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Abstract

Societies often rely on human experts to take a wide variety of decisions affecting
their members, from jail-or-release decisions taken by judges and stop-and-frisk
decisions taken by police officers to accept-or-reject decisions taken by academics.
In this context, each decision is taken by an expert who is typically chosen uniformly
at random from a pool of experts. However, these decisions may be imperfect
due to limited experience, implicit biases, or faulty probabilistic reasoning. Can
we improve the accuracy and fairness of the overall decision making process by
optimizing the assignment between experts and decisions?
In this paper, we address the above problem from the perspective of sequential
decision making and show that, for different fairness notions in the literature, it
reduces to a sequence of (constrained) weighted bipartite matchings, which can
be solved efficiently using algorithms with approximation guarantees. More-
over, these algorithms also benefit from posterior sampling to actively trade
off exploitation—selecting expert assignments which lead to accurate and fair
decisions—and exploration—selecting expert assignments to learn about the ex-
perts’ preferences. We demonstrate the effectiveness of our algorithms on both
synthetic and real-world data and show that they can significantly improve both the
accuracy and fairness of the decisions taken by pools of experts.

1 Introduction
In recent years, there have been increasing concerns about the potential for unfairness of algorithmic
decision making. Moreover, these concerns have been often supported by empirical studies, which
have provided, e.g., evidence of racial discrimination [8, 10]. As a consequence, there have been
a flurry of work on developing computational mechanisms to make sure that the machine learning
methods that fuel algorithmic decision making are fair [3, 4, 5, 6, 13, 14, 15]. In contrast, to the
best of our knowledge, there is a lack of machine learning methods to ensure accuracy and fairness
in human decision making, which is still prevalent in a wide range of critical applications such as,
e.g., jail-or-release decisions by judges, stop-and-frisk decisions by police officers or accept-or-reject
decisions by academics. In this work, we take a first step towards filling this gap.

More specifically, we focus on a problem setting that fits a variety of real-world applications, including
the ones mentioned above: binary decisions come sequentially over time and each decision need to
be taken by a human decision maker, typically an expert, who is chosen from a pool of experts. For
example, in jail-or-release decisions, the expert is a judge who needs to decide whether she grants
bail to a defendant; in stop-and-frisk decisions, the expert is a police officer who needs to decide
whether she stop (and potentially frisk) a pedestrian; or, in accept-or-reject decisions, the expert is
an academic who needs to decide whether a paper is accepted in a conference (or a journal). In
this context, our goal is then to find the optimal assignments between human decision makers and
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decisions which maximizes the accuracy of the overall decision making process while satisfying
several popular notions of fairness studied in the literature.

In this paper, we represent human decision making using threshold decisions rules [3] and then
show that, if the thresholds used by each expert are known, the above problem can be reduced to
a sequence of matching problems, which can be solved efficiently with approximation guarantees.
More specifically:

I. Under no fairness constraints, the problem can be cast as a sequence of maximum weighted
bipartite matching problems, which can be solved exactly in polynomial (quadratic)
time [12].

II. Under (some of the most popular) fairness constraints, the problem can be cast as a sequence
of bounded color matching problems, which can be solved using a bi-criteria algorithm
based on linear programming techniques with a 1/2 approximation guarantee [9].

Moreover, if the thresholds used by each expert are unknown, we also show that, if we estimate the
value of each threshold using posterior sampling, we can effectively trade off exploitation—taking
accurate and fair decisions—and exploration—learning about the experts’ preferences and biases.
More formally, we can show that posterior samples achieve a sublinear regret in contrast to point
estimates, which suffer from linear regret.

Finally, we experiment on synthetic data and real jail-or-release decisions by judges [8]. The results
show that: (i) our algorithms improve the accuracy and fairness of the overall human decision making
process with respect to random assignment; (ii) our algorithms are able to ensure fairness more
effectively if the pool of experts is diverse, e.g., there exist harsh judges, lenient judges, and judges in
between; and, (iii) our algorithms are able to ensure fairness even if a significant percentage of judges
(e.g., 50%) has preferences (biases) against a group of individuals sharing a certain sensitive attribute
value (e.g., race). The implementations of our algorithms and the data used in our experiments are
available at https://github.com/Networks-Learning/FairHumanDecisions.

2 Preliminaries
In this section, we first define decision rules and formally define their utility and group benefit. Then,
we revisit threshold decision rules, a type of decision rules which are optimal in terms of accuracy
under several notions of fairness from the literature.

Decision rules, their utilities, and their group benefits. Given an individual with a feature vector
x ∈ Rd, a (ground-truth) label y ∈ {0, 1}, and a sensitive attribute z ∈ {0, 1}, a decision rule
d(x, z) ∈ {0, 1} controls whether the ground-truth label y is realized by means of a binary decision
about the individual. As an example, in a pretrial release scenario, the decision rule specifies whether
the individual remains in jail, i.e., d(x, z) = 1 if she remains in jail and d(x, z) = 0 otherwise; the
label indicates whether a released individual would reoffend, i.e., y = 1 if she would reoffend and
y = 0 otherwise; the feature vector x may include the current offense, previous offenses, or times
she failed to appear in court; and the sensitive attribute z may be race, i.e., black vs white.

Further, we define random variables X , Y , and Z that take on values X = x, Y = y, and Z = z for
an individual drawn randomly from the population of interest. Then, we measure the (immediate)
utility as the overall profit obtained by the decision maker using the decision rule [3], i.e.,

u(d, c) = E [Y d(X,Z)− c d(X,Z)] = E
[
d(X,Z)

(
PY |X,Z − c

)]
(1)

where c ∈ (0, 1) is a given constant. For example, in a pretrial release scenario, the first term
is proportional to the expected number of violent crimes prevented under d, the second term is
proportional to the expected number of people detained, and c measures the cost of detention in units
of crime prevented. Here, note that the above utility reflects only the proximate costs and benefits of
decisions rather than long-term, systematic effects. Finally, we define the (immediate) group benefit
as the fraction of beneficial decisions received by a group of individuals sharing the sensitive attribute
value z [15], i.e.,

bz(d, c) = E [f(d(X,Z = z))] . (2)
For example, in a pretrial release scenario, one may define f(x) = 1− x and thus the benefit to the
group of white individuals be proportional to the expected number of them who are released under d.
Remarkably, most of the notions of (un)fairness used in the literature, such as disparate impact [1],
equality of opportunity [6] or disparate mistreatment [13] can be expressed in terms of group benefits.
Finally, note that, in some applications, the beneficial outcome may correspond to d(X,Z) = 1.
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Optimal threshold decision rules. Assume the conditional distribution P (Y |X,Z) is given4. Then,
the optimal decision rules d∗ that maximize u(d, c) under the most popular fairness constraints from
the literature are threshold decision rules [3, 6]:

— No fairness constraints: the optimal decision rule under no fairness constraints is given by
the following deterministic threshold rule:

d∗(X,Z) =

{
1 if pY=1|X,Z ≥ c
0 otherwise.

(3)

— Disparate impact, equality of opportunity, and disparate mistreatment: the optimal decision
rule which satisfies (avoids) the three most common notions of (un)fairness is given by the
following deterministic threshold decision rule:

d∗(X,Z) =

{
1 if pY=1|X,Z ≥ θZ
0 otherwise,

(4)

where θZ ∈ [0, 1] are constants that depend only on the sensitive attribute and the fairness
notion of interest. Note that the unconstraint optimum can be also expressed using the above
form if we take θZ = c.

3 Problem Formulation
In this section, we first use threshold decision rules to represent biased human decisions and then
formally define our sequential human decision making process.

Humans as threshold decision rules. Inspired by recent work by Kleinberg et al. [7], we model a
human decision maker v who has access to pY |X,Z using the following threshold decision rule:

dv(X,Z) =

{
1 if pY=1|X,Z ≥ θV,Z
0 otherwise,

(5)

where θV,Z ∈ [0, 1] are constants that depend on the decision maker and the sensitive attribute, and
they represent human decision makers’ biases (or preferences) towards groups of people sharing
a certain value of the sensitive attribute z. For example, in a pretrial release scenario, if a judge v
is generally more lenient towards white people (z = 0) than towards black people (z = 1), then
θv,z=0 > θv,z=1.

In the above formulation, note that we assume all experts make predictions using the same (true)
conditional distribution pY |X,Z , i.e., all experts have the same prediction ability. It would be
very interesting to relax this assumption and account for experts with different prediction abilities.
However, this entails a number of non trivial challenges and is left for future work.

Sequential human decision making problem. A set of human decision makers V = {vk}k∈[n] need
to take decisions about individuals over time. More specifically, at each time t ∈ {1, . . . , T}, there
are m decisions to be taken and each decision i ∈ [m] is taken by a human decision maker vi(t) ∈ V ,
who applies her threshold decision rule dvi(t)(X,Z), defined by Eq. 5, to the corresponding feature
vector xi(t) and sensitive attribute zi(t). Note that we assume that yi(t)|xi(t), zi(t) ∼ pY |X,Z for
all t ∈ {1, . . . , T} and i ∈ [m].

At each time t, our goal is then to find the assignment of human decision makers vi(t) to individuals
(xi(t), zi(t)), with vi(t) 6= vj(t) for all i 6= j, that maximizes the expected utility of a sequence of
decisions, i.e.,

u≤T ({dvi(t)}i,t, c) =
1

mT

T∑
t=1

m∑
i=1

dvi(t)(xi(t), zi(t))(pY=1|xi(t),zi(t) − c), (6)

where u≤T ({dvi(t)}i,t, c) is a empirical estimate of a straight forward generalization of the utility
defined by Eq. 1 to multiple decision rules.

4In practice, the conditional distribution may be approximated using a machine learning model trained on
historical data.
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4 Proposed Algorithms
In this section, we formally address the problem defined in the previous section without and with
fairness constraints. Note that, without fairness constraints, we aim to approximate the solution
provided by Eq. 3, and with fairness constraints, Eq. 4. In both cases, we first consider the setting in
which the human decision makers’ thresholds θV,Z are known and then generalize our algorithms to
the setting in which they are unknown and need to be learned over time.

Decisions under no fairness constraints. We can find the assignment of human decision makers
{v(t)}Tt=1 with the highest expected utility by solving the following optimization problem:

maximize
T∑
t=1

m∑
i=1

dvi(t)(xi(t), zi(t))(pY=1|xi(t),zi(t) − c)

subject to vi(t) ∈ V for all t ∈ {1, . . . , T},
vi(t) 6= vj(t) for all i 6= j. (7)

— Known thresholds. If the thresholds θV,Z are known for all human decision makers, the above
problem decouples into T independent subproblems, one per time t ∈ {1, . . . , T}, and each of these
subproblems can be cast as a maximum weighted bipartite matching, which can be solved exactly
in polynomial (quadratic) time [12]. To do so, for each time t, we build a weighted bipartite graph
where each human decision maker vj is connected to each individual (xi(t), zi(t)) with weight wji,
where

wji =

{
pY |xi(t),zi(t) − c if pY |xi(t),zi(t) ≥ θvj ,zi(t)
0 otherwise,

Finally, it is easy to see that the maximum weighted bipartite matching is the optimal assignment, as
defined by Eq. 7.

— Unknown thresholds. If the thresholds are unknown, we need to trade off exploration, i.e., learning
about the thresholds θV,Z , and exploitation, i.e., maximizing the average utility. To this aim, for
every decision maker v, we assume a Beta prior over each threshold θv,z ∼ Beta(α, β). Under this
assumption, after round t, we can update the (domain of the) distribution of θv,z(t) as:

max(0, θLv,z(t)) ≤ θv,z(t) ≤ min(1, θHv,z(t)), (8)

where

θLv,z(t) = max
t′≤t | zi(t′)=z, vi(t′)=v, dv(xi(t′),z)=0

pY=1|xi(t′),z

θHv,z(t) = min
t′≤t | zi(t′)=z, vi(t′)=v, dv(xi(t′),z)=1

pY=1|xi(t′),z,

and write the posterior distribution of θv,z(t) as

p(θv,z(t)|D(t)) =
Γ(α+ β)(θHv,z(t)− θv,z(t))α−1(θv,z(t)− θLv,z(t))β−1

Γ(α)Γ(β)(θHv,z(t)− θLv,z(t))α+β−1
, (9)

Then, at the beginning of round t+ 1, one can think of estimating the value of each threshold θv,z(t)
using point estimates, i.e., θ̂v,z = argmax p(θv,z(t)|D(t)), and use the same algorithm as for known
thresholds. Unfortunately, if we define regret as follows:

R(T ) = u≤T ({dvi(t)}i,t, c)− u≤T ({dv∗i (t)}i,t, c), (10)

where vi(t) is the optimal assignment under the point estimates of the thresholds and v∗i (t) is the
optimal assignment under the true thresholds, we can show the following theoretical result (proven in
Appendix A):

Proposition 1 The optimal assignments with deterministic point estimates for the thresholds suffers
linear regret Θ(T ).

The above result is a consequence of insufficient exploration, which we can overcome if we esti-
mate the value of each threshold θv,z(t) using posterior sampling, i.e., θ̂v,z ∼ p(θv,z(t)|D(t)), as
formalized by the following theorem:
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Theorem 2 The expected regret of the optimal assignments with posterior samples for the thresholds
is O(

√
T ).

Proof Sketch. The proof of this theorem follows via interpreting the problem setting as a reinforcement
learning problem. Then, we can apply the generic results for reinforcement learning via posterior
sampling of [11]. In particular, we map our problem to an MDP with horizon 1 as follows. The
actions in the MDP correspond to assigning m individuals to n experts (given by K) and the reward
is given by the utility at time t.

Then, it is easy to conclude that the expected regret of the optimal assignments with posterior samples
for the thresholds is O(S

√
KT log(SKT )), where K = n.(n− 1).(n− 2) . . . (n−m+ 1) denotes

the possible assignments of m individuals to n experts and S is a problem dependent parameter. S
quantifies the the total number of states/realizations of feature vectors xi and sensitive features zi to
the i ∈ [m] individuals—note that S is bounded only for the setting where feature vectors xi and
sensitive features zi are discrete.

Given that the regret only grows as O(
√
T ) (i.e., sublinear in T ), this theorem implies that the

algorithm based on optimal assignments with posterior samples converges to the optimal assignments
given the true thresholds as T →∞.

Decisions under fairness constraints. For ease of exposition, we focus on disparate impact, however,
a similar reasoning follows for equality of opportunity and disparate mistreatment [6, 13].

To avoid disparate impact, the optimal decision rule d∗(X,Z), given by Eq. 4, maximizes the utility,
as defined by Eq. 1, under the following constraint [3, 13]:

DI(d∗, c) = |bz=1(d∗, c)− bz=0(d∗, c)| ≤ α. (11)

where α ∈ [0, 1] is a given parameter which controls the amount of disparate impact—the smaller
the value of α, the lower the disparate impact of the corresponding decision rule. Similarly, we can
calculate a empirical estimate of the disparate impact of a decision rule d at each time t as:

DIt(d, c) =
1

m
|bt,z=1(d, c)− bt,z=0(d, c)| . (12)

where bt,z(d, c) =
∑m
i=1 I(zi = z)f(d(xi(t), zi(t))), where f(·) defines what is a beneficial out-

come. Here, it is easy to see that, for the optimal decision rule d∗ under impact parity, DIt(d∗, c)
converges to DI(d∗, c) as m→∞, and 1/T

∑T
t=1DIt(d

∗, c) converges to DI(d∗, c) as T →∞.

For a fixed α, assume there are at least m(1− α) experts with θv,z < c, at least m(1− α) experts
with θv,z ≥ c for each z = 0, 1, and n ≥ 2m. Then, we can find the assignment of human decision
makers {v(t)} with the highest expected utility and disparate impact less than α as:

maximize
T∑
t=1

m∑
i=1

dvi(t)(xi(t), zi(t))(pY=1|xi(t),zi(t) − c),

subject to vi(t) ∈ V for all t ∈ {1, . . . , T},
vi(t) 6= vj(t) for all i 6= j,

bt,z(d
∗, c)− αmz(t) ≤ bt,z({dvi(t)}i)∀ t, z

bt,z({dvi(t)}i) ≤ bt,z(d
∗, c) + αmz(t)∀ t, z. (13)

where and mz(t) is the number of decisions with sensitive attribute z at round t and bt,z({dvi(t)}i) =∑m
i=1 I(zi = z)f(dvi(t)(xi(t), zi(t)))). Here, the assignment v∗(t) given by the solution to the

above optimization problem satisfies that DIt({dv∗i (t)}i, c) ∈ [DIt(d, c)− α,DIt(d, c) + α] and
thus limT→∞DI≤T ({dv∗i (t)}i,t, c) ≤ α.

— Known thresholds. If the thresholds are known, the problem decouples into T independent
subproblems, one per time t ∈ {1, . . . , T}, and each of these subproblems can be cast as a constrained
maximum weighted bipartite matching. To do so, for each time t, we build a weighted bipartite graph
where each human decision maker vj is connected to each individual (xi(t), zi(t)) with weight wji,
where

wji =

{
pY |xi(t),zi(t) − c if pY |xi(t),zi(t) ≥ θvj ,zi(t)
0 otherwise,
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and we additionally need to ensure that, for z ∈ {0, 1}, the matching S satisfies that

bt,z(d
∗, c)− αmz(t) ≤

∑
(j,i)∈S:zi=z

g(wji) and
∑

(j,i)∈S:zi=z

g(wji) ≤ bt,z(d∗, c) + αmz(t),

where mz(t) denotes the number of individuals with sensitive attribute z at round t and the function
g(wji) depends on what is the beneficial outcome, e.g., in a pretrial release scenario, g(wji) =
I(wji 6= 0). Remarkably, we can reduce the above constrained maximum weighted bipartite matching
problem to an instance of the bounded color matching problem [9], which allows for a bi-criteria
algorithm based on linear programming techniques with a 1/2 approximation guarantee. To do so,
we just need to rewrite the above constraints as∑

(j,i)∈S:zi=z

g(wji) ≤ bt,z(d∗, c) + αmz(t), and (14)

∑
(j,i)∈S:zi=z

gC(wji) ≤ (1 + α)mz(t)− bt,z(d∗, c). (15)

To see the equivalence between the above constraints and the original ones, one needs to realize that
we are looking for a perfect matching and thus

∑
(j,i)∈S:zi=z

[
g(wji) + gC(wji)

]
= mz(t). For

example, in a pretrial release scenario, g(wji) = I(wji 6= 0) and gC(wji) = I(wji = 0).

— Unknown thresholds. If the threshold are unknown, we proceed similarly as in the case under
no fairness constraints, i.e., we again assume Beta priors over each threshold, update their posterior
distributions after each time t, and use posterior sampling to set their values at each time.

Finally, for the regret analysis, we focus on an alternative unconstrained problem, which is equivalent
to the one defined by Eq. 13 by Lagrangian duality [2]:

maximize
T∑
t=1

m∑
i=1

dvi(t)(xi(t), zi(t))(pY=1|xi(t),zi(t) − c)

+

T∑
t=1

m∑
i=1

λl,t,z
(
bt,z(d

∗, c)− bt,z({dvi(t)}i)− αmz(t)
)

+

T∑
t=1

m∑
i=1

λu,t,z
(
bt,z({dvi(t)}i)− bt,z(d

∗, c)− αmz(t)
)

subject to vi(t) ∈ V for all t ∈ {1, . . . , T},
vi(t) 6= vj(t) for all i 6= j. (16)

where λl,t,z ≥ 0 and λu,t,z ≥ 0 are the Lagrange multipliers for the band constraints. Then, we can
then state the following theoretical result (the proof easily follows from the proof of Theorem 2):

Theorem 3 The expected regret of the optimal assignments for the problem defined by Eq. 16 with
posterior samples for the thresholds is O(

√
T ).

Remark. Note that in the above formulation, we do not enforce a specific mechanism to reduce
disparate impact–our framework found the solution with maximum utility that satisfies the disparate
impact constraint. Depending on the characteristics of the distribution pY |X,Z and the definition of
utility and benefits, such a solution will result in an increase (decrease) of release rates for the group
with z = 0 (z = 1) or viceversa.

5 Experiments
In this section we empirically evaluate our framework on both synthetic and real data. To this end,
we compare the performance, in terms of both utility and fairness, of the following algorithms:

— Optimal: Every decision is taken using the optimal decision rule d∗, which is defined by Eq. 3
under no fairness constraints and by Eq. 4 under fairness constraints.

— Known: Every decision is taken by a judge following a (potentially biased) decision rule dv,
as given by Eq. 5. The threshold for each judge is known and the assignment between judges and
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Figure 1: Performance in synthetic data. Panels (a) and (b) show the trade-off between expected utility
and disparate impact. For the utility, the higher the better and, for the disparate impact, the lower the
better. Panel (c) shows the regret achieved by our algorithm under unknown experts’ thresholds as
defined in Eq. 10. Here, the solid lines show the results for m = 20 and dashed lines for m = 10.

decisions is found by solving the corresponding matching problem, i.e., Eq, 7 under no fairness
constraints and Eq. 13 under fairness constraints.

— Unknown: Every decision is taken by a judge following a (potentially biased) decision rule dv ,
proceeding similarly as in “Known". However, the threshold for each judge is unknown it is necessary
to use posterior sampling to estimate the thresholds.

— Random: Every decision is taken by a judge following a (potentially biased) decision rule dv . The
assignment between judges and decision is random.

5.1 Experiments on Synthetic Data

Experimental setup. For every decision, we first sample the sensitive attribute zi ∈ {0, 1} from
Bernouilli(0.5) and then sample pY=1|xi,zi ∼ Beta(3, 5) if zi = 0 and from pY=1|xi,zi ∼
Beta(4, 3), otherwise. For every expert, we generate her decision thresholds θv,0 ∼ Beta(0.5, 0.5)
and θv,1 ∼ Beta(5, 5). Here we assume there are n = 3m experts, to ensure that in each round there
are at least m(1− α) experts with θv,z < c, at least m(1− α) experts with θv,z ≥ c for z ∈ {0, 1}.
In practice, if there is no feasible assignment for a round and desired level of fairness α, one may
decide to: i) add experts to the pool to increase diversity; ii) decrease the number of cases per round;
or (iii) use a random assignment in that round. Finally, we set m = 20, T = 1000 and c = 0.5, and
the beneficial outcome for an individual is d = 1, i.e., f(d) = d.

Results. Figures 1(a)-(b) show the expected utility and the disparate impact after T units of time for
the optimal decision rule and for the group of experts under the assignments provided our algorithms
and under random assignments. We find that the experts chosen by our algorithm provide decisions
with higher utility and lower disparate impact than the experts chosen at random, even if the thresholds
are unknown. Moreover, if the threshold are known, the experts chosen by our algorithm closely
match the performance of the optimal decision rule both in terms of utility and disparate impact.
Finally, we compute the regret as defined by Eq. 10, i.e., the difference between the utilities provided
by algorithm with Known and Unknown thresholds over time. Figure 1(c) summarizes the results,
which show that, as time progresses, the regret degreases at a rate O(

√
T ).

5.2 Experiments on Real Data

Experimental setup. We use the COMPAS recidivism prediction dataset compiled by ProPublica [8],
which comprises of information about all criminal offenders screened through the COMPAS (Correc-
tional Offender Management Profiling for Alternative Sanctions) tool in Broward County, Florida
during 2013-2014. In particular, for each offender, it contains a set of demographic features (gender,
race, age), the offender’s criminal history (e.g., the reason why the person was arrested, number of
prior offenses), and the risk score assigned to the offender by COMPAS. Moreover, ProPublica also
collected whether or not these individuals actually recidivated within two years after the screening.

In our experiments, the sensitive attribute z ∈ {0, 1} is the race (white, black), the label y indicates
whether the individual recidivated (y = 1) or not (y = 0), the decision rule d specifies whether
an individual is released from jail (d = 1) or not (d = 0) and, for each sensitive attribute z, we
approximate pY |X,Z=z using a logistic regression classifier, which we train on 25% of the data.
Then, we use the remaining 75% of the data to evaluate our algorithm as follows. Since we do not
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Figure 2: Performance in COMPAS data. Panels (a) and (b) show the expected utility and true utility
and panel (c) shows the disparate impact. For the expected and true utility, the higher the better and,
for the disparate impact, the lower the better.
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Figure 3: Feasibility in COMPAS data. Probability that a round does not allow for an assignment
between judges and decisions with less than α disparate impact for different pools of experts of
varying diversity and percentage of biased judges.

have information about the identify of the judges who took each decision in the dataset, we create
N = 3m (fictitious) judges and sample their thresholds from a θ ∼ Beta(τ, τ), where τ controls the
diversity (lenient vs harsh) across judges by means the standard deviation of the distribution since
std(θ) = 1

4τ(2τ+1) . Here, we consider two scenarios: (i) all experts are unbiased towards race and
thus θv0 = θv1 and (ii) 50% of the experts are unbiased towards race and the other 50% are biased,
i.e., θv1 = 1.2θv0. Finally, we consider m = 20 decisions per round, which results into 197 rounds,
where we assign decisions to rounds at random.

Results. Figure 2 shows the expected utility, the true utility and the disparate impact after T
units of time for the optimal decision rule and for the group of unbiased experts (scenario (i))
under the assignments provided our algorithms and under random assignments. The true utility
û≤T (d, c) is just the utility after T units of time given the actual true y values rather than pY |X,Z ,
i.e., û≤T (d, c) = 1

T

∑T
t=1

∑m
i=1 d(xi(t), zi(t))(yi − c). Similarly as in the case of synthetic data,

we find that the judges chosen by our algorithm provide higher expected utility and true utility as
well as lower disparate impact than the judges chosen at random, even if the thresholds are unknown.
We notice that our algorithm achieves a level of fairness α by decreasing the release rate of white
defendants, since our definition of utility penalizes more to release individuals who will be more likely
to recidivate than to keep in jail those who will not. Note also that under fairness constraints, our
algorithm relies on a bi-criteria algorithm with a 1/2 approximation guarantee to solve the maximum
weighted bipartite matching problem. As a consequence, it sometimes finds matchings violate the
fairness constraints but have higher utility.

Figure 3 shows the probability that a round does not allow for an assignment between judges and
decisions with less than α disparate impact for different pools of experts of varying diversity and
percentage of biased judges. The results show that, on the one hand, our algorithms are able to ensure
fairness more effectively if the pool of experts is diverse and, on the other hand, our algorithms are
able to ensure fairness even if a significant percentage of judges (e.g., 50%) are biased against a group
of individuals sharing a certain sensitive attribute value.

6 Conclusions
In this paper, we have proposed a set of practical algorithms to improve the utility and fairness of a
sequential decision making process, where each decision is taken by a human expert, who is selected
from a pool experts. Experiments on synthetic data and real jail-or-release decisions by judges show
that our algorithms are able to mitigate imperfect human decisions due to limited experience, implicit
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biases or faulty probabilistic reasoning. Moreover, they also reveal that our algorithms benefit from
higher diversity across the pool experts helps and and they are able to ensure fairness even if a
significant percentage of judges are biased against a group of individuals sharing a certain sensitive
attribute value (e.g., race).

There many interesting venues for future work. For example, in our work, we assumed all experts
make predictions using the same (true) conditional distribution and then apply (potentially) different
thresholds. It would be very interesting to relax the first assumption and account for experts with
different prediction abilities. Moreover, we have also assumed that experts do not learn from the
decisions they take over time, i.e., their prediction model and thresholds are fixed. It would be very .
In some scenarios, a decision is taking jointly by a group of experts, e.g., faculty recruiting decisions.
It would be a natural follow-up to the current work to design our algorithms for such scenario. Finally,
in our experiments, we have to generate fictitious judges since we do not have information about the
identify of the judges who took each decision. It would be very valuable to gain access to datasets
with such information [7].

A Proof sketch of Proposition 1

Consider a simple setup with n = 2 experts and m = 1 decision at each round t ∈ [T ]. Furthermore,
we fix the following two things before setting up the problem instance: (i) let g(·) be a deterministic
function which computes a point estimate of a distribution (e.g., mean, or MAP); (ii) we assume a
deterministic tie-breaking by the assignment algorithm, and w.l.o.g. expert j = 1 is preferred over
expert j = 2 for assignment when both of them have same edge weights.

For the first expert j = 1, we know the exact value of the threshold θ1,z . For the second expert j = 2,
the threshold θ2,z could take any value in the range [0, 1] and we are given a prior distribution p(θ2,z).
Let us denote θ̃2,z = g

(
p(θ2,z)

)
. Now, we construct a problem instance for which the algorithm

would suffer linear regret separately for θ̃2,z > 0 and θ̃2,z = 0.

Problem instance if θ̃2,z > 0

We consider a problem instance as follows: c = 0, θ2,z = 0, θ1,z =
c+θ̃2,z

2 , and for all t ∈ [T ] we
have pY=1|xi(t),zi(t) uniformly sampled from the range (c, θ̃2,z) (note that m = 1 and there is only
one individual i = 1 at each round t). The algorithm would always assign the individual to expert

j = 1 and has a cumulative expected utility of 3T θ̃2,z
8 . However, given the true thresholds, the

algorithm would have always assigned the individual to expert j = 2 and would have a cumulative

expected utility of T θ̃2,z2 . Hence, the algorithm suffers a linear regret of R(T ) =
T θ̃2,z

8 .

Problem instance if θ̃2,z = 0

We consider a problem instance as follows: c = 1, θ2,z = 1, θ1,z =
c+θ̃2,z

2 , and for all t ∈ [T ] we
have pY=1|xi(t),zi(t) uniformly sampled from the range (θ̃2,z, c) (note that m = 1 and there is only
one individual i = 1 at each round t). The algorithm would always assign the individual to expert

j = 1 and has a cumulative expected utility of −T θ̃2,z8 . However, given the true thresholds, the
algorithm would have always assigned the individual to expert j = 2 and would have a cumulative

expected utility of 0. Hence, the algorithm suffers a linear regret of R(T ) =
T θ̃2,z

8 .
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