.)

The procedure described above is not complete as there can be a
side condition for which the heuristic for existential instantiation fails
and no simplification rule applies. However, the predictable nature of
Lithium helps the user avoid such side conditions: since instructions in
Lithium are sequenced, it is straightforward to predict in which order
the side conditions will be generated. For example, when checking the
precondition of a fnOk, the side conditions are generated in a left-to-right
order (following li-exhale-star), so it is easy to manually order them to
make sure that the existentials are instantiated correctly. As a concrete
example, consider the precondition of cons (Figure 3.9 in §3.6):

fnOk {(v1, vl) v. ∃v2. ⌜v = (v1, v2)⌝ ∗ islist(v2, vl)} fn cons(x) ≜ . . . {. . .}

With this phrasing of the precondition, the existential created for v2 is
trivially instantiated by the equality (assuming that cons is called with
a pair for the argument v). After v2 is instantiated, one can continue

32

Chapter 4: Lithium in Detail

with proving islist(v2, vl) (and instantiating vl). However, if we reorder
the preconditions to the following:

fnOk {(v1, vl) v. ∃v2. islist(v2, vl) ∗ ⌜v = (v1, v2)⌝} fn cons(x) ≜ . . . {. . .}

Lithium gets stuck on the goal ∃v2, vl. exhale islist(v2, vl); . . .

4.3 Complete Definition of Lithium

Atom A ::= . . .

Function F ::= A1 <: A2 | . . .
Goal G ::= exhale H; G | inhale H; G | ∀x. G | ∃x. G | done | false |

x←F ; G | x←find D; G | returnG x | if ϕ then G1 else G2 |
G1 and G2 | k, v←and_map m; G | drop_spatial; G | x′←destruct x; G |
x← tactic t; G | x←accu; G | trace a; G | x← iter l with a {G1}; G2

Left-goal H ::= A | ⌜ϕ⌝ | H ∗H | ∃x. H(x) | �H

Contexts Γ ::= ∅ | Γ, x | Γ, ϕ ∆ ::= ∅ | ∆, A | ∆,�A

Figure 4.1: Syntax of Lithium.

Jexhale H; GK ≜ H ∗ JGK Jinhale H; GK ≜ H −∗ JGK J∀x. GK ≜ ∀x. JGK
JdoneK ≜ True JfalseK ≜ False J∃x. GK ≜ ∃x. JGK

Jx←F ; GK ≜ JF (x. G)K Jx←find D; GK ≜ ∃x. JDK(x) ∗ JGK JreturnG xK ≜ JG(x)K

JG1 and G2K ≜ JG1K ∧ JG2K Jdrop_spatial; GK ≜ �JGK Jx′←destruct x; GK ≜ JG(x)K

Jx← tactic t; GK ≜ t JGK Jx←accu; GK ≜ ∃P. P ∗ JG(P)K Jtrace a; GK ≜ JGK

Jif ϕ then G1 else G2K ≜ (⌜ϕ⌝ −∗ JG1K) ∧ (⌜¬ϕ⌝ −∗ JG2K)

Jx← iter b :: l with a {G1}; G2K ≜ Ja′←G1 b a; x← iter l with a′ {G1}; G2K

Jx← iter [] with a {G1}; G2K ≜ JG2(a)K

Jk, v←and_map m; GK ≜
∧

k,v∈m

JG(k, v)K

Figure 4.2: Full definition of
JGK.

Figure 4.1 shows the complete syntax of Lithium. The semantic model
of Lithium is depicted in Figure 4.2, while the full operational semantics
of Lithium can be found in Figure 4.3 and Figure 4.4.3 When multiple
stepping rules apply to the same goal, Lithium picks the first such rule
(in left to right, top to bottom order). Let us now discuss the Lithium
primitives that were not explained in §3.

Exhaling and inhaling persistent left-goals. §3.5 did not discuss how �H

is handled by exhale and inhale—we remedy this now. The handling of
�H in inhale is straightforward: Lithium splits up H using li-inhale-

persistent-pure, li-inhale-persistent-star, and li-inhale-persistent-

exist and introduces atoms into the context using li-inhale-persistent-

atom. exhale �H is covered by li-exhale-persistent, which creates a
separate subgoal for proving H after dropping all non-persistent assertions.
This step is sound since �P ∗Q is equivalent to �P ∧Q in separation
logic.

3 Lithium also implicitly performs
meta-level reduction (using Coq’s
simpl tactic), so Lithium programs
can also contain meta-level con-
structs like matches as long as they
are reduced away when the inter-
preter reaches them. We will see a
use of this feature in §14.3.

33

Part I: Lithium

li-exhale-atom-cancel
A ∈ ∆

Γ;∆ ⊩ exhale A; G⇒ Γ;∆ \ {A} ⊩ G

li-exhale-atom-subsume
∀x⃗. A(x⃗) related to D find D (x. JDK(x) <: A; G) :- pattern a. A′; (a); G′(a) A′(b) ∈ ∆

Γ;∆ ⊩ ∃x⃗. exhale A(x⃗); G(x⃗)⇒ Γ;∆ \ {A(b)} ⊩ G′(b)

li-exhale-atom-simplify
∀x⃗. simplify_goal A(x⃗) G(x⃗) :-G′(x⃗)

Γ;∆ ⊩ ∃x⃗. exhale A(x⃗); G(x⃗)⇒ Γ;∆ ⊩ ∃x⃗. G′(x⃗)

li-exhale-pure
Γ ⊢ ϕ

Γ;∆ ⊩ exhale ⌜ϕ⌝; G⇒ Γ;∆ ⊩ G

li-exhale-star

Γ;∆ ⊩ ∃x⃗. exhale H1(x⃗) ∗H2(x⃗); G(x⃗)⇒ Γ;∆ ⊩ ∃x⃗. exhale H1(x⃗); exhale H2(x⃗); G (x⃗)

li-exhale-exist

Γ;∆ ⊩ ∃x⃗. exhale ∃x. H(x, x⃗); G(x⃗)⇒ Γ;∆ ⊩ ∃x⃗. ∃x. exhale H(x, x⃗); G(x⃗)

li-exhale-persistent

Γ;∆ ⊩ exhale �H; G⇒ Γ;∆ ⊩ (drop_spatial; exhale H; done) and G

li-inhale-atom

Γ;∆ ⊩ inhale A; G⇒ Γ;∆, A ⊩ G

li-inhale-pure

Γ;∆ ⊩ inhale ⌜ϕ⌝; G⇒ Γ, ϕ; ∆ ⊩ G

li-inhale-star

Γ;∆ ⊩ inhale H1 ∗H2; G⇒ Γ;∆ ⊩ inhale H1; inhale H2; G

li-inhale-exist

Γ;∆ ⊩ inhale ∃x. H(x); G⇒ Γ;∆ ⊩ ∀x. inhale H(x); G
li-inhale-persistent-atom

Γ;∆ ⊩ inhale �A; G⇒ Γ;∆,�A ⊩ G

li-inhale-persistent-pure

Γ;∆ ⊩ inhale � ⌜ϕ⌝; G⇒ Γ, ϕ; ∆ ⊩ G

li-inhale-persistent-star

Γ;∆ ⊩ inhale �(H1 ∗H2); G⇒ Γ;∆ ⊩ inhale �H1; inhale �H2; G

li-inhale-persistent-exist

Γ;∆ ⊩ inhale �(∃x. H(x)); G⇒ Γ;∆ ⊩ ∀x. inhale �H(x); G
li-all

Γ;∆ ⊩ ∀x. G(x)⇒ Γ, x; ∆ ⊩ G(x)

li-exist

Γ;∆ ⊩ ∃x⃗. ∃x. G(x, x⃗)⇒ Γ;∆ ⊩ ∃x, x⃗. G(x, x⃗)

li-fn-unfold

Γ;∆ ⊩ x←F ; G⇒ Γ;∆ ⊩ F (x. G)

li-fn’
F :-G

Γ;∆ ⊩ F ⇒ Γ;∆ ⊩ G

li-find
find D G :- pattern a. A(a); G′(a) A(b) ∈ ∆

Γ;∆ ⊩ x←find D; G⇒ Γ;∆ \ {A(b)} ⊩ G′(b)

li-return

Γ;∆ ⊩ returnG x⇒ Γ;∆ ⊩ G(x)

li-if-true
Γ ⊢ ϕ

Γ;∆ ⊩ if ϕ then G1 else G2 ⇒ Γ;∆ ⊩ G1

li-if-false
Γ ⊢ ¬ϕ

Γ;∆ ⊩ if ϕ then G1 else G2 ⇒ Γ;∆ ⊩ G2

li-if

Γ;∆ ⊩ if ϕ then G1 else G2 ⇒ Γ, ϕ; ∆ ⊩ G1|Γ,¬ϕ; ∆ ⊩ G2

Figure 4.3: Operational seman-
tics of Lithium, part 1.

34

Chapter 4: Lithium in Detail

li-false
Γ ⊢ False

Γ;∆ ⊩ false⇒ Γ;∆ ⊩ done

li-and

Γ;∆ ⊩ G1 and G2 ⇒ Γ;∆ ⊩ G1 |Γ;∆ ⊩ G2

li-and-map-insert

Γ;∆ ⊩ k, v←and_map m[k′ 7→ v′]; G⇒ Γ;∆ ⊩ G(k′, v′) |Γ;∆ ⊩ k, v←and_map m; G

li-and-map-empty

Γ;∆ ⊩ k, v←and_map ∅; G⇒ Γ;∆ ⊩ done

li-drop-spatial

Γ;∆ ⊩ drop_spatial; G⇒ Γ; {�A |�A ∈ ∆} ⊩ G

li-destruct
destruct x into x′

Γ;∆ ⊩ x′←destruct x; G⇒ Γ;∆ ⊩ G(x′)

li-tactic
run t with G resulting in G′

Γ;∆ ⊩ x← tactic t; G⇒ Γ;∆ ⊩ G′

li-accu
Γ;∆ ⊩ x←accu; G⇒ Γ; {�A |�A ∈ ∆} ⊩ G(∗

A∈∆

A)

li-trace
invoke tracing hook with a

Γ;∆ ⊩ trace a; G⇒ Γ;∆ ⊩ G

li-iterate-cons

Γ;∆ ⊩ x← iter b :: l with a {G1}; G2 ⇒ Γ;∆ ⊩ a′←G1 b a; x← iter l with a′ {G1}; G2

li-iterate-nil

Γ;∆ ⊩ x← iter [] with a {G1}; G2 ⇒ Γ;∆ ⊩ G2(a)

Figure 4.4: Operational seman-
tics of Lithium, part 2.The false primitive. The false primitive can be used to mark branches

of the verification where further steps are impossible. In this case, Lithium
tries to conclude the verification by asking the solver to prove a contra-
diction from the assumptions in the pure context Γ (li-false).

The and_map primitive. The k, v←and_map m; G primitive is
similar to and, except that it spawns a new goal for each key k and
value v in the map m (li-and-map-insert and li-and-map-empty). The
map m must be a concrete map, i.e., syntactically of the form (∅[kn 7→
vn]) . . .)[k1 7→ v1]. and_map is used by RefinedC to create a new case
for each branch of a C switch statement.

The destruct primitive. The x′←destruct x; G primitive destructs
the Coq expression x, similar to the Coq destruct tactic, i.e., it generates
a separate goal for each constructor that could be used to create x. x′ is
filled with the constructor corresponding to the goal.

The tactic primitive. The x← tactic t; G primitive allows the user to
invoke an arbitrary Coq tactic described by t. Concretely, Lithium uses
Coq’s typeclass mechanism to find a tactic registered for t and then uses
the tactic to generate the next Lithium goal (together with a proof that
the Lithium step is sound). For example, Islaris uses tactic to normalize
arithmetic operations that arise from instructions that access memory.

The accu primitive. The x←accu; G primitive removes all non-persistent
atoms A from ∆ and instantiates x with a big separating conjunction

35

Part I: Lithium

of these atoms (li-accu). (Persistent atoms �A remain in ∆.) This
behavior is similar to the Iris iAccu tactic. This primitive is used by
RefinedC to extend a loop invariant with all atoms that are left-over after
establishing the user-annotated loop invariant.4

The trace primitive. The trace a; G primitive invokes a user-defined
tracing hook with the argument a. RefinedC uses trace to track the case
distinctions that have been performed in the proof so far for debugging
purposes.

The iter primitive. The x← iter l with a {G1}; G2 primitive iterates
over l and runs G1 for each element of l (li-iterate-cons). a is an iteration
variable that can be updated by each iteration. The result x of iter is the
final value of a (li-iterate-nil).5 The list l must be a concrete list, i.e.,
syntactically of the form [a1, . . . , an]. RefinedC uses iter, for example, to
iterate over all fields of a C struct or all arguments to a function.

4 This is an experimental feature
of RefinedC that is not enabled by
default, but needs to be activated
via a special annotation.

5 The implementation of Lithium
does not directly implement li-
iterate-cons and li-iterate-
nil, but instead uses Coq’s reduc-
tion mechanism to reduce iter.

36

Chapter 5

Related Work

VeriFast. The most closely related work to Lithium is probably the
symbolic execution approach of the VeriFast verifier,1 described by Vogels
et al.2 They define a symbolic execution function that maps constructs
of the programming language (annotated with pre- and postconditions
and loop invariants) to a language of “outcomes”. These outcomes allow
demonic and angelic choice (corresponding to ∀ and ∃ in Lithium) and
are defined over a notion of state containing separation logic propositions
(called heap chunks), which Vogels et al. use to define “produce” and “con-
sume” functions (corresponding to inhale and exhale). These primitives
are then used to define the symbolic execution of the constructs of the lan-
guage, reminiscent of the definition of Lithium functions like exprOk in §3.
However, while there are some similarities, the fundamental goals of the
approach that Vogels et al. describe and Lithium are quite different: The
first one is a description of the inner workings of one particular verifier—
VeriFast—, while the second aims to be a domain-specific language for
writing multiple, different verifiers. This shows for example in the fact
that the symbolic execution of Vogels et al. is specific to the underlying
language, while Lithium is independent of it. (For example, the produce
and consume operations are specific to the notion of heap chunks.) Also,
while Vogels et al.3 provide a formalization of their description of the core
VeriFast approach that is foundationally sound, the actual implementation
of VeriFast does not produce foundational proofs of correctness (unlike
Lithium). Another point of difference is that the symbolic execution
only supports angelic choice over the empty set (corresponding to false

in Lithium), but not its general form (∃ in Lithium). Instead, they tie
existential quantifiers directly to output positions of predicates to make
sure that they can always be instantiated—this avoids the complications
described in §4.2, at the cost of flexibility.

Viper. Viper4 is an intermediate language for developing verification
tools. Viper is a simple imperative language with a heap and provides a
native notion of separation logic5 with specifications for functions (and
loops) and custom statements for manipulating separation logic asser-
tions.6 Viper comes with powerful SMT-based automation for verifying
these specifications.7 While Viper currently does not generate founda-
tional proofs (unlike Lithium), there is ongoing work to change this.8

To implement a verification tool using Viper, one builds a frontend to
translate the object language (usually extended with a syntax for specifica-

1 Jacobs et al., “VeriFast: A Power-
ful, Sound, Predictable, Fast Verifier
for C and Java”, 2011 [Jac+11].

2 Vogels et al., “Featherweight
VeriFast”, 2015 [VJP15].

3 Vogels et al., “Featherweight
VeriFast”, 2015 [VJP15].

4 Müller et al., “Viper: A Verifica-
tion Infrastructure for Permission-
Based Reasoning”, 2016 [MSS16b].

5 Technically, Viper uses a variant
of separation logic called implicit
dynamic frames, see Parkinson
and Summers, “The Relationship
Between Separation Logic and
Implicit Dynamic Frames”, 2012
[PS12].

6 In particular, Viper provides
exhale and inhale statements similar
to Lithium.

7 Heule et al., “Verification Con-
dition Generation for Permission
Logics with Abstract Predicates
and Abstraction Functions”, 2013
[Heu+13]; Schwerhoff, “Advancing
Automated, Permission-Based Pro-
gram Verification Using Symbolic
Execution”, 2016 [Sch16].

8 Parthasarathy et al., “Formally
Validating a Practical Verifica-
tion Condition Generator”, 2021
[PMS21].

37

Part I: Lithium

tions) to the Viper intermediate language. Viper has many such frontends,
for example, for Go,9 Python,10 or Rust.11 Lithium follows a different
approach: instead of providing one concrete intermediate language and
relying on a frontend to translate programs into this intermediate lan-
guage, Lithium provides a language for writing verification tools that work
directly on the object language (like the example language from §3). As
a consequence, Lithium is able to support languages with very different
memory object models,12 while verification using Viper has mostly focused
on languages with similar (abstract) memory object models. Another
benefit of Lithium’s direct approach is that a Lithium rule can both look
at the current expression of the object language and the separation logic
state to decide how to proceed with the verification, while in Viper’s
approach the frontend only sees the code of the object language, but not
the separation logic state, and vice versa for the underlying proof au-
tomation of the Viper language.13 In particular, this means that Lithium
can support rules to automatically reason about abstract predicates (see
§3.6, e.g., find-points-to-list), while Viper relies on explicit fold and
unfold statements (which can sometimes be automatically inferred by the
frontend14). In the future, it would be interesting to see if some of Viper’s
automation, in particular, its support for iterated conjunction15 or for
reasoning about fractional permissions,16 could also be implemented in
Lithium.

Diaframe. Diaframe17 takes inspiration from Lithium to enable auto-
mated verification of concurrent programs using Iris. Diaframe automates
reasoning about Iris entailments involving Iris concurrency primitives
(e.g., view shifts, invariants, and custom ghost state) and combines this
with an automated application of weakest-precondition rules. Instead,
Lithium focuses on providing a foundation for building verification tools
for detailed models of real-world languages. In particular, Diaframe aims
to integrate with verification (of concurrent algorithms) as it is usually
conducted in Iris, while Lithium is targeted at building larger verification
tools like RefinedC or Islaris and thus expects more upfront definitions
(e.g., in the form of Lithium functions or atoms). This difference shows in
ways these tools can be extended by the user: Diaframe’s hint format has
rich support for Iris primitives like view shifts or invariants and supports
universal quantifiers and magic wands in the context, while Lithium re-
quires the user to hide such connectives inside atoms (like the fnOk atom),
but then gives the user full control on how these atoms are manipulated.
In particular, rules for Lithium functions like subsumption can use the
full syntax of Lithium including arbitrary nesting of exhale and inhale,
or can spawn new subgoals using and as shown by subsume-fn, while
Diaframe’s hint can manipulate the goal in a more restricted way (roughly
corresponding to exhale followed by inhale).18

Katamaran. Keuchel et al.19 present an alternative approach to building
an automated and foundational verification tool and implement it in the
Katamaran verifier. Their approach avoids the use of meta-programming
by defining the verifier as a (Gallina) function that works on a deeply

9 Wolf et al., “Gobra: Modular
Specification and Verification of Go
Programs”, 2021 [Wol+21].

10 Eilers and Müller, “Nagini: A
Static Verifier for Python”, 2018
[EM18].

11 Astrauskas et al., “Leveraging
Rust Types for Modular Speci-
fication and Verification”, 2019
[Ast+19].

12 For example, a flat memory
model for assembly or a C memory
model with both structured and
byte-level views of memory.

13 A Viper frontend can inspect the
separation logic state indirectly via
Viper’s permission introspection
feature that allows the generated
Viper code to branch based on the
current separation state, but the
two stages remain separate.

14 Astrauskas et al., “Leveraging
Rust Types for Modular Speci-
fication and Verification”, 2019
[Ast+19].

15 Müller et al., “Automatic Ver-
ification of Iterated Separating
Conjunctions Using Symbolic
Execution”, 2016 [MSS16a].

16 Dardinier et al., “Fractional
Resources in Unbounded Separation
Logic”, 2022 [DMS22].

17 Mulder et al., “Diaframe: Auto-
mated Verification of Fine-Grained
Concurrent Programs in Iris”, 2022
[MKG22].

18 Using inhale before exhale is
for example useful when reasoning
about subsumptions between arrays
in RefinedC.

19 Keuchel et al., “Verified Symbolic
Execution with Kripke Specifi-
cation Monads (and No Meta-
programming)”, 2022 [Keu+22].

38

Chapter 5: Related Work

embedded specification language. The advantage of this approach is that
it gives good performance by leveraging reduction of the proof assistant
(Coq) and that the verifier can be extracted to OCaml. However, the
downside is that one cannot reuse Coq’s rich infrastructure for context
management, reduction, typeclasses, or solving pure goals (in particular,
the solver for linear integer arithmetic implemented by the lia tactic). As
a consequence, it is unclear how this approach can support some features
of Lithium like its extensibility or the destruct primitive.

Gillian. Gillian20 is a platform for developing symbolic analysis tools,
including symbolic testing, (over-approximate) verification, and (under-
approximate) bi-abduction. Gillian’s verification, which is the aspect of
Gillian most-closely related to Lithium, has been applied to complex case
studies in multiple languages including C and JavaScript. Verification in
Gillian is based to a core language called GIL with a language-specific
memory model that describes the core predicates of the logic (similar to
Lithium atoms), each of which comes with a produce (i.e., inhale) and
consume (i.e., exhale) action. These core predicates are then lifted to
an assertion language that allows the user to define composed predicates.
This approach allows Gillian to analyze user-defined predicates, e.g., for
generating a matching plan for determining the outputs of the predicate
from the inputs. However, since Gillian’s core predicates are fixed upfront,
it does not have Lithium’s ability to add new atoms and custom proof
search procedures for them (see e.g., subsume-fn). Additionally, unlike
Lithium, Gillian does not produce foundational proofs.

Separation logic automation. The verification literature abounds in (non-
foundational) automatic solvers for separation logic and frame inference.21

These solvers are usually specialized for a certain class of atomic formulas
(usually a variant of the symbolic heap fragment22 of separation logic),
rely on more sophisticated automation (e.g., based on SMT solvers), and
can automate more difficult reasoning patterns (e.g., induction reason-
ing23) than Lithium. In contrast, proof search in Lithium is conceptually
more straightforward (which makes it more predictable and amenable
to implementation in a proof assistant), and has no built-in knowledge
about atoms; rather, it relies on the user to extend it with domain-specific
atoms and Lithium functions. This makes Lithium extensible with custom
abstractions and adaptable to many reasoning patterns.

Logic programming languages for linear and separation logic. When
unfolding the definition of Lithium into their model, Lithium can be seen
as a logic programming language for separation logic.24 Prior work on logic
programming for linear or separation logic25 focuses on identifying large
subsets of the underlying logic that remain amenable to logic programming.
However, these fragments need expensive techniques like backtracking.
In contrast, Lithium is deliberately limited to a well-behaved subset of
separation logic that suffices to implement verification tools. By using
the syntax of the original program to guide the proof search, Lithium

20 Santos et al., “Gillian, Part i:
A Multi-language Platform for
Symbolic Execution”, 2020 [San+20];
Maksimovic et al., “Gillian, Part
II: Real-World Verification for
JavaScript and C”, 2021 [Mak+21].

21 Piskac et al., “Automating Sepa-
ration Logic with Trees and Data”,
2014 [PWZ14]; Lee and Park, “A
Proof System for Separation Logic
with Magic Wand”, 2014 [LP14];
Reynolds et al., “A Decision Proce-
dure for Separation Logic in SMT”,
2016 [Rey+16]; Le et al., “Frame
Inference for Inductive Entailment
Proofs in Separation Logic”, 2018
[LSQ18]; Ta et al., “Automated
Lemma Synthesis in Symbolic-Heap
Separation Logic”, 2018 [Ta+18].

22 Berdine et al., “A Decidable
Fragment of Separation Logic”, 2004
[BCO04].

23 Chu et al., “Automatic Induction
Proofs of Data-Structures in Impera-
tive Programs”, 2015 [CJT15].

24 In fact, this is how Lithium was
presented originally in Sammler
et al., “RefinedC: Automating the
Foundational Verification of C Code
with Refined Ownership Types”,
2021 [Sam+21b].

25 Andreoli, “Logic Programming
with Focusing Proofs in Linear
Logic”, 1992 [And92]; Hodas and
Miller, “Logic Programming in a
Fragment of Intuitionistic Linear
Logic”, 1991 [HM91]; Harland
et al., “Programming in Lygon:
An Overview”, 1996 [HPW96];
Armelín and Pym, “Bunched Logic
Programming”, 2001 [AP01].

39

Part I: Lithium

can avoid backtracking, which makes it easier to implement a certifying
interpreter for it in Coq.

40

Part II

RefinedC

Chapter 6

Introduction

Despite numerous advances in programming language technology over the
past several decades, a great deal of safety- and security-critical systems
software is still programmed in C. The C language remains widely used
in large part because it provides fine-grained control over management of
resources, which is indispensable to many systems programs. However,
this control comes at the steep cost of regularly introducing serious
and sometimes catastrophic bugs into code. It has thus long been one
of the grand challenges of programming languages research to develop
scalable formal methods that can help programmers build C code that is
functionally correct, and verifiably so.1

Existing tools for formal verification of C programs come in two varieties:
automated or foundational.

On the one hand, automated tools like VeriFast,2 VCC,3 and MatchC4

use a variety of techniques (including both off-the-shelf SMT solvers and
bespoke separation-logic solvers) to verify correctness of C programs with
minimal user intervention. With these tools, the user still needs to write
specifications and provide some annotations (e.g., loop invariants) to aid
the proof search, but the verification is otherwise automatic. However,
automated tools have a sizable trusted computing base: one must trust
that the often-sophisticated logic underpinning them is sound—and imple-
mented correctly—since the tools do not provide any form of independently
checkable proof.

On the other hand, foundational tools like VST,5 as well as major veri-
fication efforts like CertiKOS6 and seL4,7 embed expressive frameworks
for verifying C code within a pre-existing logical foundation, typically a
general-purpose theorem prover such as Coq or Isabelle/HOL. Founda-
tional tools have the key advantage of a smaller trusted computing base:
one need only trust the proof checker of the host theorem prover and the
encoding of the operational semantics of C, but not the particular logic
or implementation of the tool itself. However, the use of foundational
tools typically requires significant manual proof effort: although these
frameworks provide tactical support for hiding tedious proof steps, the
user must still guide the proof process—e.g., manipulating the proof con-
text, applying lemmas, performing case distinctions, unfolding definitions,
instantiating quantifiers—by hand. One exception is Bedrock,8 which
provides much more powerful tactic-based automation. However, Bedrock
does not handle many complexities of C, instead targeting a custom

1 See e.g., NMW02; Con+07;
Con+09; Coh+09; RKJ10; Chl11;
Chl15; Jac+11; Gre+14; Kre15;
Cuo+12; Ell+18; App14; FGK19;
Lor+20; Gu+19; Ste14; Sha+05;
Fen+08.

2 Jacobs et al., “VeriFast: A Power-
ful, Sound, Predictable, Fast Verifier
for C and Java”, 2011 [Jac+11].

3 Cohen et al., “VCC: A Practical
System for Verifying Concurrent C”,
2009 [Coh+09].

4 Stefanescu, “MatchC: A Matching
Logic Reachability Verifier Using
the K Framework”, 2014 [Ste14].

5 Appel, Program Logics for Certi-
fied Compilers, 2014 [App14]; Cao
et al., “VST-Floyd: A Separation
Logic Tool to Verify Correctness of
C Programs”, 2018 [Cao+18].

6 Gu et al., “Building Certified Con-
current OS Kernels”, 2019 [Gu+19];
Gu et al., “Certified Concurrent
Abstraction Layers”, 2018 [Gu+18];
Gu et al., “Deep Specifications and
Certified Abstraction Layers”, 2015
[Gu+15].

7 Klein et al., “seL4: Formal Ver-
ification of an OS Kernel”, 2009
[Kle+09].

8 Chlipala, “Mostly-Automated
Verification of Low-Level programs
in Computational Separation
Logic”, 2011 [Chl11]; Chlipala, “The
Bedrock Structured Programming
System: Combining Generative
Metaprogramming and Hoare
Logic in an Extensible Program
Verifier”, 2013 [Chl13]; Chlipala,
“From Network Interface to Multi-
threaded Web Applications: A Case
Study in Modular Program Verifica-
tion”, 2015 [Chl15]; Malecha et al.,
“Compositional Computational
Reflection”, 2014 [MCB14].

45

Part II: RefinedC

1 struct [[rc::refined_by("a : nat")]] mem_t {
2 [[rc::field("a @ int<size_t>")]] size_t len;
3 [[rc::field("&own<uninit<a>>")]] unsigned char* buffer;
4 };
5

6 [[rc::parameters("a : nat", "n : nat", "p : loc")]]
7 [[rc::args("p @ &own<a @ mem_t>", "n @ int<size_t>")]]
8 [[rc::returns("{n ≤ a} @ optional<&own<uninit<n>>, null>")]]
9 [[rc::ensures("own p : {n ≤ a ? a - n : a} @ mem_t")]]

10 void* alloc(struct mem_t* d, size_t sz) {
11 if(sz > d->len) return NULL;
12 d->len -= sz;
13 return d->buffer + d->len;
14 }

Figure 6.1: Memory allocator
example in RefinedC.

assembly-like language with a simplified memory model that prohibits
many of the optimizations performed by modern C compilers.9

In this part of the dissertation, we present RefinedC, a new approach
to verifying C code that is both automated and foundational, while at the
same time handling a range of low-level programming idioms including
pointer arithmetic, uninitialized memory, and concurrency with data
races.

To support automated verification, RefinedC employs a novel type
system combining refinement types and ownership types. Refinement types
let us express precise invariants on C data types and strong Hoare-style
specifications for C functions. Ownership types let us reason modularly
about shared state and concurrency by controlling ownership of memory
à la Rust.10 Moreover, RefinedC’s type-based approach has the benefit of
offering a predictable, syntax-directed approach to automated verification.

To support foundational verification, RefinedC follows the semantic
typing approach of RustBelt:11 we give meaning to RefinedC’s types by
interpreting them in the higher-order concurrent separation logic Iris12

embedded in Coq. The typing rules of RefinedC thus simply become
lemmas about our separation-logic model of types, whose soundness we
establish (using Iris) in Coq. Separation logic is a natural fit for modeling
RefinedC types because (a) it provides a built-in account of ownership-
based reasoning, and (b) Iris provides features like invariants and ghost
state, which are useful for justifying more sophisticated typing rules
concerning shared state and concurrency.

Motivating example. Figure 6.1 shows a concrete example of RefinedC in
action. The type struct mem_t represents the state of a memory allocator:
a block of memory pointed to by buffer, whose size is len. The alloc

function tries to allocate sz bytes of memory from a struct mem_t. It
first checks, using len, that enough memory is available, and returns NULL

otherwise. If buffer is large enough, then its last sz bytes are allocated
using pointer arithmetic, and len is updated accordingly.

The [[rc::...]] blocks in Figure 6.1 represent RefinedC annotations,13

which express a refined version of mem_t and a behavioral specification

9 Chlipala, “The Bedrock Structured
Programming System: Combining
Generative Metaprogramming
and Hoare Logic in an Extensible
Program Verifier”, 2013 [Chl13].

10 Rust team, The Rust program-
ming language, 2023 [Rus23].

11 Jung et al., “RustBelt: Secur-
ing the Foundations of the Rust
Programming Language”, 2018
[Jun+18a]; Jung et al., “Safe Sys-
tems Programming in Rust”, 2021
[Jun+21]; Jung, “Understanding and
Evolving the Rust Programming
Language”, 2020 [Jun20].

12 Jung et al., “Iris: Monoids and
Invariants as an Orthogonal Basis
for Concurrent Reasoning”, 2015
[Jun+15]; Jung et al., “Higher-
Order Ghost State”, 2016 [Jun+16];
Krebbers et al., “The Essence of
Higher-Order Concurrent Separation
Logic”, 2017 [Kre+17]; Jung et
al., “Iris from the ground up: A
modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b].

13 Annotations use C2x attributes
syntax supported by recent C
compilers.

46

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2335.pdf

Chapter 6: Introduction

of alloc for RefinedC to verify automatically. Here, the refined mem_t is
indexed by a natural number a, the number of bytes available from the
allocator. This number must match the value stored in the len field as
enforced using a @ int<size_t>, the singleton type of the size_t integer
a.14 The buffer field is given the type &own<uninit<a>>, indicating that it
is a pointer to an owned block of memory of size a. Taken as a whole, the
refined mem_t encodes the invariant that the len field contains the length
of the owned block pointed to by the buffer field.

The specification for alloc assumes (in its rc::args clause) that the
argument d points to a struct mem_t with a available bytes, and that the
argument sz is equal to some integer value n. The rc::returns clause
specifies the refined type of the value that alloc returns: in this case, an
optional value, which points to an uninitialized block of length n if the
refinement n ≤ a is true, and is NULL otherwise. Finally, the rc::ensures

clause specifies that, upon returning, alloc gives back the ownership of p
(the pointer passed in as the argument d), now pointing to a mem_t of the
appropriately reduced size.

Key idea. One may wonder how the checking of richly-typed specifica-
tions like the one for alloc can be performed automatically. The key
idea is that, even though RefinedC’s refinement types encode deep (un-
decidable) specifications, their syntactic structure serves to judiciously
and predictably guide the proof search in a syntax-directed manner. A
concrete example of this is the type b @ optional<T1,T2> (as seen in the
rc::returns clause in line 8 of Figure 6.1). Semantically, in our Iris model
of RefinedC types, this type corresponds to a disjunction (untagged union)
between the cases where b is true or false; and in general, searching for
proofs of disjunctions is difficult because one may make incorrect choices,
leading to backtracking. However, as we explain in §9.3, the syntactic
structure of the program and refinement types provide crucial information
that we use to make a definite choice, thus avoiding backtracking.

Formally speaking, in order to ensure that RefinedC’s typing rules lead
to a non-backtracking proof search, we insist that they can be expressed
as rules in Lithium (introduced in Part I). As a consequence, we directly
obtain an automated and foundational method for checking C programs
against RefinedC types, by running the Lithium interpreter with the
RefinedC typing rules. Additionally, this method is inherently extensible
(e.g., to handle new C programming idioms) since it is encoded as an
open set of Lithium rules.

The RefinedC toolchain. Figure 6.2 depicts the complete toolchain of Re-
finedC. Developers write standard C code as they would without RefinedC.
To this, they add a functional specification in the form of RefinedC’s (re-
finement) types and standard annotations like loop invariants. After this,
RefinedC takes over. First, in step (A), a frontend that we have created
(based on the frontend of Cerberus15) translates the C code to a deep
embedding of C in Coq, called Caesium, and translates the annotations
to RefinedC’s abstract syntax to Coq. Next, in step (B), Lithium au-
tomatically executes RefinedC’s typing rules (represented as a Lithium

14 The unrefined version
int<size_t> is inhabited by
all size_t integers.

15 Memarian et al., “Exploring C
Semantics and Pointer Provenance”,
2019 [Mem+19].

47

Part II: RefinedC

C Source Code

Specification /
annotations

C code C code in Coq

Specification

Proof

Caesium

Automatic
type checker

Type system

Lithium
Iris

Ownership reasoning
Automatic
solvers /

manual proofs

Side conditions

step (C)

calls

Coq

step (B)

constructed by

step (A)

translated
into

Figure 6.2: The architecture of
RefinedC.program) on the Caesium code to produce a typing derivation proving the

specification in Coq. During this process, verification conditions—which
are pure Coq propositions—are generated. These are mostly automatically
discharged using a library of Coq tactics (step (C)), but they can also be
discharged by custom (e.g., domain-specific) solvers, or manual proofs.

Under the hood, hidden from the ordinary C programmer, lie RefinedC’s
types and typing rules, which have been defined ahead of time, in Lithium,
by an expert. The expert must define types semantically (as explained
above), and prove typing rules sound in Iris against the Caesium C
semantics.

Contributions of RefinedC. In this part of the dissertation, we describe
the following contributions:

• RefinedC: A foundationally sound and automatic approach to functional
verification of idiomatic C code based on refinement and ownership
types (§9).

• A frontend translating annotated C code into Caesium, a deep embed-
ding of C in Coq (§8).

• An evaluation of the RefinedC approach using case studies of varying
complexity, which demonstrate RefinedC’s handling of common low-
level C idioms (§10).

48

Chapter 7

RefinedC by Example

In this chapter, we use motivating examples to introduce RefinedC from
the user’s point of view. First, we go back in more detail to the example
of Figure 6.1 (§7.1). Then, we see how we can make this allocator
thread-safe by using a spinlock abstraction (§7.2). Finally, we verify the
deallocation mechanism of a more complex allocator relying on a linked
list of free chunks, which requires a recursive refinement type and a loop
invariant (§7.3).

7.1 A Simple Memory Allocator

1 struct [[rc::refined_by("a : nat")]] mem_t {
2 [[rc::field("a @ int<size_t>")]] size_t len;
3 [[rc::field("&own<uninit<a>>")]] unsigned char* buffer;
4 };
5

6 [[rc::parameters("a : nat", "n : nat", "p : loc")]]
7 [[rc::args("p @ &own<a @ mem_t>", "n @ int<size_t>")]]
8 [[rc::returns("{n ≤ a} @ optional<&own<uninit<n>>, null>")]]
9 [[rc::ensures("own p : {n ≤ a ? a - n : a} @ mem_t")]]

10 void* alloc(struct mem_t* d, size_t sz) {
11 if(sz > d->len) return NULL;
12 d->len -= sz;
13 return d->buffer + d->len;
14 }

Figure 7.1: Memory allocator
example in RefinedC.

As shown in §6, the RefinedC annotations on struct mem_t in Figure 7.1
(repeated from Figure 6.1) define a new RefinedC type called mem_t, which
is parametric in a natural number a representing the number of available
bytes. We emphasize the difference between the C type struct mem_t

and the RefinedC type mem_t: The C type only specifies the physical
layout—e.g., the names and the offsets of the fields, which are used by
the compiler to generate field accesses—but does not give meaningful
correctness guarantees. For example, the C type does not enforce that len

is a valid integer: it could very well be uninitialized. The RefinedC type
mem_t captures the invariant satisfied by struct mem_t values on which
alloc operates. Note that RefinedC specifications are purely logical: they
do not influence the program’s compilation or its runtime behavior.

49

Part II: RefinedC

Specification of alloc. We now turn to the annotations assigning a type
(i.e., a specification) to the alloc function. Our specification introduces
a number of logical variables (rc::parameters on line 6). Parameters
are universally quantified in the specification and, like refinements on
a struct given with rc::refined_by, range over arbitrary mathematical
domains (i.e., Coq types). The alloc function has three parameters:
the natural numbers a and n representing the number of available bytes
and the amount requested by the caller respectively, and the location
p at which the allocator state is stored. These parameters connect the
refinements in the argument and return types, as well as possible pre- and
postconditions. The types of the arguments are specified using rc::args

on line 7. The type p @ &own<a @ mem_t> specifies that the first argument
of alloc is an owned pointer to an allocator state with a available bytes,
stored at location p. The singleton type n @ int<size_t> specifies that the
second argument of alloc—the requested allocation size—is the size_t

integer with value n.
Next, the return type of alloc is specified using rc::returns on line 8.

The return value is an owned pointer if the allocation succeeds, oth-
erwise it is NULL. These two possibilities are captured by the type
b @ optional<&own<...>, null> that represents an owned pointer if the
refinement b is true, and null (the singleton type containing only NULL) if
the refinement b is false. The refinement n ≤ a1 checks whether allocation
will succeed (i.e., if the allocator state owns enough memory).

The last part of the specification is a postcondition given via the
rc::ensures annotation on line 9. It says that alloc returns the ownership
of the mem_t (that it received through its first argument) back to its caller.
The mem_t in the postcondition has an updated refinement since the
amount of available memory decreases on a successful allocation. Note
that the first argument of alloc and the type in the postcondition are
refined by the same location p. This forces alloc to return ownership
for the same pointer that it was passed. This ownership transfer pattern
often occurs in RefinedC. It is inspired by Mezzo,2 and is an alternative
to Rust’s mutable references.

Verification. RefinedC verifies the specification of alloc without manual
intervention. In particular, RefinedC’s automation picks the correct case
of the returned optional by examining the type of the returned value
(via rules s-null and s-own on page 62). It also splits the ownership
associated with buffer into two following the pointer addition on line 13
(via rule o-add-uninit on page 62). One part of this ownership stays
with buffer while the other part is returned to the caller. In §9.3, we
explain both techniques further, as well as how the same typing rules also
automatically verify a variant of alloc that allocates from the start of
buffer instead of the end.

Error messages. RefinedC’s syntax-directed proof search affords precise
error messages. For example, suppose the programmer mistakenly writes
n < a instead of n ≤ a in the specification of alloc on line 8. When n = a,
the code returns a valid pointer, while the specification expects NULL,

1 Curly braces {...} are used
to delimit Coq code in RefinedC
annotations.

2 Pottier and Protzenko, “Program-
ming with Permissions in Mezzo”,
2013 [PP13].

50

Chapter 7: RefinedC by Example

causing the verification to fail. Concretely, RefinedC fails with the error
shown in Figure 7.2. This error message tells the user where in the code
the verification failed (at the return on line 13), in which branch of the
if statement on line 11 (the else branch), and what side condition could
not be proved. Using this information, the programmer can easily debug
the specification.

Cannot solve side condition in function "alloc"!
Location: "alloc.c" [13:2-13:28]
Case distinction (n > a) → false at "alloc.c" [11:5-11:18]
...
H3 : ¬ n > a

n < a

Figure 7.2: Error message for
incorrect specification.

7.2 Thread-Safe Allocator Using a Spinlock

1 [[rc::parameters("lid : lock_id")]]
2 [[rc::global("spinlock<lid>")]]
3 struct spinlock lock;
4

5 [[rc::parameters("lid : lock_id")]]
6 [[rc::global("spinlocked<lid, {\"data\"}, mem_t>")]]
7 struct mem_t data;
8

9 [[rc::parameters("lid : lock_id", "n : nat")]]
10 [[rc::args("n @ int<size_t>")]]
11 [[rc::requires("[initialized \"lock\" lid]", "[initialized \"data\" lid]")]]
12 [[rc::returns("optional<&own<uninit<n>>, null>")]]
13 void* thread_safe_alloc(size_t sz) {
14 sl_lock(&lock);
15 rc_unwrap(data);
16 void* ret = alloc(&data, sz);
17 sl_unlock(rc_wrap(&lock));
18 return ret;
19 }

Figure 7.3: Thread-safe alloca-
tion function.

To see how RefinedC provides abstractions that enable reasoning about
concurrent code, we consider a thread-safe wrapper of the alloc function.
A thread can only call the alloc function if it has full ownership of the
allocator state. And indeed, alloc is clearly subject to data races if used
concurrently on the same struct mem_t. One simple solution to make
the allocator thread safe is to protect its global state using a lock—this
is exactly what the function thread_safe_alloc in Figure 7.3 does. The
allocator state is stored in the global variable data (line 7), which is
protected by spinlock lock (line 3). The thread_safe_alloc function then
simply acquires and releases the lock using sl_lock and sl_unlock around
the call to alloc on data.3

3 The rc_unwrap and rc_wrap
macros expand to RefinedC anno-
tations, and they are no-ops as far
as C is concerned. Moreover, the
rc_wrap macro is only explicitly
included for clarity: it is automati-
cally inserted by RefinedC.

51

Part II: RefinedC

Global variables. Before introducing the spinlock abstraction, we need to
take a detour to explain the handling of global variables in RefinedC. Much
like function arguments or struct fields, global variable are annotated
with a type. This type may (again) depend on logical variables specified
with rc::parameters, and it is itself specified using rc::global. However,
global variables are special in the sense that their specification (i.e., their
type) in only satisfied once they have been explicitly initialized (e.g., by
the main function).

As a consequence, when a function relies on some global variable being
initialized, this fact must be made explicit in its specification with a pre-
condition using the rc::requires annotation. Indeed, thread_safe_alloc
has such a precondition for both global variables lock and data on
line 11. Here, the separation logic assertions initialized "lock" lid

and initialized "data" lid4 specify that the variables have been initial-
ized, and they also tie the lid parameter of the function to the parameter
of the same name in the specification of both global variables. This
enforces that the two global variables satisfy their specification for the
same lock identifier.

Spinlock abstraction. The locking mechanism used in thread_safe_alloc

is a simple spinlock that was previously verified in RefinedC, and that
is used here as a library. The spinlock interface relies on two abstract
types spinlock<...> and spinlocked<...>. The former is the type of a
spinlock, and it is parameterized by a lock_id, i.e., a unique identifier for
a particular spinlock instance. The latter corresponds to the type of a
value (whose type is given as third argument) that is protected by the
lock identified by the first argument.5 The main idea for using a lock is
that the protected data can only be accessed (i.e., the spinlocked<...>

type stripped from their type) if a token associated to the lock has
been obtained. This token is logically returned by sl_lock through a
postcondition, and it must be given up when calling sl_unlock as it is
required as a precondition. It is worth pointing out that this spinlock
interface is more general than the standard specification for locks in
higher-order concurrent separation logic6 in that our spinlocked type
allows adding resources to a lock after it has been allocated.

Verification. The specification of thread_safe_alloc is similar to alloc

with the exception that thread_safe_alloc cannot give any guarantees
whether it will succeed or not due to concurrent allocations. Thus, its
return type (specified by rc::returns) does not give a refinement on the
optional<...>.

The main challenge in automatically verifying thread_safe_alloc is
dealing with spinlocked<...>. After the lock has been acquired, the
spinlocked<...> type constructor must be stripped away before one can
use the data protected by the spinlock. Moreover, it must be reinstated
before releasing the lock. Concretely, the question is: how can the
type system decide when to remove and introduce the spinlocked<...>

type? The answer is not straightforward as there may be several resources
protected by the same lock, and not all of them may need to be unwrapped.

4 Inside RefinedC annotations
square brackets [...] delimit
quoted Iris propositions.

5 The second argument of
spinlock<...> is a string that
uniquely identifies the object that
is being protected. Indeed, with
our spinlock abstraction one lock
can protect, e.g., multiple global
variables.

6 Hobor et al., “Oracle Semantics for
Concurrent Separation Logic”, 2008
[HAN08]; Svendsen and Birkedal,
“Impredicative Concurrent Abstract
Predicates”, 2014 [SB14].

52

Chapter 7: RefinedC by Example

1 typedef struct
2 [[rc::refined_by("s : {gmultiset nat}")]]
3 [[rc::typedef("chunks_t : {s ̸= ∅} @ optional<&own<...>, null>")]]
4 [[rc::exists("n : nat", "tail : {gmultiset nat}")]]
5 [[rc::size("n")]]
6 [[rc::constraints("{s = {[n]} ⊎ tail}", "{∀ k, k ∈ tail → n ≤ k}")]]
7 chunk {
8 [[rc::field("n @ int<size_t>")]] size_t size;
9 [[rc::field("tail @ chunks_t")]] ~struct chunk* next;~

10 }* chunks_t;
11

12 [[rc::parameters("s : {gmultiset nat}", "p : loc", "n : nat")]]
13 [[rc::args("p @ &own<s @ chunks_t>", "&own<uninit<n>>", "n @ int<size_t>")]]
14 [[rc::requires("{sizeof(struct_chunk) ≤ n}")]]
15 [[rc::ensures ("own p : {{[n]} ⊎ s} @ chunks_t")]]
16 [[rc::tactics ("all: multiset_solver.")]]
17 void free(chunks_t* list, void* data, size_t sz) {
18 chunks_t* cur = list;
19 [[rc::exists("cp : loc", "cs : {gmultiset nat}")]]
20 [[rc::inv_vars("cur : cp @ &own<cs @ chunks_t>")]]
21 [[rc::inv_vars("list : p @ &own<wand<{cp ◁l ({[n]} ⊎ cs) @ chunks_t}, {{[n]} ⊎ s} @ chunks_t>>")]]
22 while(*cur != NULL) {
23 if(sz <= (*cur)->size) break;
24 cur = &(*cur)->next;
25 }
26 chunks_t entry = data;
27 entry->size = sz; entry->next = *cur;
28 *cur = entry;
29 }

Figure 7.4: Example of an
allocator with a freelist.Also, the spinlocked<...> type may be hidden away behind abstractions.

Hence, to keep the system as flexible as possible, it is the responsibility
of the programmer to guide the type system using annotations. For this
purpose, RefinedC provides the rc_unwrap and rc_wrap macros in the
implementation of thread_safe_alloc. With these annotations, RefinedC
can automatically verify the thread_safe_alloc function.

7.3 Deallocation Using a List of Free Chunks

Next, consider the memory deallocation function free in Figure 7.4. This
function inserts a chunk of memory that is being freed into a linked list
of free memory chunks. When in the list, the initial bytes of a chunk are
occupied by a struct chunk, which is a header that contains the chunk’s
size (line 8), and a pointer to the next chunk (line 9) if there is one, or
NULL otherwise. The remaining bytes of the chunk can be arbitrary.

It is an invariant of free that the chunk list is always sorted in increasing
order of chunk size. Hence, free has a loop to find where to insert the
new chunk (lines 22-25).

Recursive type definition. Figure 7.4 defines two C types: struct chunk

of chunk headers and chunks_t of pointers to such headers. The type
chunks_t (not struct chunk) is refined by the RefinedC type chunks_t,

53

Part II: RefinedC

which is defined on line 3. The annotation rc::typedef indicates that the
defined RefinedC type refines the type of a pointer to the surrounding
struct, not the struct itself. The ellipsis in the definition of chunks_t is
a placeholder for the RefinedC type of the struct.

Note that chunks_t is a recursive type: The annotation on the next

field mentions chunks_t again. Unfolding of recursive types is handled
by RefinedC automatically; no extra annotations are required to indicate
when to unfold.

Multiset and invariant. We explain the type chunks_t further. This type
is refined by a multiset of natural numbers s on line 2. This multiset
contains the sizes of all chunks in the list. When chunks_t is an owned
pointer (i.e., when s is not the empty set), the struct that it points
to is parameterized by the size of the first chunk n and the multiset
tail refining the rest of the list. These two parameters are existentially
quantified in the rest of the type (rc::exists annotation). A constraint
(rc::constraints annotation) relates n and tail to s. A second constraint
says that n is less than or equal to all elements of tail, which implies that
the list of chunks is sorted. The last interesting point about chunks_t is
the rc::size annotation on line 5. This annotation means that the chunk
actually occupies n bytes in memory, of which the C type (struct chunk)
only describes the initial part. In other words, the chunk is of size n

bytes and a struct chunk (the header) is overlaid at its beginning. The
remaining bytes of the chunk are treated as uninitialized by RefinedC.

Loop invariant and verification. The formal specification of free should
be unsurprising. It says that when free is passed a free list with chunks
of sizes s and a pointer to an owned chunk of size n (this is the block to
be freed), then at the end of free, the free list contains chunks of sizes
{[n]} ⊎ s (using Coq multiset operation notations). Importantly, free
has a precondition (line 14) that the block being added to the free list is
large enough to fit the struct chunk header.

Verifying free in RefinedC requires an explicit loop invariant (lines 19-
21). Loop invariants are described using three kinds of annotations:
rc::exists introduces local, existentially quantified logical variables,
rc::inv_vars specifies RefinedC types of relevant program variables at the
start of each loop iteration, and rc::constraints lists additional assertions.
(This example does not need rc::constraints.)

The loop invariant tracks the ownership of the list as it is traversed.
Logically, the list has two parts: the suffix that has not yet been traversed
and the prefix that has already been traversed. These two parts are
pointed to by the local variable cur and the argument variable list,
respectively. The loop invariant associates ownership of the list’s two
parts to these two variables. Specifically, it introduces a multiset variable
cs corresponding to the multiset refinement of the suffix and asserts that
cur points to an owned list of chunk sizes from cs. Next, it asserts that
if this ownership extended with a chunk of size n (the new chunk) is
combined with the ownership associated with list, then one obtains
ownership of the entire output list (sizes from multiset {[n]} ⊎ s). This

54

Chapter 7: RefinedC by Example

if-then relation is conveniently expressed using the wand<...> type using
a standard technique for expressing partial data structures via the magic
wand of separation logic.7

Finally, the annotation rc::tactics on line 16 instructs RefinedC to
use the multiset solver from the std++ Coq library8 for proving the side
conditions in this example that RefinedC’s default solver cannot prove.

7 Cao et al., “Proof Pearl: Magic
Wand as Frame”, 2019 [Cao+19].

8 Coq-std++ team, An extended
“standard library” for Coq, 2020
[Coq20].

55

Chapter 8

RefinedC Frontend and Caesium

Before a C program can be verified by RefinedC, it is elaborated by the
RefinedC frontend to a core language we call Caesium. This language is
control-flow graph-based, and given a formal semantics through a deep
embedding in Coq. The core of this semantics is a low-level memory
model that is roughly based on that of CompCert.1 Caesium provides
both sequentially consistent and non-atomic memory accesses, and assigns
undefined behavior to data races following the semantics of RustBelt.2

Caesium supports many low-level idioms like pointer arithmetic, the
address-of operator (also on local variables), access to representation
bytes, fixed-size integers, goto (including unstructured switches, such
as Duff’s device), alignment checks, composite types as arguments and
return values, uninitialized memory with poison semantics,3 and first-class
function pointers. The RefinedC frontend is implemented in OCaml and
relies on the first half of the pipeline of Cerberus.4

Since RefinedC aims at the verification of low-level systems code (like
allocators, as shown in §7), the Caesium semantics is more permissive
than what the ISO C standard describes. Indeed, it is well documented
that ISO C and de facto practices commonly found in low-level systems
code disagree on many aspects of the C memory model.5 Hence, the
Caesium memory model has less undefined behavior than ISO C with
respect to, e.g., padding in structs and effective types.

Caesium lacks some features of ISO C that are subject to active research.
It does not support C’s loose expression evaluation ordering6 (Caesium
fixes a left-to-right ordering), lifetimes of block-scoped variables7 (all
local variables are function-scoped in Caesium), and relaxed-memory
concurrency8 (Caesium’s only atomic accesses are sequentially consistent).
To mitigate the first two points, the RefinedC frontend performs an
over-approximating analysis that emits warnings if an expression may
be non-deterministic, or if the address of a block-scoped variable could
escape. Caesium has been extended with support for integer-pointer casts
by Lepigre et al.9 which is not part of this dissertation.

Trusted computing base. The trusted computing base (TCB) of RefinedC
includes the implementation of the frontend, the definition of the Caesium
semantics, and Coq. The frontend contains around 6000 lines of OCaml
code (excluding Cerberus) that transform Cerberus’s AIL intermediate
language into a control-flow graph and translate AIL constructs to Caesium
(almost 1-to-1). The definition of the Caesium semantics is roughly 2500

1 Leroy and Blazy, “Formal verifica-
tion of a C-like memory model and
its uses for verifying program trans-
formations”, 2008 [LB08]; Leroy et
al., The CompCert Memory Model,
Version 2, 2012 [Ler+12].

2 Jung et al., “RustBelt: Secur-
ing the Foundations of the Rust
Programming Language”, 2018
[Jun+18a].

3 Lee et al., “Taming Undefined
Behavior in LLVM”, 2017 [Lee+17].

4 Memarian et al., “Exploring C
Semantics and Pointer Provenance”,
2019 [Mem+19].

5 Wang et al., “Undefined behavior:
What happened to my code?”, 2012
[Wan+12]; Memarian et al., “Into
the Depths of C: Elaborating the De
Facto Standards”, 2016 [Mem+16];
Memarian et al., “Exploring C
Semantics and Pointer Provenance”,
2019 [Mem+19].

6 Hathhorn et al., “Defining the
Undefinedness of C”, 2015 [HER15];
Krebbers, “An Operational and
Axiomatic Semantics for Non-
determinism and Sequence Points
in C”, 2014 [Kre14]; Frumin et al.,
“Semi-automated Reasoning About
Non-determinism in C Expressions”,
2019 [FGK19].

7 Hathhorn et al., “Defining the
Undefinedness of C”, 2015 [HER15];
Krebbers and Wiedijk, “Separation
Logic for Non-local Control Flow
and Block Scope Variables”, 2013
[KW13].

8 Batty et al., “Mathematizing
C++ Concurrency”, 2011 [Bat+11];
Kaiser et al., “Strong Logic for
Weak Memory: Reasoning About
Release-Acquire Consistency in
Iris”, 2017 [Kai+17]; Dang et al.,
“RustBelt Meets Relaxed Memory”,
2020 [Dan+20].

9 Lepigre et al., “VIP: Verifying
Real-World C Idioms with Integer-
Pointer Casts”, 2022 [Lep+22].

57

Part II: RefinedC

lines of Coq code (including some proofs) and additionally uses definitions
from the Coq standard library, std++, and the language interface of Iris.
The Iris logic itself is not part of the TCB since its adequacy theorem
establishes a closed Coq statement that involves just the operational
semantics. Similarly, the RefinedC type system and Lithium need not be
trusted since they generate proofs in Iris.

58

Chapter 9

RefinedC Type System

This chapter describes the RefinedC type system: First, we present some
commonly used RefinedC types in §9.1, then we describe the semantic
model of RefinedC’s types in §9.2, and, finally, we discuss some interesting
RefinedC typing rules in §9.3.

9.1 RefinedC Types

Type Intuitive semantics

n @ int(α) C integer of type α that encodes n

ϕ @ bool Boolean reflecting the truth of ϕ
ℓ @ &own(τ) unique ownership of τ at location ℓ

uninit(n) n uninitialized (i.e., arbitrary) bytes
null singleton type of NULL
ϕ @ optional(τ1, τ2) if ϕ then τ1 else τ2

wand(H, τ) τ with hole H

structσ τ struct with layout σ, fields of types τ

∃x. τ(x) type-level existential quantifier
{τ | ϕ} τ with constraint ϕ

padded(τ, n) τ padded to n bytes

Figure 9.1: A selection of
RefinedC types.

Several interesting RefinedC types, along with their intuitive meaning,
are shown in Figure 9.1. (These types also appeared in earlier examples.)
In RefinedC, most types can have a refinement, an optional parameter
that limits values in the type. A refinement is a logical predicate on values
of the type, but the meta-level sort of the refinement and the predicate
vary from type to type. For example, the type int(α) can be refined by a
mathematical integer n to form the type n @ int(α) that represents the
singleton set {n} of α-sized integers.1 The type ϕ @ bool is the single
Boolean value reflecting the validity of proposition ϕ.2 The refinement type
ℓ @ &own(τ) denotes an owned (non-aliased) pointer and its refinement
ℓ specifies the exact memory location that is owned. As examples, the
annotations on mem_t on line 3 in Figure 6.1 use &own(τ) together with
uninit(n) to denote a pointer to a block of n bytes of uninitialized memory.
The type ϕ @ optional(τ1, τ2) is a type-level case distinction on the validity
of ϕ. It is most commonly used to represent nullable pointers (via &own(τ)

and null), as illustrated in §7. Another interesting type is wand(H, τ),

1 The int type α describes the
number of bits in the integer and
whether it is signed. For example,
i32 represents a signed, 32-bit
integer.

2 Technically, the bool type is also
parametrized by an int type that de-
scribes its size. The implementation
of RefinedC also distinguishes be-
tween strict Booleans that are either
zero or one, and relaxed Booleans
that are zero or non-zero.

59

Part II: RefinedC

which is used to encode partial data structures via the magic wand.3 This
type is for example used by the loop invariant of free in Figure 7.4.

The last four types in Figure 9.1 are most often generated from other
annotations (although they can be used directly, too). A structure type
structσ τ is built by combining the types given by the rc::field annota-
tions on a C struct (e.g., lines 2-3 in Figure 6.1). The types ∃x. τ(x) and
{τ | ϕ} are generated from rc::exists and rc::constraints annotations
(e.g., lines 4-6 of Figure 7.4). Finally, the type padded(τ, n), which repre-
sents type τ padded to n bytes, is generated from rc::size annotations
(e.g., line 5 of Figure 7.4).

Function types. Functions have RefinedC types of the form:

fn(∀x. τarg;Hpre)→ ∃y. τret;Hpost

Function types are generated from the source code annotations we have al-
ready seen. For example, the annotations on alloc (lines 6-9 of Figure 6.1)
lead to the function type allocspec shown in Figure 9.2.

a @ mem_t ≜ structstruct mem_t [a @ int(size_t), &own(uninit(a))]

allocspec ≜ fn(∀(a, n, p). p @ &own(a @ mem_t), n @ int(size_t);True)

→ ∃(). (n ≤ a) @ optional(&own(uninit(a)), null); p ◁l ((n ≤ a) ? (a− n) : a) @ mem_t

Figure 9.2: The formal specifi-
cation of alloc (Figure 6.1) in
RefinedC’s type system.

Logical variables in the rc::parameters annotation (line 6) correspond
to x in the function type, the annotations rc::args and rc::returns

(lines 7-8) correspond to τarg and τret, respectively, and the annotations
rc::requires and rc::ensures (line 9) correspond to Hpre and Hpost,
respectively. Existential variables that are bound in the return type
and the postconditions by rc::exists correspond to y. RefinedC function
types are first-class: functions can be stored in memory and passed to or
returned from other functions.

9.2 Model of RefinedC Types

We have seen a few examples of RefinedC types, but so far we have not
answered the question: What is a RefinedC type? Inspired by the semantic
typing approach of RustBelt,4 RefinedC types are defined semantically in
the Iris separation logic. Concretely, a RefinedC type τ ∈ type is defined
via the following predicates:

loc. assign.: ℓ ◁l τ val. assign.: v ◁v τ type layout: τ has layout ι

RefinedC types have two type assignments: a location type assignment
ℓ◁lτ

5 that states that the location ℓ has type τ and a value type assignment
that states that the value v has type τ , both defined as separation logic
predicates. Additionally, each RefinedC type comes with a (pure) predicate
“τ has layout ι”. This predicate describes whether the type τ has the layout
ι.6,7

3 Cao et al., “Proof Pearl: Magic
Wand as Frame”, 2019 [Cao+19].

4 Jung et al., “RustBelt: Secur-
ing the Foundations of the Rust
Programming Language”, 2018
[Jun+18a]; Jung et al., “Safe Sys-
tems Programming in Rust”, 2021
[Jun+21]; Jung, “Understanding and
Evolving the Rust Programming
Language”, 2020 [Jun20].

5 Technically, the location type
assignment is parametrized by an
own state β that describes whether
the ownership of ℓ is exclusively
owned or shared. The shared
version is used for the types of
global variables.

6 A layout ι is a combination of
a size size(ι) and an alignment
align(ι).

7 Lepigre et al., “VIP: Verifying
Real-World C Idioms with Integer-
Pointer Casts”, 2022 [Lep+22] ex-
tend τ has layout ι from a layout to
a C type to support integer pointer
casts when loading from memory,
but we ignore this extension in this
dissertation.

60

Chapter 9: RefinedC Type System

All these predicates are linked by the following rules that each type as
to fulfill:

ty-aligned

⌜τ has layout ι⌝ −∗ ℓ ◁l τ −∗ ⌜(ℓ | align(ι))⌝
ty-size

⌜τ has layout ι⌝ −∗ v ◁v τ −∗ ⌜|v | = size(ι)⌝

ty-deref

⌜τ has layout ι⌝ −∗ ℓ ◁l τ −∗ ∃v . l 7→ v ∗v ◁v τ

ty-ref

⌜τ has layout ι⌝ −∗ ⌜(ℓ | align(ι))⌝ −∗ l 7→ v −∗ v ◁v τ −∗ ℓ ◁l τ

ty-aligned (and ty-size) state that the type assignments guarantee that
the location (resp. value) has the alignment (resp. size) described by the
predicate “τ has layout ι”.8 The rules ty-deref and ty-ref govern the
relationship between ℓ◁l τ and v ◁v τ : ty-deref states that a location type
assignment can be turned into a points-to predicate for a corresponding
value type assignment and ty-ref vice versa. These properties are used
when loading and storing values from and to memory.9

Immovable types. ty-deref and ty-ref don’t hold unconditionally, but
only if there exists a layout ι such that τ has layout ι holds. This enables
what we call immovable types: Immovable types are types that can only
exist in memory, but not as a value and thus cannot be loaded from and
stored to memory. The most common immovable type is the place(ℓ) type
that asserts that it is stored at memory location ℓ, but contains no further
ownership of this location.10 This type is useful when type checking the
address-of operator as it allows to move the ownership out of a memory
location by replacing the type of the memory location with place(ℓ).

Refinement types. A refinement type τ̂ is a function from the type of
the refinement A to a type, i.e., we have

τ̂ ∈ rtypeA ≜ A→ type x @ τ̂ ≜ τ̂ x

Thus, refinement types are just normal RefinedC types with one distin-
guished parameter selected as the refinement. They provide the following
two benefits: (1) a refinement can be omitted to implicitly existentially
quantify it, i.e., a refinement type τ̂ that is used without a refinement is
automatically elaborated to ∃x. x @ τ̂ , (2) the type system automatically
treats the refinement x as an output of the type, i.e., a subsumption
between two types that only differ in the refinement is reduced to an
equality between the refinements.

Extensibility. All RefinedC types are defined using the semantic model
described in this section. The benefit of this approach is that this makes
RefinedC’s type system extensible: A user can add a new type to RefinedC
by giving a definition in the model described above. Additionally, the user
can also add new typing rules for the types, by extending the Lithium
program representing the RefinedC type checker with new clauses.

9.3 Examples of RefinedC Typing Rules

Next, we explain selected typing rules, shown in Figure 9.3. Every typing
judgment in RefinedC is a Lithium function and typing rules correspond

8 (ℓ |n) states that the location ℓ is
aligned to an n-byte boundary. |v |
denotes the size of the value v in
memory.

9 We omit the rules for shared
ownership, i.e., that owned location
type assignments can be turned into
shared location type assignments
and that shared location type
assignments are persistent.

10 place(ℓ) is defined as
ℓ′ ◁l place(ℓ) ≜ ⌜ℓ = ℓ′⌝,
v ◁v place(ℓ) ≜ False, and
place(ℓ) has layout ι ≜ False. The
last definition makes all properties
for a type definition hold trivially.

61

Part II: RefinedC

if-bool
1: ⊢Σif ϕ @ bool then s1 else s2 :-
2: if ϕ then ⊢Σstmt s1

3: else ⊢Σstmt s2

if-int
1: ⊢Σif n @ int(α) then s1 else s2 :-
2: if n ̸= 0 then ⊢Σstmt s1

3: else ⊢Σstmt s2

t-if
1: ⊢Σstmt if e then s1 else s2 :-
2: v , τ← ⊢expr e;
3: ⊢Σif τ then s1 else s2

t-binop
1: ⊢expr e1 ⊙ e2 G :-
2: v1, τ1← ⊢expr e1;
3: v2, τ2← ⊢expr e2;
4: v , τ← ⊢binop (v1 : τ1)⊙ (v2 : τ2);
5: returnG v , τ

o-optional-eq
1: ⊢binop (v1 : ϕ @ optional(&own(τ), null)) = (v2 : null) G :-
2: if ϕ then
3: inhale v1 ◁v &own(τ); returnG false,False @ bool
4: else
5: inhale v1 ◁v null; returnG true,True @ bool

s-null
1: v ◁vnull <: v ◁vϕ @ optional(&own(τ), null) G :-
2: exhale ⌜¬ϕ⌝; returnG

s-own
1: v ◁v &own(τ1) <: v ◁v ϕ @ optional(&own(τ), null) G :-
2: ∀ℓ. inhale ℓ ◁l τ1; exhale ⌜ϕ⌝ ∗ ℓ ◁l τ ; returnG

o-add-uninit
1: ⊢binop (v1 : &own(uninit(n1))) + (v2 : n2 @ int(size_t)) G :-
2: exhale ⌜0 ≤ n2 ≤ n1⌝; inhale v1 ◁v &own(uninit(n2)); returnG v1 +l n2,&own(uninit(n1 − n2))

cas-bool
1: ⊢cas CAS(v1 : atomicbool(H⊤, H⊥),v2 : &own(b1 @ bool),v3 : b2 @ bool) G :-
2: do
3: inhale v2 ◁v &own(¬b1 @ bool); returnG false,False @ bool
4: and
5: inhale (b1 ? H⊤ : H⊥); exhale (b2 ? H⊤ : H⊥);
6: inhale v2 ◁v &own(b1 @ bool); returnG true,True @ bool

Figure 9.3: Selected RefinedC
typing rules. (Simplified by,
e.g., omitting refinements of
&own and existentials x⃗.)

to rules for these functions. RefinedC’s type assignments are considered
Lithium atoms. For a description of Lithium and the syntax used to
define the rules, see §3.

Judgment basics. RefinedC has a specialized typing judgment for each
program construct, e.g., ⊢if for conditional statements and ⊢binop for
binary operators. These judgments are parameterized by the types of the
values they operate on. This ensures that Lithium’s proof search does
not need to backtrack since these types uniquely determine the applicable
rule. For example, consider the rules if-bool and if-int in Figure 9.3.
Depending on the type of the condition (bool vs. int) a different rule
applies and typing proceeds differently. Such type-based overloading allows
RefinedC to handle the same program construct differently depending on
the context. This is useful because, in C, the same construct may serve
different purposes.

Construct-specific judgments arise in the premises of rules for general
statement and expression judgments, e.g., t-if or t-binop. The expression
judgment ⊢expr e takes an expression e and returns its inferred type
(together with a symbolic value).11 These inferred types and values are
then passed to the specialized judgments like ⊢binop.

Typing rules for optional. As demonstrated in §7.1, the optional type of
RefinedC plays a key role in handling the common low-level programming
pattern of encoding an error value as NULL. Most uses of this pattern can

11 ⊢expr e is similar to exprOk from
§3 except that ⊢expr e also returns a
type.

62

Chapter 9: RefinedC Type System

be handled by three RefinedC typing rules: the rule o-optional-eq for
comparing an optional with NULL, and the two rules s-null and s-own for
introducing an optional type.

The rule o-optional-eq is used to handle goals of the form

⊢Σstmt if (e = NULL) then s1 else s2

To do this, Lithium first applies t-if, which requires typing the Boolean
expression e = NULL. It then applies t-binop, which requires typing e.
Suppose Lithium infers the type ϕ @ optional(&own(τ), null) for e. Next,
Lithium types the second expression, NULL. This is trivial as NULL has
type null. At this point, Lithium’s goal is a judgment that matches
o-optional-eq.

We now explain o-optional-eq in detail. The rule distinguishes two
cases via if , corresponding to the cases where ϕ holds or does not hold.
When ϕ holds (first case), v1 must be an owned pointer, which cannot
equal NULL, so the result of the equality check in the conclusion of the
rule must be false. Accordingly, in this case, we add v1 ◁v &own(τ) to the
context and return false. When ϕ does not hold (second case), v1 must
have the type null, so v1 must be NULL and, hence, equal to v2. Accordingly,
we add v1 ◁v null to the context and return true.

In either of these two cases, the typing of the if statement continues
using if-bool (with the meta-variable ϕ of if-bool instantiated to False or
True, respectively). This rule also uses Lithium’s if primitive to perform a
case distinction, but Lithium automatically selects the right branch based
on the value of ϕ.

Next, we explain how Lithium establishes that a value v has type
ϕ @ optional(&own(τ), null). This corresponds to proving the following
Lithium goal:12

. . . ⊩ exhale v ◁v ϕ @ optional(&own(τ), null); . . .

As discussed in §3.5, Lithium’s main method of proving such a goal is to
search the context for a related atom A′ and then introduce a subsumption.
Concretely, a type assignment for a value v is related to a type assignment
A′ for v in the context.13 Typically, A′ will type v at either null or &own(τ

′)

for some τ ′. In the first case, Lithium creates a new goal of the form

. . . ⊩ v ◁v null <: v ◁v (ϕ @ optional(&own(τ), null)); . . .

At this point, rule s-null is used to reduce the goal to proving ¬ϕ (and
the continuation), which is what one expects from the intuitive meaning
of the optional type. In the second case, Lithium’s goal is

. . . ⊩ v ◁v &own(τ
′) <: v ◁v (ϕ @ optional(&own(τ), null)); . . .

Using rule s-own, this reduces to first introducing ℓ ◁l τ
′ for some fresh

location ℓ and then proving ϕ and ℓ ◁l τ , which again follows the meaning
of the optional type.

Ownership reasoning. Next, we explain how program syntax guides own-
ership reasoning in RefinedC. Consider the expression d->buffer + d->len

12 We omit existentials x⃗ in this
chapter to avoid clutter.

13 Similarly, location type assign-
ments are related to location type
assignments for the same location.

63

Part II: RefinedC

on line 13 of Figure 6.1. Logically, this expression splits the ownership of
d->buffer into two parts: one part that remains associated with d->buffer,
and a second part that is returned to the caller with the allocated memory.
This reasoning is performed by the rule o-add-uninit, which types the
addition of an integer n2 to a pointer to uninitialized memory of length
n1 (RefinedC type uninit(n1)). The rule splits uninit(n1) into the smaller
pieces uninit(n2) and uninit(n1 − n2), after checking that n2 ≤ n1. This
rule is a representative instance of how RefinedC’s informative types
disambiguate the intended logical meaning of a commonly overloaded C
operator (+ in this case).

Note that o-add-uninit can be reused in other contexts where programs
add values of type &own(uninit(n)) and int(size_t). For example, say we
change the implementation of alloc to allocate from the beginning of
buffer instead of the end, i.e., replacing line 13 in Figure 6.1 with the
following:

1 unsigned char *res = d->buffer;
2 d->buffer += sz;
3 return res;

RefinedC automatically verifies the resulting version of alloc without
further changes since o-add-uninit is general enough to cover the type
checking of + in both cases. The only difference is that the two versions
distribute v1 and v1 +l n2 differently. In the original version, v1 and the
associated &own(uninit(n2)) stay in buffer, while v1 +l n2 is returned with
&own(uninit(n1 − n2)). In the new version, buffer is updated to v1 +l n2,
while the original value v1 is returned.14

Fine-grained concurrency. RefinedC can also automatically verify fine-
grained concurrent code. We illustrate this with the atomicbool(H⊤, H⊥)

type, which represents a Boolean that can be accessed atomically. The
type holds the ownership of H⊤ if the Boolean is true, and of H⊥ if the
Boolean is false. For example, a spinlock that protects the resource H

can be modeled as the type atomicbool(True, H).
The main atomic operation supported by the atomicbool type is the

atomic_compare_exchange_strong function, corresponding to Caesium’s
CAS(ℓatom, ℓexp,vdes) operation. The first argument (ℓatom) is a pointer
to the value to be modified atomically, the second argument (ℓexp) is a
pointer to the expected current value of ℓatom, and the third argument
(vdes) is the value to be assigned to ℓatom. CAS also sets ℓexp to the previous
value stored at ℓatom.

CAS is verified using the rule cas-bool. The second and third arguments
of CAS have singleton Boolean types that determine whether the premise
uses H⊤ or H⊥. cas-bool has two cases corresponding to whether the
CAS fails or succeeds. (First case) When CAS fails, the second argument is
updated to ¬b1, and false is returned. (Second case) When CAS succeeds,
we receive ownership stored with the atomic Boolean before the CAS, and
have to prove ownership stored after the CAS. Subsequently, we receive
ownership of v2, and the CAS returns true. (The implementation of the
spinlock mentioned earlier uses cas-bool with b1 ≜ false and b2 ≜ true,

14 This variant of the example was
suggested by a reviewer for Sammler
et al., “RefinedC: Automating the
Foundational Verification of C Code
with Refined Ownership Types”,
2021 [Sam+21b]; it type checked
without requiring any changes to
RefinedC or its typing rules.

64

Chapter 9: RefinedC Type System

which means that on a successful CAS, one receives the ownership of H
stored in the spinlock.)

The RefinedC type atomicbool hides complex Iris concepts related to
fine-grained concurrency like impredicative invariants and ghost state.
These concepts show up only in proving the soundness of cas-bool, which
we have done once and for all in Coq. Lithium’s automation only uses
the much simpler statement of the cas-bool rule, not its proof.

65

Chapter 10

Evaluation and Case Studies

Class Test Types used Rules ∃ ⌜ϕ⌝ Impl Spec Annot Pure Ovh

#1
Singly linked list wand, alloc 44/613 119 47/5 106 33 24 (4/20/0) 2 ∼0.2

Queue list segments, alloc 42/310 81 10/0 42 15 9 (9/0/0) 0 ∼0.2

Binary search arrays, func. ptr. 40/308 68 73/6 42 16 6 (0/5/1) 19 ∼0.6

#2 Thread-safe allocator wand, padded, lock 58/319 96 28/2 68 18 21 (14/2/5) 3 ∼0.4

Page allocator padded 40/236 60 14/0 43 14 14 (14/0/0) 0 ∼0.3

#3 Bin. search tree (layered) wand, alloc 50/964 216 50/11 133 65 22 (8/7/7) 128 ∼1.1

Bin. search tree (direct) wand, alloc 48/977 240 47/43 115 43 17 (8/7/2) 10 ∼0.2

#4 Linear probing hashmap unions, arrays, alloc 57/1167 356 175/39 111 46 34 (14/17/3) 265 ∼2.7

#5 Hafnium mpool allocator wand, padded, lock 72/1730 515 122/11 191 53 55 (28/19/8) 5 ∼0.3

#6 Spinlock atomic Boolean 25/65 10 14/1 24 12 13 (0/1/12) 1 ∼0.6

One-time barrier atomic Boolean 18/34 5 6/0 20 7 2 (0/0/2) 0 ∼0.1

Types used: Salient type constructs used in the program. Rules: Number of distinct typing rules / number of typing rule
applications. ∃: Number of automatically instantiated existential quantifiers. ⌜ϕ⌝: Number of side conditions automatically proved
/ manually proved. Impl: Lines of C code (counted by tokei [Tok23]). Spec: Lines of top-level (function) specification. Annot:
Lines of annotation in source code (numbers in parentheses show breakdown into data structure invariants / loop annotations /
other annotations). Pure: Lines of pure Coq reasoning, including definitions and lemma statements. Ovh: Sum of Annot and
Pure divided by Impl.

Figure 10.1: Evaluation.To evaluate the automation and expressiveness of RefinedC, we verified
full functional correctness of six classes of programs in Figure 10.1.1 We
selected these programs to cover a wide variety of reasoning patterns
ranging over standard benchmarks (#1), tricky ownership reasoning (#2),
difficult side conditions (#3, #4), real-world C code (#5) and concurrent
algorithms (#6).

First, the table in Figure 10.1 lists the most interesting types used by
each example. This shows how RefinedC types like wand or padded are
reused across different programs. Then, the table shows the number of
RefinedC typing rules used in type checking each of the examples. All
typing rules used by the examples are either automatically generated
unfolding rules for user-defined types or they are part of the RefinedC
standard library. This standard library contains around 30 types and
200 typing rules. Lithium automatically selects and applies the right
typing rule from these predefined rules. Figure 10.1 shows how many such
automatic rule applications Lithium performs. This number gives a sense
of the automation afforded by Lithium, showing the extent to which typing
rules handle tasks like ownership manipulation and unfolding of definitions

1 The description and numbers in
this chapter reflect the original eval-
uation in Sammler et al., “RefinedC:
Automating the Foundational Ver-
ification of C Code with Refined
Ownership Types”, 2021 [Sam+21b].

67

Part II: RefinedC

that must be performed manually in some other tools. Additionally, the
table shows how many existential quantifiers are automatically instantiated
via the heuristics described in §4.2. Across all programs, we had to
instantiate only one existential manually (in Spinlock).

Figure 10.1 also lists how many pure side conditions RefinedC solves
automatically using its default solver and how many need at least some
manual help. We count these numbers very conservatively : In many
cases, a standard solver, like set_solver from std++,2 discharges several
side conditions automatically, but we still count these side conditions in
“manual” since the developer has to explicitly specify that the set solver
must be used. Basically, any side condition that cannot be discharged by
the one default solver that we wrote—which currently only targets linear
arithmetic and Coq lists—is counted as manual. This default solver can
definitely be improved in the future. Finally, for each example, Figure 10.1
lists the number of lines of C code, annotations, and pure Coq reasoning
for manual proofs. Importantly, there is no column for the number of
lines of separation logic (Iris) reasoning since the RefinedC automation is
able to handle this automatically (except for the initialization function
for spinlocks, which we explain later).

Overall, our experience is that RefinedC’s automation can handle
a wide variety of low-level reasoning, requiring manual input only for
example-specific pure (mathematical) side conditions and only in the
more challenging examples. RefinedC’s relative annotation overhead is
moderate—less than 0.7 for all examples that do not involve complex side
conditions (which are not the focus of RefinedC’s automation at present).

#1: Common case studies. The first three examples of Figure 10.1 are
case studies common to many verification tools. The verification of singly-
linked lists uses the representation of partial data structures with magic
wand3 illustrated in §7.3, while the verification of queues needs a more
specialized notion of list segments. Both use the first allocator of #2 below
for the allocation of new nodes. The five side conditions counted here as
manually discharged are actually handled automatically by set_solver

from std++. Additionally, we verified a binary search implementation
using a function pointer, and a client of it. RefinedC handles this easily
since function pointer types are first class. The annotation overhead for
these examples is low. In addition to annotations for loops and data
structure invariants, only a single annotation (to import manual proofs)
is necessary.

#2: Ownership reasoning. To evaluate RefinedC’s ownership reasoning,
we verified two memory allocators. These examples showcase RefinedC’s
expressiveness, as all necessary ownership transfers can be represented
using types like padded (rc::size annotation in Figure 7.4). The thread-
safe allocator uses annotations to manipulate the spinlocked type, similar
to the allocator described in §7.2. (A third memory allocator from real-
world code is covered in #5 below.)

2 Coq-std++ team, An extended
“standard library” for Coq, 2020
[Coq20].

3 Cao et al., “Proof Pearl: Magic
Wand as Frame”, 2019 [Cao+19];
Charguéraud, “Higher-order Repre-
sentation Predicates in Separation
Logic”, 2016 [Cha16].

68

Chapter 10: Evaluation and Case Studies

#3: Layered vs. direct verification. A popular approach to verification
of low-level code is to split the verification tasks into many layers of
intermediate specifications.4 To investigate how this layered approach
works in RefinedC, we verified a binary search tree first via an intermediate
functional layer, and second by directly going from C to the desired
specification as a functional set. Although both approaches are viable
with RefinedC, the overhead of the direct approach is significantly less
than the overhead of the layered approach as it does not require defining
the intermediate layer. The direct approach works well because the
type system cleanly separates ownership reasoning from pure functional
reasoning and all except three side conditions are automatically discharged
by variants of set_solver.

#4: Complex functional reasoning. To check whether RefinedC scales to
data structures with complex functional invariants, we verified a hashmap
with linear probing. Verifying linear probing is non-trivial since all
keys share the same array, and one has to prove that an insertion or
deletion does not affect unrelated keys. The verification uses a functional
version of the probing function for stating the invariant. RefinedC reduces
verification to pure reasoning about this invariant, which is discharged
through manual proofs in Coq.

#5: Real-world code. Our largest case study applies RefinedC to a
version of the page allocator of the Hafnium hypervisor.5 This verification
combines many of the previously mentioned techniques, and shows that
RefinedC can verify real-world C code. Even though this allocator is
significantly more complicated than the allocators in #2, we did not have
to define any new RefinedC types to automatically handle the ownership
reasoning.

#6: Concurrent abstractions. The examples in this class show that
RefinedC can automatically verify fine-grained concurrent code that is
out of reach for many other automatic verifiers. In particular, we use
the atomic Boolean type from §9 to verify two concurrent algorithms: a
spinlock and a one-time barrier. This type is abstract enough to automate
the verification of the acquire and release functions of the spinlock and
the barrier. The initialization function needs manual proofs where it
allocates a ghost token and for instantiating one existential quantifier
with a newly generated ghost name. As mentioned in §7, RefinedC
also provides a spinlocked type, which decouples the spinlock from the
resources protected by it; the typing rules for spinlocked require 162 lines
of additional Iris proofs. Altogether, the result is a reusable spinlock
abstraction, which is used by several other examples in Figure 10.1 (the
first allocator of #2, and the allocator of #5).

4 Gu et al., “Certified Concur-
rent Abstraction Layers”, 2018
[Gu+18]; Lorch et al., “Armada:
Low-Effort Verification of High-
Performance Concurrent Programs”,
2020 [Lor+20].

5 Hafnium, Hafnium, 2023 [Haf23].

69

Chapter 11

Related Work

Bedrock. Like RefinedC, the Bedrock project1 targets foundational and
mostly automatic separation logic-based verification of low-level programs.
However, Bedrock is based on a custom assembly-like language and custom
DSLs built on top, using macros that are verified similar to compiler passes.
In contrast, RefinedC applies to existing C code that can be compiled
using off-the-shelf optimizing C compilers.

Another point of difference from RefinedC is that, rather than exploiting
the higher-level abstractions of a refined type system to drive automation,
Bedrock encodes specifications and abstract predicates in plain separation
logic, for which proof automation can be extended via custom Ltac tactics
and hints for unfolding abstract predicates. However, Bedrock’s hint
format is less expressive than Lithium, e.g., it cannot represent rules
like cas-bool from §9.3. Also, unlike RefinedC typing rules, Bedrock
hints cannot be tied to specific program constructs and, hence, cannot
be directed by program syntax. Thus, for example, the verification of a
singly-linked list requires four custom hints and ∼10 lines of custom Ltac
in Bedrock,2 whereas no such extra work is required in RefinedC. (Both
tools require loop invariant annotations.)

VST. VST3 is a separation logic-based framework for verifying Com-
pCert C programs. Users of VST deploy a set of semi-automatic tactics
to build functional correctness proofs in Coq,4 or a frontend5 that uses
source code annotation to reduce verification to a set of entailments that
have to be proven in Coq. However, in both cases the user needs to
manually guide the proof by performing case distinctions, applying lem-
mas, unfolding predicates, and instantiating existential quantifiers—tasks
that RefinedC’s Lithium-based automation handles automatically in most
cases. As a concrete example, verification of a binary search tree similar to
the one in §10 by the authors of VST6 requires manual effort for hundreds
of such proof steps, which is not the case in RefinedC. (The binary tree
example in RefinedC needs manual effort only for pure side conditions.)

Foundational verification of large-scale C programs. There are several
projects that perform C verification at scale, most notably seL4 and
CertiKOS.

seL47 demonstrated the first formal proof of functional correctness
of a complete, general-purpose operating-system kernel and comes with
a translation-validation procedure8 to transfer the proofs to generated

1 Chlipala, “Mostly-Automated
Verification of Low-Level programs
in Computational Separation
Logic”, 2011 [Chl11]; Chlipala, “The
Bedrock Structured Programming
System: Combining Generative
Metaprogramming and Hoare
Logic in an Extensible Program
Verifier”, 2013 [Chl13]; Chlipala,
“From Network Interface to Multi-
threaded Web Applications: A Case
Study in Modular Program Verifica-
tion”, 2015 [Chl15]; Malecha et al.,
“Compositional Computational
Reflection”, 2014 [MCB14].

2 Bedrock team, Verification of a
singly linked list, 2015 [Bed15a].

3 Appel, Program Logics for Certi-
fied Compilers, 2014 [App14]; Cao
et al., “VST-Floyd: A Separation
Logic Tool to Verify Correctness of
C Programs”, 2018 [Cao+18].

4 Cao et al., “VST-Floyd: A Sep-
aration Logic Tool to Verify Cor-
rectness of C Programs”, 2018
[Cao+18].

5 Wang and Cao, “VST-A: A Foun-
dationally Sound Annotation
Verifier”, 2019 [WC19].

6 VST team, Verification of a
binary search tree, 2020 [VST20].

7 Klein et al., “seL4: Formal Ver-
ification of an OS Kernel”, 2009
[Kle+09]; Klein et al., “Comprehen-
sive Formal Verification of an OS
Microkernel”, 2014 [Kle+14].

8 Sewell et al., “Translation Valida-
tion for a Verified OS Kernel”, 2013
[SMK13]; Myreen, “Formal verifi-
cation of machine-code programs”,
2009 [Myr09].

71

Part II: RefinedC

assembly code. However, most of seL4’s proofs about C code are manual
and rely only on basic tactic support.9 Later work automates some but
not all of the most tedious parts.10 This automation—and the original
seL4 verification—do not support some aspects of C (such as concurrency
and taking addresses of local variables) that are supported by RefinedC.

CertiKOS11 provides the first correctness proof of a general-purpose
concurrent OS kernel with fine-grained locking. CertiKOS verification is
integrated with the CompCert C compiler, so the proof applies to the
generated assembly code. The proof technique used (called “certified
abstraction layers”) is based on writing programs at different layers of
abstraction and proving refinements between these layers. Refinement
proofs are discharged (broadly similar to VST) by manually guiding
specialized tactics in Coq. As seen in §10, RefinedC does not (in most
cases) require such manual guidance in Coq, and it also supports a
layer-based approach (although quite different from CertiKOS’s, since
RefinedC’s is based on layers of types vs. layers of programs in CertiKOS).
However, further work is needed in order to establish the effectiveness
of RefinedC at the larger scale at which seL4 and CertiKOS have been
deployed.

Non-foundational tools for verification of C. We compare RefinedC to
some of the most closely related non-foundational tools for verifying C
code.

CN12 provides a separation logic refinement type system to reason
about systems code written in C. Since CN does not provide foundational
proofs, it can rely on an SMT solver to automate the verification conditions
generated by its LiquidTypes-based refinement type system. However,
CN only considers a fixed type system and does not support modularly
extending the type-system with new types and rules as RefinedC.

Gillian-C13 instantiates the Gillian platform for symbolic analysis14

with a memory model based on CompCert’s Csharpminor language.
Thanks to its use of SMT solvers and implementation in OCaml, it can
provide a higher degree of automation than RefinedC, especially around
pure properties, but it lacks RefinedC’s ability to leverage definitions and
lemmas from an ambient meta-logic (i.e., Coq in the case of RefinedC).

VCC15 employs SMT solvers to verify C programs and has been used
on large C programs in practice. However, it lacks good support for
dynamic ownership reasoning. For example, a linked list predicate that
supports member testing requires three ghost fields—all of which need
to be updated manually in the add function.16 No such ghost fields and
annotations are necessary in RefinedC.

VeriFast17 is an automated, separation logic-based verification tool for
C and Java. It provides heuristics to automatically infer annotations to
reduce the proof burden.18 VeriFast’s symbolic execution approach (of
which only a core subset has been proven sound19) uses a fixed rule for
each program construct, whereas RefinedC allows type-based overloading
as described in §9.3. RefinedC also benefits from existing Coq libraries
like std++: the binary search tree (layered) example from §10 requires
roughly half the number of lines of pure reasoning compared to a similar

9 Klein et al., “Comprehensive
Formal Verification of an OS Micro-
kernel”, 2014 [Kle+14]; Winwood et
al., “Mind the Gap”, 2009 [Win+09].

10 Greenaway et al., “Bridging
the Gap: Automatic Verified
Abstraction of C”, 2012 [GAK12];
Greenaway et al., “Don’t Sweat the
Small Stuff: Formal Verification of
C Code Without the Pain”, 2014
[Gre+14].

11 Gu et al., “Building Certified Con-
current OS Kernels”, 2019 [Gu+19];
Gu et al., “Certified Concurrent
Abstraction Layers”, 2018 [Gu+18];
Gu et al., “Deep Specifications and
Certified Abstraction Layers”, 2015
[Gu+15].

12 Pulte et al., “CN: Verifying
Systems C Code with Separation-
Logic Refinement Types”, 2023
[Pul+23].

13 Maksimovic et al., “Gillian, Part
II: Real-World Verification for
JavaScript and C”, 2021 [Mak+21].

14 Santos et al., “Gillian, Part
i: A Multi-language Platform
for Symbolic Execution”, 2020
[San+20].

15 Cohen et al., “VCC: A Practical
System for Verifying Concurrent C”,
2009 [Coh+09].

16 VCC team, Verification of a
singly linked list, 2016 [VCC16].

17 Jacobs et al., “VeriFast: A Power-
ful, Sound, Predictable, Fast Verifier
for C and Java”, 2011 [Jac+11].

18 Vogels et al., “Annotation Infer-
ence for Separation Logic Based
Verifiers”, 2011 [Vog+11].

19 Vogels et al., “Featherweight
VeriFast”, 2015 [VJP15].

72

Chapter 11: Related Work

example in VeriFast20 by judicious use of existing lemmas and tactics.
Other than this, the annotation burden is similar.

MatchC21 is an automated verification tool for C based on the K
framework and matching logic.22 Its rewrite-based approach provides
good automation for non-trivial pointer-manipulating programs and can be
extended with new abstractions and custom rules like RefinedC. However,
unlike RefinedC, these abstractions and their rules are not proven sound
against a model, and must be trusted. MatchC also does not support
concurrency.

Memory safety in low-level programming languages. RefinedC focuses
on full functional verification of low-level programs. Much prior work23

focuses instead on the different—and simpler—problem of automatically
verifying memory safety. One popular approach24 is to combine static
and dynamic checks to enforce safety of C programs. In contrast, Re-
finedC targets verification without affecting the dynamic semantics of
the program. Low-Level Liquid Types25 verify memory safety of C code
using a combination of refinement types and alias types.26 The annotation
overhead is low (e.g., no loop invariants are required), but the goal is only
memory safety. In contrast, RefinedC targets full functional verification,
and thus requires more annotations but can also verify more programs.
Finally, safety can also be attained by using a memory-safe language such
as Vault, Cyclone, or Rust in place of C.27 However, these languages rely
on runtime checks, and—unlike RefinedC—cannot guarantee functional
correctness.

Refinement and ownership type systems. Refinement types,28 although
originally developed for functional programs, have also been used for the
safety and correctness of imperative code.29 This line of work usually
focuses on fully automatic type systems for relatively simple imperative
languages. In contrast, RefinedC requires more annotations (e.g., loop
invariants), but can verify more complicated properties and supports
a more realistic subset of C (including pointer arithmetic, uninitialized
memory, and concurrency).

Foundational verification of fine-grained concurrent algorithms. There
is an abundance of related work on foundational verification of fine-
grained concurrent algorithms using interactive proofs, e.g., in FCSL,
VST, and Iris.30 This line of work has focused on more challenging
concurrent algorithms than the spinlock and barrier we have verified in
RefinedC. In future work, we aim to investigate if we can develop types
besides the atomic Boolean type (§9.3) that would enable automatic
verification of more sophisticated concurrent algorithms. In particular,
it would be interesting to see if ideas from Diaframe (discussed in §5)
could be integrated into RefinedC to enable automated verification of
more interesting concurrent algorithms.

Semantic typing. RefinedC’s semantic typing approach—in particular,
building a semantic model of types on top of Iris—is modeled after that of

20 Verifast team, Verification of a
binary search tree, 2019 [Ver19].

21 Stefanescu, “MatchC: A Matching
Logic Reachability Verifier Using
the K Framework”, 2014 [Ste14].

22 Rosu and Serbanuta, “An
Overview of the K Semantic Frame-
work”, 2010 [RS10]; Rosu et al.,
“Matching Logic: An Alternative to
Hoare/Floyd Logic”, 2010 [RES10].

23 Berdine et al., “Smallfoot: Mod-
ular Automatic Assertion Check-
ing with Separation Logic”, 2005
[BCO05]; Yang et al., “Scalable
Shape Analysis for Systems Code”,
2008 [Yan+08].

24 Necula et al., “CCured: Type-
Safe Retrofitting of Legacy Code”,
2002 [NMW02]; Condit et al.,
“Dependent Types for Low-Level
Programming”, 2007 [Con+07];
Elliott et al., “Checked C: Making C
Safe by Extension”, 2018 [Ell+18].

25 Rondon et al., “Low-Level Liquid
Types”, 2010 [RKJ10].

26 Rondon et al., “Liquid Types”,
2008 [RKJ08]; Smith et al., “Alias
Types”, 2000 [SWM00].

27 DeLine and Fähndrich, “Enforcing
High-Level Protocols in Low-Level
Software”, 2001 [DF01]; Jim et al.,
“Cyclone: A Safe Dialect of C”,
2002 [Jim+02]; Swamy et al., “Safe
Manual Memory Management in
Cyclone”, 2006 [Swa+06].

28 Freeman and Pfenning, “Refine-
ment Types for ML”, 1991 [FP91];
Xi, “Dependent ML: An Approach
to Practical Programming with
Dependent Types”, 2007 [Xi07];
Rondon et al., “Liquid Types”, 2008
[RKJ08].

29 Rondon et al., “Low-Level Liq-
uid Types”, 2010 [RKJ10]; Bakst
and Jhala, “Predicate Abstrac-
tion for Linked Data Structures”,
2016 [BJ16]; Toman et al., “Con-
SORT: Context- and Flow-Sensitive
Ownership Refinement Types
for Imperative Programs”, 2020
[Tom+20].

30 Sergey et al., “Mechanized Verifi-
cation of Fine-grained Concurrent
Programs”, 2015 [SNB15]; Mansky
et al., “A Verified Messaging Sys-
tem”, 2017 [MAN17]; Jung et al.,
“The Future is Ours: Prophecy
Variables in Separation Logic”, 2020
[Jun+20].

73

Part II: RefinedC

RustBelt.31 However, the concrete design of RefinedC’s type system differs
from RustBelt in several key aspects: (1) RefinedC uses Mezzo-like32 alias
types instead of Rust’s lifetimes and mutable references, (2) RefinedC
includes refinement types in addition to ownership types, and (3) RefinedC
supports automated type checking, which RustBelt does not.

31 Jung et al., “RustBelt: Secur-
ing the Foundations of the Rust
Programming Language”, 2018
[Jun+18a]; Jung, “Understanding
and Evolving the Rust Program-
ming Language”, 2020 [Jun20].

32 Pottier and Protzenko, “Program-
ming with Permissions in Mezzo”,
2013 [PP13].

74

Chapter 12

Limitations and Future Work

This part of this dissertation demonstrated the potential of refined owner-
ship types to effectively automate the foundational verification of C code.
However, RefinedC is still in its infancy and has a number of limitations
that we plan to address in future work.

C idioms and features. RefinedC relies on an expert crafting typing rules
to handle relevant programming idioms in the code one wishes to verify.
Our evaluation shows that it is possible to come up with reusable typing
rules for several common C programming idioms. However, there are C
programming idioms that are not yet covered by our existing typing rules.
One step in this direction is the work of Zhu et al.,1 who show how to use
RefinedC’s extensible type system to reason about bitfield manipulating
programs. It would be interesting to investigate RefinedC’s capability for
building reusable abstractions further.

Also, Caesium and the frontend lack support for some features of C.
Lepigre et al.2 extended RefinedC and Caesium with support for integer
pointer casts. Their model is designed to by used by a verification tool
and proven sound against the PNVI-ae-udi model of Memarian et al.3

Extending Caesium with other features of C like floats would be interesting
future work.

RefinedC currently does not support reasoning about external function
calls and input-output behavior of programs. We believe that the automa-
tion provided by Lithium can also be useful for such I/O verification, and
we plan to integrate RefinedC with DimSum (presented in Part IV) in
future work.

Pure automation. So far, we have focused mainly on automating the
separation logic aspects of reasoning. We additionally support automation
for several domains of pure reasoning by leveraging existing solvers for
e.g., linear arithmetic, sets, and multisets, but this support can certainly
be extended further.

Liveness properties. RefinedC only verifies partial, not total, correctness.
This is mainly due to Iris’s focus on verifying safety properties. However,
recent work enables termination verification in Iris using transfinite step-
indexing.4 It would be interesting to combine transfinite step-indexing
with RefinedC and Lithium to achieve automated and foundational verifi-
cation of liveness properties.

1 Zhu et al., “BFF: Foundational
and Automated Verification of
Bitfield-Manipulating Programs”,
2022 [Zhu+22].

2 Lepigre et al., “VIP: Verifying
Real-World C Idioms with Integer-
Pointer Casts”, 2022 [Lep+22].

3 Memarian et al., “Exploring C
Semantics and Pointer Provenance”,
2019 [Mem+19].

4 Spies et al., “Transfinite Iris:
Resolving an Existential Dilemma
of Step-Indexed Separation Logic”,
2021 [Spi+21].

75

Part III

Islaris

Chapter 13

Introduction

Program verification can be applied at many levels, from high-level lan-
guages to low-level assembly or machine code. Low-level code verification
is desirable for three reasons. First, some critical code manipulates ar-
chitectural features that are not exposed in higher-level languages, e.g.,
to access system registers to install exception vector tables, or to config-
ure address translation; this is necessarily written in assembly. Second,
machine code is the form in which programs are actually executed, so
a verification can be grounded on the architecture semantics, without
needing trust or verification of any compilation or assembly steps. One
can moreover verify the machine code after any modifications introduced
by linking or initialization (perhaps parametrically w.r.t. these). Third,
some code is written in assembly for performance reasons.

In low-level code verification, it remains a grand challenge to develop
tools that are demonstrably sound w.r.t. the underlying architecture
and support reasoning about all of it, including all systems features.
There are several aspects to this. One is the relaxed-memory concurrency
exhibited by modern hardware. For this, the underlying models for user
code have been clarified;1 work on systems concurrency is in progress;2

and researchers are starting to build low-level-code verifications targeting
relaxed memory, e.g., for hypervisors.3

Another key aspect—and the one we focus on here—is ensuring fidelity
and completeness w.r.t. the underlying instruction-set architecture (ISA),
the sequential semantics of machine instructions. Until recently, the only
option was to hand-write an ISA semantics, as several verification projects
did, each for the fragment of the ISA they needed.4 These typically cover
only a small user-level fragment of the ISA, are simplified in various ways,
and have, at best, only limited validation with respect to the architectural
intent or hardware implementations. For x86, there is a handwritten larger
fragment in ACL2,5 and empirical and handwritten models.6 Others add
models of some systems aspects, but similarly without tight connections
to production architecture definitions.

In contrast to the above, recent work has established sequential ISA
models for Armv8-A and RISC-V, that are both comprehensive—complete
enough to boot an operating system or hypervisor—and authoritative.
These are expressed in the Sail ISA definition language.7 For Armv8-A,
the Sail model is automatically derived from the Arm-internal model and
tested against the Arm-internal validation suite, while for RISC-V the
handwritten Sail model has been adopted as the official formal specification

1 Sewell et al., “x86-TSO: A Rig-
orous and Usable Programmer’s
Model for x86 Multiprocessors”,
2010 [Sew+10]; Sarkar et al., “Un-
derstanding POWER Multiproces-
sors”, 2011 [Sar+11]; Alglave et al.,
“Herding Cats: Modelling, Simu-
lation, Testing, and Data Mining
for Weak Memory”, 2014 [AMT14];
Pulte et al., “Simplifying ARM
Concurrency: Multicopy-Atomic
Axiomatic and Operational Models
for ARMv8”, 2018 [Pul+18]; Arm,
Arm Architecture Reference Manual.
Armv8, for A-profile architecture
profile, 2021 [Arm21]; The RISC-V
Instruction Set Manual. Volume
I: User-Level ISA; Volume II:
Privileged Architecture, 2017 [17].

2 Simner et al., “ARMv8-A System
Semantics: Instruction Fetch in Re-
laxed Architectures”, 2020 [Sim+20];
Raad et al., “Extending Intel-x86
Consistency and Persistency: For-
malising the Semantics of Intel-x86
Memory Types and Non-Temporal
Stores”, 2022 [RMV22]; Simner
et al., “Relaxed virtual memory in
Armv8-A”, 2022 [Sim+22].

3 Li et al., “A Secure and Formally
Verified Linux KVM Hypervisor”,
2021 [Li+21].

4 See e.g., Ama+13; Ler06; Šev+13;
Mor+12; Myr09; Ken+13; JBK13;
Sar+09; Gra+15; Flu+16; AMT14;
FM10; LS09.

5 Goel et al., “Engineering a Formal,
Executable x86 ISA Simulator
for Software Verification”, 2017
[GJK17].

6 Degenbaev, “Formal Specification
of the x86 Instruction Set Archi-
tecture”, 2012 [Deg12]; Heule et al.,
“Stratified Synthesis: Automatically
Learning the x86-64 Instruction
Set”, 2016 [Heu+16]; Dasgupta et
al., “A Complete Formal Semantics
of x86-64 User-Level Instruction Set
Architecture”, 2019 [Das+19].

7 Armstrong et al., “ISA Seman-
tics for ARMv8-A, RISC-V, and
CHERI-MIPS”, 2019 [Arm+19a].

79

Part III: Islaris

by RISC-V International. This makes these attractive foundations for
verification, providing high confidence that they accurately capture the
architecture (and hence that the results of verification will hold above
correct hardware implementations), and enabling verification about all
aspects of the sequential ISA, especially the systems aspects that are key
to security.

However, that fidelity and coverage also makes these models intimidat-
ingly large and complex, and only sometimes practical for mechanized
proof. The Sail Armv8.5-A and RISC-V models are 113k and 14k non-
whitespace lines of specification, respectively. Sail generates Isabelle and
Coq versions of these definitions. For Armv8-A, the former has been used
for some metatheory,8 but not for program verification, and in the Coq
version even simple definition unfoldings take an unreasonably long time
or fail to terminate.

To see how this complexity arises, consider the seemingly simple Armv8-
A add sp,sp,64 instruction, adding 64 to the stack-pointer register. Some
handwritten Arm semantics describe this in a single line,9 but its full Sail
definition spans 146 lines in 9 functions, excerpted in Figure 14.1. These do
much more than just compute the addition: they compute arithmetic flags
(discarded by this particular add instruction); they support subtraction
as well as addition (again irrelevant for this instruction); they support
other registers; and sp is in fact a banked family of registers, selected
based on the current exception level register value. A yet more extreme
example is a “simple” ldrb instruction to load a byte. This involves over
2000 lines of specification, even without address translation, for alignment
checks, big/little endianness, tagged memory, different address sizes and
exception levels, and the store and prefetch instructions that are specified
simultaneously.

The challenge we face, therefore, is how one can reason above such
models while avoiding up-front idealization, so that we retain the abil-
ity to reason about the whole architecture, and the confidence in the
authoritative model.

In this part of the dissertation, we present Islaris, a novel approach
to machine-code verification that achieves the above. Our key insight is
to realize that the verification problem can be split into two subtasks,
separating the irrelevant complexity from the inherent complexity, so
that each can then be solved by techniques well suited for the respective
task: SMT-based symbolic evaluation, and a mechanized program logic.

The first step is to realize that, when verifying a concrete program under
specific assumptions, many aspects of the ISA definition are irrelevant,
because they do not influence the results of instructions or are ruled
out by the system configuration. To handle this irrelevant complexity,
we leverage and extend the Isla symbolic evaluation tool for Sail ISA
specifications.10 Isla takes an opcode and SMT constraints, e.g., that
the exception-level register has a specific value or some general-purpose
register is aligned, and symbolically evaluates the Sail model using an
SMT solver. It produces a trace of the instruction’s register and memory
accesses, constrained by SMT formulas. Crucially, this can be much

8 Armstrong et al., “ISA Seman-
tics for ARMv8-A, RISC-V, and
CHERI-MIPS”, 2019 [Arm+19a];
Bauereiss et al., “Verified Security
for the Morello Capability-enhanced
Prototype Arm Architecture”, 2022
[Bau+22].

9 CompCert team, CompCert Arm
semantics, 2023 [Com23].

10 Armstrong et al., “Isla: Integrat-
ing Full-Scale ISA Semantics and
Axiomatic Concurrency Models”,
2021 [Arm+21].

80

Chapter 13: Introduction

simpler than the full Sail definition, without irrelevant and unreachable
parts, and is in a much simpler language.

That leaves the inherent complexity of verification, typically including
address and memory manipulations, higher-order reasoning with code-
pointers, reasoning about the relevant aspects of the systems architecture,
and modular reasoning about user-defined specifications. Islaris addresses
these with a higher-order separation logic for the Isla traces that produces
machine-checked proofs, based on Iris. The key challenge is designing proof
automation that makes the verification practical. Here, Islaris adapts
Lithium that was originally designed for automating for the RefinedC type
system. In particular, we realize that Lithium’s efficiency can be retained
even without the type information relied on by RefinedC, by using the
separation logic context to guide proof search. Overall, we obtain a level
of proof automation comparable to previous foundational approaches,11

but for full ISA semantics rather than a simple intermediate language.

binary machine code to verify

default constraints
(e.g. system configuration, EL)

instruction-specific constraints
(optional) Islaris frontend

Isla

Sail ISA model
(Arm-A / RISC-V)SMT solver

Isla trace

Isla trace in Coq

Islaris
separation logic

user-defined specification
(in Islaris separation logic)

Proof

Islaris proof automation

Sail ISA model in Coq

translation validation
(optional, only for RISC-V)

Coq

calls

generates

Iris

instruction &
constraints

manual
proof steps
(as needed)

Lithium

Figure 13.1: The Islaris work-
flow. White: from previous
work. Green: new in this part
of the dissertation. Yellow:
provided by the Islaris user.

Overview. Figure 13.1 shows an overview of the Islaris workflow. First,
the user passes the machine code to verify together with suitable con-
straints on the system state to the Islaris frontend, which invokes Isla to
generate a trace describing the effects of the instructions based on the
Sail ISA model. The generated trace has already been simplified by Isla,
by pruning parts of the ISA specification that cannot be reached under
the given constraints (Isla uses symbolic execution and an SMT solver
for this pruning). The frontend outputs a deep embedding of this trace
in Coq, which is then verified against a user-written specification using
the Islaris proof automation, together with manual Coq proof if needed.
For RISC-V, we also provide infrastructure to prove the Isla trace correct
against the Coq ISA model generated directly from Sail.

Contributions. Our overarching contribution is this new approach for
machine-code verification above complete and authoritative real-world
ISA specifications, including systems features. The Islaris combination
of Isla-based symbolic execution with an Iris-based program logic and
Lithium-based proof automation gives us practical tooling for verification
above such models, which we demonstrate on a range of examples. All
this is generic in the actual Sail model, applying equally to Armv8-A and
RISC-V. We give:

• Operational semantics for the Isla trace language (§15).

11 Chlipala, “Mostly-Automated
Verification of Low-Level programs
in Computational Separation Logic”,
2011 [Chl11].

81

Part III: Islaris

• An Iris-based separation logic for Isla traces with Lithium-based proof
automation (§16).

• Translation validation infrastructure for RISC-V Isla traces, proving
them correct with respect to the Coq model generated from Sail directly
for RISC-V (§17).

• Demonstration that Islaris is able to handle Armv8-A and RISC-V
machine code exercising a wide range of systems features (and inter-
acting with many system registers), including installing and calling an
exception vector, compiled C code using inline assembly and function
pointers, using memory-mapped IO to interact with a UART device,
and code that is parametric on a relocation address offset; the last
of these is part of an exception handler from the production pKVM
hypervisor under development at Google (§18).

Non-goals and limitations. The main contribution of Islaris is to make
it possible to reason above authoritative ISA semantics (especially the
full Armv8-A ISA model) without upfront idealization, which has not
been done previously. This is important in two contexts: for the lowest,
security-critical, layers of a software stack, and as a more solid foundation
for large-scale verification of higher layers of a software stack. Islaris
focuses on the first. When the critical code is short, e.g., the pKVM
exception-handler dispatch described in §18, Islaris as presented here can
be applied directly. For the second, Islaris can provide a useful building
block. However, demonstrating the use of Islaris on higher layers of a
software stack is future work; Islaris as presented in this dissertation is
not intended or claimed to replace general-purpose verification tools for
such.

Islaris targets the verification of concrete machine code, where one
has specific (or highly constrained) opcodes in hand, together with con-
straints on the system state, as the Isla symbolic evaluation can provide
substantial simplification in such situations. For proving facts about all
the instructions of an architecture, one would typically want a different
approach, e.g., as described by Armstrong et al.12 or Bauereiss et al.13

For proving facts about a compiler, one might want to prove correctness
of a simplified model, tuned to the subset of instructions it generates. In
some cases, this could also be done using Islaris, but we do not explore
this use-case here.

Ideally, the trusted computing base (TCB) would only include the ISA
definitions and one proof assistant kernel. The basic Islaris approach adds
Isla and the SMT solver to the TCB (but not the Islaris separation logic,
which produces machine-checked proofs). We consider this a reasonable
price to pay for the benefits Islaris provides. For additional assurance, we
have explored post-hoc validation of the Isla output with respect to the
Sail-generated Coq semantics (see §17). We have done this for RISC-V;
for Armv8-A, the model size makes it challenging. Complete assurance
is of course impossible: even the Arm-internal ISA definition, while well-
validated in many ways, is surely not perfect; there is the possibility of

12 Armstrong et al., “ISA Seman-
tics for ARMv8-A, RISC-V, and
CHERI-MIPS”, 2019 [Arm+19a].

13 Bauereiss et al., “Verified Security
for the Morello Capability-enhanced
Prototype Arm Architecture”, 2022
[Bau+22].

82

Chapter 13: Introduction

error in the Sail-to-Coq translations; and full verification of the underlying
hardware is not yet feasible.

The other main limitation is that Islaris currently assumes single-
threaded execution. This is not inherent to our approach—Isla’s output
is generic in the underlying memory model, and supporting a sequentially
consistent concurrency semantics would not be hard. However, supporting
the Armv8-A or RISC-V relaxed-memory concurrency models requires a
more sophisticated separation logic, the subject of active research. Islaris
also does not currently support self-modifying code or address translation,
which involve additional forms of relaxed-memory concurrency, likewise
subjects of active research14 (our underlying ISA semantics includes
translation-table walks, but here we only use machine configurations that
turn translation off). Finally, we have focused so far on 64-bit little-endian
cases, and on small but tricky examples; scaling remains future work.

14 Simner et al., “ARMv8-A System
Semantics: Instruction Fetch
in Relaxed Architectures”, 2020
[Sim+20]; Simner et al., “Relaxed
virtual memory in Armv8-A”, 2022
[Sim+22].

83

Chapter 14

Overview of the Islaris Approach

In this chapter, we give a high-level presentation of the Islaris approach
to machine-code verification. We explain how the complexity of raw Sail
models is made manageable using the Isla symbolic evaluator in §14.1,
and then the rest of the chapter (starting in §14.2) shows how Islaris
builds a modular verification framework on Isla.

14.1 Background: Symbolic Execution with Isla

1 function clause decode64
2 ((_:bits(1) @ 0b0010001 @ _:bits(24) as opcode) if ...)={
3 Rd:bits(5)=opcode[4 .. 0]; Rn=...; imm2=...; sf=...; ...
4 integer_arithmetic_addsub_immediate_decode(Rd,Rn,...)}
5

6 function integer_arithmetic_addsub_immediate_decode(...)={
7 let 'd = UInt(Rd); ...
8 let 'datasize = if sf == 0b1 then 64 else 32;
9 imm : bits('datasize) = undefined : bits('datasize); ...

10 match shift {
11 0b00 => { imm = ZeroExtend(imm12, datasize) },
12 0b01 => { imm = ZeroExtend(imm12 @ Zeros(12), datasize)},
13 0b10 => { throw(Error_See("ADDG, SUBG")) },
14 0b11 => { ReservedValue() } };
15 integer_arithmetic_addsub_immediate(d,datasize,imm,...) }
16

17 function integer_arithmetic_addsub_immediate (...) = {
18 let op1 : bits('datasize) =
19 if eq_int(n, 31) then aget_SP(__id(datasize))
20 else aget_X(__id(datasize), n); ...
21 if sub_op then { op2 = not_vec(op2); carry_in = 0b1 }
22 else { carry_in = 0b0 }
23 let (tup__0, tup__1) = AddWithCarry(op1,op2,carry_in) in
24 ...
25 if setflags then
26 {PSTATE={PSTATE with N=vector_subrange_A(nzcv,3,3)};...};
27 if and_bool(eq_int(d,31),not_bool(setflags)) then
28 { aset_SP(result) } else { aset_X(d, result) } }
29

30 function AddWithCarry (x,y,carry_in) = { ... }

Figure 14.1: Excerpts of the
146-line Sail definition of
add sp,sp,64.

As already discussed in §13, in a real-world architecture the semantics
of even seemingly simple instructions like an addition can be surprisingly

85

Part III: Islaris

1 (trace
2 (assume-reg |PSTATE| ((_ field |EL|)) #b10)
3 (assume-reg |PSTATE| ((_ field |SP|)) #b1)
4 (read-reg |PSTATE| ((_ field |SP|)) (_ struct(|SP| #b1)))
5 (read-reg |PSTATE| ((_ field |EL|)) (_ struct(|EL| #b10)))
6 (declare-const v38 (_ BitVec 64))
7 (read-reg |SP_EL2| nil v38)
8 (define-const v61 (bvadd ((_ extract 63 0)
9 ((_ zero_extend 64) v38)) #x0000000000000040))

10 (write-reg |SP_EL2| nil v61)
11 (declare-const v62 (_ BitVec 64))
12 (read-reg |_PC| nil v62)
13 (define-const v63 (bvadd v62 #x0000000000000004))
14 (write-reg |_PC| nil v63))

Figure 14.2: Isla trace
of add sp,sp,64 (opcode
0x910103ff).

complex. For example, consider the excerpt of the Sail semantics for
the add sp,sp,64 instruction in Figure 14.1. The decode64 entry point
decodes an opcode and dispatches to many auxiliary functions expressing
the register and memory accesses of its semantics. This size makes direct
verification against these semantics challenging, which is why Islaris uses
Isla. Isla1 takes as input an opcode and a collection of SMT constraints
on the machine state, and symbolically evaluates the Sail model w.r.t.
those, pruning unreachable branches using an SMT solver. The result of
such a symbolic evaluation for (the opcode of) add sp,sp,64 is the trace
in Figure 14.2. This describes the behavior of the instruction using a
small set of primitive constructs. Ignoring lines 2-5 for the moment, this
trace first reads the value v38 from the stack pointer SP_EL2, on lines 6-7.
This read is expressed by first declaring a new 64-bit bitvector variable
v38 on line 6, and then setting it to the value of the SP_EL2 register on
line 7. Then the trace computes v61 as the bitvector addition of v38 and
64 (0x40). It might seem curious that the addition is computed on 128-bit
integers (by first zero-extending v38) from which the lowest 64 bits are
extracted as the result (via (_ extract 63 0)); this is a vestige of the fact
that the model also computes whether this addition overflows, used for
other variants of add, but discards that in this case. Finally, the result in
v61 is stored back into SP_EL2, and the _PC register is updated to point to
the next instruction. This example shows that Isla can condense the 100+
executed lines of the original model down to the operations that one would
expect of this add instruction: reading the stack pointer, computing the
addition, writing the result back, and incrementing the program counter.

Isla has also simplified away the complexity from the banked stack
pointer registers (which is not covered in some handwritten models, no-
tably excepting the work by Fox2): Armv8-A has distinct exception levels
for user, kernel, hypervisor, and monitor execution, and a stack pointer
register for each. The stack pointer used by add sp,sp,64 is selected
based on the EL and SP fields of the PSTATE register, where the first gives
the current exception level and the second toggles whether the multiple
stack pointers are enabled (when SP=0 all exception levels use the stack
pointer of exception level 0, SP_EL0). Typically, the values of EL and SP

1 Armstrong et al., “Isla: Integrating
Full-Scale ISA Semantics and
Axiomatic Concurrency Models”,
2021 [Arm+21].

2 Fox, “Improved Tool Support for
Machine-Code Decompilation in
HOL4”, 2015 [Fox15].

86

Chapter 14: Overview of the Islaris Approach

are fixed for a given piece of code, and thus it is clear which stack pointer
is used. Isla can exploit this knowledge to simplify the trace by adding
constraints to the symbolic execution. Concretely, the trace in Figure 14.2
was generated with the constraints EL=2 and SP=1 (for code running at
exception level 2 with multiple stack pointers enabled). As a consequence,
the trace directly uses the stack pointer of exception level 2, SP_EL2, and
the reads of SP and EL on lines 4-5 have been simplified to specify their
concrete known values. Without these constraints, the trace distinguishes
five cases (via the mechanism described in §14.4): one for SP=0, and one
for each of the four exception levels when SP=1. The assumptions used by
Isla are recorded in the trace via assume-reg on lines 2-3. These become
proof obligations during verification, so one has to prove that SP and EL

have their assumed values.

e ::= v | not(e) | bvadd(e1, e2) | . . . (SMT-Expr)

v ::= b | true | false | x | . . . (Val)

r ::= ρ | ρ.i (Reg)

τ ::= BitVec(n) | Boolean | . . . (Type)

j ::= ReadReg(r,v) | WriteReg(r,v) (Event)

| ReadMem(vd,va, n) | WriteMem(va,vd, n)

| AssumeReg(r,v) | DeclareConst(x, τ)

| DefineConst(x, e) | Assert(e) | Assume(e)

t ::= [] | j :: t | Cases(t1, . . . , tn) (Trace)

Figure 14.3: Syntax of the Isla
trace language (ITL).

Isla trace language. The Sail ISA definition language is designed to be
as simple as possible while still supporting readable definitions of full-
scale ISAs, but it is still relatively complex, with a rich type structure
(including lightweight dependent types for bitvector lengths) and com-
plex control flow (first-order functions, pattern matching, and loops).
In contrast, the Isla trace language, with syntax in Figure 14.3 (as
adapted for Islaris, and typeset in the mathematical form we use later),
is simple: traces t are trees of events j3 —register and memory accesses,
augmented by declarations and definitions of SMT constants, and asser-
tions, assumptions, and a Cases() construct for branching (explained in
§14.4). We have already seen most of the trace language in Figure 14.2.
For example, ReadReg(R0,v) corresponds to (read-reg |R0| nil v), and
DefineConst(x, e) to (define-const x e). Events rely on SMT-lib expres-
sions e, values v containing bitvectors b and Booleans, register names r,
and value types τ .

3 Note that these ITL events are
not related to DimSum’s notion of
events described in Part IV.

87

Part III: Islaris

14.2 Our Contribution: Islaris

After seeing how Isla can generate specialized traces for single instructions,
we now describe how we use that in modular verification for machine code.
§14.3 describes the Islaris separation logic for reasoning about Isla traces;
§14.4 shows how Islaris handles branching; §14.5 discusses how complete
functions are verified, with a simple memcpy example; §14.6 explains how
Islaris can reason equally well about systems code, e.g., installing and
calling an Armv8-A exception vector table; and §14.7 demonstrates that
Islaris is not specific to Armv8-A but can also be used for RISC-V.

14.3 Islaris Separation Logic

hoare-declare-const
∀v ∈ τ. {P} t[v/x]

{P}DeclareConst(x, τ) :: t

hoare-define-const
e ↓ v {P} t[v/x]

{P}DefineConst(x, e) :: t

hoare-read-reg
{r 7→R v ′ ∗v = v ′ ∗ P} t

{r 7→R v ′ ∗ P} ReadReg(r,v) :: t

hoare-assume-reg
v = v ′ {r 7→R v ′ ∗ P} t

{r 7→R v ′ ∗ P}AssumeReg(r,v) :: t

hoare-write-reg
{r 7→R v ∗ P} t

{r 7→R v ′ ∗ P}WriteReg(r,v) :: t

hoare-cases
∀t ∈ t. {P} t
{P} Cases(t)

hoare-assert
e ↓ v {P ∗v = true} t
{P} Assert(e) :: t

hoare-assume
e ↓ true {P} t
{P}Assume(e) :: t

hoare-instr
{PC 7→R a ∗ instr(a, t) ∗ P} t
{PC 7→R a ∗ instr(a, t) ∗ P} []

hoare-instr-pre
P −∗ Q

{PC 7→R a ∗ a @@ Q ∗ P} []

instr-pre-intro
{PC 7→R a ∗Q ∗ P} t

instr(a, t) ∗ P ⊢ a @@ Q

Figure 14.4: Key rules of the
Islaris separation logic.

The core of Islaris is the Islaris separation logic for reasoning about Isla
traces. We present the logic using a Hoare double {P} t, which asserts
that the Isla trace t is safe assuming the precondition P (technically, Islaris
proves more than safety; see §16.2). Hoare doubles are commonly used
in Hoare logics for assembly languages,4 as the postconditions of Hoare
triples are difficult to interpret with assembly’s unstructured indirect
jumps.

We now explain how we verify the addition to the SP_EL2 register on
lines 6-10 of Figure 14.2—the following implication, where tSP comprises
those four Isla trace events:

{SP_EL2 7→R (b+ 64)} t ⇒ {SP_EL2 7→R b} tSP ++ t

Intuitively, assuming that SP_EL2 initially contains the 64-bit bitvector b,
we have to show that after those four trace events, SP_EL2 contains b+64,
where (+) is 64-bit bitvector addition (observe how the precondition on
the left of the implication acts like a postcondition). Note that, similar to
Myreen and Gordon,5 the Islaris separation logic uses a points-to predicate
r 7→R v for asserting that register r contains the value v . This is useful
for dealing with the large number of registers in the full Armv8-A model,
as irrelevant registers can easily be framed away.

4 Chlipala, “Mostly-Automated
Verification of Low-Level programs
in Computational Separation
Logic”, 2011 [Chl11]; Jensen et al.,
“High-Level Separation Logic for
Low-Level Code”, 2013 [JBK13].

5 Myreen and Gordon, “Hoare Logic
for Realistically Modelled Machine
Code”, 2007 [MG07].

88

Chapter 14: Overview of the Islaris Approach

To prove this implication, we first verify the read of the SP_EL2 register in
two steps. First, the declaration of the v38 variable on line 6 is handled by
hoare-declare-const (Figure 14.4), which non-deterministically chooses
a bitvector value v to substitute for v38. This rule uses v ∈ τ to assert
that the value v has type τ (here, that v is a 64-bit bitvector). Then,
hoare-read-reg uses SP_EL2 7→R b to determine that v must be equal
to b, i.e., it provides v = b as an assumption for the following proof.

In contrast, in hoare-assume-reg, v = v ′ is an obligation. This use
of “assume” might seem counter-intuitive, but it makes sense from the
perspective of Isla: AssumeReg is an assumption used by Isla’s symbolic
execution. The same applies to the names of Assert and Assume discussed
later.

The rest of the verification is straightforward: on line 8, define-const
is handled by hoare-define-const which computes b+64 and, after some
simplification, substitutes it for v61. Finally, the write of this value to
SP_EL2 is verified using hoare-write-reg.

Islaris proof automation. Applying these proof steps by hand quickly
becomes quite tedious, especially for more complex instructions with
many events. Islaris thus provides proof automation that automatically
completes the verification described above. We describe the automation
in §16.3.

14.4 Intra-instruction Branching

The Sail semantics for a single instruction typically involves many Sail-
language control-flow choices, e.g., to select among the Arm stack-pointer
registers as mentioned in §14.1. In many cases, these are resolved by the
assumed constraints, and the instruction’s behavior can be represented
by a linear trace. But what if this is not the case? The canonical
examples are conditional-jump instructions such as beq -16, jumping 16
bytes backwards if the zero flag is set, whose semantics include a Sail-level
branch determined by the flag register (which is usually written by a
preceding cmp instruction).

The Isla trace of beq -16 is shown in Figure 14.5 (simplified for pre-
sentation to remove assumptions about nine different system registers).
It reads the zero flag (PSTATE.Z) on line 3 and computes the branching
condition in v37 on line 4 (i.e., whether PSTATE.Z is set). The cases on
line 5 expresses the control-flow choice by giving two subtraces. The
subtraces begin with assertions about their respective branch conditions.
The first asserts on line 7 that v37 is true (i.e., the zero flag is set) and
subtracts 16 from _PC (expressed as addition of 0xfffffffffffffff0 in
64-bit arithmetic). The second subtrace asserts on line 14 that v37 is
false (i.e., the zero flag is not set), and sets _PC to the address of the next
instruction.

During verification, the cases construct is handled by hoare-cases,
which requires verifying the subtraces independently. In this rule, both
branches use the full separation logic precondition P , since the actual ex-
ecution will follow only one branch. The asserts within the two branches

89

Part III: Islaris

1 (trace
2 (declare-const v27 (_ BitVec 1))
3 (read-reg |PSTATE| ((_ field |Z|)) (_ struct (|Z| v27)))
4 (define-const v37 (= v27 #b1))
5 (cases
6 (trace
7 (assert v37)
8 (declare-const v38 (_ BitVec 64))
9 (read-reg |_PC| nil v38)

10 (define-const v39 (bvadd v38 #xfffffffffffffff0))
11 (define-const v52 v39)
12 (write-reg |_PC| nil v52))
13 (trace
14 (assert (not v37))
15 (declare-const v38 (_ BitVec 64))
16 (read-reg |_PC| nil v38)
17 (define-const v39 (bvadd v38 #x0000000000000004))
18 (write-reg |_PC| nil v39))))

Figure 14.5: Isla trace of
beq -16 (simplified).

1 void memcpy(unsigned char *d,
2 unsigned char *s,
3 size_t n) {
4 for (size_t i = 0; i < n;
5 i++) {
6 d[i] = s[i];
7 }
8 }

1 memcpy:cbz x2, .L1 ; if(x2 == 0) goto .L1;
2 mov x3, 0 ; x3 = 0;
3 .L3: ldrb w4, [x1,x3] ; w4 = *(x1 + x3);
4 strb w4, [x0,x3] ; *(x0 + x3) = w4;
5 add x3, x3, 1 ; x3 = x3 + 1;
6 cmp x2, x3 ; (with next line)
7 bne .L3 ; if(x2 != x3) goto .L3;
8 .L1: ret ; return

1 memcpy: beqz a2, .L2
2 .L1: lb a3, 0(a1)
3 sb a3, 0(a0)
4 addi a2, a2, -1
5 addi a0, a0, 1
6 addi a1, a1, 1
7 bnez a2, .L1
8 .L2: ret

Figure 14.6: C implementation
of a memcpy-like function (first
column) together with Arm
assembly (second column,
compiled with GCC 11.2 -O2)
and RISC-V assembly (third
column, compiled with Clang
13.0.0 -O2). We actually verify
the machine-code versions of
this assembly. For readability,
the Arm assembly is annotated
with a simplified pseudocode
version of its semantics.

are verified using hoare-assert. This rule provides the respective branch-
ing condition as an assumption within each branch (similar to hoare-

read-reg). Overall, hoare-cases combined with hoare-assert works like
the standard rule for an if-then-else in other program logics. The rest of
the trace is verified using the rules explained in §14.3.

All conditional execution is expressed using such cases, with uncon-
strained non-determinism over subtraces, followed by asserts providing
additional assumptions implied by the choice of the case.

14.5 Verification of a Complete C Function: memcpy

So far, we have discussed how Islaris reasons about single instructions.
Next, we turn to code containing multiple instructions. We illustrate this
on the naive C memcpy implementation in Figure 14.6, compiled to Arm
using GCC.

Our goal is to show that the memcpy implementation satisfies the spec-
ification in Figure 14.7. Lines 1, 2 of the specification encode the pre-
condition on the registers used by memcpy. Following the Armv8-A ABI
C calling convention, x0, x1, and x2 contain the arguments d, s, and
n; x3 and x4 are scratch registers; and x30 contains the return address
r. Line 3 states that memcpy also requires ownership of standard system
registers and the flags registers (like PSTATE.Z). This is encoded using
the reg_col(...) predicate, which is shorthand for a collection of register
points-to assertions (described further in §16.1).

90

Chapter 14: Overview of the Islaris Approach

memcpy_spec ≜ ∃s d n r Bs Bd.

x0 7→R d ∗ x1 7→R s ∗ x2 7→R n ∗ (1)

x3,w4 7→R _ ∗ x30 7→R r ∗ (2)

reg_col(sys_regs) ∗ reg_col(CNVZ_regs) ∗ (3)

s 7→∗
M Bs ∗ d 7→∗

M Bd ∗ n = |Bs| ∗ n = |Bd| ∗ (4)

r @@ ((5)

s 7→∗
M Bs ∗ d 7→∗

M Bs ∗ (6)

x0, x1, x2, x3,w4, x30 7→R _ ∗ (7)

reg_col(sys_regs) ∗ reg_col(CNVZ_regs)) (8)

Figure 14.7: Specification of
memcpy (Arm assembly ver-
sion).

Finally, Line 4 asserts that the pointers s and d point to memory
containing the lists of bytes Bs and Bd of length n, using the points-to
predicate for arrays (7→∗

M) (see also §16.1). The rest of the specification,
starting on line 5, describes the postcondition: memcpy ensures that after
it is done, the bytes Bs stored in s have been copied to d (Line 6),
and it returns ownership of the registers mentioned in the precondition
(Lines 7, 8). The r @@ P assertion used to state the postcondition is
described below.

Inter-instruction reasoning. Let us now take a step back to see how
Islaris bridges the verification between multiple instructions. Consider
the rules for {P} [], i.e., for the empty trace reached after having fully
executed an instruction. There are two ways to proceed.

First, if the Isla trace of the next instruction is known, verification
directly continues with this trace. This is encoded in hoare-instr: if the
PC register contains the address a at the end of an instruction, and one
knows that instruction memory at a contains an instruction with Isla
trace t (encoded via instr(a, t)), the verification continues with t.

Second, if the code starting at the next instruction has been verified
w.r.t. a precondition Q, it is enough to prove Q. This is encoded in hoare-

instr-pre using a @@ Q, which asserts that the instruction at address
a has been verified assuming precondition Q (the assertion a @@ Q is
inspired by Chlipala6). The assertion can be established from instr(a, t) by
proving a Hoare double for t as in instr-pre-intro. This assertion is used
in Figure 14.7, where the postcondition of memcpy is represented as the “Q”
of this assertion, i.e., as the precondition of memcpy’s continuation. The
verification of ret on line 8 uses hoare-instr-pre, and thus establishes
the postcondition.

Verification of memcpy. The main task of the verification of the memcpy

function is to find a loop invariant I for the code between .L3 and .L1.
Here, we use the invariant that the first m bytes, where m is the value of
x3, have already been copied from s to d, and the remaining bytes of d are
unchanged. With this invariant I, we establish .L3 @@ I. The proof can

6 Chlipala, “Mostly-Automated
Verification of Low-Level programs
in Computational Separation Logic”,
2011 [Chl11].

91

Part III: Islaris

1 .org 0x80000
2 _start: ; *** initialisation at EL2 ***
3 mov x0, 0xa0000
4 msr vbar_el2, x0 ; Install exception vector
5 mov x0, 0x80000000
6 msr hcr_el2, x0 ; Hypervisor config: aarch64 at EL1
7 mov x0, 0x3c4
8 msr spsr_el2, x0 ; EL1 config (use SP_EL0, no interupts)
9 mov x0, 0x90000

10 msr elr_el2, x0 ; Write EL1 start address to ELR_EL2
11 eret ; Simulate an "exception return"
12 .org 0x90000
13 enter_el1: ; *** calling the vector from EL1 ***
14 mov x0, xzr ; Zero out x0.
15 hvc 0 ; Perform a hypervisor call
16 b . ; Hang forever in a loop
17 .org 0xa0000
18 el2_exception_vector:;*** the exception vector table ***
19 ...
20 ; Synchronous - Lower EL with AArch64
21 mov x0, 42 ; Put 42 in x0
22 eret ; Return from exception

Figure 14.8: Install and use an
exception vector.

assume that this assertion holds for later iterations of the loop, thanks to
step-indexing in the underlying Iris logic.

The proof is almost completely automated by the Islaris proof au-
tomation. The proof automation handles all separation logic reasoning
for the 169 events of the Isla traces in 9 seconds, and most generated
side conditions are automatically discharged via a solver for bitvectors
provided by Islaris. The only manual steps are hints related to array
indices that are accessed, and pure reasoning about lists to prove that
one more byte is copied from s to d after each iteration of the loop.

14.6 Installing and Using an Exception Vector

The above memcpy is expressed in C, and the binary we verify uses only
user-mode instructions, but because Islaris handles the full ISA, we can
verify code that involves sequential aspects of the systems architecture,
and system-mode instructions, in the same way, and just as easily and
authoritatively. To illustrate this, we hand-wrote an Arm assembly
program (Figure 14.8) that sets up an exception vector table to handle
hypervisor calls at exception level 2 (EL2), sets up the system state to
transition to exception level 1 (EL1), and then performs a hypervisor call
(hvc) at EL1, which is handled at EL2 before returning to EL1 with eret.
The exception handler for the hypervisor call is itself very simple: it sets
the value of register x0 to 42. This assembles, links, and runs correctly
on a Raspberry Pi 3B+, and on QEMU.

The specification we prove for this code states that, upon reaching line
16, register x0 contains the expected value 42. The interesting part of this
verification is how Islaris handles the (changing) system configuration.
The system configuration in the Sail models is largely held in registers.

92

Chapter 14: Overview of the Islaris Approach

For Armv8-A, these include around 500 system registers from the Arm
ASL, alongside the normal general-purpose registers; the ASL/Sail defini-
tion refers to these in many places. An example is the hcr_el2 register
which controls many aspects of the Armv8-A virtualization. Here, we
care about bit 31 of hcr_el2 (set on line 6) which switches the EL1 ex-
ception level from 32-bit mode (AArch32) to 64-bit mode (AArch64).
Reasoning about hcr_el2 is like reasoning about any other register: the
Isla trace of msr hcr_el2, x0 contains a (write-reg |HCR_EL2| v0) event
which is verified using hoare-write-reg, turning HCR_EL2 7→R _ into
HCR_EL2 7→R 0x80000000 (which is the word all of whose bits are 0,
except the 31st bit, which is 1). The values of hcr_el2 and other system
registers are passed to Isla to simplify the traces of the instructions run-
ning at EL1 (lines 14-16) and the HCR_EL2 7→R 0x80000000 assertion is
used to discharge the corresponding assume-reg inserted by Isla.

14.7 RISC-V

We focused so far on Armv8-A, but it is important to note that almost
everything presented here, including the tooling, is independent of the
underlying architecture. To use Islaris as a verification tool for RISC-
V code instead of Armv8-A code, one just needs to give the RISC-V
Sail model instead of the Armv8-A Sail model to Isla, with a suitable
assumption on the initial machine configuration. To demonstrate this, we
compiled the memcpy C function from Figure 14.6 for RISC-V using the
mainstream Clang compiler, and verified the resulting code (third column
in Figure 14.6) using Islaris.

Although these two architectures differ greatly (e.g., in their definitions
of memory accesses), we can use the same assertions and rules described
earlier, as the Isla traces are expressed in the same language. The
specification of memcpy is thus very similar between the two architectures,
differing only in the calling convention, system registers, valid ranges of
memory addresses, and the required alignment of the return address (the
last two omitted for presentation). Crucially, the specifications use the
same assertion language, and the Islaris proof automation works equally
well for both architectures.

14.8 Verification Workflow

Having seen how various kinds of programs can be verified using Islaris,
we recap the verification workflow when using Islaris.

The first step of Islaris-based verification is to run Isla with the right
constraints to generate the instruction traces. For most instructions the
default constraints suffice to generate sensible traces but more complex
instructions (e.g. eret) require specialized constraints (e.g. on specific
bits of hcr_el2). These constraints are usually determined by knowledge
of the architecture, knowledge of the intended context and behavior of
the code, and interactive exploration using Isla. These constraints are
enforced by the previously explained assume and assume-reg events.

93

Part III: Islaris

The next step is to write a specification for the code and use the proof
automation to discharge the separation logic reasoning. These steps are
often intertwined as one often interactively modifies the specification (e.g.
adding register points-to assertions) and re-runs the proof automation
until it successfully discharges the separation logic reasoning. For large
examples one can use intermediate specifications for chunks of code to
make this process faster.

After the separation logic reasoning is discharged, the last step is to
solve the pure side conditions generated by the verification. These are
usually discharged by a combination of automatic solvers and manual
reasoning, depending on the exact nature of the side conditions.

94

Chapter 15

Isla Trace Language

The Isla trace language (ITL) was originally developed solely for SMT-
based symbolic execution.1 This chapter describes our operational seman-
tics for ITL that enables reasoning about Isla traces in Coq.

step-read-reg-eq
Σ[r] = v

⟨ReadReg(r,v) :: t,Σ⟩ −→⟨t,Σ⟩

step-read-reg-neq
Σ[r] ̸= v

⟨ReadReg(r,v) :: t,Σ⟩ −→⊤
step-write-reg

⟨WriteReg(r,v) :: t,Σ⟩ −→⟨t,Σ[r 7→ v]⟩

step-read-mem-eq
|b| = n Σ[a..a+n] = enc(b)

⟨ReadMem(b, a, n) :: t,Σ⟩ −→⟨t,Σ⟩

step-read-mem-event
|b| = n Σ[a..a+n] = ⊥ κ = R(a, b)

⟨ReadMem(b, a, n) :: t,Σ⟩ κ−→⟨t,Σ⟩

step-read-mem-neq
|b| = n Σ[a..a+n] ̸= ⊥ Σ[a..a+n] ̸= enc(b)

⟨ReadMem(b, a, n) :: t,Σ⟩ −→⊤

step-write-mem
|b| = n Σ[a..a+n] ̸= ⊥

⟨WriteMem(a, b, n) :: t,Σ⟩ −→⟨t,Σ[a..a+n 7→ enc(b)]⟩

step-write-mem-event
|b| = n Σ[a..a+n] = ⊥ κ = W(a, b)

⟨WriteMem(a, b, n) :: t,Σ⟩ κ−→⟨t,Σ⟩

step-declare-const
v ∈ τ

⟨DeclareConst(x, τ) :: t,Σ⟩ −→⟨t[v/x],Σ⟩

step-define-const
e ↓ v

⟨DefineConst(x, e) :: t,Σ⟩ −→⟨t[v/x],Σ⟩

step-assert-true
e ↓ true

⟨Assert(e) :: t,Σ⟩ −→⟨t,Σ⟩

step-assert-false
e ↓ false

⟨Assert(e) :: t,Σ⟩ −→⊤

step-assume-true
e ↓ true

⟨Assume(e) :: t,Σ⟩ −→⟨t,Σ⟩

step-assume-reg-true
R[r] = v

⟨AssumeReg(r,v) :: t,Σ⟩ −→⟨t,Σ⟩

step-cases
1 ≤ i ≤ n

⟨Cases(t1, . . . , tn),Σ⟩ −→⟨ti,Σ⟩

step-nil
Σ[PC] = a Σ[a] = t

⟨[],Σ⟩ −→⟨t,Σ⟩

step-nil-end
Σ[PC] = a Σ[a] = ⊥ κ = E(a)

⟨[],Σ⟩ κ−→⊤

step-fail
No other rule reduces ⟨t,Σ⟩

⟨t,Σ⟩ −→⊥

Figure 15.1: Operational
semantics of the Isla trace
language.

Traces, whose syntax is given in Figure 14.3, are reduced from left
to right using the rules of Figure 15.1. The operational semantics is
a labeled transition system over machine configurations σ. A machine
configuration can either be a pair ⟨t,Σ⟩ of a trace t and a machine state, or
a final configuration ⊥ or ⊤ (denoting failure and successful termination).
The single-step relation (κ−→) is annotated with an (optional) label κ

representing externally visible events, which are then accumulated by the

1 Armstrong et al., “Isla: Integrating
Full-Scale ISA Semantics and
Axiomatic Concurrency Models”,
2021 [Arm+21].

95

Part III: Islaris

multistep relation (κs−→∗) in κs.

κ ::= R(a,vd) | W(a,vd) | E(a) (Label)

Most reduction rules inspect and/or modify the machine state Σ, which
is a triple (R, I,M) of finite partial maps.

R : Reg ⇀ Val I : Addr ⇀ Trace M : Addr ⇀ Byte

The register map R associates registers with their value (e.g., a bitvec-
tor), the instruction map I associates addresses (i.e., 64-bit bitvectors)
to Isla traces (i.e., the trace for the instruction stored at the address),
and the memory map M associates addresses to bytes (i.e., 8-bit bitvec-
tors). Assuming Σ = (R, I,M), we write Σ[r] for R[r] and Σ[r 7→ v] for
(R[r 7→ v], I,M), and similarly for I and M .

Non-determinism. The operational semantics of ITL are non-standard,
because ITL is based on SMT constraints, not designed as a programming
language. One therefore first introduces new (symbolic) variables via
declare-const, which are then restricted by later constructs like read-reg

or assert, as seen e.g., in Figure 14.2 (in a more standard programming
language, the read would return a value). To model this, the operational
semantics of ITL makes heavy use of non-determinism:2 the operational
semantics of DeclareConst(x, τ) :: t (given by step-declare-const) non-
deterministically picks a value v of type τ and substitute it for x in t.
This non-determinism is then restricted by events later in the trace. For
example, the operational semantics of ReadReg(r,v) compares v with the
value stored in r, and only allows further execution if the two values
coincide (step-read-reg-eq). Otherwise, execution terminates in the
state ⊤ (step-read-reg-neq), and thus these executions do not have to
be considered further during verification. Overall, this leads to the proof
rule hoare-read-reg in Figure 14.4. Note that the use of ⊤ instead of ⊥
is crucial here, as otherwise it would be trivial to reach the failure state
⊥ by picking a wrong value in step-declare-const.

Non-determinism is also used for branching, as explained in §14.4.
Traces of instructions with branching (e.g., conditional jumps) typically
contain a Cases(t1, t2) that splits the trace into multiple subtraces. The
operational semantics non-deterministically picks one of these subtraces
(step-cases), but this non-determinism is then restricted by Assert events
on each subtrace. An Assert(e) ensures that one only has to consider
this subtrace if e evaluates to true (step-assert-true, using a standard
big-step semantics of SMT expressions e ↓ v). Otherwise, execution
terminates with ⊤, and this subtrace can be ignored (step-assert-false).
So, intuitively, an Assert can be seen as an assertion proven by Isla during
symbolic execution and assumed by verification.

The dual of these assertions are assumptions used by Isla to simplify
the trace. These are encoded using Assume and AssumeReg, which behave
like Assert and ReadReg, except that they terminate in the failure state ⊥,
instead of ⊤ (step-fail). One therefore has to prove during verification
that these assumptions used by Isla hold (since the verification ensures
that ⊥ is not reachable).

2 All non-determinism in Islaris
is demonic, for a more detailed
comparison of angelic and demonic
non-determinism, see Part IV.

96

Chapter 15: Isla Trace Language

Memory events. The ITL memory events ReadMem and WriteMem are
similar to the corresponding register events, except that they read and
write (little-endian) bitvectors from and to memory (enc(b) denotes the
little-endian encoding of bitvector b and |b| the number of bytes in this
encoding). Reads and writes for unmapped memory (step-read-mem-

event and step-write-mem-event) are treated as externally visible events,
modeling interaction with devices via memory-mapped IO. This will be
important for the adequacy of the Islaris separation logic (§16.2).

Instruction fetch. At the end of the trace of an instruction (configuration
of the form ⟨[],Σ⟩), rule (step-nil) retrieves the address of the next
instruction from the PC register, and loads the trace of the next instruction
from the instruction map. If there is no such trace, the operational
semantics terminates with the visible event E(a) (step-nil-end). (The
name of the PC register is the only part of the operational semantics that
is specific to the underlying Sail model.)

97

Chapter 16

Islaris Separation Logic

This chapter presents the Islaris separation logic: the interesting assertions
and rules not already in §14 (§16.1 and Figure 16.1), the adequacy theorem
(§16.2), and proof automation (§16.3).

16.1 Assertions and Rules

Register collections. We have already seen the r 7→R v assertion, asserting
that the register r contains the value v , with its corresponding rules, in
Figure 14.4 (§14.3). The Islaris separation logic additionally provides
the reg_col(C) assertion that collects a set of r 7→R v into a single
assertion via a big separating conjunction. This is useful to deal with
large numbers of registers. For example, reg_col(sys_regs) asserts the
values of commonly used systems registers like PSTATE.SP. One can remove
and add elements from reg_col(C) via eq-reg-col-reg, and with this
rule it is straightforward to derive rules for the register operations (e.g.,
hoare-read-reg-col).

Memory. The main assertion about memory is a 7→M b, which asserts
that the memory at address a stores the (little-endian encoded) bitvector
b. The rule hoare-read-mem for reading memory behaves similarly to
the corresponding rule for registers, except that one has to check that
the number of bytes of b, |b|, corresponds to the size of the read. The
rule for writing works accordingly, and is omitted for brevity. Islaris also
provides the a 7→∗

M B assertion to handle arrays of bitvectors B, since
arrays are common in low-level code. The rules for this assertion (e.g.,
hoare-read-mem-array) can be easily derived from the rules for a 7→M b.

16.2 Adequacy of the Islaris Separation Logic

Islaris’s adequacy theorem describes the guarantee that a successful ver-
ification provides. There are two parts to this guarantee. First, Islaris
proves that the program never reaches the ⊥ state, and thus that all
assumptions used by Isla hold. Second, Islaris proves a (user-defined)
safety property about the externally visible behavior of the program (i.e.,
reads and writes to unmapped memory and termination as described
in §15). For this, Islaris provides the spec(s) assertion stating that the
externally visible behavior of the program satisfies the specification s given
as a set of label sequences. This assertion is used in the following rule for

99

Part III: Islaris

eq-reg-col-reg
(r,v) ∈ C

reg_col(C) ⊣⊢ reg_col(C \ (r,v)) ∗ r 7→R v

hoare-read-reg-col
(r,v ′) ∈ C {reg_col(C) ∗v = v ′ ∗ P} t
{reg_col(C) ∗ P} ReadReg(r,v) :: t

hoare-read-mem
|b′| = |b| = n {a 7→M b ∗ b = b′ ∗ P} t
{a 7→M b ∗ P} ReadMem(b′, a, n) :: t

hoare-read-mem-array
0 ≤ i < |B| |b′| = |Bi| = n {a 7→∗

M B ∗Bi = b′ ∗ P} t
{a 7→∗

M B ∗ P} ReadMem(b′, a+ i ∗ n, n) :: t

Figure 16.1: Selected rules of
the Islaris separation logic.reading from unmapped memory (there is a similar rule for writing):

hoare-read-mem-mmio
|b| = n

[R(a, b)] ∈ s
{
a 7→IO

M n ∗ spec({κs |R(a, b) :: κs ∈ s}) ∗ P
}
t{

a 7→IO
M n ∗ spec(s) ∗ P

}
ReadMem(b, a, n) :: t

When reading a value v from unmapped memory at address a (witnessed
by the assertion a 7→IO

M n), one has to prove that the event R(a,v) is
allowed by the spec s and the rest of the execution can only produce
events κs where R(a, b) :: κs ∈ s.

We can now state adequacy for Islaris:

Theorem 2 (Adequacy) For all initial states Σ = (R, I,M), the following rule is sound:reg_col(R) ∗ spec(s) ∗ ∗
I[a]=t

instr(a, t) ∗ ∗
M [a]=b

a 7→M b ∗ ∗
M [a]=⊥

a 7→IO
M 1

 [] ⟨[],Σ⟩ κs−→∗σ

σ ̸= ⊥ ∧ κs ∈ s

This captures the above intuition: for all initial states Σ, if one can
prove a Hoare double assuming all the ownership from the initial state
and spec(s), executions from this initial state never reach ⊥, and the
produced events satisfy s.

16.3 Islaris Proof Automation

While the above rules allow the verification of machine-code programs,
using them directly would be quite tedious, since Isla expands every
instruction to several ITL events. Thus, a crucial part of Islaris is proof
automation, which is challenging because it should simultaneously be
comprehensive (covering as much reasoning as possible), and efficient.
As seen in Part II, RefinedC1 addresses this problem by using Lithium.
However, there is a fundamental challenge when applying Lithium to
Islaris: RefinedC avoids backtracking by using rich types and the structure
of source C programs to guide Lithium’s proof search. However, Islaris
has no types and, additionally, most of the source program structure has
been lost. Up front, it is unclear how to avoid expensive backtracking
during proof search.

Our key insight is that—with some effort—backtracking can also be
avoided using the separation logic context, which is available in Islaris. We
illustrate this using ReadReg(r,v). Let us start by considering the following

1 Sammler et al., “RefinedC: Au-
tomating the Foundational Veri-
fication of C Code with Refined
Ownership Types”, 2021 [Sam+21b].

100

Chapter 16: Islaris Separation Logic

naive representations of hoare-read-reg and hoare-read-reg-col in
Lithium:
li-read-reg-naive
1: wp ReadReg(r,v) :: t :-
2: ∃v ′. exhale r 7→R v ′; inhale v = v ′ ∗ r 7→R v ′; wp t

li-read-reg-col-naive
1: wp ReadReg(r,v) :: t :-
2: ∃C v ′. exhale reg_col(C) ∗ (r,v ′) ∈ C;
3: inhale v = v ′ ∗ reg_col(C); wp t)

These rules are stated using Iris’s weakest precondition, wp t (Hoare dou-
bles are defined as {P} t ≜ P −∗ wp t). They apply when the automation
needs to verify a trace starting with ReadReg(r,v). Rule li-read-reg-

naive instructs Lithium to find an assertion r 7→R v ′ in the context, add
the assumptions v = v ′ and r 7→R v ′ to the context, and finally continue
with proving wp t. Rule li-read-reg-col-naive is similar except that it
requires finding reg_col(C) and proving (r,v ′) ∈ C.

There are two problems when doing proof search with these two rules.
(1) It is not clear which rule to apply when verifying a trace starting
with ReadReg. One solution is to try each rule in turn, but this requires
backtracking and makes proof search inefficient. (2) A similar issue arises
with rule li-read-reg-col-naive alone in cases where the context contains
multiple register collections: finding the appropriate one also requires
backtracking.

Our solution to these problems is to define a new find function r 7→R −2

that searches for r in the separation logic context, which we then use
to replace the two rules above with a single rule that does not require
backtracking:
li-read-reg
1: wp ReadReg(r,v) :: t :-
2: x←find r 7→R −;
3: match x with
4: | v ′ ⇒ inhale v = v ′ ∗ r 7→R v ′; wp t

5: | C ⇒ ∃v ′. exhale (r,v ′) ∈ C; inhale v = v ′ ∗ reg_col(C); wp t)

If r 7→R − finds r 7→R v ′, then the rule above goes into the first branch
(corresponding to li-read-reg-naive).3 If r 7→R − finds reg_col(C) with
(r,_) ∈ C,4 the rule goes into the second branch (corresponding to
li-read-reg-col-naive).

In effect, we have solved the problems above by shifting the role of
backtracking over nondeterministic rules to a deterministic instruction
r 7→R − which looks through the separation logic context efficiently.

A similar find function is used to decide between the rules for mem-
ory points-to predicates (hoare-read-mem, hoare-read-mem-array, and
hoare-read-mem-mmio). It searches the context for an a′ 7→M b, a′ 7→∗

M B,
or a′ 7→IO

M n assertion that contains the address a. Checking this con-
tainment requires querying a bitvector solver, as a is usually a complex
bitvector expression computed by the Sail model.

2 See §3.5 for an introduction to find
functions in Lithium.

3 The match statement is a meta-
level match statement on the return
value of r 7→R − that Lithium
automatically reduces.

4 To achieve this, we use a feature
of Lithium not described in Part I:
When providing a rule for a find
function, Lithium allows specifying
a custom tactic that determines if
the pattern matches an assertion in
the context. We use this to check
that only reg_col(C) assertions with
(r,_) ∈ C are returned by the find
function.

101

Chapter 17

Translation Validation for RISC-V

To explore whether one can remove Isla and the SMT solver from the
Islaris TCB, we built infrastructure to prove (in Coq) correctness of the
Isla-generated traces with respect to the Coq definitions generated by
Sail from the Sail RISC-V model. This is a form of translation validation,
rather than an up-front correctness proof of Isla: given an Isla-generated
trace, the infrastructure can be used to prove that the trace is refined by
the Sail-generated Coq model. This proof can then be composed with
Theorem 2 to obtain a theorem that only mentions the Sail-generated
Coq model and the user-written specification, without Isla or the Islaris
separation logic. We have also investigated this approach for Armv8-A
but found it infeasible, since the size of the Armv8-A model means it
cannot be manipulated efficiently in Coq.

We first define an operational semantics for the free monad used by
the Sail-generated Coq model, with constructors corresponding to the
ITL events in Figure 14.3. The state of this semantics is similar to that
of ITL except that the current instruction is an element m of the monad,
instead of an ITL trace, and the instructions ICoq are represented as
bitvector opcodes not Isla traces. We then define a notion of refinement
σCoq ⊑ σITL.1 Crucially, when proving such refinements one can use the
assumptions given by Assume and AssumeReg. Finally, we prove this
refinement by establishing a simulation m ∼ t between the instructions:2

Theorem 3 (Isla validation)

∀a. ICoq[a] ∼ IITL[a]

⟨Done, (R, ICoq,M)⟩ ⊑ ⟨[], (R, IITL,M)⟩

To evaluate this infrastructure, we have proven m ∼ t for all instructions
that appear in the RISC-V memcpy binary. The proofs are mostly auto-
mated using custom tactics, but require a few manual steps to match
the branches of the Coq model to the subtraces of the Isla trace, and to
check some facts that were automatically proven by the SMT solver. We
also used this infrastructure to obtain a closed statement about a simple
program that only mentions the Coq model and the user-defined specifi-
cation by composing Theorem 2 and Theorem 3. Overall, this shows that
the operational semantics described in §15 is sensible (especially its use of
non-determinism and Assert vs. Assume), and increases confidence in our
use of Isla and the underlying SMT solver, showing that this example does

1 This notion of refinement is
different from DimSum’s refinement
described in Part IV.

2 Done initiates the fetch of the next
instruction, similar to []

103

Part III: Islaris

not trigger any bugs in those. We did find a bit-flip bug in a primitive
used by the Sail-generated Coq (not previously thoroughly exercised).

104

Chapter 18

Evaluation

We demonstrate that Islaris supports practical verification of a range of
system software idioms. Our examples are not large in instruction count,
but direct proofs above the Arm and RISC-V ISA models would require
reasoning about many thousands of lines of those specifications, and they
involve many system registers. They include part of a real-world exception
handler that installs a new exception vector, and that is parametric on
a relocation address offset; faulting from misaligned accesses; memory-
mapped IO; and production C compiler output with inline assembly and
function pointers. The hvc and memcpy examples are described in §14.

Relocation-parametric real-world code: pKVM exception handler. This
is part of an exception handler taken from real-world code, namely the
pKVM hypervisor under development by Google. The handler branches to
one of two sub-handlers, depending on the cause of the exception and the
value of a hypercall parameter. We assume one of these to be correct, as it
calls into the large pKVM C codebase, but verify the hypercalls handled
by the other, two of which replace the exception vector table—in total
interacting with 49 different system registers. The verification establishes
that each hypercall returns to the correct address at the correct exception
level with appropriately updated system state.

This example exercises Islaris’s ability to handle parametric traces. The
hypervisor code is loaded into memory at an address offset determined
at runtime, so a branch from the handler into the rest of the hypervisor
needs to be adapted to that offset. This is done during initialization by
patching four Armv8-A instructions, that each load a 16-bit immediate,
to use the appropriate parts of the correct value. We thus have to verify
a family of programs, one for each possible offset value. To achieve this,
we use Isla’s support for partially symbolic opcodes to generate traces for
these instructions that are parametric in their immediate values. We can
then verify for all offsets that the patched code will branch to the correct
address.

The example also requires reasoning about an instruction under some-
what relaxed constraints. The two hypercalls that update the exception
vector table (HVC_SOFT_RESTART and HVC_RESET_VECTORS) both conclude
with the same block of code, ending in an eret instruction to return from
the exception. The eret instruction uses the SPSR register to determine
the values of various registers to be restored at the termination of an
exception handler. However, the HVC_SOFT_RESTART hypercall updates

105

Part III: Islaris

SPSR so that eret returns to exception level 2 (rather than the exception
level of the caller)—this is necessary during the initialization of the hy-
pervisor. Unfortunately this means neither the original nor the updated
value of SPSR can be used to simplify the traces for eret. Instead, we give
a more complex constraint, capturing both possible values. This results
in a set of traces simple enough that we can prove in Coq which traces
are relevant for each fixed value of SPSR. This allows us to recover fully
simplified reasoning.

Unaligned access faults. To show how one can reason accurately about
faults, we verified a misaligned store w.r.t. an Armv8-A configuration in
which this raises an exception. We prove it jumps to the correct exception
handler, saves the PC and PSTATE registers, masks interrupts, and updates
the exception syndrome and fault address registers.

Interaction with MMIO: UART. To evaluate Islaris’s capabilities to
verify interaction with memory-mapped IO, we have verified the binary
for the following C function, writing a character to a memory-mapped
UART.

1 void uart1_putc(char c) {
2 while(!(*LSR & LSR_TX_EMPTY)) { asm volatile("nop"); }
3 *IO = (u32) c; }

The code polls whether the UART is ready to receive an input and then
writes c to a special IO memory location; it runs on a Raspberry Pi 3B+
and in QEMU. We verified the specification:

srec(R.∃b. scons(R(LSR, b), b[5] ? scons(W(IO, c), s) : R)))

This specification uses a loop (encoded via the least fixpoint combinator
srec) to read b from the memory-mapped location LSR (via scons(κ, s)
which prepends κ to the elements in s). If the fifth bit of b (corresponding
to LSR_TX_EMPTY) is set, the UART is ready to receive input and the char-
acter c is written to the memory-mapped IO register, and the specification
continues with s. Otherwise, it tries again.

C inline assembly: rbit. C code using inline assembly is often challenging
for C verification tools, but not for Islaris, which applies to the compiled
machine code. We show this by verifying a (compiled) C function that
reverses the bits of its argument via an inline rbit instruction. The
combination of C and assembly is handled automatically, with manual
proof needed only to relate the complex bitvector term produced by Isla
to the function’s intuitive specification.

Higher-order reasoning: Binary search. C supports a limited form of
higher-order functions, via function pointers. To show how Islaris handles
this, we verified a binary search implementation that is parametric over
the comparison function (based on the binary search case study discussed
in §10). The implementation is written in C and compiled with clang
-O2. In the verification, the function pointer is encoded via the a @@

106

Chapter 18: Evaluation

P assertion and a formalization of the Arm AArch64 ABI C calling
convention. Since this encoding only uses standard Islaris constructs,
Islaris handles reasoning about the function pointer automatically.

RISC-V: Binary search and memcpy. To demonstrate that Islaris is not
specific to a single ISA, we compiled and verified the binary for RISC-V,
in addition to Armv8-A, for our two platform-independent case studies:
the memcpy of §14, and the binary search. As already described in §14.7,
the Islaris separation logic and most of the tooling is shared between the
two ISAs. Only the (system) registers, calling convention, and some side
conditions had to be adapted.

Test ISA Size (lines) Time (s)

asm ITL Spec Proof Isla Coq

memcpy Arm 8 169 20 55 6 9/2/8/-
RV 8 134 19 54 1 10/4/7/-

hvc Arm 13 436 93 5 10 28/5/25/-
pKVM Arm 47 1070 159 232 37 67/16/62/16

unaligned Arm 1 104 89 29 2 10/12/24/-
UART Arm 14 207 33 42 10 9/3/6/-
rbit Arm 2 26 18 27 3 4/73/54/-

bin.search Arm 32 741 25 146 25 54/16/37/19
RV 48 801 25 108 5 63/22/37/21

Figure 18.1: Example sizes
and times.

Proof sizes and times. The main goal of Islaris is to make it possible and
practical to verify machine code above these authoritative models, which
was not previously possible. Practicality requires a reasonable level of
performance. Figure 18.1 gives the proof sizes and the Isla and Coq proof
times for our examples.1 Proof size is the number of manually-written
lines, including any loop invariants. The Coq time is subdivided by ‘/’s
into the Lithium-based proof automation (second step in §14.8), custom
tactics to solve side conditions (third step in §14.8), and the Qed check
of the generated proof term (this check happens after the programmer
finishes the interactive proof). The larger case studies use intermediate
specifications for some instructions to let these be verified in parallel; these
are the last times given. Times were collected with a populated lia cache
on an 8-core Intel Core i7 8th Gen laptop with 24 GB of RAM. Isla and
the instruction specification proofs are parallelized. Overall, this shows
that Islaris is already a practical tool for verifying challenging case studies
against the full Armv8-A and RISC-V models, but further performance
improvements are possible (especially when using many registers and in
the bitvector automation).

1 The numbers in Figure 18.1 (and
in the rest of this part) reflect the
original evaluation in Sammler et
al., “Islaris: Verification of Machine
Code Against Authoritative ISA
Semantics”, 2022 [Sam+22].

107

Chapter 19

Related Work

There have been many approaches to verification of assembly and machine
code, using a wide variety of underlying models. Here, we compare to the
most relevant related work.

L3 and decompilation into logic. Some closely related work uses L3,1

which is a well-developed ISA specification language broadly similar to
Sail, but with a simpler type system. L3 comes with handwritten models
of ISA fragments of several architectures (ARMv4–7, ARMv8, MIPS, x86,
and RISC-V) that can be extracted to HOL4 and Isabelle/HOL. Recent
work2 validated the L3 ARMv8 model against the HOL version of the
ARMv8 Sail model. The main reasoning support in HOL4 is provided by
per-architecture handwritten step libraries, which provide an equational
view of individual instructions; CakeML3 builds directly on these libraries
and Myreen and Gordon4 build a separation logic using them. This
logic is significantly simpler than the Iris-based Islaris separation logic;
in particular, it does not support higher-order specifications for code
pointers. It is then integrated into the decompilation into logic approach,5

which produces HOL functions that are equivalent to the machine code.
This process has the advantage that it does not rely on an external
SMT-solver, but the L3 models of Armv8 and RISC-V have substantially
less coverage than the Sail models used here, and it is unclear whether
the approach would scale to these larger models. Campbell and Stark6

automate construction of step libraries using symbolic execution, similar
to our use of Isla, but for test generation rather than verification.

ACL2 X86isa model. The ACL2 X86isa model7 gives a detailed and
well-validated description of a large fragment of the x86 architecture,
including both user- and system-level instructions. The model comes with
a large proof library for verifying programs via direct reasoning about the
model and its state. However, unlike Islaris, X86isa does not provide a
high-level separation logic. As a consequence, the proofs become quite
large—e.g., Goel et al.8 report thousands of lines for a simple example. In
contrast, Islaris proofs for similar-scale examples are usually one to two
orders of magnitude smaller thanks to its proof automation. One reason
for this difference is that X86isa requires explicit disjointness reasoning
about memory regions that are automatically handled via separation logic
in Islaris.

1 Fox, “Directions in ISA Specifica-
tion”, 2012 [Fox12]; Fox, “Improved
Tool Support for Machine-Code
Decompilation in HOL4”, 2015
[Fox15].

2 Kanabar et al., “Taming an Au-
thoritative Armv8 ISA Specification:
L3 Validation and CakeML Com-
piler Verification”, 2022 [KFM22].

3 Fox et al., “Verified Compilation of
CakeML to Multiple Machine-Code
Targets”, 2017 [Fox+17].

4 Myreen and Gordon, “Hoare Logic
for Realistically Modelled Machine
Code”, 2007 [MG07].

5 Myreen et al., “Machine-Code Ver-
ification for Multiple Architectures
- An Application of Decompilation
into Logic”, 2008 [MGS08]; Myreen
et al., “Decompilation into Logic -
Improved”, 2012 [MGS12]; Myreen,
“Formal verification of machine-code
programs”, 2009 [Myr09].

6 Campbell and Stark, “Extracting
Behaviour from an Executable
Instruction Set Model”, 2016 [CS16].

7 Goel and Jr., “Automated Code
Proofs on a Formal Model of the
X86”, 2013 [GJ13]; Goel et al.,
“Simulation and Formal Verification
of x86 Machine-Code Programs that
make System Calls”, 2014 [Goe+14];
Goel et al., “Engineering a Formal,
Executable x86 ISA Simulator
for Software Verification”, 2017
[GJK17].

8 Goel et al., “Simulation and
Formal Verification of x86 Machine-
Code Programs that make System
Calls”, 2014 [Goe+14].

109

Part III: Islaris

Higher-order separation logic for assembly. Jensen et al.9 provide a
separation logic for a fragment of x86 assembly10 in Coq. Its key feature
is a higher-order frame connective that gives nice reasoning principles
for jumps to unknown code. We achieve similar reasoning principles via
the wp t connective described in §16.3 that is based on the standard Iris
weakest precondition.

Bedrock11 provides a separation logic for a custom intermediate lan-
guage in Coq with a focus on proof automation. Bedrock inspired the
a @@ P connective for handling code pointers. Bedrock’s annotation
overhead for verifying a memcpy function12 is comparable to Islaris’s for
the similar memcpy function described in §14.5, with roughly comparable
performance, even though Bedrock targets a much simpler intermediate
language rather than full ISA semantics (∼45s for Bedrock vs. ∼30s
for Islaris on the same machine, but with an older version of Coq for
Bedrock).

Both Jensen et al. and Bedrock use models that are simple enough that
they can be handled directly in Coq without SMT-based simplification,
and both are specific to concrete languages, while Islaris works for multiple
ISAs specified in Sail.

Large-scale systems verification efforts. There have been several success-
ful efforts to verify large-scale systems w.r.t. assembly code, but based on
low-level semantics that are considerably less authoritative and complete
compared with the models used by Islaris. The PROSPER project13

and seL414 manually extend the L3 models described above with the
systems features they need. The verified concurrent kernel CertiKOS
and hypervisor SeKVM15 use CompCert’s assembly semantics and add
various models of some systems aspects. The assembly verification of
the VerisoftXT project (that verified parts of the Hyper-V hypervisor16)
uses Vx8617 to translate x86 assembly code including some virtualization
extensions to C code that can then be verified using VCC.18 Syeda and
Klein19 build a program logic for address translation for Armv7-A.

Erbsen et al.20 provide an integrated verification of an embedded
system across hardware and software that includes direct verification of
application code against the MIT RISC-V formalization (which is roughly
comparable to the Sail-based RISC-V formalization21). Since RISC-V is
comparatively small, it is not surprising that direct proofs against this
model are possible, but it is unclear whether this approach would scale
to significantly more complex models like Armv8-A. Also, all the work
by Erbsen et al. is specific to RISC-V while Islaris applies generically to
Armv8-A and RISC-V.

Push-button verification of assembly code. Serval22 achieved impressive
push-button verification w.r.t. small handwritten models of x86 and RISC-
V, using SMT-based symbolic execution. However, Serval does not support
modular Hoare-style reasoning as provided by Islaris, and only works for
programs with bounded loops.

9 Jensen et al., “High-Level Sepa-
ration Logic for Low-Level Code”,
2013 [JBK13].

10 Kennedy et al., “Coq: The world’s
best macro assembler?”, 2013
[Ken+13].

11 Chlipala, “Mostly-Automated
Verification of Low-Level programs
in Computational Separation
Logic”, 2011 [Chl11]; Chlipala, “The
Bedrock Structured Programming
System: Combining Generative
Metaprogramming and Hoare
Logic in an Extensible Program
Verifier”, 2013 [Chl13]; Malecha et
al., “Compositional Computational
Reflection”, 2014 [MCB14].

12 Bedrock team, Verification of
memcpy, 2015 [Bed15b].

13 Baumann et al., “A High Assur-
ance Virtualization Platform for
ARMv8”, 2016 [Bau+16]; Guanciale
et al., “Provably secure memory
isolation for Linux on ARM”, 2016
[Gua+16].

14 Klein et al., “seL4: Formal Ver-
ification of an OS Kernel”, 2009
[Kle+09].

15 Gu et al., “Building Certified
Concurrent OS Kernels”, 2019
[Gu+19]; Li et al., “A Secure and
Formally Verified Linux KVM
Hypervisor”, 2021 [Li+21].

16 Leinenbach and Santen, “Verifying
the Microsoft Hyper-V Hypervisor
with VCC”, 2009 [LS09].

17 Maus et al., “Vx86: x86 Assem-
bler Simulated in C Powered by
Automated Theorem Proving”, 2008
[MMS08].

18 Cohen et al., “VCC: A Practical
System for Verifying Concurrent C”,
2009 [Coh+09].

19 Syeda and Klein, “Formal Rea-
soning Under Cached Address
Translation”, 2020 [SK20].

20 Erbsen et al., “Integration
Verification across Software and
Hardware for a Simple Embedded
System”, 2021 [Erb+21].

21 RISC-V team, ISA Formal Spec
Public Review, 2019 [RIS19].

22 Nelson et al., “Scaling symbolic
evaluation for automated verifica-
tion of systems code with Serval”,
2019 [Nel+19].110

Part IV

DimSum

Chapter 20

Introduction

To focus and simplify the problem of program verification, it is common
to assume that the programs one is verifying are written in a single, well-
defined language. However, many (if not most) real-world programs are
assembled from components written in multiple languages. For example,
programs in languages as diverse as Go, OCaml, Python, Rust, and
Swift depend on standard or legacy libraries written in C; operating
systems commonly implement interrupt handling in assembly code; low-
level drivers link with architecture-specific assembly code. It thus remains
a grand challenge to build formal methods that can handle such realistic
multi-language programs.

What makes this so difficult is that, to verify a multi-language program,
it is often not sufficient to verify the program’s components separately—
we have to additionally reason about the interactions between them. In
particular, at the boundaries, we have to account for the friction that
arises from the language differences. For example, in a high-level language
calling other code is often done through a function call construct with
argument names, whereas assembly-like languages typically use jumps
and designated argument registers. The languages could also differ in
their representation of values (e.g., hierarchical vs. flat), their language
features (e.g., structured vs. unstructured control flow), and their memory
models (e.g., an abstract memory model where pointers are offsets into
abstract blocks vs. a concrete memory model where pointers are concrete
integers).

Much prior work on multi-language verification has focused on the
specific important case of compiler verification, and in particular so-called
compositional compiler verification.1 The broad goal of compositional
compiler verification is to specify and verify compilers in terms of how they
transform individual libraries in a program, so that different libraries may
be correctly linked together even if they are produced by different verified
compilers for potentially different languages. (This is in contrast to the
original CompCert,2 for example, which was verified only as a compiler
for whole programs.) Building on the ideas of Matthews and Findler,3

Ahmed and collaborators4 have subsequently recognized compositional
compiler verification as an instance of the much broader problem of multi-
language semantics: what is the right way to even define the behavior
and interoperation of multi-language programs to best support verified
linking of code from different languages and compilers?

1 Neis et al., “Pilsner: A Compo-
sitionally Verified Compiler for a
Higher-Order Imperative Language”,
2015 [Nei+15]; Perconti and Ahmed,
“Verifying an Open Compiler Using
Multi-language Semantics”, 2014
[PA14]; Stewart et al., “Composi-
tional CompCert”, 2015 [Ste+15];
Song et al., “CompCertM: Com-
pCert with C-Assembly Linking and
Lightweight Modular Verification”,
2020 [Son+20]; Koenig and Shao,
“CompCertO: Compiling Certified
Open C Components”, 2021 [KS21].

2 Leroy, “Formal Certification of a
Compiler Back-end or: Program-
ming a Compiler with a Proof
Assistant”, 2006 [Ler06].

3 Matthews and Findler, “Opera-
tional Semantics for Multi-Language
Programs”, 2007 [MF07].

4 Ahmed and Blume, “An
Equivalence-Preserving CPS
Translation via Multi-Language
Semantics”, 2011 [AB11]; Perconti
and Ahmed, “Verifying an Open
Compiler Using Multi-language Se-
mantics”, 2014 [PA14]; Mates et al.,
“Under Control: Compositionally
Correct Closure Conversion with
Mutable State”, 2019 [MPA19]; Pat-
terson et al., “FunTAL: Reasonably
Mixing a Functional Language with
Assembly”, 2017 [Pat+17]; Patter-
son et al., “Semantic Soundness for
Language Interoperability”, 2022
[Pat+22].

115

Part IV: DimSum

In this part of the dissertation, we propose a new approach to multi-
language semantics and verification, which we realize in a new Coq-
based framework we call DimSum. Our approach is based on a simple
observation: if we consider the aforementioned work in the context of
multi-language semantics, then certain aspects of the semantics are fixed up
front, thus restricting the flexibility with which components from different
languages can be composed together. In contrast, DimSum is what we call
decentralized : the semantics of a library can be specified (and the library
verified) without regard to the other libraries in the program—without
even needing to know in what languages or under what memory models
the other libraries are written.

20.1 Principles of Decentralization

To give a clearer sense of the motivation behind DimSum, let us now
articulate four key principles that we aim to satisfy and explain the ways
in which prior approaches do or do not satisfy them.

Principle #1: No fixed source language. Among the first to explore
compositional compiler verification were Hur and collaborators;5 they
developed a line of work that culminated in Pilsner,6 a compositionally
verified compiler from an ML-like source language to a low-level assembly
target language, which showcased the ability to soundly link the verified
compilations of source-language modules with tricky, handwritten assem-
bly modules. Despite the sophistication of the Pilsner verification, a key
limitation of the approach used by this line of work was identified by
Perconti and Ahmed:7 Pilsner (and the other compilers in its lineage)
only permit compiled libraries to be linked with assembly libraries for
which there is some semantically equivalent source module. This limitation
effectively rules out a significant use case for multi-language linking, since
one of the main reasons to link compiled libraries against handwritten
assembly libraries is when the latter provide some functionality that is
not expressible in the source language of one’s compiler.

Ahmed et al.’s line of work on multi-language semantics was at least
partly motivated by the goal of lifting this restriction of Hur et al.’s work,
a goal which Patterson and Ahmed8 later termed “source-independent
linking”. With DimSum, we aim to fulfill this goal as well: we do not
fix any one language as “the source”; rather, we explicitly allow for the
possibility of linking high-level code with low-level (e.g., assembly) libraries
that have no high-level semantic equivalent.

Principle #2: No fixed set of languages. Ahmed et al.’s aforementioned
research programme on multi-language semantics takes the approach
of combining all interoperating languages into one big “syntactic multi-
language” and providing type-directed wrappers to convert values of
one language to values of the other languages. One advantage of this
approach is that it supports interoperation between libraries in very dif-
ferent languages—libraries which, unlike in Pilsner, are not expressible in
any common source language. Another advantage is that compositional

5 Benton and Hur, “Biorthogonal-
ity, Step-indexing and Compiler
Correctness”, 2009 [BH09]; Benton
and Hur, Realizability and Com-
positional Compiler Correctness
for a Polymorphic Language, 2010
[BH10]; Hur and Dreyer, “A Kripke
Logical Relation Between ML and
Assembly”, 2011 [HD11]; Hur et al.,
“The Marriage of Bisimulations and
Kripke Logical Relations”, 2012
[Hur+12].

6 Neis et al., “Pilsner: A Compo-
sitionally Verified Compiler for a
Higher-Order Imperative Language”,
2015 [Nei+15].

7 Perconti and Ahmed, “Verifying
an Open Compiler Using Multi-
language Semantics”, 2014 [PA14].

8 Patterson and Ahmed, “The Next
700 Compiler Correctness Theorems
(Functional Pearl)”, 2019 [PA19].

116

Chapter 20: Introduction

compiler correctness can then be formalized in terms of contextual equiv-
alence (a very standard and well-understood criterion) in the syntactic
multi-language.

A disadvantage of the syntactic multi-language approach, however, is
that it requires one to fix the set of interoperating languages up front.
As a result, it means that proofs about libraries in any one language
must take into account all the other languages comprising the syntactic
multi-language, and such proofs may break if new languages are added to
the mix in the future.

With DimSum, we aim to support what we call language-local reasoning:
we should not fix the set of interoperating languages up front, and we
should be able to verify a library in one language without having to worry
a priori about the other languages with which that library could be linked.

Principle #3: No fixed memory model. Since the development of Com-
pCert, a wide range of projects have explored compositionally verified
extensions of CompCert, including Compositional CompCert,9 Com-
pCertX,10 SepCompCert,11 CompCertM,12 and CompCertO.13 Except
for SepCompCert, these projects follow Principles #1 and #2 above. How-
ever, unlike Pilsner and Ahmed et al.’s work, these CompCert extensions
assume all interoperating languages to adhere to a particular memory
model, namely the CompCert memory model.14 As noted by Patterson
and Ahmed,15 this places a significant restriction on the set of languages
that can realistically participate in a multi-language program.

With DimSum, we aim to support linking of libraries written in lan-
guages with different memory models, yet still allow such linking to be
reasoned about in a language-local way (as per Principle #2). We will
see a concrete instance of this problem in §21, where we link a language
with an abstract memory model not unlike CompCert’s (i.e., pointers are
abstract block identifiers with offsets) to an assembly language with a
concrete memory model (i.e., pointers are integer addresses).

Principle #4: No fixed notion of linking. A key aspect of multi-language
semantics is formalizing interlanguage linking. Individual languages typ-
ically come equipped with their own pre-existing notions of syntactic
linking L ∪ L′, and then on top of that, multi-language semantics frame-
works often define their own notions of semantic linking L⊕ L′ in order
to characterize interoperation between different languages. However, in
all the work we are aware of, the definition of semantic linking is fixed up
front.

In DimSum, we aim to avoid fixing any “official” notion of semantic
linking up front; instead, we permit users of the framework to develop
new, library-specific notions of linking that support higher-level reasoning
principles. To illustrate what this looks like, let us consider a concrete
example, depicted in Figure 20.1: we take a high-level language with
recursive functions called Rec and augment it with a coroutine library
written in an assembly-like language called Asm.16 More specifically, in
the example, the two Rec-libraries stream and main are “linked” with each
other through a coroutine Asm-library called yield. The stream function

9 Stewart et al., “Compositional
CompCert”, 2015 [Ste+15].

10 Gu et al., “Deep Specifications
and Certified Abstraction Layers”,
2015 [Gu+15]; Wang et al., “An
Abstract Stack Based Approach to
Verified Compositional Compilation
to Machine Code”, 2019 [WWS19].

11 Kang et al., “Lightweight Verifica-
tion of Separate Compilation”, 2016
[Kan+16].

12 Song et al., “CompCertM: Com-
pCert with C-Assembly Linking and
Lightweight Modular Verification”,
2020 [Son+20].

13 Koenig and Shao, “CompCertO:
Compiling Certified Open C Compo-
nents”, 2021 [KS21].

14 Except for CompCertO, this
assumption is crucial for the tech-
niques. In the case of CompCertO,
the assumption may not be crucial,
but the approach has not been
applied to a different memory model
than the CompCert one. See §25 for
details.

15 Patterson and Ahmed, “The Next
700 Compiler Correctness Theorems
(Functional Pearl)”, 2019 [PA19].

16 Inspired by Patrignani, “Why
Should Anyone use Colours? or,
Syntax Highlighting Beyond Code
Snippets”, 2020 [Pat20], we depict
Rec in red, sans-serif and Asm in
blue,bold.

117

Part IV: DimSum

Program main

fn main() ≜ let x := yield(0) in print(x); let x := yield(0) in print(x); yield(0)

Library stream

fn stream(n) ≜ yield(n); stream(n+ 1);

Library yield

yield : ... save and restore registers, and switch stack ...

Figure 20.1: Example using
coroutines.generates an infinite stream of integers 0, 1, 2, . . . that is consumed by the

main function (i.e., the main function prints the first two elements and then
returns the third). For the Asm-library yield, the exact implementation
is not relevant. The only relevant aspect of yield is that it sequentially
passes the control back-and-forth between main and stream whenever yield
is called in either.17

Most approaches to multi-language semantics can reason about this
program in one way or another. For example, what they could do is
consider the Asm-program ↓main ∪a ↓ stream ∪a yield where ↓R denotes
compilation and then show that it indeed prints 0, then 1, and then returns
2. What no existing approach can do—and here is where decentralization
comes in—is locally extend the notion of semantic linking in one language
(e.g., Rec) due to the presence of a library written in another language
(e.g., the yield-library written in Asm). That is, at the level of Rec, all
that we care about is that yield provides a new form of semantic linking
“R1 ⊕coro R2”, where function calls to yield on one side are perceived as
function returns of yield on the other (e.g., the call of yield(n) in stream is
the return of yield(0) in main). This new, custom form of semantic linking
“R1 ⊕coro R2” considerably simplifies reasoning about the interactions of
R1 and R2, because we do not have to consider the Asm-implementation
of yield itself. That is, whereas reasoning about yield drops down to the
Asm level and involves reasoning about saving and restoring the stack
pointer and certain other machine registers, reasoning about R1 ⊕coro R2

stays at the level of Rec.

20.2 DimSum

In this part of the dissertation, we present DimSum, a Coq-based frame-
work for multi-language semantics and verification that adheres to the four
principles of decentralization laid out in §20.1. At the heart of DimSum
lies our novel decentralized multi-language semantics, which forms the
basis of all our reasoning. As a starting point for the semantics, we adopt
the same viewpoint as the work surrounding CompCert,18 namely that the
semantics of a library L written in language L is a labeled transition system,
which we call a module. What makes the DimSum approach decentralized
is how we reason about these modules. We take a page out of the work
on process algebra and think of the modules as communicating processes.
More specifically, we associate each language L with a set of events EL, we
give semantics to a library L as a module JLKL ∈ Module(EL), and then
we model the interactions of modules (e.g., jumps) as synchronization

17 We only consider a statically
known set of coroutines, so there
is no function for spawning a
coroutine. The first yield(0) in main
starts the function stream with
argument 0.

18 Stewart et al., “Compositional
CompCert”, 2015 [Ste+15]; Song
et al., “CompCertM: CompCert
with C-Assembly Linking and
Lightweight Modular Verification”,
2020 [Son+20]; Koenig and Shao,
“CompCertO: Compiling Certified
Open C Components”, 2021 [KS21].

118

Chapter 20: Introduction

on events (e.g., outgoing jumps are synchronized with incoming jumps).
Following the style of process algebra, we build up larger modules from
smaller ones using compositional combinators. For example, we define
a suite of language-specific linking operators M ⊕L M

′ that synchronize
modules based on their events, and a collection of wrappers ⌈M⌉L⇌L′ that
embed modules from one language L into another language L′.

The resulting approach to multi-language semantics is decentralized in
the sense that when we reason about a particular collection of modules, we
only care about their events and the languages to which these events be-
long. For example, in the rest of this part of the dissertation, we consider
modules in the high-level language Rec, the low-level assembly language
Asm, and a mathematical specification language Spec. When we reason
about the interactions of two Rec-modules M1 ⊕r M2 (e.g., to prove that
they refine a specification written in Spec), then we only need to know
about the calling convention of Rec and its memory model. In particular,
we do not need to take into account the existence of the language Asm

or its memory model in any shape or form. In contrast, when we rea-
son about an Asm-module M1 interacting with a Rec-module M2, i.e.,
M1 ⊕a ⌈M2⌉r⇌a, we need to consider the different calling conventions and
memory models of Rec and Asm. As a result, in DimSum, we can “mix
and match” components written in different languages using a collection of
language-specific combinators (e.g., M1 ⊕a M2, M1 ⊕r M2, M1 ⊕coro M2,
and ⌈M⌉r⇌a).

To make the simple idea of “multi-language program components as
communicating processes” scale to reasonably complex languages such as
Rec and Asm, we bring several ideas from the literature to bear, albeit
casting them in a new light:

1. Open-world events. The work on fully abstract traces19 introduced
the idea of including all the visible parts of the program state in the
events. Previously, the idea was used to prove contextual refinement
via trace refinement where the traces consist of these detailed open-
world events. In DimSum, we use similar open-world events to express
the interactions of modules: modules share state (e.g., the program
memory), which has to be exchanged when two modules interact.

2. Wrappers. The work on multi-language semantics20 introduced the
idea of expressing language translations via wrappers. Previously, the
idea was used to construct a syntactic multi-language using syntactic
wrappers that embed expressions of other languages. In DimSum, we
use wrappers at the level of the semantics: we define translations
such as ⌈M⌉r⇌a that operate on modules (i.e., LTSs) and translate the
events between two languages (e.g., Rec and Asm).

3. Kripke relations. The literature on compiler verification21 employed
the idea of Kripke relations—relations that maintain evolving internal
state in order to track, e.g., relationships between growing heaps—to
reason about program executions. Previously, the idea was used to build
expressive simulation relations for establishing compiler correctness.
In DimSum, the role of expressive simulations is largely filled by our
wrappers (see the previous idea) and, hence, we use Kripke relations to

19 Jeffrey and Rathke, “Java Jr:
Fully Abstract Trace Semantics for
a Core Java Language”, 2005 [JR05];
Laird, “A Fully Abstract Trace
Semantics for General References”,
2007 [Lai07].

20 Matthews and Findler, “Opera-
tional Semantics for Multi-Language
Programs”, 2007 [MF07]; Ahmed
and Blume, “An Equivalence-
Preserving CPS Translation via
Multi-Language Semantics”, 2011
[AB11].

21 Leroy and Blazy, “Formal verifi-
cation of a C-like memory model
and its uses for verifying program
transformations”, 2008 [LB08]; Hur
and Dreyer, “A Kripke Logical Re-
lation Between ML and Assembly”,
2011 [HD11]; Perconti and Ahmed,
“Verifying an Open Compiler Using
Multi-language Semantics”, 2014
[PA14]; Koenig and Shao, “Com-
pCertO: Compiling Certified Open
C Components”, 2021 [KS21].

119

Part IV: DimSum

define them. Furthermore, to ease their formalization (in particular, to
avoid explicit reasoning about possible worlds), we encode our Kripke
relations in the separation logic Iris.22

4. Rely-guarantee reasoning using angelic non-determinism. The
recent work on Conditional Contextual Refinement (CCR)23 explored
the idea of expressing rely-guarantee reasoning between a program com-
ponent and its environment using angelic and demonic non-determinism.
Previously, the idea was used to add user-provided preconditions and
postconditions to contextual refinements. In DimSum, we apply the
idea in our wrappers (e.g., ⌈M⌉r⇌a) to define language-specific protocols
between a module and its environment.

Contributions. In summary, the main contribution of this part of the
dissertation is DimSum, a Coq-based framework for decentralized multi-
language semantics and verification. The framework introduces the notion
of a module, refinement between modules, and a library of language-
agnostic combinators for linking and translating modules (§22). We then
apply the framework to concrete instantiations:

• An instantiation of DimSum with (1) a high-level imperative language
Rec with structured values, function calls, and an abstract memory
model; (2) an assembly language Asm based on registers, unstruc-
tured jumps and a concrete memory model; and (3) a mathematical
specification language Spec, together with linking operators (§23) and
wrappers (§24).

• Two Asm libraries that extend Rec with new kinds of functionality: A
library for pointer comparison (§21) and the coroutine library described
earlier (§23.3).

• A compositional multi-pass compiler from Rec to Asm (§24).

Scope. We present a first step towards exploring a decentralized approach
for multi-language verification. As such, we focus on the setting of a
C-like language Rec and an assembly language Asm. This is similar to
the compositional variants of CompCert, except that the two languages
differ in their memory model and program components can interact with
unstructured jumps at the Asm level (and, of course, that Rec and Asm

are significantly simpler than the realistic languages used by CompCert).
It would be interesting to consider languages with other features like
closures, garbage collection, types, or concurrency in future work.

Additionally, we focus our attention on safety properties and do not
prove liveness properties (similar to Sprenger et al.,24 who use process
algebra ideas for the verification of distributed systems). This restriction
simplified the development of DimSum’s model (in particular, the notion
of refinement). We believe it should be possible to extend DimSum to
support liveness reasoning, but we leave this to future work.

22 Jung et al., “Iris: Monoids and
Invariants as an Orthogonal Basis
for Concurrent Reasoning”, 2015
[Jun+15]; Jung et al., “Higher-
Order Ghost State”, 2016 [Jun+16];
Krebbers et al., “The Essence of
Higher-Order Concurrent Separa-
tion Logic”, 2017 [Kre+17]; Jung
et al., “Iris from the ground up: A
modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b]; Jung, “Understanding
and Evolving the Rust Program-
ming Language”, 2020 [Jun20].

23 Song et al., “Conditional Contex-
tual Refinement”, 2023 [Son+23].

24 Sprenger et al., “Igloo: Soundly
Linking Compositional Refine-
ment and Separation Logic for
Distributed System Verification”,
2020 [Spr+20].

120

Chapter 21

Key Ideas

To illustrate the key ideas of DimSum, let us consider a motivating
example. We want to verify the following program using libraries depicted
in Figure 21.1:

fn main() ≜ local x[3];x[0]← 1;x[1]← 2; \\ x 7→ [1, 2, 0]

memmove(x+ 1, x+ 0, 2); \\ x 7→ [1, 1, 2]

print(x[1]); print(x[2])

The program first initializes the local array x, then moves the contents
of x by one to the right using memmove, and finally prints the last two
elements of x. It is primarily written in Rec, our high-level language with
recursive functions. The parts that are not written in Rec, print and locle,
are written in Asm, our low-level assembly language, because—as we will
soon see—they cannot be implemented in Rec.

Library memmove

fn memmove(d, s, n) ≜ if locle(d, s) then memcpy(d, s, n, 1) else memcpy(d+n−1, s+n−1, n,−1)
fn memcpy(d, s, n, o) ≜ if 0 < n then d← !s;memcpy(d+ o, s+ o, n− 1, o)

Library locle

locle : sle x0, x0, x1; ret

Library print

print : mov x8, PRINT; syscall; ret

Figure 21.1: Libraries written
in Rec and Asm.

The function memmove is inspired by the corresponding function in the
C standard library. It takes in a source pointer s, a destination pointer
d, and the number of elements n that should be copied over. It then
checks whether the source lies to the left or to the right of the destination
in memory using the Asm-library locle. Depending on the outcome,
memmove then copies the memory either front-to-back or back-to-front
to the destination. The function memmove varies the copy direction to
ensure that it does not step on its own toes: even if the two pointers
overlap, memmove will never overwrite data that was supposed to be
copied later.

The functions print and locle are implemented in Asm. The function
locle simply compares its two arguments with less-or-equal and returns
the result. The arguments of locle are in the first two registers x0 and
x1, because the calling convention of Asm is that the arguments are

121

Part IV: DimSum

in x0-x8. The return value is stored in x0. The function print leaves
the argument x0 unchanged, stores the flag for printing in x8, and then
triggers a syscall (i.e., a call to the operating system).

What makes this example interesting is that the functions print and
locle have to be implemented in Asm because they cannot be implemented
in the high-level language Rec. For print, the reason is that it makes a
syscall, which—similar to C—is not something Rec can do. For locle, the
reason is that it compares two pointers. Comparing pointers in Asm is
easy because they are “just” integers. In contrast, Rec cannot compare
pointers natively because it uses an abstract, block-based memory model
(inspired by CompCert1). That is, conceptually, memory in Rec is a
collection of unordered blocks, and a pointer consists of a block identifier
and an offset into the block. Since the blocks are unordered, comparing
pointers from different blocks (as memmove does when called with pointers
into different blocks) does not make sense from the perspective of Rec.

Verification goal. Our end goal for this example will be to show that
the entire program refines a top-level specification, which says that the
program prints 1 and then 2. Let us make this goal more precise. The
program consists of several Rec and Asm-libraries. To obtain a whole
program, we thus have to compile the Rec-libraries to Asm-libraries and
then link all the Asm-libraries together. We end up with the following
program:

onetwo ≜ ↓main ∪a ↓memmove ∪a locle ∪a print

Here, main denotes a singleton library containing the main function from
above, A1 ∪a A2 denotes syntactic linking in Asm, and ↓ R denotes
compilation from of a Rec-library R to an Asm-library.2

For the Asm-program onetwo, we then want to show that it refines a
specification onetwospec:

onetwo a⪯s onetwospec

In DimSum, refinement is defined as a notion of simulation, roughly
stating that each step of onetwo can be matched by zero or more steps
of onetwospec producing the same externally visible behavior (for details
see §22.1). The specification onetwospec is written in our specification
language Spec, which we will discuss later in this chapter. Roughly
speaking, the specification says that the program prints 1 and then 2.

21.1 Event-Based Semantics

To explain how we define and prove onetwo a⪯s onetwospec, we have to
turn to the core building block of DimSum: modules. Modules are how
DimSum assigns meaning to every program component (e.g., memmove,
locle, and onetwospec). The entire approach is centered around modules:
we define interpretations of syntactic libraries into semantic modules, we
define refinement as a simulation on modules, we define wrappers between
modules of different languages, and we define semantic linking operators
as combinators on modules. We will make the notion of a module precise

1 Leroy and Blazy, “Formal verifi-
cation of a C-like memory model
and its uses for verifying program
transformations”, 2008 [LB08].

2 The compiler will be explained
in §24, but its exact definition is not
relevant for this example.

122

Chapter 21: Key Ideas

Events ∋ e ::= Jump!(r,m) | Jump?(r,m) Events ∋ e ::= Call!(f,v ,m) | Call?(f,v ,m)

| Syscall!(v1,v2,m) | SyscallRet?(v,m) | Return!(v ,m) | Return?(v ,m)

Memory ∋m ≜ Z fin−⇀ Val ∪ {#} Memory ∋ m ≜ Loc fin−⇀ Val

Registers ∋ r ≜ RegisterName→ Val Loc ∋ ℓ ::= {blockid : Id, offset : Z}
Val ∋ v ≜ Z Val ∋ v ::= z : Z | b : B | ℓ : Loc

RegisterName ∋ x ≜ {x0, . . . ,x30, sp,pc} FnName ∋ f ≜ String

Figure 21.2: Asm and Rec

events.in §22. For now, it suffices to know that a module M ∈ Module(E) is a
labeled transition system emitting events from a language-specific set of
events E.

Event-based communication. The set of events E of each module M ∈
Module(E) varies from language to language. For a given language, these
events formalize how modules interact with their environment. That
is, following the school of process algebra, we model the interaction of
program components as event-based communication (i.e., synchronization
on events). For example, the events of Rec are function calls, and the
events of Asm are jumps and syscalls. To scale this simple idea to stateful
languages like Rec and Asm, we borrow an idea from the work on fully
abstract traces:3 the events carry a detailed description of the program
state. As we will see, this enables expressing linking between modules as
event synchronization.

The events of Rec and Asm are shown in Figure 21.2. Rec-modules (i.e.,
modules with Rec-events) can emit function calls with Call!(f,v ,m) and ac-
cept incoming function calls with Call?(f,v ,m). In general, we distinguish
between outgoing events (!) and incoming events (?). In both cases, the
events include the function name f, the arguments v , and the entire mem-
ory m. Rec-modules can return from calls with Return!(v,m) and accept
returns from functions they called with Return?(v,m). In Asm, modules
communicate using jumps: Jump!(r,m) and Jump?(r,m). These events
contain the registers r (including the target address of the jump r(pc))
and the program memory m. Additionally, Asm-modules can initiate
syscalls with Syscall!(v1,v2,m) where v1 is the syscall identifier (e.g.,
PRINT = 8), v2 is the argument of the syscall, and m the memory
when performing the syscall. They can then receive control again from
the operating system through SyscallRet?(v,m) with return value v

and resulting memory m. (We assume a syscall calling convention where
all registers except the return register x0 are restored.)

By comparing the events of the two languages, we can quite succinctly
see their differences—the differences that we have to deal with in the
proof of onetwo a⪯s onetwospec. First, the two languages use a different
function call structure. Calls in Rec are always bracketed with first a
call event and then a return event, while Asm-modules only emit and
accept jumps, without distinguishing calls from returns. The second
important distinction is that Asm can do syscalls, whereas programs
written in Rec cannot. This means that for any Asm program doing a

3 Jeffrey and Rathke, “Java Jr: Fully
Abstract Trace Semantics for a
Core Java Language”, 2005 [JR05];
Laird, “A Fully Abstract Trace
Semantics for General References”,
2007 [Lai07].

123

Part IV: DimSum

syscall, there is no corresponding Rec program. The third distinction
is that Rec uses a structured model of values: they can be integers,
locations, or Booleans. In Asm, values can only be integers, so pointers
and Booleans are represented as integers. And finally, Rec and Asm

use very different memory models. In Rec the memory model is block
based, whereas in Asm, the memory is simply a map from addresses, i.e.,
integers, to integers.4

With the events of Rec and Asm at hand, let us turn to the semantics of
their syntactic libraries. For each language, we define a module semantics
J−K− that maps syntactic libraries (i.e., R and A) into semantic modules
(i.e., JRKr ∈ Module(Events) and JAKa ∈ Module(Events)) based on the
operational semantics of the language. The exact definitions of the module
semantics will not be relevant for the rest of this chapter, so we postpone
them to §23.

High-level specifications. Before we can start the verification of the re-
finement onetwo a⪯s onetwospec, we first have to define the specification
onetwospec. For this, we use the specification language Spec. We will
formally define Spec in §22.2. For now, it suffices to know that Spec is a
language with co-inductively defined syntax and the following constructs:

Spec(E) ∋ p ::=coind any | vis(e); p | assume(ϕ); p | ∃x : T ; p(x) | · · · (e ∈ E, ϕ ∈ Prop)

The construct any means the implementation can do anything, i.e., its
behavior is not specified further. The construct vis(e); p means the im-
plementation emits the visible event e ∈ E and afterwards behaves like p.
Spec is parametric over the set of events E that the programs emits. The
construct assume(ϕ); p means the implementation must behave like p if
the proposition ϕ is true; otherwise, it may have any behavior. Finally, the
construct ∃x : T ; p means the implementation must non-deterministically
choose some x : T and then behave like p(x). As we will see in §21.2, the
fact that programs are defined co-inductively in Spec allows us to express
unbounded loops in the specifications.

With Spec at hand, we can turn to the specification of our example
program onetwo. Since onetwo is an Asm-library, its specification is
stated using Asm-events such as jumps and syscalls:

onetwospec ≜ ∃r,m0; vis(Jump?(r,m0)); assume(r(pc) = amain ∧ has_stack(r(sp),m0));

∃m1; vis(Syscall!(PRINT,1,m1));∃m2; vis(SyscallRet?(∗,m2)); assume(m2 = m1);

vis(Syscall!(PRINT,2, ∗)); vis(SyscallRet?(∗, ∗)); any

First, the program can accept any jump to it from the environment with
Jump?(r,m0). The following assume encodes that, during the verification
of an implementation against this specification, one need only consider
the choices of r and m0 where the environment decides to jump to the
start of the main function (i.e., the program counter pc points to the
first instruction in main after compilation), and where the stack pointer
sp points to a valid stack in memory m0 (because compiled Rec-libraries
assume a stack). In this case, the implementation will perform a sequence
of events: it will print 1 by emitting a syscall and wait for the operating

4 Technically, a memory address
can also be part of a “guard page”
denoted by #. An access to a
guard page immediately and safely
terminates the program. Each stack
is followed by a guard page that is
used to detect stack overflow, as
described e.g., by Tanenbaum and
Bos, Modern Operating Systems,
2014 [TB14], Section 11.5.

124

Chapter 21: Key Ideas

system to return;5 then, assuming that the print syscall did not change
the memory, it will print 2, and again wait for the operating system to
return. After this point, the specification (for simplicity) uses any so as
not to constrain the program’s behavior further.

Module refinement. Finally, we can see how the refinement that we want
to prove (onetwo a⪯s onetwospec) is defined:

onetwo a⪯s onetwospec ≜ JonetwoKa ⪯ JonetwospecKs

In DimSum, we do not center our reasoning around refinements relating
the syntax of two programs (i.e., libraries), but around refinements re-
lating the semantics of two programs (i.e., modules). Here, J·Ka is the
module semantics of Asm mentioned earlier, J·Ks is the module semantics
of Spec(Events) (defined in §22.2), and M1 ⪯M2 is the language-agnostic
simulation relation of DimSum (defined in §22.1), which we use as the
notion of refinement. Let us now see how to prove this refinement.

21.2 The Proof Strategy

JonetwoKa = J↓main ∪a ↓memmove ∪a locle ∪a printKa (1)

⪯ J↓mainKa ⊕a J↓memmoveKa ⊕a JlocleKa ⊕a JprintKa (2)

⪯ ⌈JmainKr⌉r⇌a ⊕a ⌈JmemmoveKr⌉r⇌a ⊕a JlocleKa ⊕a JprintKa (3)

⪯ ⌈JmainKr⌉r⇌a ⊕a ⌈JmemmoveKr⌉r⇌a ⊕a ⌈JloclespecKs⌉r⇌a ⊕a JprintspecKs (4)

⪯ ⌈JmainKr ⊕r JmemmoveKr ⊕r JloclespecKs⌉r⇌a ⊕a JprintspecKs (5)

⪯ ⌈Jmain ∪r memmoveKr ⊕r JloclespecKs⌉r⇌a ⊕a JprintspecKs (6)

⪯ ⌈JmainspecKs⌉r⇌a ⊕a JprintspecKs (7)

⪯ JonetwospecKs (8)

Figure 21.3: Proof outline.The proof of JonetwoKa ⪯ JonetwospecKs consists of a sequence of
refinements, as depicted in Figure 21.3. We can concatenate the sequence
into our desired goal, because the refinement relation M1 ⪯M2 is transi-
tive (and reflexive, see Lemma 4). The basic proof strategy—and here is
where the decentralization of DimSum comes in—will be to decompose the
program into several independent parts, gradually abstract those parts,
and then assemble the entire program again. We will discuss these steps
below. Along the way, we will point out whether the proof step is specific
to the example or a generic reasoning principle for the involved languages
(see Figure 21.4).

Linking [(1) to (2), generic]. As a first step, we decompose the program
onetwo into a collection of Asm-modules. We do so by replacing the
syntactic linking operator A1 ∪a A2 of Asm with the semantic linking
operator M1

d1⊕d2
a M2 of Asm (using asm-link-syn). The syntactic op-

erator A1 ∪a A2 takes two Asm-libraries A1 and A2 and combines their
program code. In contrast, the semantic linking operator M1

d1⊕d2
a M2

takes two Asm-modules M1 and M2 with associated instruction addresses
d1 and d2 and then synchronizes them via their jump events.6

5 The return value of the syscall
is irrelevant, so we omit it using
∗. The ∗ notation is interpreted
via non-deterministic choice,
i.e., vis(SyscallRet?(∗, ∗)); p
is defined as
∃v;∃m; vis(SyscallRet?(v,m)); p.

6 We omit d1 and d2 where they
clutter the discussion. We write |A|
for the instruction addresses of A.

125

Part IV: DimSum

asm-link-syn
|A1| ∩ |A2| = ∅

JA1 ∪a A2Ka ≡ JA1Ka |A1|⊕|A2|
a JA2Ka

rec-link-syn
|R1| ∩ |R2| = ∅

JR1 ∪r R2Kr ≡ JR1Kr |R1|⊕|R2|
r JR2Kr

asm-link-horizontal
M1 ⪯M′

1 M2 ⪯M′
2

M1
d1⊕d2

a M2 ⪯M′
1
d1⊕d2

a M′
2

rec-link-horizontal
M1 ⪯ M′

1 M2 ⪯ M′
2

M1
d1⊕d2

r M2 ⪯ M′
1
d1⊕d2

r M′
2

rec-wrapper-compat
M ⪯ M′

⌈M⌉r⇌a ⪯ ⌈M′⌉r⇌a

compiler-correct
↓R defined

J↓RKa ⪯ ⌈JRKr⌉r⇌a

rec-to-asm-link

⌈M1⌉r⇌a ⊕a ⌈M2⌉r⇌a ⪯ ⌈M1 ⊕r M2⌉r⇌a

Figure 21.4: Proof rules
of DimSum (with M1 ≡M2 for
(M1 ⪯M2 ∧M2 ⪯M1)).

Let us take a closer look at the synchronization. Suppose we are linking
two Asm-modules M1 and M2, and M1 is currently executing. If it
wants to execute a jump, then it will emit the event Jump!(r,m) where
the value of the program counter r(pc) indicates the destination. If the
destination is in the instructions of M2, i.e., in d2, then M2 gets to
accept the jump event by emitting the dual event Jump?(r,m). In this
case, the two components have synchronized, exchanging the values of the
registers r and the memory m. To the outside, the synchronization will
be hidden: the combined module M1

d1⊕d2
a M2 will do a silent τ -step.

If the module M1 decides to jump outside M2, i.e., outside d2, then
M1

d1⊕d2
a M2 will simply forward the jump to the environment.

There is one additional, subtle property of the linking operator that is
used in going from (1) to (2): horizontal compositionality of M1 ⊕a M2

(asm-link-horizontal). Horizontal compositionality in DimSum means
compatibility with the refinement. We will see several semantic linking
operators in DimSum (i.e., M1 ⊕a M2, M1 ⊕r M2, and M1 ⊕coro M2,)
and they will all be horizontally compositional. In fact, all these linking
operators will be derived from a single, language-generic linking operator
that is horizontally compositional (see §22.3). But no need to get ahead
of ourselves.

Module translation [(2) to (3), generic]. In the next step, we reap the
benefits of the semantic linking operator: we can link modules that
are not syntactically Asm-libraries, but semantically are Asm-modules.
More precisely, in this step we take the Asm-modules J↓mainKa and
J↓memmoveKa obtained through compilation of the Rec-libraries main

and memmove, and then we turn them into Rec-modules JmainKr and
JmemmoveKr inside a semantic wrapper ⌈·⌉r⇌a. The semantic wrapper
⌈·⌉r⇌a is an embedding of Rec modules into Asm (i.e., if M is a Rec

module, then ⌈M⌉r⇌a is an Asm module), and as such translates between
Rec-events and Asm-events on the fly:

JmemmoveKr

⌈·⌉r⇌a

⊕a JlocleKa
Call!(locle, [d, s],m) Jump!(r,m)

Return?(v′,m′) Jump?(r′,m′)

126

Chapter 21: Key Ideas

Conceptually, this wrapper is similar to a wrapper in a multi-language
semantics of Matthews and Findler:7 it embeds constructs from one
language into another. The key distinction of the wrappers in DimSum is
that they are semantic: they operate on modules (i.e., transition systems)
instead of syntactic constructs. As a result, their task is to translate
interactions (i.e., events) between the two languages. Take the interaction
of memmove and locle depicted above. In this case, the Rec module issues
a call to the function locle with arguments d and s and the memory m.
The wrapper ⌈·⌉r⇌a then constructs the corresponding Asm jump event,
including the correct representation of the registers r and of the memory
m. When locle eventually jumps back, the wrapper translates the jump
to a corresponding function return. (We will discuss these translations in
more detail in §21.3.)

The wrapper ⌈·⌉r⇌a has two important properties. The first (see
compiler-correct) is that the compiled program refines the source pro-
gram wrapped by ⌈·⌉r⇌a—i.e., our compiler is correct up to the translation
of the wrapper. More specifically, a (syntactically) compiled Rec library
↓ R behaves like the semantically translated source module ⌈JRKr⌉r⇌a.
The second (see rec-wrapper-compat) is that the wrapper is compatible
with refinement—this property will be used by the following steps.

Abstracting implementations [(3) to (4), example-specific]. In the next
step, we replace the assembly libraries print and locle with high-level
specifications written in Spec. We do so to abstract over the Asm

implementation details of both libraries, since we only care about their
interaction behavior with other modules (e.g., their jumps, which values
they compute, which syscalls they trigger). Formally, we prove:

print-correct JprintKa ⪯ JprintspecKs locle-correct JlocleKa ⪯ ⌈JloclespecKs⌉r⇌a

The specifications for print and locle are depicted in Figure 21.5.

printspec ≜coind ∃r,m; vis(Jump?(r,m)); assume(r(pc) = aprint);

vis(Syscall!(PRINT, r(x0),m));∃v,m′; vis(SyscallRet?(v,m′));

vis(Jump!(r[pc 7→ r(x30)][x0 7→ v][x8 7→ ∗],m′));printspec

loclespec ≜coind ∃f,v ,m; vis(Call?(f,v ,m)); assume(f = locle); assume(v is [ℓ1, ℓ2]);

if ℓ1.blockid = ℓ2.blockid then vis(Return!(ℓ1.offset ≤ ℓ2.offset,m)); loclespec

else ∃b; vis(Return!(b,m)); loclespec

Figure 21.5: Specifications for
print and locle.

Before we consider the details of these specifications, we should discuss
one fundamental difference that stands out: printspec is an Asm-level
specification, while loclespec is a Rec-level specification. We can give a
Rec specification to locle, because it has the interaction behavior of a
Rec function. More precisely, while we cannot implement locle in Rec

directly, we can still give it a Rec-level specification in Spec, because locle

obeys the calling convention of Rec and triggers no syscalls. In contrast,
the same cannot be said for print, because print does a syscall, which is
beyond the interaction behavior of Rec.

7 Matthews and Findler, “Opera-
tional Semantics for Multi-Language
Programs”, 2007 [MF07].

127

Part IV: DimSum

Let us now turn to the details of both specifications. The specification
printspec accepts jumps to the start of the print code address. Then it
triggers a print syscall of the contents of x0 and accepts the return value v,
which is subsequently returned (by storing it in x0). The return address is
then fetched from register x30 and becomes the next program counter pc.
Afterwards, the specification starts from the beginning again (i.e., with
printspec). The last step is important to reuse the module for subsequent
executions of print. It is made possible, because our programs in Spec

are co-inductive, so printspec can refer to itself in its own definition.
The specification loclespec accepts an incoming function call to locle

where the arguments are two locations ℓ1 and ℓ2. If the locations point to
the same block in memory (i.e., their block identifiers are the same), then
loclespec compares their offsets and returns the result. Afterwards, the
specification loops. If the locations point to different blocks in memory,
then loclespec non-deterministically chooses a Boolean b and returns it.
The non-deterministic choice here abstracts over the implementation detail
of how exactly the Rec locations are mapped to the concrete Asm memory.
This non-deterministic choice does not cause problems when verifying
memmove since s and d cannot overlap if they point to different blocks
and thus the result of locle is irrelevant.8

Leaving assembly behind [(4) to (6), generic]. In the next two steps, we
exploit the fact that JmainKr, JmemmoveKr, and JloclespecKs obey the Rec

interaction behavior: we lift them out of Asm to reason about them at
the level of Rec in the next step. To do so, we introduce two Rec-linking
operators: syntactic linking (R1 ∪r R2) and semantic linking (M1

d1⊕d2
r M2),

analogous to Asm.9 We use the linking operators to combine the three Rec-
modules into the module Jmain ∪r memmoveKr ⊕r JloclespecKs, leveraging
that syntactic and semantic linking coincide for Rec-libraries (see rec-

link-syn), that M1 ⊕r M2 is horizontally compositional (see rec-link-

horizontal), and that the wrapper ⌈·⌉r⇌a is compatible with linking
(see rec-to-asm-link).

In a typical verification task, we want to leave the level of assembly
as much as possible. The reason is that it is simpler to reason about
programs at the level of Rec than it is to reason about them at the level
of Asm. In particular, when we reason about programs at the level of
Rec, we do not have to think about the surrounding wrapper ⌈·⌉r⇌a.

High-level reasoning [(6) to (7), example-specific]. In the next step, we
can reap the benefits from reasoning at the level of Rec. More specifically,
we can ignore that JmainKr, JmemmoveKr, and JloclespecKs are inside Asm

(using the wrapper ⌈·⌉r⇌a) and instead reason about their interactions at
the level of Rec. We can abstract over their implementation details and
show:

main-correct Jmain ∪r memmoveKr ⊕r JloclespecKs ⪯ JmainspecKs

Here, mainspec is a Spec specification for the three modules with Rec

events:

8 The Coq development additionally
verifies a stronger version of loclespec
that gives a consistent ordering of
locations across multiple calls.

9 Here, d1 and d2 refer to the
function names of M1 and M2. We
often omit them to avoid clutter.

128

Chapter 21: Key Ideas

mainspec ≜ ∃f,v ; vis(Call?(f,v , ∗)); assume(f = main); assume(v = []);

∃m1; vis(Call!(print, [1],m1));∃m2; vis(Return?(∗,m2)); assume(m2 = m1);

∃m3; vis(Call!(print, [2],m3));∃m4; vis(Return?(∗,m4)); assume(m4 = m3); any

The combined module will accept any incoming call to the main function.
Subsequently, it will call print with argument 1 and some memory m1,
and expect print to return with the same memory.10 Subsequently, the
specification will call print with argument 2, accept the corresponding
return, and afterwards its behavior can be arbitrary.11

Reasoning with specifications [(7) to (8), example-specific]. In a final
step, we turn back to the printspec module. Recall that the module relies
on interaction fundamentally not available at the level of Rec—syscalls—
which is why we reason about it at the level of Asm. Fittingly, we
also have to reason about ⌈JmainspecKs⌉r⇌a ⊕a JprintspecKs at the level
of Asm. Typically, reasoning about programs at the level of Asm can
be a daunting task, since there are many low-level details to consider.
However, since we have already condensed the other modules into a single,
specification mainspec, the last step is relatively straightforward:

⌈JmainspecKs⌉r⇌a ⊕a JprintspecKs ⪯ JonetwospecKs

In the proof, we essentially only have to make sure that the calls in main

and the jumps in print line up. The translation of the events is taken
care of by the wrapper ⌈·⌉r⇌a, which we discuss next.

21.3 Semantic Language Wrappers

Call!(f,v ,m) ⇀w Jump!(r,m) ≜ r(pc) = af ∧v ∼w r(x0 . . .x8) ∧ |v | ≤ 9 ∧m ∼w m

Return?(v,m) ↽r′,w Jump?(r,m) ≜
r(pc) = r′(x30) ∧ v ∼w r(x0) ∧m ∼w m ∧
r(x19 . . .x29, sp) = r′(x19 . . .x29, sp)

Figure 21.6: Select cases of the
calling convention between Rec

and Asm.

One of the most important building blocks of the proof in §21.2 is the
wrapper ⌈·⌉r⇌a, which converts events from Rec to Asm and back. In
this section, we take a closer look at how the wrapper works. Recall the
event exchange between memmove and locle (in §21.2). In this exchange,
the wrapper has to translate between (1) the calling conventions of both
languages (e.g., calls and returns in Rec are jumps in Asm), (2) the
values of both languages (e.g., structured values v in Rec are integers
v in Asm), and (3) the memory models of both languages (e.g., the
block-based memory m in Rec is a flat memory m in Asm). As we will
discuss below, the two key ingredients to getting this translation right are
Kripke relations (explained using the direction Rec-to-Asm) and angelic
non-determinism (explained using the direction Asm-to-Rec). In this
section, we describe a simplified account of the wrapper ⌈·⌉r⇌a. Its actual

10 Returning with a different mem-
ory m2 ̸= m1 will be accepted, but
in this case the assume fails, and
the specification does provide not
any additional guarantees about the
behavior of the program.

11 Technically, this specification
also needs to accept incoming calls
after the call to print and behave
arbitrarily in this case, but we omit
this here for simplicity.

129

Part IV: DimSum

definition is derived from the language generic combinators presented
in §22.3.

Kripke relations. Let us start with the direction of translating Rec events
into Asm events (e.g., translating Call!(locle, [d, s],m) into Jump!(r,m)).
In principle, this direction is relatively straightforward, because we go
from a high-level language with more structure to a low-level language
with less structure (e.g., we map structured values v to integers v). The
main challenge in this direction is that the wrapper has to maintain a
mapping from Rec-level block identifiers to Asm-level addresses, which
remains consistent across function calls. That is, if we translate the
location ℓ to the address v once, then we have to ensure that we pick v

again for subsequent calls exposing ℓ, because assembly libraries typically
expect the location ℓ to not move in between function calls.

To maintain a consistent mapping across function calls, the wrapper
⌈·⌉r⇌a keeps around a block-identifier-to-address map w.12 In the simpli-
fied account of ⌈·⌉r⇌a that we discuss here, one can think of the map w

as one component of the internal state of the wrapper. For example, in
the case of translating outgoing calls to jumps, the wrapper transitions as
follows:

call-asm

σ
Call!(f,v ,m)−−−−−−−→M σ′ Call!(f,v ,m) ⇀w′ Jump!(r,m) w ⊆ w′

(rec, w, σ)
Jump!(r,m)−−−−−−−−→⌈M⌉r⇌a (asm(r), w′, σ′)

Here, the state of the wrapper contains information about who is currently
executing (e.g., rec or asm(r)), the address mapping w, and the state
of the wrapped module σ.13 As the wrapper executes, the mapping w

gradually grows along with the memories, written w ⊆ w′. In the context
of Kripke relations, the state w is typically called a world and the relation
w ⊆ w′ is world extension.

The relation Call!(f,v ,m) ⇀w Jump!(r,m) in call-asm, defined in Fig-
ure 21.6, encodes a part of the calling convention of Rec and Asm. To
define it, we first relate values between both languages:

z ∼w z b ∼w (if b then 1 else 0) ℓ ∼w w(ℓ.blockid) + ℓ.offset

In the case of locations ℓ, we look up the base address for the block in the
mapping w. The relation can then be lifted to memories, written m ∼w m.
To translate a call from Rec to Asm with Call!(f,v ,m) ⇀w Jump!(r,m)

we have to translate the components as follows: The program counter
must point to the start address of the function f, the argument values
must be stored in the registers x0 to x8, there may be at most nine
arguments,14 and the memories must be related. While this definition
does incorporate quite a number of technical details about the calling
conventions of both languages, there is no way around it: when we call
an Asm program, we have to make sure that its expectations are met,
which includes satisfying the calling convention.

Angelic non-determinism. Let us now turn to the reverse direction
(Asm-to-Rec). This direction is more challenging because we need to

12 In the full definition of the
wrapper, this piece of state w is
maintained using a separation logic
relation, as discussed in §22.3.

13 The reason why we record the
registers r in asm(r) will become
apparent below.

14 The calling convention of Asm
restricts functions to nine registers.
We rule out Rec functions with
more than nine arguments in the
compiler and restrict the number of
function arguments in the wrapper.

130

Chapter 21: Key Ideas

“guess” the additional structure of the representation at the level of Rec.
For example, consider translating Jump?(r,m) to Return?(v,m) (e.g.,
when locle returns from Asm). In this translation, the return value is
stored in x0 as an integer and we need to pick “the right” Rec return
value v. The issue is that there can be multiple candidates, but not
all will work. For instance, if locle returns 0 (i.e., the first location is
not less-or-equal to the second) and this 0 is subsequently translated
to a location ℓ0 instead of the Boolean false, then memmove will have
undefined behavior. Unfortunately, the wrapper cannot choose the right v
by itself, because locally, it knows possible candidates (e.g., false, 0, and
ℓ0), but it does not know which one will work “down the road”. (Also,
Rec is untyped, so there is no type system to help with this choice.) To
help the wrapper out, we delegate the choice to a well-meaning angel: we
use angelic non-determinism.15

Before we discuss angelic non-determinism, let us first explain the
calling convention for this direction (see Figure 21.6). The relation for this
case, (↽r′,w), takes an additional piece of state: the register state r′ that
we record in asm(r′) when calling Asm-code (see call-asm). The relation
requires the program counter to point to the original return address (in
x30), the return values and memories to be related, and the callee-saved
registers x19, . . . ,x29, sp to be restored.

Let us turn to angelic non-determinism and how it helps us here. To
return from Asm, we have to define the analogue of call-asm but for
Return?(v,m) ↽r′,w Jump?(r,m). However, if we follow the structure
of call-asm, then event translation would become a proof obligation for the
wrapper including choosing v and m. That is, applying the hypothetical
rule would lead to the obligation:

“∃v,m. (Return?(v,m) ↽r′,w Jump?(r,m)) ∧ . . . ”

However, what we want here is that the event translation becomes an
assumption of the wrapper including “the right choices” for v and m. In
other words, we want something like:

“∀v,m. (Return?(v,m) ↽r′,w Jump?(r,m))⇒ . . . ”

Unfortunately, we cannot literally define an analogue of call-asm using
this precondition, because then there could only be a single successor
state σ′ for all possible memories m and values v. There are, however,
typically multiple candidates σ′ depending on the choices of m and v.
Since the wrapper does not know how to choose m and v itself, the only
sensible option is to continue in all possible states σ′ under the assumption
of Return?(v,m) ↽r′,w Jump?(r,m). That is exactly what angelic non-
determinism allows us to do. (We make formal how in the next chapter,
§22.1.) It will then be the job of the angel to pick the right m and v, and
thereby choose one of the states σ′.

Of course, we cannot keep delegating the responsibility to make “the
right choices” to the angel forever. Eventually, we, the user of DimSum,
have to slip into the role of the angel and provide “the right choices”. In this
case, we do so in proving rec-to-asm-link (i.e., ⌈M1⌉r⇌a ⊕a ⌈M2⌉r⇌a ⪯
⌈M1 ⊕r M2⌉r⇌a). Consider the case where M2 returns to M1. In terms of

15 Floyd, “Nondeterministic Al-
gorithms”, 1967 [Flo67]; Back,
“Changing Data Representation
in the Refinement Calculus”, 1989
[Bac89].

131

Part IV: DimSum

events, this means we come from Rec, go through Asm, and then return
to Rec again. This path allows us as the user to observe the right choice:
the memory m and value v will be determined by M2 and we, as the angel,
can then forward them to M1. Inspired by CCR,16 this use of angelic
non-determinism allows us to express rely-guarantee protocols between
modules and their environment.

16 Song et al., “Conditional Contex-
tual Refinement”, 2023 [Son+23].

132

Chapter 22

Modules and Refinement

In this chapter, we discuss the formal definition of modules and simulation
(in §22.1), the meaning of non-deterministic choices (in §22.2), and the
library of compositional combinators (in §22.3).

22.1 Modules and Refinement in the Abstract

σ ∈ Σ

σ nil−→∗
M Σ

∃Σ′. σ
α1−→M Σ′ ∧ ∀σ′ ∈ Σ′. σ′ e2−→∗

M Σ

σ α1 ::? e2−−−−−→∗
M Σ

Figure 22.1: Multistep execu-
tion σ e−→∗ Σ with α1 ::? e2 ≜

if α1 = e1 then e1 :: e2 else e2.

A module M ∈ Module(E) is a labeled transition system with events
drawn from the set E and demonic and angelic non-determinism. Formally,
a module M = (S,→, σ0) consists of a set of states S, an initial state
σ0, and a transition relation →∈ P(S × (E ⊎ {τ})× P(S)). The labels
type α ∈ E ⊎ {τ} indicates that each transition can either emit a visible
event e ∈ E or be silent, denoted by τ . Notably, the transitions of a
module σ α−→ Σ go from a single state σ to a set of states Σ. The use of
a set is inspired by alternating automata1 and binary multi-relations2

as a means to incorporate both demonic and angelic non-determinism.
Demonic non-determinism works “as usual”: a single state σ can transition
to multiple sets Σ (i.e., σ α−→ Σ and σ α′

−→ Σ′ where Σ ̸= Σ′). Angelic non-
determinism works differently: after the transition σ α−→ Σ, the module is
in every state σ′ ∈ Σ. This intuition becomes precise when we consider
multistep executions of a module, depicted in Figure 22.1: we pick some
successor set Σ and then proceed for every possible σ′ ∈ Σ.

Simulation. For modules M1,M2 ∈ Module(E), we define refinement as
the simulation (⪯co):

M1 ⪯M2 ≜ (M1, σ
0
M1

) ⪯co (M2, σ
0
M2

)

(M1, σ1) ⪯co (M2, σ2) ≜coind ∀e,Σ1. σ1
α−→M1 Σ1 ⇒

∃Σ2. σ2
α−→∗

M2
Σ2 ∧ ∀σ′

2 ∈ Σ2. ∃σ′
1 ∈ Σ1. (M1, σ

′
1) ⪯co (M2, σ

′
2)

Here, (⪯co) is a coinductive simulation: For every step of the implemen-
tation σ1

α−→M1
Σ1 with label α, the simulation demands a corresponding

multistep of the specification σ2
α−→∗

M2
Σ2

3. This part of the definition is

1 Chandra et al., “Alternation”, 1981
[CKS81]; Vardi, “Alternating Au-
tomata and Program Verification”,
1995 [Var95].

2 Rewitzky, “Binary Multirelations”,
2003 [Rew03].

3 σ α−→∗
M Σ is defined as σ α ::? nil−−−−−→∗

M

Σ

133

Part IV: DimSum

standard for a simulation with demonic non-determinism. Then the sides
flip, and for every possible successor state of the specification σ′

2 ∈ Σ2, the
simulation demands a corresponding state σ′

1 ∈ Σ1 such that σ′
1 and σ′

2

are in the simulation again. This second part is only present in simulations
with angelic non-determinism.4

The simulation is a preorder:

Lemma 4 M1 ⪯M2 is reflexive and transitive.

Simulation vs. trace refinement. The reader might wonder why we center
our reasoning around a simulation instead of another form of refinement
(e.g., a contextual refinement or a trace refinement). In DimSum, we work
with a simulation, because simulations are sensitive to branching (i.e.,
the order of visible events and non-deterministic choices) and branching
sensitivity is crucial to implement linking as event-synchronization, as we
will see in §22.2. Fortunately, the simulation M1 ⪯M2 strikes exactly the
right balance: it is large enough to contain our desired examples (e.g.,
the compiler passes in §24 and the coroutine linking operator in §23.3), it
is compositional enough to be compatible with the operators of DimSum
(see §22.3), and it is small enough to imply a traditional whole-program
trace refinement. More specifically, we define whole-program trace refine-
ment as M1 ⊑T M2 ≜ T (M1) ⊆ T (M2) where T (M) ≜

{
e
∣∣ σ0 e−→∗ SM

}
and, as to be expected, we obtain:

Theorem 5 If M1 ⪯M2, then M1 ⊑T M2.

22.2 Angelic and Demonic Non-Determinism

As we have discussed in §21.3 and §22.1, modules in DimSum have two
kinds of non-determinism: demonic and angelic non-determinism. To
understand when we want to use one vs. the other and how they affect
proofs of the simulation M1 ⪯ M2, we discuss them in the context of a
concrete example: the specification language Spec. As mentioned in §21.1,
we have so far only discussed a fragment of Spec. Formally, the full
language is defined coinductively as follows:

Spec(E) ∋ p ::=coind vis(e); p | ∃x : T ; p(x) | ∀x : T ; p(x) (e ∈ E)

As before, vis(e); p emits a visible event e ∈ E. The program ∃x : T ; p(x)

uses demonic non-determinism—think “∃” reminiscent of the devil’s trident

⋔

—to choose some x : T and then proceed as p. The program ∀x : T ; p(x)

uses angelic non-determinism—think “∀” for an inverted A for angel—to
assume a choice x : T and then proceed as p. Besides the analogy, as we
will see shortly, the symbols “∀” and “∃” also have a more literal reading
as quantifiers in the context of the simulation.

Formally, the module semantics of a program p ∈ Spec(E) is a module
JpKs ≜ (Spec(E),→s, p) where programs execute according to the following
transition system:

(vis(e); p)
e−→s {p} (∃x : T ; p(x))

τ−→s {p(y)} (for y ∈ T) (∀x : T ; p(x))
τ−→s {p(y) | y ∈ T}

4 The definition of this simulation
is inspired by Alur et al., “Alter-
nating Refinement Relations”, 1998
[Alu+98] and Fritz and Wilke, “Sim-
ulation relations for alternating
Büchi automata”, 2005 [FW05].

134

Chapter 22: Modules and Refinement

sim-vis
JpKs ⪯ Jp′Ks

Jvis(e); pKs ⪯ Jvis(e); p′Ks

sim-ex-r
∃y ∈ T.M ⪯ Jp(y)Ks
M ⪯ J∃x : T ; p(x)Ks

sim-ex-l
∀y ∈ T. Jp(y)Ks ⪯M

J∃x : T ; p(x)Ks ⪯M

sim-all-r
∀y ∈ T.M ⪯ Jp(y)Ks
M ⪯ J∀x : T ; p(x)Ks

sim-all-l
∃y ∈ T. Jp(y)Ks ⪯M

J∀x : T ; p(x)Ks ⪯M

Figure 22.2: Derived quantifier
elimination/introduction rules
for Spec-programs.

We embed constructs of our meta theory (e.g., if ϕ then p1 else p2) into
Spec5 and, hence, we can derive the remaining constructs of Spec shown
in §21.1 using the three primitives:

any ≜ ub ≜coind ∀x : ∅; ub assume(ϕ); p ≜ if ϕ then p else ub

nb ≜coind ∃x : ∅; nb assert(ϕ); p ≜ if ϕ then p else nb

The specification any means the program can have any behavior or, in
other words, the behavior is not defined (i.e., ub). Formally, we can
represent this behavior as an angelic choice over the empty set, because
M ⪯ J∀x : ∅; pKs for any M (cf. the definition of (⪯)). The specification nb

means the program has finished executing or, in other words, the program
has no behavior anymore. Formally, we can represent termination as
a demonic choice over the empty set: there is no “next” state that the
program can step to. We can then derive the constructs assume(ϕ); p and
assert(ϕ); p.6

Non-deterministic choices as quantifiers. As mentioned above, the nota-
tion for demonic and angelic choice in Spec is no accident: the different
forms of non-determinism have a reading as logical connectives in a simula-
tion. The interactions of the two kinds of non-determinism with simulation
are depicted in Figure 22.2. If we read simulation “⪯” as a form of impli-
cation “⇒”, then the proof rules for the two quantifiers correspond to the
introduction and elimination rules for universal and existential quantifica-
tion of first-order logic. For example, existential quantification ∃x : T ; p

on the left side (sim-ex-l) means we need to consider all possible choices
of x, whereas existential quantification on the right side (sim-ex-r) means
we need to choose x. Furthermore, the quantifiers validate and invalidate
all the usual quantifier commuting principles shown in Figure 22.3.

The reading of non-deterministic choices as quantifiers generalizes
beyond Spec. When we prove a simulation M1 ⪯M2, then demonic non-
determinism in M1 means we need to consider all possible choices; in M2 it
means we need to provide a particular choice. For angelic non-determinism,
the rules are flipped. In M1, we need to provide a particular choice; in
M2, we need to consider all possible choices. For example, in §21.3, we
have discussed angelic non-determinism in the wrapper ⌈M⌉r⇌a. Recall
that angelic non-determinism in this case meant that the wrapper can

5 Spec is a shallow embedding in
Coq and therefore inherits its rich
collection of datatypes (e.g., N,
list(T), etc.) and functions.

6 The Coq development uses the
(classically) equivalent definitions
assume(ϕ); p ≜ ∀_ : ϕ; p and
assert(ϕ); p ≜ ∃_ : ϕ; p.

135

Part IV: DimSum

sim-all-all-comm

J∀x;∀y; p(x, y)Ks ⪯ J∀y;∀x; p(x, y)Ks
sim-ex-ex-comm

J∃x;∃y; p(x, y)Ks ⪯ J∃y;∃x; p(x, y)Ks

sim-ex-all-comm

J∃x;∀y; p(x, y)Ks ⪯ J∀y;∃x; p(x, y)Ks
no-sim-all-ex-comm

J∀y;∃x; p(x, y)Ks ̸⪯ J∃x;∀y; p(x, y)Ks

sim-ex-vis-comm

J∃x; vis(e); p(x)Ks ⪯ Jvis(e);∃x; p(x)Ks
no-sim-vis-ex-comm

Jvis(e);∃x; p(x)Ks ̸⪯ J∃x; vis(e); p(x)Ks

sim-vis-all-comm

Jvis(e);∀x; p(x)Ks ⪯ J∀x; vis(e); p(x)Ks
no-sim-all-vis-comm

J∀x; vis(e); p(x)Ks ̸⪯ Jvis(e);∀x; pKs

Figure 22.3: Admissible and
inadmissible quantifier com-
muting principles for Spec-
programs.

assume “the right choice” is provided to it by the angel. When we prove
the simulation ⌈M1⌉r⇌a ⊕a ⌈M2⌉r⇌a ⪯ ⌈M1 ⊕r M2⌉r⇌a, then we have to
slip into the role of the angel: for calls from M1 to M2, we obtain the
“right choice” of, e.g., the memory m through demonic non-determinism in
M1 (think “∃m”) and then we pass it on through angelic non-determinism
in M2 (think “∀m”).

Branching-sensitivity and linking. What we have not discussed so far is
the interaction of visible events and non-deterministic choices. As it turns
out, it is crucial that the simulation M1 ⪯M2 preserves the order of visible
events and certain choices. More specifically, the rules sim-ex-vis-comm

and sim-vis-all-comm of Figure 22.3 are admissible whereas no-sim-vis-

ex-comm and no-sim-all-vis-comm are not. Intuitively, the reason is that
linking can “inline” an entire module in the place of a visible event e, so
whenever we commute a quantifier over e, we are effectively commuting it
over all the choices made “on the other side” of e.

To illustrate this point, let us consider a concrete example: we will
show that if one admits the commuting forbidden by no-sim-all-vis-

comm, then the simulation is trivial in the sense that Jp1Ks ⪯ Jp2Ks for
any specifications p1 and p2. For this example, we define pL ≜ ∀x :

∅; vis(A!); any and pR ≜ vis(A?); p2 and consider what happens when we
link them together with a suitably defined linking operation (i.e., one
matching A! with A?). Using the forbidden commuting, we show:

Jp1Ks ⪯ JpL ⊕ pRKs ⪯ Jp2Ks

For the first part, Jp1Ks ⪯ JpL ⊕ pRKs, it suffices to observe that pL ⊕ pR

can be implemented by any program p, because it starts with an angelic
choice over an empty set. That is, suppose the linked program pL ⊕ pR

starts executing on the left side. Then we are given x ∈ ∅ in the proof
of JpiKs ⪯ JpL ⊕ pRKs (by sim-all-r) and we are done. For the second
part, JpL ⊕ pRKs ⪯ Jp2Ks we use the commuting rule no-sim-all-vis-comm.
With the commuting rule, it suffices to show J(vis(A!);∀x : ∅; any) ⊕
(vis(A?); p2)Ks ⪯ Jp2Ks, which follows from executing the module: we start
on the left, synchronize on A and continue execution on the right, and
then continue with p2.

136

Chapter 22: Modules and Refinement

In summary, angelic and demonic non-determinism allow modules to
express universal and existential quantification, which enables the local
encoding of assumptions about their environment and guarantees about
their own behavior (as used by the ⌈M⌉r⇌a wrapper). To ensure that the
semantics of operations like linking can be meaningfully expressed as com-
positions of modules, DimSum relies on a branch-sensitive simulation that
carefully controls the commutation of visible events and non-deterministic
choices.

22.3 Combinators

product-compat
M1 ⪯M ′

1 M2 ⪯M ′
2

M1 ×M2 ⪯M ′
1 ×M ′

2

filter-compat
M1 ⪯M ′

1

M1 \M2 ⪯M ′
1 \M2

link-compat
M1 ⪯M ′

1 M2 ⪯M ′
2

M1 ⊕X M2 ⪯M ′
1 ⊕X M ′

2

wrapper-compat
M ⪯M ′

⌈M⌉X ⪯ ⌈M ′⌉X

Figure 22.4: Compositional
combinator reasoning princi-
ples.

One of the strong suits of DimSum is that it comes with a compositional
set of language-agnostic combinators. Concretely, DimSum provides out-
of-the-box a combinator for the product M1 ×M2 of two modules M1

and M2, one for filtering M1 \M2, one for linking M1⊕X M2, and one for
stateful wrappers ⌈M⌉X . The combinators we have encountered so far—
⊕r , ⊕a , and ⌈·⌉r⇌a—are all language-specific instantiations of these
generic combinators (see §23 and §24). To allow for the compositional
reasoning we aim for in DimSum, all of them need to be compatible with
simulation, i.e., they need to be monotone with respect to ⪯, as asserted,
for example, by asm-link-horizontal. The main benefit of expressing the
language-specific combinators as instances of the generic combinators is
that the desired compatibility properties—shown in Figure 22.4—can be
proven once and for all for the generic combinators.7 In the following, we
will discuss the definition of the product combinator M1 ×M2 in detail
and describe the functionality of the others.

Product. The product combinator

M1 ×M2 ≜ ({E, L,R} × SM1 × SM2 ,→×, (E, σ
0
M1

, σ0
M2

))

builds the product of two modules M1 and M2. It is inspired by parallel
composition in process calculi such as CSP8 and CCS,9 but restricted to
a particular form of scheduling (depicted in Figure 22.5): At any point in
time, either the environment, the left module M1, or the right module M2

is executing. We store whose turn it currently is in a flag d ∈ D ≜ {E, L,R}
as part of the state of the module (alongside the state of the two modules
M1 and M2). If the executing party is one of M1 or M2 and executes a
silent step (product-step-l-silent and product-step-r-silent), then it
remains their turn. We only switch turns once the module emits a visible
event (product-step-l and product-step-r). Whenever we switch, the
next turn d is chosen using demonic non-determinism. If it is currently
the environment’s turn, then we non-deterministically choose d for the
next step (product-step-env).

7 Technically, these compatibility
properties only hold for modules
that do not perform (non-trivial)
angelic choices on steps with visible
events. This requirement is trivial
to satisfy by moving the angelic
choice into a separate silent step.

8 Hoare, “Communicating Sequential
Processes”, 1978 [Hoa78]; Roscoe,
Understanding Concurrent Systems,
2010 [Ros10].

9 Milner et al., “A Calculus of Mo-
bile Processes, I/II”, 1992 [MPW92];
Milner, Communicating and Mo-
bile Systems: the π-Calculus, 1999
[Mil99].

137

Part IV: DimSum

product-step-l
σ1

e−→ Σ

(L, σ1, σ2)
left(e,d)−−−−−→× {(d, σ′

1, σ2) | σ′
1 ∈ Σ}

product-step-l-silent
σ1

τ−→ Σ

(L, σ1, σ2)
τ−→× {(L, σ′

1, σ2) | σ′
1 ∈ Σ}

product-step-r
σ2

e−→ Σ

(R, σ1, σ2)
right(e,d)−−−−−→× {(d, σ1, σ

′
2) | σ′

2 ∈ Σ}

product-step-r-silent
σ2

τ−→ Σ

(R, σ1, σ2)
τ−→× {(R, σ1, σ

′
2) | σ′

2 ∈ Σ}

product-step-env

(E, σ1, σ2)
env(d)−−−−→× {(d, σ1, σ2)}

Figure 22.5: Definition of →×.
The events of the module e× ≜ left(e, d) | right(e, d) | env(d) expose

the scheduling choice of the product combinator (i.e., who is currently
executing). We can exploit this information in other combinators to
construct more deterministic schedules. For example, the linking com-
binator M1 ⊕X M2 can filter out certain scheduling choices of M1 ×M2

and thereby enforce structured communication between M1 and M2 (as
seen in §21.2).

Filter. For a module M ∈ Module(E1), the filter combinator M \M ′ ∈
Module(E2) transforms the events of the left module. That is, intuitively,
one can think of the filter M ′ as a relation “e1 ∼ e2 ⊆ E1 × E2” that is
used to turn events e1 ∈ E1 into events e2 ∈ E2 and vice versa. In practice,
expressing the filter M ′ in terms of a relation is too restrictive, because
we sometimes want (1) to carry state in between the event translations,
(2) map a single event to multiple events, and (3) use angelic and demonic
non-determinism to control how the events are filtered. Thus, in DimSum,
we go beyond a relation “e1 ∼ e2” and instead use a filter module M ′.
This is similar to the notion of transducers in automata theory. The
idea is that when M emits an event e1 ∈ E1, control is passed to the
module M ′, which will then execute and emit one or more events to the
environment. To be precise, the filter module M ′ communicates using the
events:

e\ ::= FromInner(e1 : E1) | ToInner(e1 : option(E1)) | ToEnv(e2 : E2) | FromEnv(e2 : E2)

FromInner(e1) means that M ′ is willing to accept e1 from M , ToInner(e1)
means that M ′ wants to return control to the module M , optionally
sending it the event e1, ToEnv(e2) means that M ′ wants to send e2 to
the environment, and FromEnv(e2) means that M ′ is willing to accept e2

from the environment. Throughout all of these interactions, the filter M ′

can maintain some internal state, since it itself is a module (i.e., state
transition system).10 We will see an instance of a filter module below
when we discuss the wrapper combinator.

Linking. To express semantic linking in a language-generic way, the
linking combinator M1 ⊕X M2 works as follows. The modules M1 and
M2 emit tagged events e?! ∈ E?! ≜ E × {?, !} such as Jump?(r,m)

10 Readers familiar with process
algebra can think of the filter
combinator M \M ′ as the process
(M ∥ M ′)\E1 where the module
M ′ accepts the events from M and
emits events e2 ∈ E2.

138

Chapter 22: Modules and Refinement

or Jump!(r,m), where the tag t ∈ {?, !} indicates whether the event is
incoming (?) or outgoing (!). It is then the job of the linking operator⊕X to
flip the event e?! or replace the event e?! with a different event e′?! (e.g., for
the coroutine linking operator in §23.3 calls become returns). Technically
we define M1⊕XM2 ≜ (M1×M2) \ linkX : the non-deterministic scheduling
of M1×M2 is filtered by linkX , which discards out all the interleavings that
are “nonsensical”. For example, if M1 wants to “jump” to the environment,
then linkX filters out the interleavings of M1 ×M2 where the next turn is
L (for M1) or R (for M2).

The parameter X = (S,⇝, s0) determines how the events are linked.
It consists of a set of linking-internal states S, an initial state s0 ∈ S,
and a relation ⇝ ⊆ (D× S × E)× ((D× S × E) ∪ { }) describing how
events should be translated. Concretely, (d, s, e) ⇝ (d′, s′, e′) means the
untagged event e ∈ E coming from direction d should go to d′ as the
event e′. Behind the scenes, the linking operator then adds the right tag
t ∈ {?, !} to e′, depending on whether e is part of an incoming or outgoing
event. It is also possible that the event cannot be linked (d, s, e) ⇝ , in
which case the linking M1 ⊕X M2 has undefined behavior. The linking-
internal states S are a form of private state that the linking operator can
use to remember information across invocations (e.g., a syscall triggered
by the left module should return to the left module). We will discuss
concrete instantiations of the linking relation ⇝ in §23.

(Kripke) wrappers. For a module M ∈ Module(E1), the wrapper ⌈M⌉X ≜
M \wrapX ∈ Module(E2) translates events between languages with events
E1 and E2 (e.g., between Rec and Asm in the case of ⌈·⌉r⇌a). The
combinator is a special case of filtering where the filter wrapX encodes a
particular event translation. The parameter X = (L,⇀,↽) contains a
separation logic L (explained below) and a pair of Kripke relations (⇀ and
↽) where e1 ⇀ e2 controls the translation E1 to E2 and e1 ↽ e2 controls
the translation E2 to E1. In both directions, we use non-determinism in
the filter wrapX to pick “the right” corresponding events. For e2 ∈ E2

arriving from the environment, the filter angelically chooses an event e1

such that e1 ↽ e2. For e1 ∈ E1 originating from the module M , the filter
demonically chooses an event e2 such that e1 ⇀ e2.

The relations ⇀ and ↽ are Kripke relations in the sense that they
maintain state between events. Instead of explicitly indexing these rela-
tions with a “possible world” (as sketched in §21.3), we define them in
separation logic. That is, their type is ⇀,↽: E1 × E2 → PropL where
PropL denotes the type of propositions in the separation logic L (one
component of X). The separation logic L determines which “resources”
the relations ⇀ and ↽ can refer to (e.g., a Rec or Asm heap). We always
use separation logics L that are instances of the Iris separation logic
framework.11 We will see a concrete choice of L and the relations ⇀ and
↽ in §24.

To understand how the wrapper works, it is instructive to discuss the
definition of the filter module wrapX . It is given by wrapX ≜ Jwrap(True)Ks
where wrap coordinates the exchange between the wrapped module M and
its environment. The argument of wrap is a separation logic proposition

11 In fact, readers familiar with Iris
can think of the separation logic L
as UPred(R), the separation logic of
uniform predicates over the resource
algebra R, where each instance of
the wrapper combinator chooses its
own resource algebra R.

139

Part IV: DimSum

keeping track of the “resources” that the inner module owns privately (i.e.,
that are not shared with the environment). The definition of wrap is given
by:

wrap(P1) ≜coind

∃e2; vis(FromEnv(e2));∀e1, P2; assume(sat(P1 ∗ P2 ∗ e1 ↽ e2)); vis(ToInner(e1));

∃e′1; vis(FromInner(e′1));∃e′2, P ′
1; assert(sat(P

′
1 ∗ P2 ∗ e′1 ⇀ e′2)); vis(ToEnv(e

′
2));wrap(P

′
1)

Initially, the filter accepts any incoming event e2 from the environment
(with FromEnv(e2)). It then assumes it is given angelically the correspond-
ing event e1 for the inner module, which it sends to the module (with
ToInner(e1)). Afterwards, the filter module accepts any response event e′1
from the inner module (with FromInner(e′1)). It then demonically chooses
the corresponding event e′2 to send to the environment (with ToEnv(e′2)).

In the exchange between the wrapped module M and the environment,
separation logic propositions are used to “divide up” the shared state
(e.g., the locations in the heap). The wrapped module exclusively owns
some resources P1 which the environment may not change, and it can
update them to P ′

1 during the exchange. The environment exclusively
owns some resources P2 which the wrapped module must preserve while
updating its own state.12 Finally, during every exchange some parts of
the state can be shared between the environment and the wrapped module
using the separation logic relations e1 ⇀ e2 and e1 ↽ e2 (see §24). The
proposition sat(P) (read P is satisfiable) here means that there is some
valid underlying resource (e.g., a heap) for which P holds.

12 The structure of this exchange
follows Iris’s frame-preserving
update modality (see e.g., Jung
et al., “Iris from the ground up: A
modular foundation for higher-order
concurrent separation logic”, 2018
[Jun+18b]): Initially, the module
assumes some decomposition of the
shared resources, and then it makes
sure to only update the exclusively
owned resources P1 to resources P ′

1

that remain compatible with the
environment resources.

140

Chapter 23

Instantiations of DimSum

23.1 The Language Asm

Library ∋ A ≜ Z fin−⇀ Instr

Instr ∋ c ::= ret | mov x, o | add x1, x2, o | mul x1, x2, o | sle x1, x2, o | syscall

| ldr x1, [x2 + i] | str x1, [x2 + i] | jmp o | beq o1, x, o2 | · · ·
Operand ∋ o ::= x : RegisterName | i : Z

ExecutionState ∋ I ::= Wait | Run(r,m) | WaitSyscall(r) | Halted

asm-incoming
r(pc) = a a ∈ |A|

(Wait,A)
Jump?(r,m)−−−−−−−−→a {(Run(r,m),A)}

asm-jump-internal
r(pc) = a A(a) = jmp v v ∈ |A|

(Run(r,m),A)
τ−→a {(Run(r[pc 7→ v],m),A)}

asm-jump-external
r(pc) = a A(a) = jmp v v /∈ |A|

(Run(r,m),A)
Jump!(r[pc7→v],m)−−−−−−−−−−−−−→a {(Wait,A)}

Figure 23.1: Grammar and
excerpt of the operational
semantics of Asm.

The language Asm is an idealized assembly language with instruc-
tions for arithmetic, jumps, memory accesses, and syscalls (depicted
in Figure 23.1).1 The libraries A of Asm are finite maps from ad-
dresses to instructions. The set of their instruction addresses is defined
as |A| = domA.

Module semantics. The semantics of an Asm library A is the module
JAKa. We write (→a) for the transition system (excerpt shown in Fig-
ure 23.1). The states of the module are of the form σ = (I,A) where I is
the current execution state, and the initial state is (Wait,A). Conceptu-
ally, four different execution states are possible during the execution of
A: executing (Run(r,m)), waiting for incoming jumps (Wait), waiting
for a syscall to return (WaitSyscall(r), where r preserves the registers
across the syscall), or finished executing (Halted). To explain the tran-
sitions, we discuss three cases. Initially, the module is waiting (Wait)
and can accept any incoming jump with arbitrary memory and registers
(see asm-incoming). After accepting the jump (Run(r,m)), the module
executes the instructions of A, updating the current register assignment
r and memory m (not shown in the figure). When the module reaches

1 Following Islaris, the Coq devel-
opment defines the instructions
depicted in Figure 23.1 as composi-
tions of micro-instructions.

141

Part IV: DimSum

asm-link-jump
(d′ = L ∧ r(pc) ∈ d1) ∨ (d′ = R ∧ r(pc) ∈ d2) ∨ (d′ = E ∧ r(pc) /∈ d1 ∪ d2) d ̸= d′

(d,None,Jump(r,m))⇝d1,d2 (d
′,None,Jump(r,m))

rec-link-call
(d′ = L ∧ f ∈ d1) ∨ (d′ = R ∧ f ∈ d2) ∨ (d′ = E ∧ f /∈ d1 ∪ d2) d ̸= d′

(d, ds,Call(f,v ,m))⇝d1,d2 (d
′, d :: ds,Call(f,v ,m))

rec-link-ret
d ̸= d′

(d, d′ :: ds,Return(v,m))⇝d1,d2 (d
′, ds,Return(v,m))

coro-link-yield
(d = L ∧ d′ = R) ∨ (d = R ∧ d′ = L)

(d, (d,None),Call(yield, [v],m))⇝d1,d2
coro (d′, (d′,None),Return(v,m))

Figure 23.2: Excerpt of the
semantic linking relations of
Asm (⇝), Rec (⇝), and Rec

with coroutines (⇝coro).

a jump jmp v (or jumps to an instruction in another way), one of two
things happens: Either the destination v is in the address range of A
and we continue executing in the module (see asm-jump-internal), or
the destination v is outside the address range of A. In the latter case,
the module emits Jump!(r[pc 7→ v],m) and returns to the Wait state.
Syscalls execute analogously to jumps (with WaitSyscall), and a library
can finish executing (Halted).

Linking. Syntactically, linking of two Asm libraries (i.e., A1 ∪a A2)
means merging the maps A1 and A2. In case of overlapping addresses,
the conflict is resolved by using the instruction from A1 (the choice
of A1 over A2 is arbitrary). Semantically, linking is more interesting.
If we link two Asm modules (i.e., M1

d1⊕d2
a M2), then we have to

synchronize based on the jump events. To define M1
d1⊕d2

a M2, we use
the combinator M1 ⊕X M2 from §22.3. In the case of Asm, we pick
X = (option(D),⇝d1,d2 ,None). For a jump event (see asm-link-jump in
Figure 23.2), the linking operator resolves the destination d′ based on the
addresses in d1 and d2—jumps that are outside these addresses are passed
on to the environment. Syscalls are propagated to the environment.

23.2 The Language Rec

The language Rec is a simple, high-level language with arithmetic oper-
ations, let bindings, memory operations, conditionals, and (potentially
recursive) function calls (depicted in Figure 23.3). The libraries R of Rec
are lists of function declarations. Each function declaration contains the
name of the function f, the argument names x, local variables y which
are allocated in the memory, and a function body e. The set of function
names |R| of a library R is defined as the names of the functions in the
list R. The syntactic linking R1 ∪r R2 merges the function declarations of
both libraries (again giving precedence to the left side in case of conflict).
Similar to Asm, the semantic linking M1

d1⊕d2
r M2 is an instance of (⊕X)

where the linking relation is depicted in Figure 23.2. The most interesting

142

Chapter 23: Instantiations of DimSum

Library ∋ R ::= (fn f(x) ≜ local y[n]; e),R | ∅
Expr ∋ e ::= v | x | e1⊕ e2 | let x := e1 in e2 | if e1 then e2 else e3 | e1(e2) | !e | e1 ← e2

BinOp ∋ ⊕ ::= + |< |== | ≤

Figure 23.3: Grammar of Rec.
difference to Asm is that linking in Rec has to build up and then wind
down a call-stack (through calls and returns), which is maintained as the
internal state of (⇝).

23.3 Coroutine Linking M1 ⊕coro M2

One of the strong suits of DimSum is that it allows multiple semantic
linking operators for the same language. We showcase this using the
coroutine linking operator M1 ⊕coro M2 from the example in §20.1. Similar
to (⊕a) and (⊕r), the operator M1 ⊕coro M2 is an instance of M1 ⊕X M2.
The most interesting case of its transition relation⇝coro, coro-link-yield,
is depicted in Figure 23.2. Here, we can see that the linking operator
links calls to yield from M1 (resp. M2) with returns from yield in M2 (resp.
M1). This translation of calls to returns captures the intuitive behavior of
the coroutine library yield (in Figure 20.1) at the level of Rec—without
mentioning the complex implementation of yield in Asm.

Verification of main and stream. We verify the example in Figure 20.1,
namely that it prints 0, then 1, and then returns 2. The proof strategy
for this verification is analogous to §21.2:

coro ⪯ JyieldKa ⊕a ⌈JmainKr⌉r⇌a ⊕a ⌈JstreamKr⌉r⇌a ⊕a JprintspecKs
⪯ ⌈JmainKr ⊕coro JstreamKr⌉r⇌a ⊕a JprintspecKs
⪯ ⌈JmainspecKs⌉r⇌a ⊕a JprintspecKs ⪯ JcorospecKs

Here coro denotes the compiled and syntactically linked Asm-program.
The specifications corospec and mainspec are similar to the corresponding
specifications in §21. The key steps of this proof are the second and third
step which use the following rules:

coro-link

JyieldKa ⊕a ⌈M1⌉r⇌a⊕a⌈M2⌉r⇌a ⪯ ⌈M1⊕coroM2⌉r⇌a

main-coro

JmainKr⊕coroJstreamKr ⪯ JmainspecKs

The lemma coro-link is a generic lemma provided by the coroutine library
that allows abstracting the yield library to the M1 ⊕coro M2. This lemma
enables us to verify the composition of main and stream purely at the
Rec-level (main-coro)—completely independently of Asm.

143

Chapter 24

Compiler

RSSA

(Rec)
R

(Rec)
Rlin

(LinearRec)
Ropt

(LinearRec)
↓R

(Asm)
SSA

JRKr ⪰ JRSSAKr

Linearize

JRSSAKr ⪰ JRlinKr

Mem2Reg

⌈JRlinKr⌉r⇌r ⪰ JRoptKr

Codegen

⌈JRoptKr⌉r⇌a ⪰ J↓RKa

Figure 24.1: Structure of our
Rec to Asm compiler.

This chapter describes our compiler ↓R from Rec to Asm, and how we
verify it in DimSum. The compiler has four passes, depicted in Figure 24.1:
The first pass, SSA, renames variables such that each variable is only
assigned once, and the second pass, Linearize, converts the program into
A-normal form. The A-normal form is expressed in an intermediate repre-
sentation, LinearRec, which is a subset of Rec that only allows let-bindings
and if-statements at the top-level and flattens all nested expressions. The
third pass, Mem2Reg , is a non-trivial optimization pass that reduces mem-
ory consumption by turning local variables whose address is never observed
into let-bindings (which can be compiled to registers subsequently). For
example, it turns (the A-normal form of) fn f(x) ≜ local y[1]; y ← x; !y+!y
into fn f(x) ≜ let y := 0 in let y := x in y + y, because the address of y is
never used. The final pass, Codegen, is a standard code-generation pass
producing the Asm code: it takes care of register allocation (including
spilling to the stack when necessary), allocating local variables on the
stack, and adhering to the Asm calling convention.

Compiler correctness. Let us turn to the correctness of the compiler
(compiler-correct in §21.2):1

Theorem 6 (Compiler Correctness) If ↓R is defined, then

J↓RKa ⪯ ⌈JRKr⌉r⇌a

Intuitively, compiler correctness says that the compiled assembly code
behaves like the original source program translated by the wrapper—i.e.,
syntactic translation via the compiler refines semantic translation via the
wrapper ⌈·⌉r⇌a. As we have seen in §21.2, compiler-correct is a useful
result that allows one to replace reasoning about the compiled assembly
code with reasoning about the source program. The ⌈·⌉r⇌a wrapper is
defined using the ⌈·⌉X combinator from §22.3.

The compiler correctness result is proven by composing refinements
for the individual passes (the refinements are shown in Figure 24.1 above
each corresponding pass):

1 To simplify the presentation, the
rule compiler-correct omits
some technical details relevant
for the translation between Rec-
function names and the correspond-
ing Asm-instruction addresses.

145

Part IV: DimSum

⌈JRKr⌉r⇌a ⪰ ⌈JRSSAKr⌉r⇌a ⪰ ⌈JRlinKr⌉r⇌a ⪰ ⌈⌈JRlinKr⌉r⇌r⌉r⇌a ⪰ ⌈JRoptKr⌉r⇌a ⪰ J↓RKa

The refinements for the SSA and Linearize passes are straightforward Rec

refinements, and the Codegen pass uses the ⌈·⌉r⇌a wrapper to translate
between Rec and Asm. The pass Mem2Reg is special, however, in that
it introduces an additional wrapper ⌈·⌉r⇌r. To understand what this
wrapper does and why we have to introduce it, let us first take a step back
and consider how DimSum determines which program transformations
are considered semantics-preserving.

Semantics-preserving program transformations. There are two classes of
program transformations that are semantics-preserving in DimSum.

The first class of semantics-preserving program transformations does not
change observable parts of the events. This can be expressed by proving
that the transformed program refines the original, i.e., JR1Kr ⪯ JR2Kr
where R1 is the transformed program and R2 the original. This refinement
expresses that the transformed program R1 must emit the same events as
the original R2, because the definition of (⪯) (in §22.1) enforces that the
events of R1 and R2 match exactly. Thus, by selecting which information
about the program state to include in its events, a language effectively
determines this first class of semantics-preserving program transformations.
For example, Rec includes values v and heaps m in its events and thus
program transformations can change the syntactic structure of a program—
since the program structure is not part of the events—but they cannot
alter return values or the heap that is shared across function calls (unless
they fall into the second class). In the compiler, the SSA and Linearize
passes fall into this first class of transformations (see their correctness
statements in Figure 24.1).

The second class of semantics-preserving program transformations does
change observable parts of the events. For example, the Mem2Reg transfor-
mation falls into this category, because it alters memory in such a way that
it becomes impossible to align the events of the transformed program Ropt

with the original Rlin. To verify these transformations in DimSum, one
can use additional wrappers to make sure the events do match up. For ex-
ample, in the case of Mem2Reg, we cannot prove JRoptKr ⪯ JRlinKr because
of the event mismatch, but we can prove JRoptKr ⪯ ⌈JRlinKr⌉r⇌r where
the wrapper ⌈·⌉r⇌r transforms the events of JRlinKr such that they match
up with JRoptKr. Concretely, the ⌈·⌉r⇌r wrapper ensures that private
memory locations (i.e., local variables that have never been shared with
the environment via function arguments or return values) are not part of
the events, and thus Mem2Reg is allowed to optimize them away.

While wrappers such as ⌈·⌉r⇌r enable the verification of more pro-
gram transformations, we also have to make sure that they do not al-
low too many transformations (i.e., incorrect transformations). This
constraint is handled implicitly by the compiler correctness statement
compiler-correct—it does not mention any wrappers other than ⌈·⌉r⇌a,
and in order to use a new wrapper such as ⌈·⌉r⇌r, we have to show
that the additional transformations it enables are also allowed by the
wrapper ⌈·⌉r⇌a. We call this property “vertical compositionality” of the

146

Chapter 24: Compiler

two wrappers (rec-to-asm-vertical below) and it allows us to prove
⌈⌈JRlinKr⌉r⇌r⌉r⇌a ⪯ ⌈JRlinKr⌉r⇌a in the refinement chain of compiler-

correct.

Vertical compositionality. Vertical compositionality in DimSum means
not only proving transitivity of the simulation relation (⪯), but also
that certain “intermediate wrappers” can be eliminated. For instance,
the vertical compositionality result of ⌈·⌉r⇌r in this compiler correctness
proof is given by:

rec-to-asm-vertical ⌈⌈M⌉r⇌r⌉r⇌a ⪯ ⌈M⌉r⇌a

This theorem, like most vertical compositionality theorems, is difficult to
prove, since we need to show that certain Rec-level memory transforma-
tions do not change the behavior of M from the perspective of Asm in
any meaningful way.

Note that in other approaches to multi-language semantics, vertical com-
positionality typically either requires composing simulation relations2 or
proving the transitivity of contextual refinement.3 In contrast, in DimSum,
the (Kripke) wrappers ⌈M⌉X effectively assume the role of “simulation
conventions” or “simulation invariants” in a (Kripke) simulation relation
(e.g., relations on memories and values), but they do so as a module
combinator. As a result, proving vertical compositionality in DimSum
is not necessarily simpler, but it is more localized: if we want vertical
compositionality of two transformations (i.e., two wrappers), then we
prove a single simulation (e.g., rec-to-asm-vertical), and no other parts
of the framework are affected, since they are compatible with simulation.

The ⌈·⌉r⇌r wrapper. Let us now turn to the definition of the wrapper
⌈·⌉r⇌r, which is an instance of the generic combinator ⌈M⌉X (from §22.3).
As explained above, the purpose of ⌈·⌉r⇌r is to enable optimizing memory
locations that are kept private and never shared with the environment
(e.g., via function arguments or return values). To this end, we instantiate
⌈M⌉X with a separation logic L inspired by Gäher et al.4 that supports
assertions for both persistent ownership of shared locations (ℓ1↔ ℓ2) and
exclusive ownership of private memory locations (ℓ1 7→E v and ℓ2 7→I v).
The assertion ℓ1↔ ℓ2 states that location ℓ1 in the external memory
(i.e., the memory of ⌈M⌉r⇌r) always corresponds to ℓ2 in the internal
memory (i.e., the memory of M). The assertion ℓ 7→E v conveys exclusive
ownership of the locations ℓ in the external memory, and ℓ 7→I v of ℓ in the
internal memory. Additionally, the separation logic provides the assertion
inv(m1,m2) which connects “ℓ1↔ ℓ2”, “ℓ 7→E v”, and “ℓ 7→I v” to the heaps
m1 and m2 such that the heaps overlap in the way described by the
assertions. We then instantiate the relations eI ⇀ eE and eI ↽ eE with:

eI ⇀ eE, eI ↽ eE ≜ type(eI) = type(eE) ∗ inv(mem(eI),mem(eE)) ∗ ∀(v1, v2) ∈ vals(eI, eE). v1↔ v2

This definition consists of three parts: First, the type of the events (i.e.,
call or return) has to match. Second, the invariant inv has to hold for
the memories contained in the events. Third, the values of events (e.g.,

2 Neis et al., “Pilsner: A Compo-
sitionally Verified Compiler for
a Higher-Order Imperative Lan-
guage”, 2015 [Nei+15]; Stewart
et al., “Compositional CompCert”,
2015 [Ste+15].

3 Perconti and Ahmed, “Verifying
an Open Compiler Using Multi-
language Semantics”, 2014 [PA14].

4 Gäher et al., “Simuliris: A Separa-
tion Logic Framework for Verifying
Concurrent Program Optimizations”,
2022 [Gäh+22].

147

Part IV: DimSum

function arguments and return values) must be related (i.e., ℓ1↔ ℓ2 for
locations and equality for integers and Booleans).

Let us now consider how the wrapper ⌈·⌉r⇌r enables the verification
of the Mem2Reg pass, which transforms Rlin to Ropt. Recall that this
transformation replaces a local variable allocated at some location ℓ in
Rlin with a let-binding without corresponding allocation in Ropt. To justify
this transformation, we need to prove that the value stored at ℓ in Rlin

always corresponds to the let-bound value in Ropt and, in particular,
remains constant across external function calls. To this end, we use the
ℓ 7→I v assertion, which we obtain at the start of the function when ℓ is
allocated on the heap, and we keep it in the privately owned part P1 of
the combinator ⌈M⌉X (see §22.3). That is, ℓ 7→I v allows us to track the
precise value of ℓ and ensure that it corresponds to the let-bound value in
the optimized program. When calling the environment, we do not need
to give up ℓ 7→I v, because the location is never exposed and thus never
appears in eI ⇀ eE (otherwise the optimization does not fire). Instead,
we can keep ℓ 7→I v in the privately owned part of the module P1 and
the definition of wrap ensures that ℓ 7→I v holds across the function call.
Thus, we know ℓ still points to v after the function call, which allows us
to complete the verification of the Mem2Reg pass.

148

Chapter 25

Related Work

We first compare with other work on semantics and verification of programs
with components written in multiple languages. Then we discuss other
lines of work that inspired the design of DimSum.

CompCert-based approaches to multi-language verification. Although
CompCert’s original correctness statement1 only concerns whole programs,
it inspired a long line of work on multi-language verification.2

The approach most closely related to DimSum is CompCertO,3 since its
game semantics-based approach has parallels to the event-based approach
of DimSum—e.g., CompCertO’s language interfaces play a similar role
to the event types of DimSum. To scale to the full extent of CompCert,
CompCertO makes design choices specific to the languages of CompCert.
In particular, it provides only a single linking operator that enforces a
well-bracketed call structure (unlike M1 ⊕coro M2), studies only transition
systems without private state across function invocations (unlike ⌈·⌉r⇌a),
and—even though CompCertO’s underlying definition of simulation con-
vention is independent of the memory model—considers only languages
with the same memory model (unlike Rec and Asm).

Compositional CompCert,4 Ramananandro et al.,5 and CompCertM6

achieve multi-language linking by imposing a common interaction protocol
between all languages. This works well in their setting since all CompCert
languages share a notion of values and memory, but it is unclear how
to scale this setup to more heterogeneous languages like Rec and Asm.
Similar to DimSum, Ramananandro et al. use events that contain the
complete program memory. They define linking on traces of call events
(i.e., “behaviors”) and prove equivalence between syntactic and semantic
linking similar to asm-link-syn and rec-link-syn. However, their traces
erase the branching structure of the program. In DimSum, sensitivity
to branching is crucial due to the presence of both demonic and angelic
non-determinism (see §22.2), so we define linking directly on transition
systems (i.e., “modules”).

CompCertX and (Concurrent) Certified Abstraction Layers7 have been
successfully deployed in the verification of the CertiKOS verified operating
system. However, they impose restrictions on the interaction between
different components, such as forbidding mutual recursion and certain
memory sharing patterns. In contrast, our semantic linking operators
M1 ⊕a M2 and M1 ⊕r M2 allow mutual recursion and memory sharing.

1 Leroy, “Formal Certification of a
Compiler Back-end or: Program-
ming a Compiler with a Proof
Assistant”, 2006 [Ler06].

2 Beringer et al., “Verified Com-
pilation for Shared-Memory C”,
2014 [Ber+14]; Ramananandro
et al., “A Compositional Semantics
for Verified Separate Compilation
and Linking”, 2015 [Ram+15];
Stewart et al., “Compositional Com-
pCert”, 2015 [Ste+15]; Kang et al.,
“Lightweight Verification of Separate
Compilation”, 2016 [Kan+16]; Gu
et al., “Deep Specifications and
Certified Abstraction Layers”, 2015
[Gu+15]; Wang et al., “An Abstract
Stack Based Approach to Verified
Compositional Compilation to
Machine Code”, 2019 [WWS19];
Song et al., “CompCertM: Com-
pCert with C-Assembly Linking and
Lightweight Modular Verification”,
2020 [Son+20]; Koenig and Shao,
“CompCertO: Compiling Certified
Open C Components”, 2021 [KS21].

3 Koenig and Shao, “CompCertO:
Compiling Certified Open C Compo-
nents”, 2021 [KS21].

4 Stewart et al., “Compositional
CompCert”, 2015 [Ste+15].

5 Ramananandro et al., “A Com-
positional Semantics for Verified
Separate Compilation and Linking”,
2015 [Ram+15].

6 Song et al., “CompCertM: Com-
pCert with C-Assembly Linking and
Lightweight Modular Verification”,
2020 [Son+20].

7 Gu et al., “Deep Specifications
and Certified Abstraction Layers”,
2015 [Gu+15]; Wang et al., “An
Abstract Stack Based Approach to
Verified Compositional Compilation
to Machine Code”, 2019 [WWS19];
Gu et al., “Certified Concurrent
Abstraction Layers”, 2018 [Gu+18];
Vale et al., “Layered and Object-
Based Game Semantics”, 2022
[Val+22].

149

Part IV: DimSum

Syntactic multi-languages. Syntactic multi-languages8 embed source,
target, and intermediate languages into a common multi-language (with
“boundary” terms to translate between languages) and then use the multi-
language to, among other things, state and verify compiler correctness
theorems. As this line of work demonstrates, syntactic multi-languages
scale well to typed, higher-order languages. In DimSum, we have so far
put the focus on different kinds of languages: untyped, low-level languages
comparable to C and assembly.

Specifications in syntactic multi-languages use contextual equivalence,
which is canonical but has the downside of including the operations (and
semantics) of all involved languages in every specification. In contrast,
when we prove Jmain ∪r memmoveKr ⊕r JloclespecKs ⪯ JmainspecKs in §21,
we only care about the semantics of Rec, not that the modules are
embedded in an Asm context.

Mates et al.9 prove correctness of a compiler from a source language
without call/cc to a target language with call/cc and show that com-
piled code can be linked with a thread library loosely similar to our
coroutine library (§23.3). They do not provide a high-level abstraction
like M1 ⊕coro M2 and instead require clients to reason about the imple-
mentation of the library. In their case, the distinction does not matter
much because the target language is reasonably high-level, but for Rec

and Asm, it would involve reasoning about low-level stack and register
manipulation.

Recently, Patterson et al.10 proved type safety for several, very different
multi-languages by giving a realizability model in an untyped target
language. While effective for type safety, the downside of this approach
is that most reasoning happens at the target language. In contrast, an
important goal of DimSum is to lift reasoning to source-level languages
as shown by §21 and §23.3.

Pilsner. Building on the work of Hur and collaborators,11 Pilsner12

verifies two compilers from a higher-order stateful source language to an
assembly target language and shows that the compiled programs can be
safely linked. However, Pilsner prohibits linking with target-level libraries
whose observable functionality is inexpressible in the source; as such, it
rules out the examples in §21 and §23.3.

Other approaches. The Cito compiler13 simplifies its compositional com-
piler correctness statement by requiring the user to provide specifications
for all external functions. In contrast, while DimSum supports giving
specifications for low-level libraries as seen in §21, they are not required
by our compiler correctness theorem.

Conditional Contextual Refinement (CCR)14 uses dual (demonic and
angelic) non-determinism to encode a wrapper that can transform the
values of function arguments and results (as first shown by Back15) and
enforce separation logic preconditions and postconditions. DimSum’s
wrappers are inspired by this idea but apply it to interoperation between
different languages and memory models instead of program verification.
While CCR allows linking between different languages (e.g., between an

8 Matthews and Findler, “Opera-
tional Semantics for Multi-Language
Programs”, 2007 [MF07]; Perconti
and Ahmed, “Verifying an Open
Compiler Using Multi-language
Semantics”, 2014 [PA14]; Patterson
et al., “FunTAL: Reasonably Mixing
a Functional Language with Assem-
bly”, 2017 [Pat+17]; Mates et al.,
“Under Control: Compositionally
Correct Closure Conversion with
Mutable State”, 2019 [MPA19]; Pat-
terson et al., “Semantic Soundness
for Language Interoperability”, 2022
[Pat+22].

9 Mates et al., “Under Control:
Compositionally Correct Closure
Conversion with Mutable State”,
2019 [MPA19].

10 Patterson et al., “Semantic Sound-
ness for Language Interoperability”,
2022 [Pat+22].

11 Benton and Hur, “Biorthogonal-
ity, Step-indexing and Compiler
Correctness”, 2009 [BH09]; Benton
and Hur, Realizability and Com-
positional Compiler Correctness
for a Polymorphic Language, 2010
[BH10]; Hur and Dreyer, “A Kripke
Logical Relation Between ML and
Assembly”, 2011 [HD11]; Hur et al.,
“The Marriage of Bisimulations and
Kripke Logical Relations”, 2012
[Hur+12].

12 Neis et al., “Pilsner: A Compo-
sitionally Verified Compiler for a
Higher-Order Imperative Language”,
2015 [Nei+15].

13 Wang et al., “Compiler Veri-
fication Meets Cross-Language
Linking via Data Abstraction”,
2014 [WCC14]; Pit-Claudel et al.,
“Extensible Extraction of Efficient
Imperative Programs with Foreign
Functions, Manually Managed Mem-
ory, and Proofs”, 2020 [Pit+20].

14 Song et al., “Conditional Contex-
tual Refinement”, 2023 [Son+23].

15 Back, “Changing Data Represen-
tation in the Refinement Calculus”,
1989 [Bac89].

150

Chapter 25: Related Work

implementation language and a specification language), this linking shares
the drawbacks of some CompCert-based approaches in that it is restricted
to languages with well-bracketed call structure.

Properties of wrappers. The idea of translating between different lan-
guages via wrappers originates in the work on multi-language semantics.16

This prior work on syntactic wrappers identified desirable properties
for such wrappers, including boundary cancellation17 and embedding-
projection pairs.18 It would be interesting to investigate how these
properties can be phrased in terms of DimSum’s semantic wrappers.

Process algebra. DimSum’s way of modeling and relating the seman-
tics of modular components takes inspiration from the π-calculus19 and
Communicating Sequential Processes (CSP).20 The π-calculus and its
predecessor CCS pioneered the idea of characterizing the behavior of a
component in an arbitrary context using labeled transition systems, where
the labels represented potential interaction with the environment, and
comparing behavior using (bi-)simulations. Notably, CSP and Session-
Typed variants of π-calculus21 include dual internal and external choice
constructs. They are, however, modeling concurrent process interaction
(i.e., offering and selecting among a set of actions), and not, as in DimSum,
rely/guarantee-style contracts with the environment.

Fully abstract traces. The work on fully abstract trace semantics22 uses
events to describe the interaction between program components similar
to the events of Asm and Rec. However, prior work either focuses on
proving full abstraction of the trace semantics or uses fully abstract trace
semantics to prove full abstraction of a compiler, not for reasoning about
multi-language programs.

16 Matthews and Findler, “Opera-
tional Semantics for Multi-Language
Programs”, 2007 [MF07]; Ahmed
and Blume, “An Equivalence-
Preserving CPS Translation via
Multi-Language Semantics”, 2011
[AB11].

17 Perconti and Ahmed, “Verifying
an Open Compiler Using Multi-
language Semantics”, 2014 [PA14].

18 New and Ahmed, “Graduality
from Embedding-Projection Pairs”,
2018 [NA18].

19 Milner et al., “A Calculus of Mo-
bile Processes, I/II”, 1992 [MPW92].

20 Hoare, “Communicating Sequen-
tial Processes”, 1978 [Hoa78].

21 Padovani, “Session Types =
Intersection Types + Union Types”,
2010 [Pad10].

22 Jeffrey and Rathke, “Java Jr:
Fully Abstract Trace Semantics
for a Core Java Language”, 2005
[JR05]; Laird, “A Fully Abstract
Trace Semantics for General Ref-
erences”, 2007 [Lai07]; Abadi and
Plotkin, “On Protection by Layout
Randomization”, 2010 [AP10]; Pa-
trignani et al., “Secure Compilation
to Protected Module Architectures”,
2015 [Pat+15].

151

Chapter 26

Conclusion

This dissertation presented several approaches to advance formal verifica-
tion towards more realistic, automated, and foundational verification of
low-level programs. Concretely, this dissertation presented the following
projects:

Lithium provides a domain specific language for building verification
tools that combine automated verification with foundational proofs. It
forms the basis of the proof automation of RefinedC and Islaris, and it is
also used by ongoing work for the foundational verification of Rust code.
Lithium as presented in this dissertation significantly evolved from its
initial presentation,1 and it is likely to continue evolving in the future,
for example to add support for Iris’s concurrency features like view-shifts
or to improve the support for deducing pure facts from atoms.

RefinedC shows that one can achieve foundational verification of C code
with a high-degree of automation. RefinedC achieves this by combining
Lithium-based proof automation with an ownership and refinement type
system that uses the structure of the program to guide the proof search.
Since its initial presentation described in this dissertation, RefinedC has
spawned several follow-up projects, including work on memory models
that enable the verification of integer-pointer casts,2 a new approach
to the verification of bitfield manipulating programs,3 and several other
ongoing projects.

Islaris presents a new approach for scaling the verification of assembly
code to authoritative and comprehensive models of real-world architec-
tures, including Armv8-A and RISC-V. The core of this approach is a
combination of (1) symbolic execution using an SMT solver to prune and
simplify the large ISA model and (2) automated verification in Coq based
on Lithium. We have shown that this approach allows verification of
intricate case studies involving assembly code that interacts with systems
features provided by the architecture.

DimSum describes a decentralized formalism for reasoning about multi-
language programs. In particular, this formalism supports reasoning about
the interaction between languages with different memory models and inter-
action behaviors (like C and assembly). This dissertation just presented a
first step towards exploring this decentralized approach of multi-language
semantics and verification. It would be interesting future work to explore
how DimSum’s approach scales to other programming language features—
like closures, garbage collection, or concurrency—that are not considered
in this dissertation. The core concept of DimSum—modules as transition

1 Sammler et al., “RefinedC: Au-
tomating the Foundational Veri-
fication of C Code with Refined
Ownership Types”, 2021 [Sam+21b].

2 Lepigre et al., “VIP: Verifying
Real-World C Idioms with Integer-
Pointer Casts”, 2022 [Lep+22].

3 Zhu et al., “BFF: Foundational
and Automated Verification of
Bitfield-Manipulating Programs”,
2022 [Zhu+22].

153

systems with dual non-determinism which communicate via events—is
in principle quite general (as shown e.g., by the field of process algebra),
so we are hopeful that DimSum will provide a viable foundation for the
verification of realistic multi-language programs.

Future vision: Unified verification framework for low-level programs. This
dissertation presented different approaches that address various aspects
of the verification of low-level programs—verification of C code, assembly
code, and multi-language programs. One particularly interesting direction
for future work is to combine all of these approaches into a unified
framework for verifying low-level programs. In particular, when verifying
an operating system or hypervisor, ideally one would be to be able to
verify the C code using RefinedC, the assembly code using Islaris, and link
everything together using DimSum. Additionally, in such a setting one
could build a translation validation pipeline similar to the work by Sewell
et al.4 that allows transferring the verification results for the C code to the
compiled assembly code. There are also many other aspects that would be
interesting to explore, like scaling verification to large real-world projects,
verifying security properties, and improving the usability. Overall, we
hope that the work in this dissertation can provide a foundation for
improving the reliability and security of the low-level programs that form
the foundation of modern computer systems.

4 Sewell et al., “Translation Valida-
tion for a Verified OS Kernel”, 2013
[SMK13].

154

Bibliography

[17] The RISC-V Instruction Set Manual. Volume I: User-Level ISA; Volume II: Privileged Architec-
ture. https://riscv.org/specifications/. May 2017.

[AB11] Amal Ahmed and Matthias Blume. “An Equivalence-Preserving CPS Translation via Multi-
Language Semantics”. In: ICFP. ACM, 2011, pp. 431–444. doi: 10.1145/2034773.2034830.

[Alu+98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. “Alternating
Refinement Relations”. In: CONCUR. Vol. 1466. LNCS. Springer, 1998, pp. 163–178. doi:
10.1007/BFb0055622.

[Ama+13] Roberto M. Amadio, Nicholas Ayache, François Bobot, Jaap Boender, Brian Campbell, Ilias
Garnier, Antoine Madet, James McKinna, Dominic P. Mulligan, Mauro Piccolo, et al. “Certified
Complexity (CerCo)”. In: FOPARA. Vol. 8552. LNCS. Springer, 2013, pp. 1–18. doi: 10.1007/
978-3-319-12466-7_1.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. “Herding Cats: Modelling, Simulation,
Testing, and Data Mining for Weak Memory”. In: ACM Trans. Program. Lang. Syst. 36.2 (2014),
7:1–7:74. doi: 10.1145/2627752.

[And92] Jean-Marc Andreoli. “Logic Programming with Focusing Proofs in Linear Logic”. In: J. Log.
Comput. 2.3 (1992), pp. 297–347. doi: 10.1093/logcom/2.3.297.

[AP01] Pablo A. Armelín and David J. Pym. “Bunched Logic Programming”. In: IJCAR. Vol. 2083.
LNCS. Springer, 2001, pp. 289–304. doi: 10.1007/3-540-45744-5_21.

[AP10] Martín Abadi and Gordon D. Plotkin. “On Protection by Layout Randomization”. In: CSF. IEEE
Computer Society, 2010, pp. 337–351. doi: 10.1109/CSF.2010.30.

[App14] Andrew W. Appel. Program Logics for Certified Compilers. Cambridge University Press, 2014.
url: https://www.cambridge.org/de/academic/subjects/computer-science/programming-
languages-and-applied-logic/program-logics-certified-compilers.

[Arm+19a] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray,
Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte, et al.
“ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS”. In: Proc. ACM Program. Lang.
3.POPL (2019), 71:1–71:31. doi: 10.1145/3290384.

[Arm+19b] Alasdair Armstrong, Alastair Reid, Thomas Bauereiss, Peter Sewell, Kathryn Gray, and Anthony
Fox. Sail ARMv8.5-A ISA model. https://github.com/rems-project/sail-arm. 2019.

[Arm+21] Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell. “Isla:
Integrating Full-Scale ISA Semantics and Axiomatic Concurrency Models”. In: CAV. Vol. 12759.
LNCS. Springer, 2021, pp. 303–316. doi: 10.1007/978-3-030-81685-8_14.

[Arm21] Arm. Arm Architecture Reference Manual. Armv8, for A-profile architecture profile. https:
//developer.arm.com/documentation/ddi0487/. DDI 0487G.b. 8.7 EAC updated. 8696 pages.
July 2021.

155

https://riscv.org/specifications/
https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1007/BFb0055622
https://doi.org/10.1007/978-3-319-12466-7_1
https://doi.org/10.1007/978-3-319-12466-7_1
https://doi.org/10.1145/2627752
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1007/3-540-45744-5_21
https://doi.org/10.1109/CSF.2010.30
https://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers
https://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers
https://doi.org/10.1145/3290384
https://github.com/rems-project/sail-arm
https://doi.org/10.1007/978-3-030-81685-8_14
https://developer.arm.com/documentation/ddi0487/
https://developer.arm.com/documentation/ddi0487/

BIBLIOGRAPHY

[Ast+19] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. “Leveraging Rust
Types for Modular Specification and Verification”. In: Proc. ACM Program. Lang. 3.OOPSLA
(2019), 147:1–147:30. doi: 10.1145/3360573.

[Bac89] Ralph-Johan Back. “Changing Data Representation in the Refinement Calculus”. In: HICSS.
Vol. 2. 1989, pp. 231–242. doi: 10.1109/HICSS.1989.47997.

[Bat+11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. “Mathematizing C++
Concurrency”. In: POPL. ACM, 2011, pp. 55–66. doi: 10.1145/1926385.1926394.

[Bau+16] Christoph Baumann, Mats Näslund, Christian Gehrmann, Oliver Schwarz, and Hans Thorsen.
“A High Assurance Virtualization Platform for ARMv8”. In: EuCNC. IEEE, 2016, pp. 210–214.
doi: 10.1109/EuCNC.2016.7561034.

[Bau+22] Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong, Lawrence Esswood, Ian
Stark, Graeme Barnes, Robert N. M. Watson, and Peter Sewell. “Verified Security for the Morello
Capability-enhanced Prototype Arm Architecture”. In: ESOP. Vol. 13240. LNCS. Springer, 2022,
pp. 174–203. doi: 10.1007/978-3-030-99336-8_7.

[BCO04] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. “A Decidable Fragment of Separation
Logic”. In: FSTTCS. Vol. 3328. LNCS. Springer, 2004, pp. 97–109. doi: 10.1007/978-3-540-
30538-5_9.

[BCO05] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. “Smallfoot: Modular Automatic
Assertion Checking with Separation Logic”. In: FMCO. Vol. 4111. LNCS. Springer, 2005, pp. 115–
137. doi: 10.1007/11804192_6.

[Bed15a] Bedrock team. Verification of a singly linked list. https://github.com/mit-plv/bedrock/
blob/e3ff3c2cba9976ac4351caaabb4bf/Bedrock/Examples/SinglyLinkedList.v. 2015.

[Bed15b] Bedrock team. Verification of memcpy. https://github.com/mit- plv/bedrock/blob/
e3ff3c2cba9976ac4351caaabb4bf/Bedrock/Examples/Arr.v. 2015.

[Ber+14] Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W. Appel. “Verified Compilation
for Shared-Memory C”. In: ESOP. Vol. 8410. LNCS. Springer, 2014, pp. 107–127. doi: 10.1007/
978-3-642-54833-8_7.

[BH09] Nick Benton and Chung-Kil Hur. “Biorthogonality, Step-indexing and Compiler Correctness”. In:
ICFP. ACM, 2009, pp. 97–108. doi: 10.1145/1596550.1596567.

[BH10] Nick Benton and Chung-Kil Hur. Realizability and Compositional Compiler Correctness for a
Polymorphic Language. Tech. rep. MSR-TR-2010-62. Microsoft Research, 2010. url: https:
//sf.snu.ac.kr/publications/cccmsrtr.pdf.

[BJ16] Alexander Bakst and Ranjit Jhala. “Predicate Abstraction for Linked Data Structures”. In:
VMCAI. Vol. 9583. LNCS. Springer, 2016, pp. 65–84. doi: 10.1007/978-3-662-49122-5_3.

[BR70] J. N. Buxton and Brian Randell. “Software Engineering Techniques: Report of a conference
sponsored by the NATO Science Committee, Rome, Italy, 27-31 Oct. 1969, Brussels, Scientific
Affairs Division, NATO”. In: 1970. url: http://homepages.cs.ncl.ac.uk/brian.randell/
NATO/nato1969.PDF.

[Cao+18] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. “VST-
Floyd: A Separation Logic Tool to Verify Correctness of C Programs”. In: J. Autom. Reason.
61.1-4 (2018), pp. 367–422. doi: 10.1007/s10817-018-9457-5.

[Cao+19] Qinxiang Cao, Shengyi Wang, Aquinas Hobor, and Andrew W. Appel. “Proof Pearl: Magic Wand
as Frame”. In: CoRR abs/1909.08789 (2019). url: http://arxiv.org/abs/1909.08789.

[Cha16] Arthur Charguéraud. “Higher-order Representation Predicates in Separation Logic”. In: CPP.
ACM, 2016, pp. 3–14. doi: 10.1145/2854065.2854068.

156

https://doi.org/10.1145/3360573
https://doi.org/10.1109/HICSS.1989.47997
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1109/EuCNC.2016.7561034
https://doi.org/10.1007/978-3-030-99336-8_7
https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/11804192_6
https://github.com/mit-plv/bedrock/blob/e3ff3c2cba9976ac4351caaabb4bf/Bedrock/Examples/SinglyLinkedList.v
https://github.com/mit-plv/bedrock/blob/e3ff3c2cba9976ac4351caaabb4bf/Bedrock/Examples/SinglyLinkedList.v
https://github.com/mit-plv/bedrock/blob/e3ff3c2cba9976ac4351caaabb4bf/Bedrock/Examples/Arr.v
https://github.com/mit-plv/bedrock/blob/e3ff3c2cba9976ac4351caaabb4bf/Bedrock/Examples/Arr.v
https://doi.org/10.1007/978-3-642-54833-8_7
https://doi.org/10.1007/978-3-642-54833-8_7
https://doi.org/10.1145/1596550.1596567
https://sf.snu.ac.kr/publications/cccmsrtr.pdf
https://sf.snu.ac.kr/publications/cccmsrtr.pdf
https://doi.org/10.1007/978-3-662-49122-5_3
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
https://doi.org/10.1007/s10817-018-9457-5
http://arxiv.org/abs/1909.08789
https://doi.org/10.1145/2854065.2854068

BIBLIOGRAPHY

[Cha23] Tej Chajed. SimpLang. https://github.com/tchajed/iris-simp-lang/. 2023.

[Chl11] Adam Chlipala. “Mostly-Automated Verification of Low-Level programs in Computational
Separation Logic”. In: PLDI. ACM, 2011, pp. 234–245. doi: 10.1145/1993498.1993526.

[Chl13] Adam Chlipala. “The Bedrock Structured Programming System: Combining Generative Metapro-
gramming and Hoare Logic in an Extensible Program Verifier”. In: ICFP. ACM, 2013, pp. 391–
402. doi: 10.1145/2500365.2500592.

[Chl15] Adam Chlipala. “From Network Interface to Multithreaded Web Applications: A Case Study in
Modular Program Verification”. In: POPL. ACM, 2015, pp. 609–622. doi: 10.1145/2676726.
2677003.

[CJT15] Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh. “Automatic Induction Proofs of Data-
Structures in Imperative Programs”. In: PLDI. ACM, 2015, pp. 457–466. doi: 10.1145/2737924.
2737984.

[CKS81] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. “Alternation”. In: J. ACM 28.1
(1981), pp. 114–133. doi: 10.1145/322234.322243.

[Coh+09] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas
Santen, Wolfram Schulte, and Stephan Tobies. “VCC: A Practical System for Verifying Concurrent
C”. In: TPHOLs. Vol. 5674. LNCS. Springer, 2009, pp. 23–42. doi: 10.1007/978-3-642-03359-
9_2.

[Com23] CompCert team. CompCert Arm semantics. https://github.com/AbsInt/CompCert/blob/
94d2111fa24ddbe8e71f151b985d610c2a8d74f7/aarch64/Asm.v. 2023.

[Con+07] Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay, and George C. Necula.
“Dependent Types for Low-Level Programming”. In: ESOP. Vol. 4421. LNCS. Springer, 2007,
pp. 520–535. doi: 10.1007/978-3-540-71316-6_35.

[Con+09] Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, and Shaz Qadeer. “Unifying Type Checking
and Property Checking for Low-Level Code”. In: POPL. ACM, 2009, pp. 302–314. doi: 10.1145/
1480881.1480921.

[Coq20] Coq-std++ team. An extended “standard library” for Coq. 2020. url: https://gitlab.mpi-
sws.org/iris/stdpp.

[Coq23] Coq team. The Coq proof assistant. https://coq.inria.fr/. 2023.

[CS16] Brian Campbell and Ian Stark. “Extracting Behaviour from an Executable Instruction Set Model”.
In: FMCAD. IEEE, 2016, pp. 33–40. url: https://doi.org/10.1109/FMCAD.2016.7886658.

[Cuo+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. “Frama-C: A Software Analysis Perspective”. In: SEFM. Vol. 7504. LNCS. Springer,
2012, pp. 233–247. doi: 10.1007/978-3-642-33826-7_16.

[Dan+20] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. “RustBelt
Meets Relaxed Memory”. In: Proc. ACM Program. Lang. 4.POPL (2020), 34:1–34:29. doi:
10.1145/3371102.

[Dan+22] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon
Kang, and Derek Dreyer. “Compass: Strong and Compositional Library Specifications in Relaxed
Memory Separation Logic”. In: PLDI. ACM, 2022, pp. 792–808. doi: 10.1145/3519939.3523451.

[Das+19] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and Grigore Rosu. “A
Complete Formal Semantics of x86-64 User-Level Instruction Set Architecture”. In: PLDI. ACM,
2019, pp. 1133–1148. doi: 10.1145/3314221.3314601.

157

https://github.com/tchajed/iris-simp-lang/
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/2676726.2677003
https://doi.org/10.1145/2676726.2677003
https://doi.org/10.1145/2737924.2737984
https://doi.org/10.1145/2737924.2737984
https://doi.org/10.1145/322234.322243
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://github.com/AbsInt/CompCert/blob/94d2111fa24ddbe8e71f151b985d610c2a8d74f7/aarch64/Asm.v
https://github.com/AbsInt/CompCert/blob/94d2111fa24ddbe8e71f151b985d610c2a8d74f7/aarch64/Asm.v
https://doi.org/10.1007/978-3-540-71316-6_35
https://doi.org/10.1145/1480881.1480921
https://doi.org/10.1145/1480881.1480921
https://gitlab.mpi-sws.org/iris/stdpp
https://gitlab.mpi-sws.org/iris/stdpp
https://coq.inria.fr/
https://doi.org/10.1109/FMCAD.2016.7886658
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1145/3314221.3314601

BIBLIOGRAPHY

[Deg12] Ulan Degenbaev. “Formal Specification of the x86 Instruction Set Architecture”. PhD thesis.
Saarland University, 2012. url: http://scidok.sulb.uni-saarland.de/volltexte/2012/
4707/.

[Del00] David Delahaye. “A Tactic Language for the System Coq”. In: LPAR. Vol. 1955. LNCS. Springer,
2000, pp. 85–95. doi: 10.1007/3-540-44404-1_7.

[DF01] Robert DeLine and Manuel Fähndrich. “Enforcing High-Level Protocols in Low-Level Software”.
In: PLDI. ACM, 2001, pp. 59–69. doi: 10.1145/378795.378811.

[DMS22] Thibault Dardinier, Peter Müller, and Alexander J. Summers. “Fractional Resources in Unbounded
Separation Logic”. In: Proc. ACM Program. Lang. 6.OOPSLA2 (2022), pp. 1066–1092. doi:
10.1145/3563326.

[Ell+18] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. “Checked C: Making
C Safe by Extension”. In: SecDev. IEEE Computer Society, 2018, pp. 53–60. doi: 10.1109/
SecDev.2018.00015.

[EM18] Marco Eilers and Peter Müller. “Nagini: A Static Verifier for Python”. In: CAV (1). Vol. 10981.
LNCS. Springer, 2018, pp. 596–603. doi: 10.1007/978-3-319-96145-3_33.

[Erb+21] Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala. “Integration
Verification across Software and Hardware for a Simple Embedded System”. In: PLDI. ACM,
2021, pp. 604–619. doi: 10.1145/3453483.3454065.

[Fen+08] Xinyu Feng, Zhong Shao, Yu Guo, and Yuan Dong. “Combining Domain-Specific and Foundational
Logics to Verify Complete Software Systems”. In: VSTTE. Vol. 5295. LNCS. Springer, 2008,
pp. 54–69. url: https://doi.org/10.1007/978-3-540-87873-5_8.

[FGK19] Dan Frumin, Léon Gondelman, and Robbert Krebbers. “Semi-automated Reasoning About
Non-determinism in C Expressions”. In: ESOP. Vol. 11423. LNCS. Springer, 2019, pp. 60–87.
doi: 10.1007/978-3-030-17184-1_3.

[Flo67] Robert W. Floyd. “Nondeterministic Algorithms”. In: J. ACM 14.4 (1967), pp. 636–644. doi:
10.1145/321420.321422.

[Flu+16] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget,
Will Deacon, and Peter Sewell. “Modelling the ARMv8 Architecture, Operationally: Concurrency
and ISA”. In: POPL. ACM, 2016, pp. 608–621. doi: 10.1145/2837614.2837615.

[FM10] Anthony C. J. Fox and Magnus O. Myreen. “A Trustworthy Monadic Formalization of the
ARMv7 Instruction Set Architecture”. In: ITP. Vol. 6172. LNCS. Springer, 2010, pp. 243–258.
doi: 10.1007/978-3-642-14052-5_18.

[Fox+17] Anthony C. J. Fox, Magnus O. Myreen, Yong Kiam Tan, and Ramana Kumar. “Verified Compi-
lation of CakeML to Multiple Machine-Code Targets”. In: CPP. ACM, 2017, pp. 125–137. url:
https://doi.org/10.1145/3018610.3018621.

[Fox12] Anthony C. J. Fox. “Directions in ISA Specification”. In: ITP. Vol. 7406. LNCS. Springer, 2012,
pp. 338–344. doi: 10.1007/978-3-642-32347-8_23.

[Fox15] Anthony C. J. Fox. “Improved Tool Support for Machine-Code Decompilation in HOL4”. In:
ITP. Vol. 9236. LNCS. Springer, 2015, pp. 187–202. doi: 10.1007/978-3-319-22102-1_12.

[FP91] Timothy S. Freeman and Frank Pfenning. “Refinement Types for ML”. In: PLDI. ACM, 1991,
pp. 268–277. doi: 10.1145/113445.113468.

[FW05] Carsten Fritz and Thomas Wilke. “Simulation relations for alternating Büchi automata”. In:
Theor. Comput. Sci. 338.1-3 (2005), pp. 275–314. doi: 10.1016/j.tcs.2005.01.016.

158

http://scidok.sulb.uni-saarland.de/volltexte/2012/4707/
http://scidok.sulb.uni-saarland.de/volltexte/2012/4707/
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1145/378795.378811
https://doi.org/10.1145/3563326
https://doi.org/10.1109/SecDev.2018.00015
https://doi.org/10.1109/SecDev.2018.00015
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1007/978-3-540-87873-5_8
https://doi.org/10.1007/978-3-030-17184-1_3
https://doi.org/10.1145/321420.321422
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1007/978-3-642-14052-5_18
https://doi.org/10.1145/3018610.3018621
https://doi.org/10.1007/978-3-642-32347-8_23
https://doi.org/10.1007/978-3-319-22102-1_12
https://doi.org/10.1145/113445.113468
https://doi.org/10.1016/j.tcs.2005.01.016

BIBLIOGRAPHY

[Gäh+22] Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers,
Jeehoon Kang, and Derek Dreyer. “Simuliris: A Separation Logic Framework for Verifying
Concurrent Program Optimizations”. In: Proc. ACM Program. Lang. 6.POPL (2022), pp. 1–31.
doi: 10.1145/3498689.

[GAK12] David Greenaway, June Andronick, and Gerwin Klein. “Bridging the Gap: Automatic Verified
Abstraction of C”. In: ITP. Vol. 7406. LNCS. Springer, 2012, pp. 99–115. doi: 10.1007/978-3-
642-32347-8_8.

[GJ13] Shilpi Goel and Warren A. Hunt Jr. “Automated Code Proofs on a Formal Model of the X86”. In:
VSTTE. Vol. 8164. LNCS. Springer, 2013, pp. 222–241. doi: 10.1007/978-3-642-54108-7_12.

[GJK17] Shilpi Goel, Warren A. Hunt Jr., and Matt Kaufmann. “Engineering a Formal, Executable x86 ISA
Simulator for Software Verification”. In: Provably Correct Systems. NASA Monographs in Systems
and Software Engineering. Springer, 2017, pp. 173–209. doi: 10.1007/978-3-319-48628-4_8.

[Goe+14] Shilpi Goel, Warren A. Hunt Jr., Matt Kaufmann, and Soumava Ghosh. “Simulation and Formal
Verification of x86 Machine-Code Programs that make System Calls”. In: FMCAD. IEEE, 2014,
pp. 91–98. doi: 10.1109/FMCAD.2014.6987600.

[Gra+15] Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher Pulte, Susmit Sarkar,
and Peter Sewell. “An integrated concurrency and core-ISA architectural envelope definition,
and test oracle, for IBM POWER multiprocessors”. In: MICRO. ACM, 2015, pp. 635–646. doi:
10.1145/2830772.2830775.

[Gre+14] David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein. “Don’t Sweat the Small
Stuff: Formal Verification of C Code Without the Pain”. In: PLDI. ACM, 2014, pp. 429–439.
doi: 10.1145/2594291.2594296.

[Gu+15] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu,
Shu-Chun Weng, Haozhong Zhang, and Yu Guo. “Deep Specifications and Certified Abstraction
Layers”. In: POPL. ACM, 2015, pp. 595–608. doi: 10.1145/2676726.2676975.

[Gu+18] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm Sjöberg,
Hao Chen, David Costanzo, and Tahina Ramananandro. “Certified Concurrent Abstraction
Layers”. In: PLDI. ACM, 2018, pp. 646–661. doi: 10.1145/3192366.3192381.

[Gu+19] Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig, Xiongnan (Newman) Wu,
Vilhelm Sjöberg, and David Costanzo. “Building Certified Concurrent OS Kernels”. In: Commun.
ACM 62.10 (2019), pp. 89–99. doi: 10.1145/3356903.

[Gua+16] Roberto Guanciale, Hamed Nemati, Mads Dam, and Christoph Baumann. “Provably secure
memory isolation for Linux on ARM”. In: J. Comput. Secur. 24.6 (2016), pp. 793–837. doi:
10.3233/JCS-160558.

[Haf23] Hafnium. Hafnium. https://review.trustedfirmware.org/plugins/gitiles/hafnium/
hafnium/+/HEAD/README.md. 2023.

[HAN08] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. “Oracle Semantics for Con-
current Separation Logic”. In: ESOP. Vol. 4960. LNCS. Springer, 2008, pp. 353–367. doi:
10.1007/978-3-540-78739-6_27.

[HD11] Chung-Kil Hur and Derek Dreyer. “A Kripke Logical Relation Between ML and Assembly”. In:
POPL. ACM, 2011, pp. 133–146. doi: 10.1145/1926385.1926402.

[HER15] Chris Hathhorn, Chucky Ellison, and Grigore Rosu. “Defining the Undefinedness of C”. In: PLDI.
ACM, 2015, pp. 336–345. url: https://doi.org/10.1145/2737924.2737979.

[Heu+13] Stefan Heule, Ioannis T. Kassios, Peter Müller, and Alexander J. Summers. “Verification Condition
Generation for Permission Logics with Abstract Predicates and Abstraction Functions”. In:
ECOOP. Vol. 7920. LNCS. Springer, 2013, pp. 451–476. doi: 10.1007/978-3-642-39038-8_19.

159

https://doi.org/10.1145/3498689
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1007/978-3-642-32347-8_8
https://doi.org/10.1007/978-3-642-54108-7_12
https://doi.org/10.1007/978-3-319-48628-4_8
https://doi.org/10.1109/FMCAD.2014.6987600
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1145/2594291.2594296
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3356903
https://doi.org/10.3233/JCS-160558
https://review.trustedfirmware.org/plugins/gitiles/hafnium/hafnium/+/HEAD/README.md
https://review.trustedfirmware.org/plugins/gitiles/hafnium/hafnium/+/HEAD/README.md
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1145/1926385.1926402
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1007/978-3-642-39038-8_19

BIBLIOGRAPHY

[Heu+16] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stratified Synthesis: Automatically
Learning the x86-64 Instruction Set”. In: PLDI. ACM, 2016, pp. 237–250. url: https://doi.
org/10.1145/2908080.2908121.

[HM91] Joshua S. Hodas and Dale Miller. “Logic Programming in a Fragment of Intuitionistic Linear
Logic”. In: LICS. IEEE Computer Society, 1991, pp. 32–42. doi: 10.1109/LICS.1991.151628.

[Hoa78] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun. ACM 21.8 (1978), pp. 666–
677. doi: 10.1145/359576.359585.

[HPW96] James Harland, David J. Pym, and Michael Winikoff. “Programming in Lygon: An Overview”.
In: AMAST. Vol. 1101. LNCS. Springer, 1996, pp. 391–405. doi: 10.1007/BFb0014329.

[Hur+12] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. “The Marriage of Bisimulations
and Kripke Logical Relations”. In: POPL. ACM, 2012, pp. 59–72. doi: 10.1145/2103656.
2103666.

[Isa23] Isabelle team. The Isabelle proof assistant. https://isabelle.in.tum.de/. 2023.

[Jac+11] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. “VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java”. In: NASA
Formal Methods. Vol. 6617. LNCS. Springer, 2011, pp. 41–55. doi: 10.1007/978-3-642-20398-
5_4.

[JBK13] Jonas Braband Jensen, Nick Benton, and Andrew Kennedy. “High-Level Separation Logic for
Low-Level Code”. In: POPL. ACM, 2013, pp. 301–314. doi: 10.1145/2429069.2429105.

[Jim+02] Trevor Jim, Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yanling Wang.
“Cyclone: A Safe Dialect of C”. In: USENIX. 2002, pp. 275–288. url: http://www.usenix.org/
publications/library/proceedings/usenix02/jim.html.

[JR05] Alan Jeffrey and Julian Rathke. “Java Jr: Fully Abstract Trace Semantics for a Core Java
Language”. In: ESOP. Vol. 3444. LNCS. Springer, 2005, pp. 423–438. doi: 10.1007/978-3-540-
31987-0_29.

[Jun+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and
Derek Dreyer. “Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning”.
In: POPL. ACM, 2015, pp. 637–650. doi: 10.1145/2676726.2676980.

[Jun+16] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. “Higher-Order Ghost State”. In:
ICFP. ACM, 2016, pp. 256–269. doi: 10.1145/2951913.2951943.

[Jun+18a] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “RustBelt: Securing
the Foundations of the Rust Programming Language”. In: Proc. ACM Program. Lang. 2.POPL
(2018), 66:1–66:34. doi: 10.1145/3158154.

[Jun+18b] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. “Iris from the ground up: A modular foundation for higher-order concurrent separation
logic”. In: J. Funct. Program. 28 (2018), e20. doi: 10.1017/S0956796818000151.

[Jun+20] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek
Dreyer, and Bart Jacobs. “The Future is Ours: Prophecy Variables in Separation Logic”. In: Proc.
ACM Program. Lang. 4.POPL (2020), 45:1–45:32. doi: 10.1145/3371113.

[Jun+21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “Safe Systems Pro-
gramming in Rust”. In: Commun. ACM 64.4 (Apr. 2021), pp. 144–152. url: https://cacm.
acm.org/magazines/2021/4/251364-safe-systems-programming-in-rust/fulltext.

[Jun20] Ralf Jung. “Understanding and Evolving the Rust Programming Language”. PhD thesis. Saarland
University, Saarbrücken, Germany, 2020. url: https://publikationen.sulb.uni-saarland.
de/handle/20.500.11880/29647.

160

https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1109/LICS.1991.151628
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/BFb0014329
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/2103656.2103666
https://isabelle.in.tum.de/
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/2429069.2429105
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
https://doi.org/10.1007/978-3-540-31987-0_29
https://doi.org/10.1007/978-3-540-31987-0_29
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://cacm.acm.org/magazines/2021/4/251364-safe-systems-programming-in-rust/fulltext
https://cacm.acm.org/magazines/2021/4/251364-safe-systems-programming-in-rust/fulltext
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647

BIBLIOGRAPHY

[Kai+17] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. “Strong
Logic for Weak Memory: Reasoning About Release-Acquire Consistency in Iris”. In: ECOOP.
Vol. 74. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 17:1–17:29. doi:
10.4230/LIPIcs.ECOOP.2017.17.

[Kan+16] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. “Lightweight
Verification of Separate Compilation”. In: POPL. ACM, 2016, pp. 178–190. doi: 10.1145/
2837614.2837642.

[Ken+13] Andrew Kennedy, Nick Benton, Jonas Braband Jensen, and Pierre-Évariste Dagand. “Coq: The
world’s best macro assembler?” In: PPDP. ACM, 2013, pp. 13–24. doi: 10.1145/2505879.
2505897.

[Keu+22] Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese. “Verified
Symbolic Execution with Kripke Specification Monads (and No Meta-programming)”. In: Proc.
ACM Program. Lang. 6.ICFP (2022), pp. 194–224. doi: 10.1145/3547628.

[KFM22] Hrutvik Kanabar, Anthony C. J. Fox, and Magnus O. Myreen. “Taming an Authoritative Armv8
ISA Specification: L3 Validation and CakeML Compiler Verification”. In: ITP. Vol. 237. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 20:1–20:22. doi: 10.4230/LIPIcs.
ITP.2022.20.

[Kle+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. “seL4: Formal
Verification of an OS Kernel”. In: SOSP. ACM, 2009, pp. 207–220. doi: 10.1145/1629575.
1629596.

[Kle+14] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. “Comprehensive Formal Verification of an OS Microkernel”. In:
ACM Trans. Comput. Syst. 32.1 (2014), 2:1–2:70. doi: 10.1145/2560537.

[Kre+17] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. “The Essence of Higher-Order Concurrent Separation Logic”. In: ESOP. Vol. 10201.
LNCS. Springer, 2017, pp. 696–723. doi: 10.1007/978-3-662-54434-1_26.

[Kre14] Robbert Krebbers. “An Operational and Axiomatic Semantics for Non-determinism and Sequence
Points in C”. In: POPL. ACM, 2014, pp. 101–112. doi: 10.1145/2535838.2535878.

[Kre15] Robbert Krebbers. “The C standard formalized in Coq”. PhD thesis. Radboud University
Nijmegen, 2015. url: https://robbertkrebbers.nl/thesis.html.

[KS21] Jérémie Koenig and Zhong Shao. “CompCertO: Compiling Certified Open C Components”. In:
PLDI. ACM, 2021, pp. 1095–1109. doi: 10.1145/3453483.3454097.

[KW13] Robbert Krebbers and Freek Wiedijk. “Separation Logic for Non-local Control Flow and Block
Scope Variables”. In: FoSSaCS. Vol. 7794. LNCS. Springer, 2013, pp. 257–272. doi: 10.1007/978-
3-642-37075-5_17.

[Lai07] James Laird. “A Fully Abstract Trace Semantics for General References”. In: ICALP. Vol. 4596.
LNCS. Springer, 2007, pp. 667–679. doi: 10.1007/978-3-540-73420-8_58.

[LB08] Xavier Leroy and Sandrine Blazy. “Formal verification of a C-like memory model and its uses for
verifying program transformations”. In: JAR 41.1 (2008), pp. 1–31. doi: 10.1007/s10817-008-
9099-0.

[Lee+17] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer,
John Regehr, and Nuno P. Lopes. “Taming Undefined Behavior in LLVM”. In: PLDI. ACM, 2017,
pp. 633–647. doi: 10.1145/3062341.3062343.

161

https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/2837614.2837642
https://doi.org/10.1145/2837614.2837642
https://doi.org/10.1145/2505879.2505897
https://doi.org/10.1145/2505879.2505897
https://doi.org/10.1145/3547628
https://doi.org/10.4230/LIPIcs.ITP.2022.20
https://doi.org/10.4230/LIPIcs.ITP.2022.20
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2560537
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/2535838.2535878
https://robbertkrebbers.nl/thesis.html
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1007/978-3-642-37075-5_17
https://doi.org/10.1007/978-3-642-37075-5_17
https://doi.org/10.1007/978-3-540-73420-8_58
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3062341.3062343

BIBLIOGRAPHY

[Lep+22] Rodolphe Lepigre, Michael Sammler, Kayvan Memarian, Robbert Krebbers, Derek Dreyer, and
Peter Sewell. “VIP: Verifying Real-World C Idioms with Integer-Pointer Casts”. In: Proc. ACM
Program. Lang. 6.POPL (2022), pp. 1–32. doi: 10.1145/3498681.

[Ler+12] Xavier Leroy, Andrew Appel, Sandrine Blazy, and Gordon Stewart. The CompCert Memory
Model, Version 2. Tech. rep. RR-7987. Inria, 2012. url: https://inria.hal.science/hal-
00703441.

[Ler06] Xavier Leroy. “Formal Certification of a Compiler Back-end or: Programming a Compiler with a
Proof Assistant”. In: POPL. ACM, 2006, pp. 42–54. doi: 10.1145/1111037.1111042.

[Li+21] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. “A Secure and Formally
Verified Linux KVM Hypervisor”. In: IEEE Symposium on Security and Privacy. IEEE, 2021,
pp. 1782–1799. doi: 10.1109/SP40001.2021.00049.

[LM09] K. Rustan M. Leino and Peter Müller. “A Basis for Verifying Multi-threaded Programs”. In:
ESOP. Vol. 5502. LNCS. Springer, 2009, pp. 378–393. doi: 10.1007/978-3-642-00590-9_27.

[Lor+20] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz Qadeer, Upamanyu Sharma,
James R. Wilcox, and Xueyuan Zhao. “Armada: Low-Effort Verification of High-Performance
Concurrent Programs”. In: PLDI. ACM, 2020, pp. 197–210. doi: 10.1145/3385412.3385971.

[LP14] Wonyeol Lee and Sungwoo Park. “A Proof System for Separation Logic with Magic Wand”. In:
POPL. ACM, 2014, pp. 477–490. doi: 10.1145/2535838.2535871.

[LS09] Dirk Leinenbach and Thomas Santen. “Verifying the Microsoft Hyper-V Hypervisor with VCC”.
In: FM. Vol. 5850. LNCS. Springer, 2009, pp. 806–809. doi: 10.1007/978-3-642-05089-3_51.

[LSQ18] Quang Loc Le, Jun Sun, and Shengchao Qin. “Frame Inference for Inductive Entailment Proofs
in Separation Logic”. In: TACAS (1). Vol. 10805. LNCS. Springer, 2018, pp. 41–60. doi: 10.
1007/978-3-319-89960-2_3.

[Mak+21] Petar Maksimovic, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. “Gillian, Part
II: Real-World Verification for JavaScript and C”. In: CAV (2). Vol. 12760. LNCS. Springer,
2021, pp. 827–850. doi: 10.1007/978-3-030-81688-9_38.

[MAN17] William Mansky, Andrew W. Appel, and Aleksey Nogin. “A Verified Messaging System”. In:
Proc. ACM Program. Lang. 1.OOPSLA (2017), 87:1–87:28. doi: 10.1145/3133911.

[MCB14] Gregory Malecha, Adam Chlipala, and Thomas Braibant. “Compositional Computational Reflec-
tion”. In: ITP. Vol. 8558. LNCS. Springer, 2014, pp. 374–389. doi: 10.1007/978-3-319-08970-
6_24.

[Mem+16] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall,
Robert N. M. Watson, and Peter Sewell. “Into the Depths of C: Elaborating the De Facto
Standards”. In: PLDI. ACM, 2016, pp. 1–15. doi: 10.1145/2908080.2908081.

[Mem+19] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson,
Robert N. M. Watson, and Peter Sewell. “Exploring C Semantics and Pointer Provenance”. In:
Proc. ACM Program. Lang. 3.POPL (2019), 67:1–67:32. doi: 10.1145/3290380.

[MF07] Jacob Matthews and Robert Bruce Findler. “Operational Semantics for Multi-Language Pro-
grams”. In: POPL. ACM, 2007, pp. 3–10. doi: 10.1145/1190216.1190220.

[MG07] Magnus O. Myreen and Michael J. C. Gordon. “Hoare Logic for Realistically Modelled Machine
Code”. In: TACAS. Vol. 4424. LNCS. Springer, 2007, pp. 568–582. doi: 10.1007/978-3-540-
71209-1_44.

[MGS08] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. “Machine-Code Verification for
Multiple Architectures - An Application of Decompilation into Logic”. In: FMCAD. IEEE, 2008,
pp. 1–8. url: https://doi.org/10.1109/FMCAD.2008.ECP.24.

162

https://doi.org/10.1145/3498681
https://inria.hal.science/hal-00703441
https://inria.hal.science/hal-00703441
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1145/3385412.3385971
https://doi.org/10.1145/2535838.2535871
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-319-89960-2_3
https://doi.org/10.1007/978-3-319-89960-2_3
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1145/3133911
https://doi.org/10.1007/978-3-319-08970-6_24
https://doi.org/10.1007/978-3-319-08970-6_24
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/3290380
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1007/978-3-540-71209-1_44
https://doi.org/10.1007/978-3-540-71209-1_44
https://doi.org/10.1109/FMCAD.2008.ECP.24

BIBLIOGRAPHY

[MGS12] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. “Decompilation into Logic -
Improved”. In: FMCAD. IEEE, 2012, pp. 78–81. url: https :/ /ieeexplore . ieee . org/
document/6462558/.

[Mil78] Robin Milner. “A Theory of Type Polymorphism in Programming”. In: J. Comput. Syst. Sci.
17.3 (1978), pp. 348–375. doi: 10.1016/0022-0000(78)90014-4.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press,
1999. isbn: 978-0-521-65869-0.

[MKG22] Ike Mulder, Robbert Krebbers, and Herman Geuvers. “Diaframe: Automated Verification of
Fine-Grained Concurrent Programs in Iris”. In: PLDI. ACM, 2022, pp. 809–824. doi: 10.1145/
3519939.3523432.

[MMS08] Stefan Maus, Michal Moskal, and Wolfram Schulte. “Vx86: x86 Assembler Simulated in C Powered
by Automated Theorem Proving”. In: AMAST. Vol. 5140. LNCS. Springer, 2008, pp. 284–298.
doi: 10.1007/978-3-540-79980-1_22.

[Mor+12] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward Gan. “RockSalt:
Better, Faster, Stronger SFI for the x86”. In: PLDI. ACM, 2012, pp. 395–404. doi: 10.1145/
2254064.2254111.

[MPA19] Phillip Mates, Jamie Perconti, and Amal Ahmed. “Under Control: Compositionally Correct
Closure Conversion with Mutable State”. In: PPDP. ACM, 2019, 16:1–16:15. doi: 10.1145/
3354166.3354181.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. “A Calculus of Mobile Processes, I/II”. In:
Inf. Comput. 100.1 (1992), pp. 1–40. doi: 10.1016/0890-5401(92)90008-4.

[MSS16a] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Automatic Verification of Iterated
Separating Conjunctions Using Symbolic Execution”. In: CAV (1). Vol. 9779. LNCS. Springer,
2016, pp. 405–425. doi: 10.1007/978-3-319-41528-4_22.

[MSS16b] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A Verification Infrastructure
for Permission-Based Reasoning”. In: VMCAI. Vol. 9583. LNCS. Springer, 2016, pp. 41–62. doi:
10.1007/978-3-662-49122-5_2.

[Mun+21] Prashanth Mundkur, Jon French, Brian Campbell, Robert Norton-Wright, Alasdair Armstrong,
Thomas Bauereiss, Shaked Flur, Christopher Pulte, and Peter Sewell. Sail RISC-V ISA model.
https://github.com/riscv/sail-riscv. 2021.

[Myr09] Magnus Oskar Myreen. “Formal verification of machine-code programs”. PhD thesis. University
of Cambridge, UK, 2009. url: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.
611450.

[NA18] Max S. New and Amal Ahmed. “Graduality from Embedding-Projection Pairs”. In: Proc. ACM
Program. Lang. 2.ICFP (2018), 73:1–73:30. doi: 10.1145/3236768.

[Nei+15] Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and Viktor
Vafeiadis. “Pilsner: A Compositionally Verified Compiler for a Higher-Order Imperative Language”.
In: ICFP. ACM, 2015, pp. 166–178. doi: 10.1145/2784731.2784764.

[Nel+19] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang.
“Scaling symbolic evaluation for automated verification of systems code with Serval”. In: SOSP.
ACM, 2019, pp. 225–242. doi: 10.1145/3341301.3359641.

[NMW02] George C. Necula, Scott McPeak, and Westley Weimer. “CCured: Type-Safe Retrofitting of
Legacy Code”. In: POPL. ACM, 2002, pp. 128–139. doi: 10.1145/503272.503286.

163

https://ieeexplore.ieee.org/document/6462558/
https://ieeexplore.ieee.org/document/6462558/
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1007/978-3-540-79980-1_22
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1145/3354166.3354181
https://doi.org/10.1145/3354166.3354181
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-662-49122-5_2
https://github.com/riscv/sail-riscv
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611450
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611450
https://doi.org/10.1145/3236768
https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/503272.503286

BIBLIOGRAPHY

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. “Local Reasoning about Programs
that Alter Data Structures”. In: CSL. Vol. 2142. LNCS. Springer, 2001, pp. 1–19. doi: 10.1007/3-
540-44802-0_1.

[PA14] James T. Perconti and Amal Ahmed. “Verifying an Open Compiler Using Multi-language
Semantics”. In: ESOP. Vol. 8410. LNCS. Springer, 2014, pp. 128–148. doi: 10.1007/978-3-642-
54833-8_8.

[PA19] Daniel Patterson and Amal Ahmed. “The Next 700 Compiler Correctness Theorems (Functional
Pearl)”. In: Proc. ACM Program. Lang. 3.ICFP (2019), 85:1–85:29. doi: 10.1145/3341689.

[Pad10] Luca Padovani. “Session Types = Intersection Types + Union Types”. In: ITRS. Vol. 45. EPTCS.
2010, pp. 71–89. doi: 10.4204/EPTCS.45.6.

[Pat+15] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank Piessens.
“Secure Compilation to Protected Module Architectures”. In: ACM Trans. Program. Lang. Syst.
37.2 (2015), 6:1–6:50. doi: 10.1145/2699503.

[Pat+17] Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. “FunTAL: Reasonably
Mixing a Functional Language with Assembly”. In: PLDI. ACM, 2017, pp. 495–509. doi:
10.1145/3062341.3062347.

[Pat+22] Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed. “Semantic Soundness for
Language Interoperability”. In: PLDI. ACM, 2022, pp. 609–624. doi: 10.1145/3519939.3523703.

[Pat20] Marco Patrignani. “Why Should Anyone use Colours? or, Syntax Highlighting Beyond Code
Snippets”. In: CoRR abs/2001.11334 (2020). url: https://arxiv.org/abs/2001.11334.

[Pit+20] Clément Pit-Claudel, Peng Wang, Benjamin Delaware, Jason Gross, and Adam Chlipala. “Exten-
sible Extraction of Efficient Imperative Programs with Foreign Functions, Manually Managed
Memory, and Proofs”. In: IJCAR. Vol. 12167. LNCS. 2020, pp. 119–137. doi: 10.1007/978-3-
030-51054-1_7.

[PMS21] Gaurav Parthasarathy, Peter Müller, and Alexander J. Summers. “Formally Validating a Practical
Verification Condition Generator”. In: CAV (2). Vol. 12760. LNCS. Springer, 2021, pp. 704–727.
doi: 10.1007/978-3-030-81688-9_33.

[PP13] François Pottier and Jonathan Protzenko. “Programming with Permissions in Mezzo”. In: ICFP.
ACM, 2013, pp. 173–184. doi: 10.1145/2500365.2500598.

[PS12] Matthew J. Parkinson and Alexander J. Summers. “The Relationship Between Separation Logic
and Implicit Dynamic Frames”. In: Log. Methods Comput. Sci. 8.3 (2012). doi: 10.2168/LMCS-
8(3:1)2012.

[Pul+18] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.
“Simplifying ARM Concurrency: Multicopy-Atomic Axiomatic and Operational Models for
ARMv8”. In: Proc. ACM Program. Lang. 2.POPL (2018), 19:1–19:29. doi: 10.1145/3158107.

[Pul+23] Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and
Neel Krishnaswami. “CN: Verifying Systems C Code with Separation-Logic Refinement Types”.
In: Proc. ACM Program. Lang. 7.POPL (2023), pp. 1–32. doi: 10.1145/3571194.

[PWZ14] Ruzica Piskac, Thomas Wies, and Damien Zufferey. “Automating Separation Logic with Trees
and Data”. In: CAV. Vol. 8559. LNCS. Springer, 2014, pp. 711–728. doi: 10.1007/978-3-319-
08867-9_47.

[Ram+15] Tahina Ramananandro, Zhong Shao, Shu-Chun Weng, Jérémie Koenig, and Yuchen Fu. “A
Compositional Semantics for Verified Separate Compilation and Linking”. In: CPP. ACM, 2015,
pp. 3–14. doi: 10.1145/2676724.2693167.

164

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1145/3341689
https://doi.org/10.4204/EPTCS.45.6
https://doi.org/10.1145/2699503
https://doi.org/10.1145/3062341.3062347
https://doi.org/10.1145/3519939.3523703
https://arxiv.org/abs/2001.11334
https://doi.org/10.1007/978-3-030-51054-1_7
https://doi.org/10.1007/978-3-030-51054-1_7
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1145/2500365.2500598
https://doi.org/10.2168/LMCS-8(3:1)2012
https://doi.org/10.2168/LMCS-8(3:1)2012
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3571194
https://doi.org/10.1007/978-3-319-08867-9_47
https://doi.org/10.1007/978-3-319-08867-9_47
https://doi.org/10.1145/2676724.2693167

BIBLIOGRAPHY

[RES10] Grigore Rosu, Chucky Ellison, and Wolfram Schulte. “Matching Logic: An Alternative to
Hoare/Floyd Logic”. In: AMAST. Vol. 6486. LNCS. Springer, 2010, pp. 142–162. doi: 10.1007/
978-3-642-17796-5_9.

[Rew03] Ingrid Rewitzky. “Binary Multirelations”. In: Theory and Applications of Relational Structures
as Knowledge Instruments. Vol. 2929. LNCS. Springer, 2003, pp. 256–271. doi: 10.1007/978-3-
540-24615-2_12.

[Rey+16] Andrew Reynolds, Radu Iosif, Cristina Serban, and Tim King. “A Decision Procedure for
Separation Logic in SMT”. In: ATVA. Vol. 9938. LNCS. 2016, pp. 244–261. doi: 10.1007/978-
3-319-46520-3_16.

[Rey02] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data Structures”. In: LICS.
IEEE Computer Society, 2002, pp. 55–74. doi: 10.1109/LICS.2002.1029817.

[RIS19] RISC-V team. ISA Formal Spec Public Review. https://github.com/riscvarchive/ISA_
Formal_Spec_Public_Review/blob/master/comparison_table.md. 2019.

[RKJ08] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. “Liquid Types”. In: PLDI. ACM,
2008, pp. 159–169. doi: 10.1145/1375581.1375602.

[RKJ10] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. “Low-Level Liquid Types”. In:
POPL. ACM, 2010, pp. 131–144. doi: 10.1145/1706299.1706316.

[RMV22] Azalea Raad, Luc Maranget, and Viktor Vafeiadis. “Extending Intel-x86 Consistency and Per-
sistency: Formalising the Semantics of Intel-x86 Memory Types and Non-Temporal Stores”. In:
Proc. ACM Program. Lang. 6.POPL (2022), pp. 1–31. doi: 10.1145/3498683.

[Ros10] A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science. Springer, 2010.
doi: 10.1007/978-1-84882-258-0.

[RS10] Grigore Rosu and Traian-Florin Serbanuta. “An Overview of the K Semantic Framework”. In: J.
Log. Algebraic Methods Program. 79.6 (2010), pp. 397–434. doi: 10.1016/j.jlap.2010.03.012.

[Rus23] Rust team. The Rust programming language. https://rust-lang.org. 2023.

[Sam+21a] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and
Deepak Garg. Artifact and Appendix of "RefinedC: Automating the Foundational Verification of
C Code with Refined Ownership Types". Mar. 2021. doi: 10.5281/zenodo.4649822.

[Sam+21b] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and
Deepak Garg. “RefinedC: Automating the Foundational Verification of C Code with Refined
Ownership Types”. In: PLDI. ACM, 2021, pp. 158–174. doi: 10.1145/3453483.3454036.

[Sam+22] Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean Pichon-Pharabod,
Derek Dreyer, Deepak Garg, and Peter Sewell. “Islaris: Verification of Machine Code Against
Authoritative ISA Semantics”. In: PLDI. ACM, 2022, pp. 825–840. doi: 10.1145/3519939.
3523434.

[Sam+23] Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak
Garg, and Derek Dreyer. “DimSum: A Decentralized Approach to Multi-language Semantics and
Verification”. In: Proc. ACM Program. Lang. 7.POPL (2023), pp. 775–805. doi: 10.1145/3571220.

[San+20] José Fragoso Santos, Petar Maksimovic, Sacha-Élie Ayoun, and Philippa Gardner. “Gillian, Part
i: A Multi-language Platform for Symbolic Execution”. In: PLDI. ACM, 2020, pp. 927–942. doi:
10.1145/3385412.3386014.

[Sar+09] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge, Thomas
Braibant, Magnus O. Myreen, and Jade Alglave. “The Semantics of x86-CC Multiprocessor
Machine Code”. In: POPL. ACM, 2009, pp. 379–391. doi: 10.1145/1480881.1480929.

165

https://doi.org/10.1007/978-3-642-17796-5_9
https://doi.org/10.1007/978-3-642-17796-5_9
https://doi.org/10.1007/978-3-540-24615-2_12
https://doi.org/10.1007/978-3-540-24615-2_12
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1109/LICS.2002.1029817
https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review/blob/master/comparison_table.md
https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review/blob/master/comparison_table.md
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1145/3498683
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1016/j.jlap.2010.03.012
https://rust-lang.org
https://doi.org/10.5281/zenodo.4649822
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/1480881.1480929

BIBLIOGRAPHY

[Sar+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. “Understanding
POWER Multiprocessors”. In: PLDI. ACM, 2011, pp. 175–186. doi: 10.1145/1993498.1993520.

[SB14] Kasper Svendsen and Lars Birkedal. “Impredicative Concurrent Abstract Predicates”. In: ESOP.
Vol. 8410. LNCS. Springer, 2014, pp. 149–168. doi: 10.1007/978-3-642-54833-8_9.

[Sch16] Malte Schwerhoff. “Advancing Automated, Permission-Based Program Verification Using Symbolic
Execution”. PhD thesis. ETH Zurich, Zürich, Switzerland, 2016. doi: 10 . 3929 / ethz - a -
010835519.

[Šev+13] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter
Sewell. “CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency”. In: J. ACM
60.3 (2013), 22:1–22:50. doi: 10.1145/2487241.2487248.

[Sew+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen.
“x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors”. In: Commun.
ACM 53.7 (2010), pp. 89–97. doi: 10.1145/1785414.1785443.

[Sha+05] Zhong Shao, Valery Trifonov, Bratin Saha, and Nikolaos Papaspyrou. “A Type System for
Certified Binaries”. In: ACM Trans. Program. Lang. Syst. 27.1 (2005), pp. 1–45. url: https:
//doi.org/10.1145/1053468.1053469.

[Sim+20] Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod,
Luc Maranget, and Peter Sewell. “ARMv8-A System Semantics: Instruction Fetch in Relaxed
Architectures”. In: ESOP. Vol. 12075. LNCS. Springer, 2020, pp. 626–655. doi: 10.1007/978-3-
030-44914-8_23.

[Sim+22] Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte, Richard Grisenth-
waite, and Peter Sewell. “Relaxed virtual memory in Armv8-A”. In: ESOP. Vol. 13240. LNCS.
Springer, 2022, pp. 143–173. doi: 10.1007/978-3-030-99336-8_6.

[SK20] Hira Taqdees Syeda and Gerwin Klein. “Formal Reasoning Under Cached Address Translation”.
In: J. Autom. Reason. 64.5 (2020), pp. 911–945. doi: 10.1007/s10817-019-09539-7.

[SMK13] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. “Translation Validation for
a Verified OS Kernel”. In: PLDI. ACM, 2013, pp. 471–482. doi: 10.1145/2491956.2462183.

[SNB15] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. “Mechanized Verification of Fine-
grained Concurrent Programs”. In: PLDI. ACM, 2015, pp. 77–87. doi: 10.1145/2737924.
2737964.

[Son+20] Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur.
“CompCertM: CompCert with C-Assembly Linking and Lightweight Modular Verification”. In:
Proc. ACM Program. Lang. 4.POPL (2020), 23:1–23:31. doi: 10.1145/3371091.

[Son+23] Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer.
“Conditional Contextual Refinement”. In: POPL. ACM, 2023. doi: 10.1145/3571232.

[Spi+21] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer,
and Lars Birkedal. “Transfinite Iris: Resolving an Existential Dilemma of Step-Indexed Separation
Logic”. In: PLDI. ACM, 2021. url: https://doi.org/10.1145/3453483.3454031.

[Spr+20] Christoph Sprenger, Tobias Klenze, Marco Eilers, Felix A. Wolf, Peter Müller, Martin Clochard,
and David A. Basin. “Igloo: Soundly Linking Compositional Refinement and Separation Logic for
Distributed System Verification”. In: Proc. ACM Program. Lang. 4.OOPSLA (2020), 152:1–152:31.
doi: 10.1145/3428220.

[Ste+15] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. “Compositional
CompCert”. In: POPL. ACM, 2015, pp. 275–287. doi: 10.1145/2676726.2676985.

166

https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.3929/ethz-a-010835519
https://doi.org/10.3929/ethz-a-010835519
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1053468.1053469
https://doi.org/10.1145/1053468.1053469
https://doi.org/10.1007/978-3-030-44914-8_23
https://doi.org/10.1007/978-3-030-44914-8_23
https://doi.org/10.1007/978-3-030-99336-8_6
https://doi.org/10.1007/s10817-019-09539-7
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3571232
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3428220
https://doi.org/10.1145/2676726.2676985

BIBLIOGRAPHY

[Ste14] Andrei Stefanescu. “MatchC: A Matching Logic Reachability Verifier Using the K Framework”.
In: Electron. Notes Theor. Comput. Sci. 304 (2014), pp. 183–198. doi: 10.1016/j.entcs.2014.
05.010.

[Swa+06] Nikhil Swamy, Michael W. Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. “Safe Manual
Memory Management in Cyclone”. In: Sci. Comput. Program. 62.2 (2006), pp. 122–144. doi:
10.1016/j.scico.2006.02.003.

[SWM00] Frederick Smith, David Walker, and J. Gregory Morrisett. “Alias Types”. In: ESOP. Vol. 1782.
LNCS. Springer, 2000, pp. 366–381. doi: 10.1007/3-540-46425-5_24.

[Ta+18] Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. “Automated Lemma
Synthesis in Symbolic-Heap Separation Logic”. In: Proc. ACM Program. Lang. 2.POPL (2018),
9:1–9:29. doi: 10.1145/3158097.

[TB14] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. 4th. USA: Prentice Hall
Press, 2014. isbn: 013359162X. url: https://dl.acm.org/doi/book/10.5555/2655363.

[Tok23] Tokei team. Tokei. https://github.com/XAMPPRocky/tokei. 2023.

[Tom+20] John Toman, Ren Siqi, Kohei Suenaga, Atsushi Igarashi, and Naoki Kobayashi. “ConSORT:
Context- and Flow-Sensitive Ownership Refinement Types for Imperative Programs”. In: ESOP.
Vol. 12075. LNCS. Springer, 2020, pp. 684–714. doi: 10.1007/978-3-030-44914-8_25.

[Val+22] Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo Stefanesco.
“Layered and Object-Based Game Semantics”. In: Proc. ACM Program. Lang. 6.POPL (2022),
pp. 1–32. doi: 10.1145/3498703.

[Var95] Moshe Y. Vardi. “Alternating Automata and Program Verification”. In: Computer Science Today.
Vol. 1000. LNCS. Springer, 1995, pp. 471–485. doi: 10.1007/BFb0015261.

[VCC16] VCC team. Verification of a singly linked list. https://github.com/microsoft/vcc/blob/
47f3f33d459f5fd9233203ec3d5d2fc803/vcc/Docs/Tutorial/c/7.2.list.c. 2016.

[Ver19] Verifast team. Verification of a binary search tree. https://github.com/verifast/verifast/
blob/8bc966726de829749eaf916ec3863bf294/examples/sorted_bintree.c. 2019.

[VJP15] Frédéric Vogels, Bart Jacobs, and Frank Piessens. “Featherweight VeriFast”. In: Log. Methods
Comput. Sci. 11.3 (2015). doi: 10.2168/LMCS-11(3:19)2015.

[Vog+11] Frédéric Vogels, Bart Jacobs, Frank Piessens, and Jan Smans. “Annotation Inference for Separation
Logic Based Verifiers”. In: FMOODS/FORTE. Vol. 6722. LNCS. Springer, 2011, pp. 319–333.
doi: 10.1007/978-3-642-21461-5_21.

[VST20] VST team. Verification of a binary search tree. https://github.com/PrincetonUniversity/
VST/blob/14e6b3a79a9685a478786436c6f0a45dc44c3d52/progs/verif_bst.v. 2020.

[Wan+12] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek.
“Undefined behavior: What happened to my code?” In: APSys. ACM, 2012, p. 9. doi: 10.1145/
2349896.2349905.

[WC19] Qinshi Wang and Qinxiang Cao. “VST-A: A Foundationally Sound Annotation Verifier”. In:
CoRR abs/1909.00097 (2019). url: http://arxiv.org/abs/1909.00097.

[WCC14] Peng Wang, Santiago Cuellar, and Adam Chlipala. “Compiler Verification Meets Cross-Language
Linking via Data Abstraction”. In: OOPSLA. ACM, 2014, pp. 675–690. doi: 10.1145/2660193.
2660201.

[Win+09] Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David Cock, and Michael
Norrish. “Mind the Gap”. In: TPHOLs. Vol. 5674. LNCS. Springer, 2009, pp. 500–515. doi:
10.1007/978-3-642-03359-9_34.

167

https://doi.org/10.1016/j.entcs.2014.05.010
https://doi.org/10.1016/j.entcs.2014.05.010
https://doi.org/10.1016/j.scico.2006.02.003
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1145/3158097
https://dl.acm.org/doi/book/10.5555/2655363
https://github.com/XAMPPRocky/tokei
https://doi.org/10.1007/978-3-030-44914-8_25
https://doi.org/10.1145/3498703
https://doi.org/10.1007/BFb0015261
https://github.com/microsoft/vcc/blob/47f3f33d459f5fd9233203ec3d5d2fc803/vcc/Docs/Tutorial/c/7.2.list.c
https://github.com/microsoft/vcc/blob/47f3f33d459f5fd9233203ec3d5d2fc803/vcc/Docs/Tutorial/c/7.2.list.c
https://github.com/verifast/verifast/blob/8bc966726de829749eaf916ec3863bf294/examples/sorted_bintree.c
https://github.com/verifast/verifast/blob/8bc966726de829749eaf916ec3863bf294/examples/sorted_bintree.c
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.1007/978-3-642-21461-5_21
https://github.com/PrincetonUniversity/VST/blob/14e6b3a79a9685a478786436c6f0a45dc44c3d52/progs/verif_bst.v
https://github.com/PrincetonUniversity/VST/blob/14e6b3a79a9685a478786436c6f0a45dc44c3d52/progs/verif_bst.v
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2349896.2349905
http://arxiv.org/abs/1909.00097
https://doi.org/10.1145/2660193.2660201
https://doi.org/10.1145/2660193.2660201
https://doi.org/10.1007/978-3-642-03359-9_34

BIBLIOGRAPHY

[Wol+21] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João Carlos Pereira, and
Peter Müller. “Gobra: Modular Specification and Verification of Go Programs”. In: CAV (1).
Vol. 12759. LNCS. Springer, 2021, pp. 367–379. doi: 10.1007/978-3-030-81685-8_17.

[WWS19] Yuting Wang, Pierre Wilke, and Zhong Shao. “An Abstract Stack Based Approach to Verified
Compositional Compilation to Machine Code”. In: Proc. ACM Program. Lang. 3.POPL (2019),
62:1–62:30. doi: 10.1145/3290375.

[Xi07] Hongwei Xi. “Dependent ML: An Approach to Practical Programming with Dependent Types”.
In: J. Funct. Program. 17.2 (2007), pp. 215–286. doi: 10.1017/S0956796806006216.

[Yan+08] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano,
and Peter W. O’Hearn. “Scalable Shape Analysis for Systems Code”. In: CAV. Vol. 5123. LNCS.
Springer, 2008, pp. 385–398. doi: 10.1007/978-3-540-70545-1_36.

[Zhu+22] Fengmin Zhu, Michael Sammler, Rodolphe Lepigre, Derek Dreyer, and Deepak Garg. “BFF:
Foundational and Automated Verification of Bitfield-Manipulating Programs”. In: Proc. ACM
Program. Lang. 6.OOPSLA2 (2022), pp. 1613–1638. doi: 10.1145/3563345.

168

https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1145/3290375
https://doi.org/10.1017/S0956796806006216
https://doi.org/10.1007/978-3-540-70545-1_36
https://doi.org/10.1145/3563345

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types
	Islaris: Verification of Machine Code Against Authoritative ISA Semantics
	DimSum: A Decentralized Approach to Multi-language Semantics and Verification
	Overview
	Publications
	Collaborations

	I Lithium
	Introduction
	Separation Logic Primer

	Lithium by Example
	Lithium Basics
	Operational Model
	Modular Verification via Inhale, Exhale, and Quantifiers
	Continuations
	Separation Logic
	Reasoning about Abstract Predicates
	Verifying Higher-order Functions
	Foundational Proofs via a Semantic Model

	Lithium in Detail
	Avoiding Backtracking
	Handling of Existentials
	Complete Definition of Lithium

	Related Work

	II RefinedC
	Introduction
	RefinedC by Example
	A Simple Memory Allocator
	Thread-Safe Allocator Using a Spinlock
	Deallocation Using a List of Free Chunks

	RefinedC Frontend and Caesium
	RefinedC Type System
	RefinedC Types
	Model of RefinedC Types
	Examples of RefinedC Typing Rules

	Evaluation and Case Studies
	Related Work
	Limitations and Future Work

	III Islaris
	Introduction
	Overview of the Islaris Approach
	Background: Symbolic Execution with Isla
	Our Contribution: Islaris
	Islaris Separation Logic
	Intra-instruction Branching
	Verification of a Complete C Function: cmemcpy
	Installing and Using an Exception Vector
	RISC-V
	Verification Workflow

	Isla Trace Language
	Islaris Separation Logic
	Assertions and Rules
	Adequacy of the Islaris Separation Logic
	Islaris Proof Automation

	Translation Validation for RISC-V
	Evaluation
	Related Work

	IV DimSum
	Introduction
	Principles of Decentralization
	DimSum

	Key Ideas
	Event-Based Semantics
	The Proof Strategy
	Semantic Language Wrappers

	Modules and Refinement
	Modules and Refinement in the Abstract
	Angelic and Demonic Non-Determinism
	Combinators

	Instantiations of DimSum
	The Language Asm
	The Language Rec
	Coroutine Linking

	Compiler
	Related Work
	Conclusion

