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Abstract

Many notions of fairness in data-driven decision making are
inspired by the concept of discrimination in social sciences
and law, and focus on ensuring parity (equality) in treatment
or outcomes for different social groups. In this paper, we
propose preference-based notions of fairness with the goals
of avoiding potential ‘reverse-discrimination’ and enabling
high decision accuracy. We introduce tractable proxies to de-
sign convex boundary-based classifiers that satisfy these new
notions of fairness and show on the ProPublica COMPAS
dataset that these notions allow for greater decision accuracy
than parity-based fairness.

This paper is a shortened version of arxiv:1707.00010.

1 Introduction

As machine learning is increasingly being used to automate
decision making in domains that affect human lives (e.g.,
credit ratings, housing allocation, recidivism risk prediction),
there are growing concerns about the potential for unfairness
in such algorithmic decisions [16, 18]. A flurry of recent
research on fair learning has focused on defining appropriate
notions of fairness and then designing mechanisms to ensure
fairness in automated decision making [8, 9, 12, 13, 14, 21,
22, 23].

Existing notions of fairness in the machine learning litera-
ture are largely inspired by the concept of discrimination in
social sciences and law. These notions call for parity (i.e.,
equality) in treatment, in impact, or both. To ensure parity
in treatment (or treatment parity), decision making systems
need to avoid using users’ sensitive attribute information,
i.e., avoid using the membership information in socially
salient groups (e.g., gender, race), which are protected by
anti-discrimination laws [2, 6]. As a result, the use of group-
conditional decision making systems is often prohibited. To
ensure parity in impact (or impact parity), decision mak-
ing systems need to avoid disparity in the fraction of users
belonging to different sensitive attribute groups (e.g., men,
women) that receive beneficial decision outcomes. A num-

ber of learning mechanisms have been proposed to achieve
parity in treatment [8, 17], parity in impact [4, 12, 14] or
both [9, 11, 13, 21, 22, 23]. However, these mechanisms
pay a significant cost in terms of the accuracy (or utility) of
their predictions. In fact, there exist some inherent trade-
offs (both theoretical and empirical) between achieving high
prediction accuracy and satisfying treatment and/or impact
parity [5, 7, 10, 15].

In this work, we introduce, formalize and evaluate new
notions of fairness that are inspired by the concepts of fair
division and envy-freeness in economics and game the-
ory [3, 20]. Our work is motivated by the observation that, in
certain decision making scenarios, the existing parity-based
fairness notions may be too stringent, precluding more accu-
rate decisions, which may also be desired by every sensitive
attribute group. To relax these parity-based notions, we in-
troduce the concept of a user group’s preference for being
assigned one set of decision outcomes over another. Given
the choice between various sets of decision outcomes, any
group of users would collectively prefer the set that contains
the largest fraction (or the greatest number) of beneficial
decision outcomes for that group.! More specifically, our
new preference-based notions of fairness, which we formally
define in the next section, use the concept of user group’s
preference as follows:

— From Parity Treatment to Preferred Treatment: To
offer preferred treatment, a decision making system should
ensure that every sensitive attribute group (e.g., men and
women) prefers the set of decisions they receive over the set
of decisions they would have received had they collectively
presented themselves to the system as members of a different
sensitive group.

The preferred treatment criterion represents a relaxation of
treatment parity. That is, every decision making system that
achieves treatment parity also satisfies the preferred treat-

1Although it is quite possible that certain individuals from the group may not
prefer the set that maximizes the benefit for the group as a whole.
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Figure 1: A fictitious decision making scenario involving two
groups: men (M) and women (W). Feature f; (x-axis) is highly
predictive for women whereas f, (y-axis) is highly predictive for
men. Green (red) quadrants denote the positive (negative) class.
Within each quadrant, the points are distributed uniformly and
the numbers in parenthesis denote the number of subjects in that
quadrant. The left panel shows the optimal classifier satisfying
parity in treatment. This classifier leads to all the men getting
classified as negative. The middle panel shows the optimal classi-
fier satisfying parity in impact (in addition to parity in treatment).
This classifier achieves impact parity by misclassifying women
from positive class into negative class, and in the process, incurs
a significant cost in terms of accuracy. The right panel shows a
classifier consisting of group-conditional classifiers for men (pur-
ple) and women (blue). Both the classifiers satisfy the preferred
treatment criterion since for each group, adopting the other group’s
classifier would lead to a smaller fraction of beneficial outcomes.
Additionally, this group-conditional classifier is also a preferred
impact classifier since both groups get more benefit as compared
to the impact parity classifier and the overall accuracy is better.

ment condition, which implies (in theory) that the optimal
decision accuracy that can be achieved under the preferred
treatment condition is at least as high as the one achieved
under treatment parity. Additionally, preferred treatment
allows group-conditional decision making (not allowed by
treatment parity), which is necessary to achieve high decision
accuracy in scenarios when the predictive power of features
varies greatly between different sensitive user groups, as
shown in Figure 1.

While preferred treatment is a looser notion of fairness
than treatment parity, it retains a core fairness property em-
bodied in treatment parity, namely, envy-freeness at the level
of user groups. Under preferred treatment, no group of users
(e.g., men or women, blacks or whites) would feel that they
would be collectively better off by switching their group
membership (e.g., gender, race). Thus, preferred treatment
decision making, despite allowing group-conditional deci-
sion making, is not vulnerable to being characterized as
“reverse discrimination” against, or "affirmative action” for
certain groups.

— From Parity Impact to Preferred Impact: To offer pre-
ferred impact, a decision making system needs to ensure
that every sensitive attribute group (e.g., men and women)
prefers the set of decisions they receive over the set of deci-

sions they would have received under the criterion of impact
parity.

The preferred impact criterion represents a relaxation of
impact parity. That is, every decision making system that
achieves impact parity also satisfies the preferred impact
condition, which implies (in theory) that the optimal decision
accuracy that can be achieved under the preferred impact
condition is at least as high as the one achieved under impact
parity. Additionally, preferred impact allows disparity in
benefits received by different groups, which may be justified
in scenarios where insisting on impact parity would only
lead to a reduction in the beneficial outcomes received by
one or more groups, without necessarily improving them
for any other group. In such scenarios, insisting on impact
parity can additionally lead to a reduction in the decision
accuracy, creating a case of tragedy of impact parity with a
worse decision making all round, as shown in Figure 1.

While preferred impact is a looser notion of fairness com-
pared to impact parity, by guaranteeing that every group
receives at least as many beneficial outcomes as they would
would have received under impact parity, it retains the core
fairness gains in beneficial outcomes that discriminated
groups would have achieved under the fairness criterion
of impact parity.

Finally, we note that our preference-based fairness notions,
while having may attractive properties, are not the most
suitable notions of fairness in all scenarios. In certain cases,
parity fairness may well be the eventual goal [1] and the
more desirable notion.

2 Defining preference-based fairness

In this section, we first introduce two useful quality metrics—
utility and group benefit—in the context of fairness in classi-
fication, then revisit parity-based fairness definitions in the
light of these quality metrics, and finally formalize the two
preference-based notions of fairness introduced in Section 1
from the perspective of the above metrics. For simplicity, we
consider binary classification tasks, however, the definitions
can be easily extended to m-ary classification.

Quality metrics in fair classification. In a fair (binary)
classification task, one needs to find a mapping between the
user feature vectors & € R and class labels y € {—1,1},
where (x,y) are drawn from an (unknown) distribution
f(x,y). This is often achieved by finding a mapping func-
tion @ : RY — R such that given a feature vector & with
an unknown label y, the corresponding classifier predicts
g = sign(@(x)). However, this mapping function also
needs to be fair with respect to the values of a user sen-
sitive attribute 2 € Z C Zx¢ (e.g., sex, race), which
are drawn from an (unknown) distribution f(z) and may



be dependent of the feature vectors and class labels, i.e.,
f(z,y, Z) = f($7y’2)f<z) # [(z, y)f(z)

Given the above problem setting, we introduce the follow-

ing quality metrics, which we will use to define and compare
different fairness notions:
Utility ({/) is defined as the overall profit obtained by the
decision maker using the classifier. For instance, in a loan
approval scenario, the decision maker is the bank that gives
the loans and the utility can be the overall accuracy of the
classifier, i.e.:

U(0) = Eq y[I{sign(6(x)) = y}],

where I(-) denotes the indicator function and the expectation
is taken over f(x,y). Itis in the decision maker’s interest
to use classifiers that maximize utility.

Group benefit (5,) are defined as the fraction of beneficial
outcomes received by users sharing a certain value of the
sensitive attribute z (e.g., blacks, hispanics, whites). For
example, in a loan approval scenario, the beneficial outcome
for a user may be receiving the loan and the group benefit
for each value of z can be defined as:

1},

where the expectation is taken over the conditional dis-
tribution f(x|z) and the bank offers a loan to a user if
sign(@(x)) = 1. In certain scenarios, as suggested by previ-
ous work [12, 15, 22], the group benefits can also be defined
as the fraction of beneficial outcomes conditional on the true
label of the user:

B.(0) = Eg): y—1[[{sign(0(z)) = 1}].

Parity-based fairness. A number of recent studies [4, 9, 12,
14, 21, 22, 23] have considered a classifier to be fair if it
satisfies the impact parity criterion:

B.(0) = Eg).[I{sign(0(x)) = e

B.(0) = B./(0) forall 2,2/ € Z. 2)

Although not always explicitly sought, most of the above
studies propose classifiers that also satisfy treatment parity
in addition to impact parity, i.e., they do not use the sensitive
attribute z in the decision making process. However, some
of them [4, 12, 14] do not satisfy treatment parity since they
resort to group-conditional classifiers, i.e., @ = {0, },cz. In
such case, we can rewrite the above parity condition as:

B.(0,) =B.(0,) forallz ' € Z. 3)

Fairness beyond parity. Given the above quality metrics,
we can now formalize the two preference-based fairness
notions introduced in Section 1:

A classifier 8 resorting to group-conditional classifiers,
ie., @ = {0.},cz, is a preferred treatment classifier if
each group sharing a sensitive attribute value z benefits more
from its corresponding group-conditional classifier 8, than
it would benefit if it would be classified by any of the other
group-conditional classifiers 6/, i.e.,

Bz(oz) > Bz(az’) (4)

Note that, if a classifier & does not use group-conditional
classifiers, i.e., 8, = 0 for all z € Z, it will be always be a
preferred treatment classifier. If, in addition, such classifier
ensures impact parity, it is easy to show that its utility cannot
be larger than a preferred treatment classifier consisting of
group-conditional classifiers.

A classifier 0 offers preferred impact over a classifier 6’
ensuring impact parity if it achieves higher group benefit for
each sensitive attribute value group, i.e.,

B.(0) > B.(0") forallz e Z. ®)

One can also rewrite the above condition for group-
conditional classifiers, i.e., 8 = {60,}.,cz and 0’ =
{0} .cz, as follows:

B.(6-) = B.(6))

forall z,2' € Z.

forall z € Z. (6)

Note that, given any classifier 8’ ensuring impact parity, it is
easy to show that there will always exist a preferred classifier
0 with equal or higher utility.

On individual-level preferences. Notice that preferred
treatment and preferred impact notions are defined based
on the group preferences, i.e., whether a group as a whole
prefers (or, gets more beneficial outcomes from) a given set
of outcomes over another set. It is quite possible that a set of
outcomes preferred by the group collectively is not preferred
by certain individuals in the group. Consequently, one can
extend these notions to account for individual preferences as
well, i.e., a set of outcomes is preferred over another if all
the individuals in the group prefer it. In this paper, we focus
on preferred treatment and preferred impact in the context
of group preferences, and leave the case of individual prefer-
ences and its implications on the cost of achieving fairness
to be explored thoroughly in a future study.

3 Training preferred classifiers
In this section, our goal is training preferred treatment and

preferred impact group-conditional classifiers, i.e., 8 =
{6.}.cz, that maximize utility given a training set D =
{(zi,yi, 2:)}Y |, where (z;,9i,2) ~ f(x,y,2). In both
cases, we will assume that:> each group-conditional classi-
fier is a linear boundary-based classifier, i.e., 8, (x) = 61 x,

2Exploring the relaxations of these assumptions is a very interesting avenue
for future work.



the utility function ¢/ is defined as the overall accuracy and
the group benefit B, for users sharing the sensitive attribute
value z is defined as their average probability of being clas-
sified into the positive class (Eq. 1).

Preferred impact classifiers. Given a impact parity clas-
sifier with decision boundary parameters {0’}.cz and a
convex loss function ¢y of a linear classifier along with the
regularization function €)(.), one could think of finding the
decision boundary parameters {0 }.cz of a preferred im-
pact classifier (Eq. 6) that maximizes utility by solving:

?51:}1» % Z(m,y,Z)E'D 602 (CC, y) + ZZEZ /\ZQ(OZ) %
st. B.(0.)>B.(0.) Vze Z,

where ), is the regularization strength for 6, and Bz denotes
the empirical group benefit. Note that the right hand side
of the inequalities does not contain any variables, i.e., the
impact parity classifiers {0’} ,cz are given.

Unfortunately, it is very challenging to solve the above
problem since, for nontrivial linear-classifiers (e.g., logistic
regression, SVMs), the constraints are non-convex. To over-
come this difficulty, we approximate the empirical benefit
using a ramp (convex) function (z) = max(0, x), i.e.,

?;H; % Z(w,y,z)GD gez (:E7 y) + Ezez )\ZQ(BZ)
st Y gep, max(0,87x) >3 5 max(0, 0 z) VzeZz

(®)

where D, = {(x;, yi, 2;) € D|z; = z} denotes the set of
users with sensitive attribute value z. Eq. 8 is a disciplined
convex-concave program (DCCP) for any convex regular-
izer (-) and can be efficiently solved using well-known
heuristics [19]. The above formulation, for example, can be
particularized for logistic regression classifier with Ls-norm
regularizer by having £ (x,y) = log(1 + exp(y0Tx)) and
Q(6) = ||6]|. One can similarly particularize the formula-
tion for other convex boundary-based classifiers like squared
loss, linear / non-linear SVMs, etc.
Preferred treatment classifiers. Using the definition of
preferred treatment in Eq. 4, one can follow similar steps
as preferred impact and find the optimal decision boundary
parameters {6, }.cz of a preferred treatment classifier as:

?;H; _% Z(m,y,z)G’D (02 (:B, y) + ZzGZ )\ZQ(GZ)
st Ygep, max(0,87x) >3 max(0,0%x)Vz, 2 € Z,

)
which is also a disciplined convex-concave program (DCCP)
for any convex regularizer )() and can be efficiently solved.
Here, note that unlike Eq. 8, both the left and right hand side
of the inequalities contain optimization variables.

4 Evaluation and discussion
Here, we compare the performance of preferred treatment

and impact classifiers against unconstrained, treatment parity
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Figure 2: The figure shows the overall accuracy and the benefits
received by the two groups for various classifiers. ‘Prf-treat.’,
‘Prf-imp.’, and ‘Prf-both’ respectively correspond to the classi-
fiers satisfying preferred treatment, preferred impact, and both
preferred treatment and impact criteria. Sensitive attribute values
0 and 1 denote blacks and whites, respectively. B;(60;) denotes the
benefits obtained by group 7 when using the classifier of group j.
For the Parity case, we train just one classifier for both the groups,
so the benefits do not change by adopting other group’s classifier.

and impact parity classifiers on the ProPublica COMPAS
dataset [16]. The classification task is to predict whether a
criminal defendant would recidivate within two years (neg-
ative class) or not (positive class). We use the same set of
features as used by Zafar et al. [21] for training the classi-
fiers. We designate race as the sensitive attribute and divide
the subjects into two groups: blacks (group-0) and whites
(group-1). The group benefits are computed as the fraction
of subjects being classified into the positive class.

Next, we consider the following classifiers, which we
train to maximize utility subject to the corresponding con-
straints:> An unconstrained (Uncons) classifier that resorts
to group-conditional classifiers. It violates treatment par-
ity and potentially violates impact parity as well. A parity
classifier that does not use the sensitive attribute group infor-
mation in the decision making, and is constrained to satisfy
both treatment parity—its decisions do not change based on
the users’ sensitive attribute value as it does not resort to
group-conditional classifiers—and impact parity—it ensures
that the benefits for all groups are the same. We train this
parity classifier using the methodology proposed by Zafar et
al. [22]. And finally, we train a preferred treatment classifier
(Eq. 9), a preferred impact classifier (Eq. 8), and a classifier
(preferred both) which is both a preferred treatment as well
as a preferred impact classifier. All the preferred classifiers
consist of group-conditional classifiers.

The results, presented in Figure 2, show that the Uncons
classifier, in addition to violating treatment parity (a separate
classifier for each group) and impact parity (high disparity
in group benefits), also violates the preferred treatment cri-
terion (group-0 would benefit more by adopting group-1’s
classifier). On the other hand, the Parity classifier satisfies
the treatment parity and impact parity but it does so at a large

3We use logistic regression classifiers with Lo-norm regularization.



cost in terms of accuracy, which is very close to that of a
random classifier in this case.

The Preferred treatment classifier provides a much higher
accuracy than the Parity classifier (on par with that of the
Uncons classifier) while satisfying the preferred treatment
criterion. However, it does not meet the preferred impact cri-
terion. The Preferred impact classifier meets the preferred
impact criterion with a larger drop in accuracy (which is still
better than the parity classifier) but does not satisfy preferred
treatment. Finally, the classifier satisfying both preferred
treatment and preferred impact (Preferred both) leads to a
further slight drop in terms of accuracy.

In summary, the results show that the preference-based
notions of fairness can lead to significant performance gains
as compared to parity-based notions of fairness. However,
the precise performance gains may change depending on the
underlying distribution of the dataset. Furthermore, we also
note that splitting the datasets into sensitive attribute value
groups for training group conditional classifiers may lead to
degraded effectiveness of the empirical risk minimization
procedure (since each classifier has fewer data points as
compared to the parity classifier that is trained on the whole
data). This problem may however be solved by gathering
more data for each group. Finally, the ramp function-based
proxies that we propose for training preferred classifiers are
disciplined convex-concave programs (DCCP). While such
programs can be efficiently solved using heuristic-based
methods [19], unlike convex programs, the optimality of the
DCCEP solutions is not guaranteed. Addressing these issues
would be interesting directions for the future work.
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