Stateless Model Checking of the Linux Kernel’s Hierarchical
Read-Copy-Update (Tree RCU)

Michalis Kokologiannakis

National Technical University of Athens, Greece

ABSTRACT

Read-Copy-Update (RCU) is a synchronization mechanism used
heavily in key components of the Linux kernel, such as the virtual
filesystem (VFS), to achieve scalability by exploiting RCU’s ability
to allow concurrent reads and updates. RCU’s design is non-trivial,
requires significant effort to fully understand it, let alone become
convinced that its implementation is faithful to its specification and
provides its claimed properties. The fact that as time goes by Linux
kernels are becoming increasingly more complex and are employed
in machines with more and more cores and weak memory does not
make the situation any easier.

This paper presents an approach to systematically test the code
of the main flavor of RCU used in the Linux kernel (Tree RCU) for
concurrency errors, both under sequential consistency and weak
memory. Our modeling allows Nidhugg, a stateless model checking
tool, to reproduce, within seconds, safety and liveness bugs that
have been reported for RCU. More importantly, we were able to
verify the Grace-Period guarantee, the basic guarantee that RCU
offers, on several Linux kernel versions (non-preemptible builds).
Our approach is effective, both in dealing with the increased com-
plexity of recent Linux kernels and in terms of time that the process
requires. We have good reasons to believe that our effort consti-
tutes a big step towards making tools such as Nidhugg part of the
standard testing infrastructure of the Linux kernel.
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1 INTRODUCTION

The Linux kernel is used in a surprisingly large number of devices:
from PCs and servers, to routers and smart TVs. For example, in
2015 more than one billion smart phones used a modified version of
the Linux kernel [5], and in 2016 almost all modern supercomputers
used Linux as well [22]. It is self-evident that the correct and reliable
operation of the Linux kernel is of great importance, which renders
thorough testing and verification of its components a necessity.

Naturally, this process needs to span all of the kernel’s com-
ponents and subsystems. One particular subsystem with a non-
trivial implementation is the Read-Copy-Update (RCU) mecha-
nism [18, 19]. RCU is a synchronization mechanism that provides
excellent scalability by enabling concurrent reads and updates.

However, RCU’s implementation is quite involved, making its
precise modeling arduous. Moreover, the lockless design of its fast-
paths, and the fact that it needs to operate in heavily concurrent
environments make its modeling and verification process challeng-
ing. Extra difficulties for this process stem from the relatively short
release cycle of the Linux kernel (there is a new release every ap-
proximately two months), the number of changes that are involved
in each release, and the increasing complexity of the kernel’s code.
Still, the fact that concurrency bugs manage to survive (maybe only
under particular configurations, architectures and memory models)
even after heavy stress testing underlines the need for employing
software model checking techniques that are able to operate on as
big a percentage of the actual code of the Linux kernel as possible.

This paper reports on the use of stateless model checking (aka
systematic concurrency testing) for testing the core of Tree RCU,
the main RCU flavor used in the Linux kernel. In particular, using
Nidhugg [2], we were able to verify that its implementation pre-
serves the Grace-Period (GP) guarantee, the basic guarantee that
RCU offers. Our effort concentrated on a non-preemptible kernel
environment, where we also investigated the effects that weak
memory models (TSO in particular) may have in RCU’s operation.
We used the source code from five different versions of the Linux
kernel, and verified that the GP guarantee holds in all of them.

In order to strengthen our verification claim, we injected bugs
similar to ones that have been reported throughout the development
of RCU and, in all cases, our tool was able to come up with scenarios
in which they occur. In particular, we were able to demonstrate
that a submitted patch, intended to impose a locking design, in
reality fixed a much more serious bug, a fact that was previously
unknown. We report on this issue and present the exact conditions
under which this bug occurs. Finally, as we will show, our technique
handles real code employed in today’s production systems in a very
efficient and scalable way. In fact, Nidhugg copes extremely well
with the increasing complexity the newer kernel versions induce.
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Overview. After an introduction to RCU and to stateless model
checking, we describe details of the implementation of Tree RCU
in Section 4. Section 5 presents our modeling of the kernel’s en-
vironment. In Section 6 we investigate some previously reported
failures for an older kernel and present their cause, and in Section 7
we report on the verification of the GP guarantee of RCU. The paper
ends with related work, lessons learned, and concluding remarks.

2 READ-COPY-UPDATE (RCU)

Read-Copy-Update is a synchronization mechanism invented by
McKenney and Slingwine [18, 19] that is a part of the Linux kernel
since 2002. The key feature of RCU is the good scalability it provides
by allowing concurrent reads and updates. While this may seem
counter-intuitive or impossible at first, RCU allows this in a very
simple yet extremely efficient way: by maintaining multiple data
versions. RCU is carefully orchestrated in a way that not only
ensures that reads are coherent and no data will be deleted until
it is certain that no one holds references to them, but also uses
efficient and scalable mechanisms which make read paths extremely
fast. Most notably, in non-preemptible kernels, RCU imposes zero
overhead to readers.

The basic idea behind RCU is to split updates in two phases: the
removal phase and the reclamation phase. During the removal phase,
an updater removes references to data either by destroying them
(i.e., setting them to NULL), or by replacing them with references to
newer versions of these data. This phase can run concurrently with
reads due to the fact that modern microprocessors guarantee that a
reader will see either the old or the new reference to an object, and
not a weird mash-up of these two or a partially updated reference.
During the reclamation phase, the updater frees the items removed
in the removal phase, i.e., these items are reclaimed. Of course, since
RCU allows concurrent reads and updates, the reclamation phase
must begin after the removal phase and, more specifically, when it
is certain that there are no readers accessing or holding references
to the data being reclaimed.

The typical update procedure using RCU looks as follows [18].

(1) Ensure that all readers accessing RCU-protected data structures
carry out their references from within an RCU read-side critical
section.

(2) Remove pointers to a data structure, so that subsequent readers
cannot gain a reference to it (removal phase).

(3) Wait until all pre-existing readers complete their RCU read-side
critical section, so that there no one holding a reference to the
item being removed.

(4) At this point, there cannot be any readers still holding refer-
ences to the data structure, which may now be safely freed.

Note that steps 2 and 4 (the reclamation phase) in this procedure
are not necessarily performed by the same thread.

Waiting for pre-existing readers can be achieved either by block-
ing (via synchronize_rcu()), or by registering a callback that will
be invoked after all pre-existing readers have completed their RCU
read-side critical sections (via call_rcu()).

In order to formalize some of the aspects presented above, we
provide some definitions.

Definition 2.1. Any statement that is not within an RCU read-side
critical section is said to be in a quiescent state.
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Initially: int x = 0, y = 0, r_x =0, r.y = 0;

void reader(void) void updater(void)
{ {
rcu_read_lock();
r_x = READ_ONCE(x);
r_y = READ_ONCE(y);
rcu_read_unlock(); }

WRITE_ONCE(x, 1);
synchronize_rcu();
WRITE_ONCE(y, 1);

Figure 1: RCU’s Grace-Period guarantee litmus test.

Statements in quiescent states are not permitted to hold refer-
ences to RCU-protected data structures. Note that different RCU
flavors have different sets of quiescent states.

Definition 2.2. Any time period during which each CPU resides
at least once in a quiescent state is called a grace period.

Consequently, if an RCU read-side critical section started before
the beginning of a specified grace period GP, it would have to
complete before the end of GP. This means that the reclamation
phase has to wait for at least one grace period to elapse before it
begins. Once a grace period has elapsed, there can no longer be any
readers holding references to the old version of a newly updated
data structure (since each CPU has passed through a quiescent
state) and the reclamation phase can safely begin.

RCU Specifications. Let us now present some requirements that
every RCU implementation must fulfill. We do not attempt to
present a formal or a complete specification for RCU here.! Instead,
we only present the basic guarantees of RCU.

Grace-Period Guarantee. The fact that in RCU updaters wait for
all pre-existing readers to complete their read-side critical sections,
constitutes the only interaction between the readers and the up-
daters. The Grace-Period guarantee is what allows updaters to wait
for all pre-existing RCU read-side critical sections to complete. Such
critical sections start with the macro rcu_read_lock() and end with
rcu_read_unlock(). What this guarantee means is that the RCU im-
plementation must ensure that any read-side critical sections in
progress at the start of a given grace period GP will have completely
finished (including memory operations, etc.) before that GP ends.
This very fact allows RCU verification to be focused; every correct
implementation has to adhere to the following rule:

If any statement in a given RCU read-side critical section CS

precedes a grace period GP, then all statements (including

memory operations) in CS must complete before GP ends.
Memory operations are included here in order to prevent the com-
piler or the CPU from undoing work done by RCU.

In order to see what this guarantee really implies, consider the
code fragment in Fig. 1. In this code, since synchronize_rcu() has
to wait for all pre-existing readers to complete their RCU read-side
critical sections, the outcome:

rx == 0 & r_y == (1)

should be impossible. This is what the Grace-Period guarantee is
all about. It is the most important guarantee that RCU provides; in
effect, it constitutes the core of RCU.

Requirements for RCU appear at: https://www.kernel.org/doc/Documentation/RCU/.
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Publish-Subscribe Guarantee. This guarantee is used in order
to coordinate read-side accesses to data structures. The Publish-
Subscribe mechanism is used in order for data to be inserted into
data structures (e.g., lists), without disrupting concurrent readers.
Since updaters run concurrently with readers, this mechanism en-
sures that readers will not see uninitialized data, and that updaters
will have completed all initialization operations before publish-
ing a data structure. For this, RCU offers two primitives: (1) The
rcu_assign_pointer() primitive, which has similar semantics to
C11’s memory_order_release operation. In effect, it is similar to
an assignment but also provides additional ordering guarantees.
(2) The rcu_dereference() primitive, which can be considered as a
subscription to a value of a specified pointer and guarantees that
subsequent dereference operations will see any initialization that
took place before the rcu_assign_pointer() (publish) operation.
The rcu_dereference() primitive has semantics similar to C11’s
memory_order_consume load, and uses both volatile casts and mem-
ory barriers in order to provide the aforementioned guarantee.

3 STATELESS MODEL CHECKING

Stateless model checking [11], also known as systematic concur-
rency testing, is a technique with low memory requirements that
is applicable to programs with executions of finite length. Stateless
model checking tools explore the state space of a program without
explicitly storing global states. The technique has been successfully
implemented in tools such as VeriSoft [12] and CHESS [20].

Stateless model checking tools try to combat the problem of
combinatorial explosion in the number of interleavings that need
to be examined in order to maintain full coverage of all program
behaviors by using partial order reduction techniques. Partial order
reduction is based on the observation that two interleavings can
be considered equivalent if one can be obtained from the other by
swapping adjacent, independent execution steps. Dynamic Partial
Order Reduction (DPOR) techniques capture dependencies between
operations of concurrent threads while the program is running [10].
The exploration begins with an arbitrary interleaving whose steps
are then used to identify dependent operations and program points
where alternative interleavings need to be explored in order to
capture all program behaviors.

Stateless model checking and DPOR techniques have been ex-
tended to handle memory model non-determinism in addition to
scheduling non-determinism. Nidhugg [2], for example, is a state-
less model checker for C/C++ programs that use pthreads, which
incorporates extensions for finding bugs caused by weak mem-
ory models such as TSO, PSO and, partially, POWER and ARM.
Nidhugg works on the level of LLVM intermediate representation
and employs an effective dynamic partial order algorithm called
source-DPOR [1]. In our work we used Nidhugg for all our tests.

In stateless model checking all tests need to be data-deterministic
in the sense that, in a given state, a given execution step must
always lead the system to the same new state. This means that
the test case cannot depend on some unknown input or on timing
properties (e.g., take some action depending on the value of the
clock). In addition, all test cases need to be finite in the sense that
there must be abound n € N such that all executions of the program
terminate within n execution steps.
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Figure 2: Tree RCU node hierarchy (adapted from [16]).

4 TREE RCU IMPLEMENTATION

The Linux kernel offers many different RCU implementations, each
one serving a different purpose. The first Linux-kernel RCU imple-
mentation was Classic RCU. A problem with Classic RCU was lock
contention due to the presence of one global lock that had to be
acquired from each CPU wishing to report a quiescent state to RCU.
In addition, Classic RCU had to wake up every CPU (even idle ones)
at least once per grace period, thus increasing power consumption.

Tree RCU offers a solution to both these problems since it reduces
lock contention and avoids awakening dyntick-idle [21] CPUs. Tree
RCU scales to thousands of CPUs easily, while Classic RCU could
scale only to several hundred.

Below we present a high-level explanation of Tree RCU along
with some implementation details, a brief overview of its data
structures, and some use cases that are helpful in understanding
how RCU’s fundamental mechanisms are actually implemented.

4.1 High-Level Explanation

In Classic RCU each CPU had to clear its bit in a field of a global
data structure after it passed through a quiescent state. Since CPUs
operated concurrently on this data structure, a spinlock was used
to protect the mask, which could suffer from extreme contention.
Tree RCU addresses this issue by creating a heap-like node hier-
archy. The key here is that CPUs will not try to acquire the same
node’s lock when trying to report a quiescent state to RCU; in
contrast, CPUs are split into groups and each group will contend
for a different node’s lock. Each CPU has to clear its bit in the
corresponding node’s mask once per grace period. The last CPU to
check in (i.e., to report a quiescent state to RCU) for each group, will
try to acquire the lock of the node’s parent, until the root node’s
mask is cleared. This is when a grace period can end. A simple
node hierarchy for a 6-CPU system is presented in Fig. 2. As can be
seen, CPUs 0 and 1 will acquire the lower-left node’s lock, CPUs 2
and 3 will acquire the lower-middle node’s lock, and CPUs 4 and 5
will acquire the lower-right node’s lock. The last CPU reporting a
quiescent state for each of the lower nodes will try to acquire the
root node’s lock, and this procedure happens once per grace period.
The node hierarchy created by Tree RCU is tunable, and is con-
trolled, among others, by two Kconfig options, namely:
CONFIG_RCU_FANOUT_LEAF: Controls the maximum number of
CPUs contending for a leaf-node’s lock. Default value is 16.
CONFIG_RCU_FANOUT: Controls the maximum number of CPUs
contending for an inner-node’s lock. Default value is 32 for
32-bit systems and 64 for 64-bit systems.

More information can be found at the init/Kconfig file.
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4.2 Data Structures

Let us now describe three major data structures of Tree RCU’s
implementation: rcu_data, rcu_node, and rcu_state. Suppose that
a CPU registers a callback that will eventually be invoked. Tree
RCU needs to store some information regarding this callback. For
this, the implementation maintains some data organized in the
per-CPU rcu_data structure, which includes, among others: (i) the
last completed grace period number this CPU has seen; used for
grace-period ending detection (completed), (ii) the highest grace
period number this CPU is aware of having started (gpnum), (iii) a
bool variable indicating whether this CPU has passed through a
quiescent state for this grace period, (iv) a pointer to this CPU’s
leaf of hierarchy, and (v) the mask that will be applied to the leaf’s
mask (grpmask). Thus, when a CPU registers a callback, it stores it
in the respective per-CPU data structure.

Now, when a CPU passes through a quiescent state, it has to
report it to RCU by clearing its bit in the respective leaf node.
The node hierarchy consists of rcu_node structures which include,
among others: (i) a lock protecting the respective node, (ii) the
current grace period number for this node, (iii) the last completed
grace period number for this node, (iv) a bit-mask indicating CPUs
or groups that need to check in in order for this grace period to
proceed (gsmask), (v) a pointer to the node’s parent, and (vi) the
mask that will be applied to parent node’s mask (grpmask).

Lastly, the RCU global state, as well as the node hierarchy are
included in an rcu_state structure. The node hierarchy is repre-
sented in heap form in a linear array, which is allocated statically
at compile time based on the values of NR_CPUS and the Kconfig
options. Note that small systems have a hierarchy consisting of a
single rcu_node. This structure contains, among others: (i) the node
hierarchy, (ii) a pointer to the per-CPU rcu_data variable, (iii) the
current grace-period number, and (iv) the number of last completed
grace period. There are several values that are propagated through
these different structures, e.g., the grace period number. However,
this was not always the case, and it was the discovery of bugs that
often led to changes in the source code.

Finally, we have already mentioned that Classic RCU had a sub-
optimal dynticks interface, and that one of the main reasons for
the creation of Tree RCU was to leave sleeping CPUs lie, in or-
der to conserve energy. Tree RCU avoids awakening low-power-
state dynticks-idle CPUs using a per-CPU data structure called
rcu_dynticks. This structure contains, among others: (i) a counter
tracking the irq/process nesting level, and (ii) a counter containing
an even value for dynticks-idle mode, else containing an odd value.
These counters enable Tree RCU to wait only for CPUs that are
not sleeping, and to let sleeping CPUs lie. How this is achieved is
described below.

4.3 Use Cases

The common usage of RCU involves registering a callback, waiting
for all pre-existing readers to complete, and finally, invoking the
callback. During all these, special care is taken to accommodate
sleeping CPUs, offline CPUs and CPU hotplugs [7], CPUs in user-
land, and CPUs that fail to report a quiescent state to RCU within a
reasonable amount of time.
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Registering a Callback. A CPU registers a callback by invoking
call_rcu(). This function queues an RCU callback that will be
invoked after a specified grace period. The callback is placed in the
callback list of the respective CPU’s rcu_data structure. This list is
partitioned in four segments:

(1) The first segment contains entries that are ready to be invoked
(DONE segment).

(2) The second segment contains entries that are waiting for the
current grace period (WAIT segment).

(3) The third segment contains entries that are known to have
arrived before the current grace period ended (NEXT_READY seg-
ment).

(4) The fourth segment contains entries that might have arrived
after the current grace period ended (NEXT segment).

When a new callback is added to the list, it is inserted at the end of
the fourth segment.

In older kernels (e.g., v2.6.x), call_rcu() could start a new grace
period directly, but this is no longer the case. In newer kernels, the
only way a grace period can start directly by call_rcu() is if there
are too many callbacks queued and no grace period in progress.
Otherwise, a grace period will start from softirq context.

Every softirq is associated with a function that will be invoked
when this type of softirgs is executed. For Tree RCU, this function is
called rcu_process_callbacks(). So, when an RCU softirq is raised,
this function will eventually be invoked (either at the exit from
an interrupt handler or from a ksoftirg/n kthread), and will start
a grace period if there is need for one (e.g., if there is no grace
period in progress and this CPU has newly registered callbacks, or
there are callbacks that require an additional grace period). RCU
softirqs are raised from rcu_check_callbacks () which is invoked
from scheduling-clock interrupts. If there is RCU-related work
(e.g., if this CPU needs a new grace period), rcu_check_callbacks()
raises a softirgq.

The synchronize_rcu() function, which is implemented on top
of call_rcu() in Tree RCU, registers a callback that will awake
the caller after a grace period has elapsed. The caller waits on a
completion variable, and is consequently put on a wait queue.

Starting a Grace Period. The rcu_start_gp() function is respon-
sible for starting a new grace period; it is normally invoked from
softirq context and an rcu_process_callbacks() call. However, in
newer kernels, rcu_start_gp() neither directly starts a new grace
period nor initializes the necessary data structures. It rather ad-
vances the CPU’s callbacks (i.e., properly re-arranges the segments),
and then sets a flag at the rcu_state structure to indicate that a CPU
requires a new grace period. The grace-period kthread is the one
that will initialize the node hierarchy and the rcu_state structure,
and by extension start the new grace period.

The RCU grace-period kthread excludes concurrent CPU-hotplug
operations and then sets the quiescent-state-needed bits in all the
rcu_node structures in the hierarchy corresponding to online CPUs.
It also copies the grace period number in all the rcu_node structures.
Concurrent CPU accesses will check only the leaves of the hierarchy,
and other CPUs may or may not see their respective node initialized.
But each CPU has to enter the RCU core in order to acknowledge
that a grace period has started and initialize its rcu_data structure.
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This means that each CPU (except for the one on which the grace-
period kthread runs) needs to enter softirq context in order to see
the new grace period beginning (via rcu_process_callbacks()).

The grace-period kthread resolved many races present in older
kernels, where when a CPU required a new grace period, it tried to
directly initialize the node hierarchy, something that could poten-
tially lead to bugs; see Section 6.

Passing Through a Quiescent State. Quiescent states for Tree
RCU (RCU-sched) include: (i) context switch, (ii) idle mode (idle
loop or dynticks-idle), and (iii) user-mode execution. When a CPU
passes through a quiescent state, it updates its rcu_data struc-
ture by invoking rcu_sched_gs (). This function is invoked from
scheduling-related functions, from rcu_check_callbacks(), and
from the ksoftirg/n kthreads. However, the fact that a CPU has
passed through a quiescent state does not mean that RCU knows
about it. Besides, this fact has been recorded in the respective
per-CPU rcu_data structure, and not in the node hierarchy. So,
a CPU has to report to RCU that it has passed through a quiescent
state, and this will happen —again— from softirq context, via the
rcu_process_callbacks () function; see below.

Reporting a Quiescent State to RCU. After a CPU has passed
through a quiescent state, it has to report it to RCU via the function
rcu_process_callbacks (), whose duties include:

e Awakening the RCU grace-period kthread (by invoking the
rcu_start_gp() function), in order to initialize and start a new
grace period, if there is need for one.

o Acknowledging that a new grace period has started/ended. Ev-
ery CPU except for the one on which the RCU grace-period
kthread runs has to enter the RCU core and see that a new
grace period has started/ended. This is done by invoking the
function rcu_check_quiescent_state(), which in turn invokes
note_gp_changes (). The latter advances this CPU’s callbacks
and records to the respective rcu_data structure all the neces-
sary information regarding the grace-period beginning/end.

e Reporting that the current CPU has passed through a quies-
cent state (via rcu_report_gs_rdp(), which is invoked from
rcu_check_quiescent_state()). If the current CPU is the last
one to report a quiescent state, the RCU grace-period kthread is
awakened once again in order to clean up after the old grace pe-
riod and propagate the new ->completed value to the rcu_node
structures of the hierarchy.

o Invoking any callbacks whose grace period has ended.

As can be seen, the RCU grace-period kthread is used heavily to
coordinate grace-period beginnings and ends. Apart from this, the
locks of the nodes in the hierarchy are used to prevent concurrent
accesses which might lead to problems.

Entering/Exiting Dynticks-Idle Mode. When a CPU enters dynticks-
idle mode rcu_idle_enter() is invoked. This function decrements
a per-CPU nesting variable (dynticks_nesting) and increments a
per-CPU counter (dynticks), both of which are located in the per-
CPU rcu_dynticks structure. The dynticks counter must have an
even value when entering dynticks-idle mode. When a CPU exits
dynticks-idle mode rcu_idle_exit() is invoked, which increments
dynticks_nesting and the dynticks counter (which must now have
an odd value).
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However, dynticks-idle mode is a quiescent state for Tree RCU.
So, the reason these two variables are needed is the fact that they
can be sampled by other CPUs so it can be safely determined if a
CPU is (or has been, at some point) in a quiescent state for this
grace period. The sampling process is performed when a CPU has
not reported a quiescent state for a long time and the grace period
needs to end (quiescent state forcing).

Interrupts and Dynticks-Idle Mode. When a CPU enters an inter-
rupt handler, rcu_irqg_enter() is invoked from irq_enter(). This
function increments the value of dynticks_nesting and if the prior
value was zero (i.e., the CPU was in dynticks-idle mode), also in-
crements the dynticks counter. When a CPU exits an interrupt
handler, rcu_irg_exit() decrements dynticks_nesting and if the
new value is zero (i.e., the CPU is entering dynticks-idle mode), also
increments the dynticks counter. It is self-evident that entering
an interrupt handler from dynticks-idle mode means exiting the
dynticks-idle mode. Conversely, exiting an interrupt handler might
mean entrance into dynticks-idle mode.

Forcing Quiescent States. If not all CPUs have reported a quies-
cent state and several jiffies have passed, then the grace-period
kthread is awakened and will try to force quiescent states on CPUs
that have yet to report one. More specifically, the grace-period
kthread will invoke rcu_gp_fqs(), which works in two phases: in
the first phase snapshots of the dynticks counters of all CPUs are
collected, in order to credit them with implicit quiescent states. In
the second phase, CPUs that have yet to report a quiescent state are
scanned again, in order to determine if they have passed through a
quiescent state from the moment their snapshots were collected. If
there are still CPUs that have not checked in, they are forced into
the scheduler in order for them to report a quiescent state to RCU.

5 KERNEL ENVIRONMENT MODELING

Let us now present the way we scaffolded a non-preemptible Linux-
kernel SMP environment. For this, we had to disable some timing-
based warnings, and stub out some primitives used in functions
that were not included in our tests (e.g., RCU-expediting related
primitives). However, we note that the only changes we made in
the source code of Tree RCU involved the replacement of per-CPU
variables with arrays; the rest of the source code remains untouched.

5.1 CPU, Interrupts and Scheduling

CPU. Since we emulate an SMP system, we need some kind of
mutual exclusion between threads running on the same CPU, for
each CPU of the system. Thus, we provide an array of locks (namely
cpu_lock), with each array entry corresponding to a CPU. When
one of these locks is held, the corresponding thread is running on
the respective CPU.

We assume that all CPUs are online, that there are no CPU hot-
plugs, and that CONFIG_NO_HZ_FULL=n. All CPUs are initially idle, and
when a thread wishes to acquire/relase a CPU, it acquires/releases
the CPU’s lock and exits/enters idle mode (if necessary).

We also needed to emulate per-CPU variables. In the kernel,
these variables are created using special compiler/linker directives,
along with some preprocessor directives. However, since these
variables require significant runtime support, we used arrays to
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emulate them, with each array entry representing the respective
CPU'’s copy of a per-CPU variable.

Since a thread needs to have knowledge regarding the CPU it
runs on, we implemented two macros (set_cpu() and get_cpu()),
which manipulate a thread-local variable indicating the CPU on
which a thread runs. The CPU on which a thread runs has to be
manually set, via set_cpu(). The total number of CPUs can be
manipulated by setting the -DCONFIG_NR_CPUS preprocessor option.

Interrupts and Softirgs. In order to emulate interrupts and softirqgs
we used an array of locks (irg_lock), with each lock corresponding
to a CPU. An entry’s lock must be held across an interrupt handler
by the thread servicing the interrupt on the respective CPU. Of
course, the CPU’s lock must be already held. In a similar manner,
when a thread disables interrupts on a CPU, the same lock has to
be acquired. Since we are dealing with non-preemptible kernels,
this lock is not contended.

We also needed to model scheduling-clock interrupts (on which
RCU relies heavily) and the function rcu_check_callbacks(). But,
as mentioned, stateless model checking is performed on determin-
istic programs, meaning that timing-based actions cannot be in-
cluded in our tests. However, the exact time an interrupt occurs
is not so important; what interests us is the implications a timing
interrupt might have at a certain point of a program’s execution
given a concurrency context. Consequently, our version of the inter-
rupt handler invokes rcu_check_callbacks() and then, if an RCU
softirq is raised, the rcu_process_callbacks() function. Of course,
we could have just called the rcu_process_callbacks() function,
but in the Linux kernel this function is not invoked unconditionally,
and we wanted our model to be as precise as possible.

Scheduling. The cond_resched() function is modeled by having
the running thread drop the CPU’s lock and then (possibly) re-
acquire it, but with rcu_note_context_switch() being invoked be-
fore releasing the lock of the incoming CPU. A better way to model
this function would probably have been to drop the current CPU’s
lock, acquire the lock of a random CPU, and then check that no
assertion is violated for every possible CPU choice. However, doing
this requires support for data non-determinism, at least in the form
of some suitable built-in (like e.g., VS_toss(n)). However, Nidhugg
currently does not provide such support. This also explains why so
far we have not modeled a preemptible kernel’s environment. Our
tests aim to be CPU-specific and not thread-specific, in the sense
that we care about the actions of each CPU (e.g., entering/exiting
a critical section or servicing a softirq) and not about the specific
threads that perform these actions.

5.2 Kernel Definitions

Many kernel definitions were copied directly from the Linux ker-
nel. These include data types like u8, ul6, etc., compiler direc-
tives like offsetof(), macros like ACCESS_ONCE(), list data types
and functions, memory barriers, as well as various other kernel
primitives. On the other hand, many primitives had to be replaced
or stubbed; we supplied empty files for #include directives, and
provided some other definitions based on some specific Kconfig
options. These include CPU-related definitions (e.g., NR_CPUS), RCU-
related definitions that are normally configured at compile time
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(e.g., CONFIG_RCU_BOOST), special compiler directives, tracing func-
tions, etc. The BUG_ON() macro and its relatives (e.g., WARN_ON())
have been replaced by assert() statements. Note that we only
stubbed primitives irrelevant to our tests (e.g., some primitives
related to grace-period expediting), and provided our own defini-
tions for some other primitives in order for them to work with our
modeling of the CPUs and interrupts.

All of the definitions we used reside in separate files; these can
be copied and reused across multiple kernel versions.

5.3 Synchronization Mechanisms

The emulation of the Linux kernel’s synchronization mechanisms
used in Tree RCU’s implementation is as follows:

Atomic Operations. While we copied the atomic_t data type di-
rectly from the Linux kernel, this is not the case for atomic opera-
tions like atomic_read(), atomic_set(), etc., since their implemen-
tation is architecture dependent. In order to emulate those, we used
some GCC language extension supported by clang [15], the compiler
that produces the LLVM IR code that Nidhugg analyzes.

Spinlocks and Mutexes. We used pthread_mutexes for the emula-
tion of kernel spinlocks and mutexes.

Completions. In order to emulate completion variables, we copied
the data type definition directly from the Linux kernel, but we had
to model wait queues. Since a thread waiting on a completion is
put on a wait queue until some condition is satisfied, we used
spin loops in order to emulate wait queues. Nidhugg automatically
transforms all spin loops to __VERIFIER assume () statements where,
if the condition does not hold, the execution blocks indefinitely.
Before waiting on a spin loop, the thread drops the correspond-
ing CPU’s lock; it will try to re-acquire it after the condition has
been satisfied. Since this is a quiescent state for RCU, the function
rcu_note_context_switch() (and possibly also the do_IRQ() func-
tion, in order to report a quiescent state to RCU) could have been
invoked before the thread released the CPU’s lock. However, if the
thread waiting on the completion variable is not the only thread
running on the specific CPU, this is unnecessary; these functions
can be called from other threads running on the same CPU as well.

6 INVESTIGATING AN OLDER KERNEL BUG

In Section 4.3 we mentioned that the grace-period kthread cleans up
after grace-period ends. However, in older kernel versions, the RCU
grace-period kthread did not exist; when a CPU entered the RCU
core or invoked call_rcu(), it checked for grace-period ends by
directly comparing the number of the last completed grace period
in the rcu_state structure with the number of the last completed
grace period in the respective rcu_data structure. In newer ker-
nels, the note_gp_changes () function compares the number of the
last completed grace period in the respective rcu_node structure
with the number of the last completed grace period in the current
rcu_data structure, while holding the node’s lock, that way excluding
concurrent operations on this node.

In kernel v2.6.32, commit d09b62dfa336 fixed a synchroniza-
tion issue exposed by unsynchronized accesses to the ->completed
counter in the rcu_state structure [23, 24], which caused the ad-
vancement of callbacks whose grace period had not yet expired.
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completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock */

/* Did another grace period end? x/

if (rdp->completed != completed_snap) {
/* Advance callbacks. No harm if list empty. =/
rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail [RCU_WAIT_TAIL];
rdp->nxttail [RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
rdp->nxttail [RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

/* Remember that we saw this grace-period completion. */
rdp->completed = completed_snap;

Figure 3: Snippet of the rcu_process_gp_end() function.

Below we will create a test case that shows such a situation, but this
test case will also demonstrate that the problem is actually deeper:
these unsynchronized accesses also lead to too-short grace periods.

We started by looking at the rcu_process_gp_end() function,
since the issue was related to it. Figure 3 shows a relevant portion
of its code. As can be seen, the access to the ->completed counter
is completely unprotected. So, we injected a BUG_ON() statement in
the if-body to determine if it was possible for a thread to pick up
the ->completed value and then use the completed_snap while the
->completed variable had changed. The answer was affirmative. Our
next step was to determine if this could potentially lead to a CPU
starting a new grace period without having noticed that the last
grace period has ended. Again, an injection of a BUG_ON() statement,
comparing the current grace period’s number with the number of
the grace period whose completion was noticed by the CPU, showed
that this was possible. With these clues, we constructed a simple
test which proved that these unsynchronized accesses can lead
to too-short grace periods. The test has a reader seeing changes
happening before the beginning of a grace period and after the
end of the same grace period within a single RCU read-side critical
section which, of course, is a violation of the GP guaranteez.

Let us end this section with some notes regarding this bug:

e The bug does not rely on interactions with the node hierarchy;
it existed in both single-node and multi-level hierarchies. (A
slightly different test case with the respective Kconfig options
set appropriately would be required for multi-level hierarchies.)

o Nidhugg reports that this bug is not present in kernel v3.0,
which means that it was indeed fixed. In v3.0, rcu_start_gp()
calls __rcu_process_gp_end(), thus guaranteeing that a CPU
will see a grace-period ending before a grace-period beginning,
something that does not happen in v2.6.32.1. However, the bug
was present in previous versions as well, e.g., v2.6.31.1.

e Only two CPUs are required to provoke the bug, and only one
of them has to invoke call_rcu().

e Only one grace period is required to provoke the bug, meaning
that it does not rely on CPUs being unaware of grace period
ends and beginnings (e.g., when a CPU is in dynticks-idle mode).
However, this bug does require some actions to occur during
and after the ending of a grace period, meaning that a simple
grace-period guarantee test would not have exposed this bug.

e force_quiescent_state() is not required to provoke the bug,
although frequent calls to this function would expose it more
easily in real-life scenarios.

o This bug is not caused by weak memory ordering; the test fails
under sequential consistency.

2More information about this test case, the sequence of events that exposes this bug,
and all code for Sections 6 and 7 can be found at https://www.github.com/michalis-/rcu.
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o Nidhugg produced the violating sequence of events in only
0.56s (compilation and Nidhugg transformation time included),
and used 30.85MB of memory in total.

7 STATELESS MODEL CHECKING TREE RCU

In this section, we will verify the Grace-Period guarantee of Tree
RCU for a non-preemptible Linux kernel environment, using the
model we created in Section 5. We have applied this model to five
different Linux kernels (v3.0, v3.19, v4.3, v4.7, and v4.9.6), and were
able to verify that the actual RCU code satisfies the GP guarantee
under both SC and TSO, using a litmus test similar to that of Fig. 1.

7.1 Test Configuration

Let us first briefly discuss our modeling of the Linux kernel. All our
experiments focused on the RCU-sched flavor of Tree RCU.

First of all, we model a system with two cores, represented
by two mutexes, respectively. We also have three basic threads:
the updater, the reader and the RCU grace-period kthread. The
RCU-bh grace period kthread is disabled in order to reduce the
state space, but it can be re-enabled by setting the -DENABLE_RCU_BH
preprocessor option. We can assume that the updater and the RCU
grace-period kthread run on the same CPU (e.g., CPUO0), and that
the reader runs on the other CPU (e.g., CPU1). For RCU initial-
ization, the rcu_init() function is called. Since there are only
two CPUs in our modeling, a single-node hierarchy is created.
All CPUs start out idle (rcu_idle_enter() is called for each CPU),
and rcu_spawn_gp_kthread() is called in order to spawn the RCU
grace-period kthread.

Of course, interrupt context needs to be emulated as well. In
general, even though we do not care about the exact timing of inter-
rupts, it is the occurrence of an interrupt within a specific context
that causes a grace period to advance. Thus, we have sprinkled calls
to do_IRQ() in various points of the test code, which enable the
advancement of a grace period. This may not always be the case
(i.e., a grace period may not end for some explored executions), but
in fact we want to enable both of these scenarios.

7.2 Verifying the Grace-Period Guarantee

All experiments have been run on a 64-bit desktop with an Intel
Core i7-3770 processor @ 3.40GHz and 16GB of RAM running Arch
Linux 4.10.13-1-ARCH. After running the test with an unroll value
in order for the test to be finite, Nidhugg reports that the test is
successful for all five kernel versions. Moreover, the process is quite
fast. As shown on the first row of Table 1, the verification of the GP
guarantee under SC requires less than 18 minutes. Another set of
runs, verifying this guarantee under the TSO memory model does
not require considerably more time. Nidhugg tells us that there is
no possible thread or memory model interleaving that violates the
GP guarantee in Tree RCU’s implementation.

But, can we really trust these results? After all, there might be a
bug in our scaffolding of the Linux-kernel’s environment, or there
might be a bug in Nidhugg itself. In order to increase our confidence,
we injected a number of bugs similar to ones that have occurred in
real systems in production over the years. These bugs were added
both in the test and the RCU source code. More specifically, we
injected two kinds of bugs:
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-DASSERT_0: An assert(0) statement is inserted after synchronize_rcu(). Obviously, this results in a test failure. What this assertion does, however, is that it shows that the
grace period can end, and that there are some explored executions in which it does; i.e., it provides liveness guarantees. We will use this injection in conjunction with some of
the next bug injections in order to determine whether the grace period can end or not.

-DFORCE_FAILURE_L: This injection forces the reader to pass through and report a quiescent state during its read-side critical section. Of course, this is not permitted and, as
expected, results in a failure.

-DFORCE_FAILURE_2: A return statement is placed at the beginning of synchronize_rcu(). Of course, this results in a test failure since the updater does not wait for pre-existing
readers to complete their RCU read-side critical sections, and such critical sections are not permitted to span a grace period.

-DFORCE_FAILURE_3: This injection makes rcu_gp_init() clear the node mask (->gqsmask) variables instead of setting them appropriately. The rcu_gp_init() function is
invoked from the RCU grace-period kthread at the beginning of each grace period in order to initialize it. Obviously, since the ->gsmask variables are cleared from the start of
the grace period, the grace period can end immediately. In other words, the grace-period kthread does not wait for pre-existing readers to complete. (This can be considered a
more complex variant of injection #2.) As expected, this injection results in a test failure.

-DFORCE_FAILURE_4: In this injection the rcu_gp_fqs() function is made to clear the ->qsmask variables instead of waiting for the CPUs to clear their respective bits. Of course,
in order for rcu_gp_fqs() to clear the ->gsmask variables, the respective CPUs (in our case, the reader) have to be in dynticks-idle mode (or the CPU must have passed
through a quiescent state at some point, since the respective dynticks counters are sampled). Consequently, in our code, CPUO calls the rcu_gp_fqs () function, and CPU1
enters and exits dynticks-idle mode within its RCU read-side critical section, which enables CPUO to prematurely end the grace period. This can be considered an even more
complex variant of injection #2, and results in a test failure, as expected.

-DFORCE_FAILURE_5: This injection makes the function __note_gp_changes () clear the bit of the respective node’s mask for this CPU (rnp->gqsmask &= ~rdp->grpmask).
This function is called when a CPU enters RCU core in order to record the beginnings and ends of grace periods. However, instead of just recording a grace period beginning,
__note_gp_changes () is now made to also clear the ->gsmask bit, which implies that this CPU reported a quiescent state for the new grace period. This results in test failure.

-DFORCE_FAILURE_6: Essentially, what this injection does is delete the if statement checking whether a node’s mask is zero and calling rcu_preempt_blocked_readers_cgp(),
in the rcu_report_gs_rnp() function. This if statement just checks whether the bitmask for this node is cleared in order for a node to acquire its parent’s lock. In a real
kernel, this should result in too short grace periods, since a signal that will prematurely awake the grace-period kthread is sent, if there are multiple CPUs. In our case,
however, it does not lead to too-short grace periods since, in our modeling, wake_up () boils down to a no-op - there is no need to wake up someone who is just spinning.
However, if we were dealing with a two-level tree, the caller of rcu_report_gs_rnp() would move up one level and trigger a WARN_ON_ONCE () statement that checks
whether the child node’s bits are cleared. Hence, this test automatically sets the number of CPUs to CONFIG_RCU_FANOUT_LEAF + 1 (i.e., to 17, since the default value of
CONFIG_RCU_FANOUT_LEAF is 16 in these kernels). Also, this test requires the use of a higher unroll value because there are some loops that need to be unrolled at least as
many times as the number of CPUs used plus one. So, we used an unroll value of 19 for this case.

-DLIVENESS_CHECK_1: This eliminates the need for a CPU to pass through a quiescent state by setting rdp->gs_pending to zero in __note_gp_changes (). This function updates
the per-CPU rcu_data structure and, since rdp->gs_pending is set to zero, there is no need for a CPU to report a quiescent state to RCU, which prevents grace periods from
completing. When the injection is used in conjunction with -DASSERT_0, no execution triggers the assert(0) statement after synchronize_rcu().

-DLIVENESS_CHECK_2: A return statement is placed at the beginning of the rcu_sched_qgs () function. In effect, this means that CPUs cannot record their passing through a
quiescent state in the respective rcu_data structures, something that also prevents grace periods from completing. Used in conjunction with -DASSERT_O this bug injection
also results in no executions triggering the assertion, thus signifying a liveness violation.

-DLIVENESS_CHECK_3: A return statement is placed at the beginning of rcu_report_gs_rnp(). This means that CPUs cannot report their passing through a quiescent state to
RCU, which in turn means that grace periods cannot complete. This injection also needs to be used together with -DASSERT_0 to discover the liveness violation.

Figure 4: Description of the bug injections we used, identified by the preprocessor option that enables them.

Table 1: Results for Tree RCU litmus test on five Linux kernel versions (time in seconds).

v3.0 v3.19 v4.3 v4.7 v4.9.6

Time Traces Time Traces Time Traces Time Traces Time Traces
Preprocessor Options SC TSO  Explored SC TSO  Explored SC TSO Explored SC TSO  Explored SC TSO Explored
- 227.37 260.38 19398 594.33  651.32 24760 1041.85 1147.20 28996 411.25 416.03 11076 1033.12  1125.30 28996
-DASSERT_0 2.09 2.30 145 1.47 1.66 37 1.70 1.77 29 1.93 2.09 29 2.06 2.16 29
-DFORCE_FAILURE_1 2.11 2.27 146 1.51 1.67 41 1.99 1.97 33 2.09 2.26 33 2.13 2.32 33
-DFORCE_FAILURE_2 0.43 0.38 4 0.63 0.66 3 0.80 1.03 3 1.18 1.22 3 1.14 1.27 3
-DFORCE_FAILURE_3 27.60 31.02 2372 399.89  433.38 13264 334.13 316.14 8114 290.50  329.10 8114 307.72 338.26 8114
-DFORCE_FAILURE_4 1.35 1.46 84 3.01 3.13 79 1.87 2.08 24 3.09 3.17 43 2.99 3.26 43
-DFORCE_FAILURE_5 58.15 64.80 4888 1.18 0.98 9 1.22 1.39 9 1.57 1.66 9 1.60 1.65 9
-DFORCE_FAILURE_6 1.14 1.41 1 3.34 3.33 2 5.28 5.13 2 10.40 10.34 2 10.80 10.93 2
-DLIVENESS_CHECK_ 1 -DASSERT_0 24.91 26.42 2024 10.73 11.32 608 11.27 10.88 488 10.15 11.64 488 10.77 11.85 488
-DLIVENESS_CHECK_2 -DASSERT_0 50.28 52.37 3888 10.46 11.13 608 12.30 11.95 516 11.55 12.49 516 11.80 13.18 516
-DLIVENESS_CHECK_3 -DASSERT_0 26.38 28.98 2184 12.48 13.63 688 11.37 11.23 488 11.66 12.75 532 11.89 13.27 532
(1) Bugs that make the grace period too short, thus permitting an 7.3 Results and Discussion

RCU read-side critical section to span the grace period.
(2) Bugs that prevent the grace period from ending.

In Table 1, the “Time” columns represent the total wall-clock time
in seconds (compilation and Nidhugg transformation time are in-
cluded). As can be seen, there is very little overhead when going
from SC to TSO, which shows the power of stateless model checking
with source DPOR [1] and chronological traces [2] in this setting. In
fact, we show only one “Traces Explored” column for each kernel,

Both kinds of bug injections represent RCU failures. Injections of the
first kind result in a test failure, since the GP guarantee is violated.
Injections of the second kind have to be used with an assert(0)

statement after synchronize_rcu().If this assertion does not trigger
for any execution of the litmus test, then the grace period does not
end for any execution, which in turn signifies that a successful —as
opposed to a failed— completion of the test is a liveness violation.

Figure 4 contains information about the bug injections keyed by
the define macro that enables each test. For the FORCE_FAILURE_6
test, an unroll value of 19 has been used and CONFIG_NR_CPUS has
been set appropriately, while for all other tests an unroll value of 5
has been used. All tests had the desired outcome, something that
increases our confidence in our modeling and the verification result
for the GP guarantee of Tree RCU’s implementation that we report.

since in all tests the total number of explored executions is the same
for both SC and TSO. The reason for that is that there are a lot of
memory fences in the code of Tree RCU, which prevent store buffer
reorderings from happening. But even if reorderings were possible,
all bug injections here do not rely on the employed memory model
but instead violate the assertions algorithmically. As expected, since
the model checking is stateless, the memory requirements are very
low (~35MB in most cases except for FORCE_FAILURE_6 where the
memory is increased to ~105MB due to the higher unroll value).
The most interesting row here is the first one, shown in bold.
Here Nidhugg needs to explore the complete set of traces in order
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to verify that the GP guarantee does indeed hold for Tree RCU’s
implementation. In rows with failure injections, exploration stops
as soon as the failure is detected. How fast this happens depends on
the order in which traces are explored. In some cases failures are de-
tected immediately (in the first traces and in less than two seconds)
and in other cases only after many traces have been explored.

It can be observed that the number of explored traces varies
between different kernel versions. There are fewer traces explored
in v3.0 than in v3.19 and v4.3, due to the absence of the grace-period
kthread in the first; this thread contains infinite loops which gener-
ate many races that Nidhugg tries to reverse. Note that in v3.0 the
-DFORCE_FAILURE_3 and -DFORCE_FAILURE_5 injections are liveness
checks due to the absence of the grace-period kthread. In v4.7 the
explored traces decrease dramatically due to the replacement of
rcu_gp_kthread_wake() with swake_up() in rcu_report_qs_rsp().
The former performed a check which read a variable that was writ-
ten by the grace-period kthread (among others), and generated far
too many races. In v4.9.6, however, this change was reverted and
the explored traces are the same as those of kernel v4.3. Overall, it
is obvious that irrespective of the kernel’s growth in size, Nidhugg
provides an efficient and scalable way to test such a big codebase
since it only depends on races on shared variables, and not on the
general complexity of the source code.

8 SOME LESSONS LEARNED

The testing process was very educational. We learned lessons both
regarding the construction of the model and the model itself, and
how to deal with the combinatorial explosion in the number of
interleavings that a stateless model checking tool needs to explore.

Arguably, the most valuable lesson learned was the way a Linux
kernel model can be constructed. Initially, the way an SMP sys-
tem should be emulated was not obvious, and the construction of
the model had to be precise. Both of these posed two non-trivial
challenges; with the kernel occupying more than 15MLOC, the
isolation and testing of only the ingredients we cared about was of
extreme importance. Still, we managed to use the source code from
the kernel directly, and the constructed model is reusable, which
means that it can be used again for further RCU testing.

Of course, confining the state space was not in any way an easy
task as well. First of all, as far as the model is concerned, the most
important design decision we had to make was the way the inter-
rupts are modeled. Initially, we tried to emulate interrupts with
per-CPU threads invoking the interrupt handler repeatedly, but un-
fortunately this approach rendered the state space extremely large.
Apart from this, plenty of other design choices were made and
most of them are described in Section 5. As fas as the verification
of Tree RCU is concerned, multiple different configurations were
tried and did not affect the outcome. We chose the one mentioned
at Section 7.1 because the state space was considerably smaller. The
reason for that, although not obvious from the beginning, is that
the updater and the grace-period kthread are mutually exclusive
and take advantage of each other’s context switches. In addition,
we could have ignored the RCU grace-period kthread and invoked
rcu_gp_init() and rcu_gp_cleanup() appropriately, in order to fur-
ther reduce the state space. However, we wanted our model to be
as precise as possible, so we did not resort to such approximations.
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9 RELATED WORK

Previous work on RCU verification includes the expression of RCU’s
formal semantics in terms of separation logic [13] and the verifica-
tion of user-space RCU in a logic for weak memory [25]. A virtual
architecture to model out-of-order memory accesses and instruction
scheduling has been proposed [8], and a verification of user-space
RCU has been done using the SPIN model checker [9]. Alglave et al.
verified that RCU’s actual kernel code preserves data consistency
of the object it is protecting [4] using CBMC [6]. Subsequently,
McKenney [17] verified the Grace-Period guarantee for Tiny RCU
(a flavor of RCU for uniprocessor systems). Finally, mutation testing
strategies have been applied to RCU’s code [3] as well.

Concurrently with our work, Liang et al. used CBMC to verify
the Grace-Period guarantee for Tree RCU [14]. However, compared
to the work presented here, their approach has some limitations.
First of all, due to CBMC’s limited support for lists, their modeling
does not include callback handling. This has some implications for
verification. The most basic one is that bugs in the callback handling
mechanism (e.g., a bug similar to the one we reproduced in Section 6)
can not be exposed. Considering the fact that RCU’s update side
primitives are based on callback handling, this limitation is serious.
For example, primitives like call_rcu() were not included in the
tests, and synchronize_rcu()’s implementation (which, in reality,
is based on call_rcu()) had to be emulated. This in turn means that
only the underlying grace period mechanism was modeled, and not
the callback mechanism that mediates between that mechanism and
synchronize_rcu(). A second limitation is that the grace-period
kthread was not included in the tests. Although in older kernel
versions the grace-period kthread did not exist, for newer Linux
kernels excluding the kthread from the tests implies alteration of
the kernel’s operation. In addition, this thread’s exclusion means
that the way a grace period started and ended also needs to be
changed, since the grace-period kthread plays a crucial role in these
operations. Finally, the approach of Liang et al. does not include
the emulation of dynticks-idle mode. In our approach, the dynticks-
idle mode is indeed modeled, and our results show that the basic
properties of the dyntick counters do hold.

Despite the simpler modeling and these limitations, CBMC needs
more than 11 hours and 34GB of memory in order to claim suc-
cessful verification for Tree RCU in kernel v4.3 under TSO [14],
whereas Nidhugg only needs 19 minutes and 102MB of memory.
More generally, our results are orders of magnitude better, which
we attribute to the different algorithms that the two tools employ.

On the other hand, CBMC’s underlying algorithm in principle
also handles data non-determinism, something that stateless model
checking tools in general, and Nidhugg in particular, do not consider.
Still, we do not see how data non-determinism plays any role in
the verification of the Grace-Period guarantee of Tree RCU for non-
preemptible builds. Some supporting evidence for this claim offers
the fact that the bug injections we listed in Section 7 are a proper
superset of those identified by CBMC.3 Furthermore, because our
approach does include callback handling, we were able to reproduce
an older, real kernel bug that was caused by premature callback
advancements, which could potentially lead to too short grace

3Injections -DFORCE_FAILURE_1 and -DFORCE_FAILURE_4 are not considered by
Liang et al. [14]; the latter due to not modeling the dynticks-idle mode.
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periods that violate the GP guarantee. As explained, this bug can
not be reproduced with CBMC, due to its limited support for lists.

10 CONCLUDING REMARKS

We described a way to construct a test suite for the systematic
concurrency testing of Linux kernel’s RCU mechanism. For this,
we emulated a non-preemptible Linux-kernel SMP environment
and, using the stateless model checking tool Nidhugg, we managed
to verify the most basic guarantee that RCU provides for the main
flavor used in the Linux kernel, namely, Tree RCU.

More specifically, we verified the Grace-Period guarantee for
five different kernel versions, under both a sequentially consistent
and a TSO memory model. For all our tests, we used the source
code from the Linux kernel directly, with only a handful of changes,
which can be and have been scripted.

To show that our emulation of the kernel’s environment is sound
and to further strengthen our results, we injected RCU failures in
our tests, inspired from real bugs that occurred throughout RCU’s
deployment in production, and Nidhugg was able to identify them
all. Moreover, we demonstrated that a patch that applied a well-
defined locking design to a variable in an older kernel [24] resolved
a much more complex issue that was in effect a bug. We identified
and reproduced this bug, providing the exact circumstances under
which it occurred. In addition, we tested whether the bug exists in
later kernel versions and the answer was negative.

Our work demonstrates that stateless model checking tools like
Nidhugg can be used to test real code from today’s production
systems with large code bases. The small time and memory con-
sumption of our tests, especially considering the size and the dy-
namic nature of the code base tested, underlines the strength of our
approach. All the above, along with the fact that our model of the
kernel’s environment was reused across different kernel versions
show that stateless model checking tools can be integrated in Linux
kernel’s regression testing, and that they can produce useful results.
We are currently working together with Linux developers towards
making this integration a reality.

Still, we are not yet at a point where we can claim with certainty
that the complete implementation of Tree RCU is bug-free; there
may be bugs in components of Tree RCU that are not included in
our modeling and our tests. In addition, although the GP guarantee
is the most significant correctness property of RCU, there are are
many other requirements that RCU must meet. Thus, our work
could be extended to include more aspects of RCU, and test them
under different memory models (e.g., POWER). For example, we
could construct tests that include quiescent-state forcing, grace-
period expediting and CPU hotplugs. The same applies for the full-
dynticks mode which was fully merged in the kernel only relatively
recently. Last but not least, the scalability of our results renders the
construction of test cases and techniques aiming at the thorough
testing of the preemptible Tree RCU extremely interesting as well.
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