
A Proofs

Lemma 1 µ(k)(t) = G(!k)(t)λ(0).

Proof We will prove the lemma by induction. For generation k = 0, µ(0)(t) = EHt [λ
(0)] =

G(!0)(t)λ(0). Assume the relation holds for generation k: µ(k)(t) = G(!k)(t)λ(0). Then for
generation k+1, we have µ(k+1)(t) = EHt [

∫ t
0 G(t− s) dN (k)(s)] =

∫ t
0 G(t− s)EHt [dN

(k)(s)].

By definition EHt [dN
(k)(s)] = EHs− [E[dN (k)(s)|Hs−]] = EHs− [λ

(k)(s) ds] = µ(k)(s) ds, then
substitute it in and we have

µ(k+1)(t) =

∫ t

0
G(t− s)G(!k)(s)λ(0) ds = G(!k+1)(t)λ(0),

which completes the proof.

Lemma 2 Ĝ(!k)(z) =
∫∞
0 G(!k)(t) dt = 1

z · Ak

(z+ω)k

Proof We will prove the result by induction on k. First, given our choice of exponential ker-
nel, G(t) = e−ωtA, we have that Ĝ(z) = 1

z+wA. Then for k = 0, G(!0)(t) = I and Î(z) =
∫∞
0 e−ztI dt = 1

zI. Now assume the result hold for a general k−1, then Ĝ(!k−1)(z) = 1
z ·

Ak−1

(z+ω)k−1 .

Next, for k, we have Ĝ(!k)(z) =
∫∞
0 e−zt

(
G(t) !G(!k−1)(t)

)
dt = Ĝ(z)Ĝ(!k−1)(z), which is(

1
z+ωA

)(
Ak−1

(z+ω)k−1 · 1
z

)
= 1

z · Ak

(z+ω)k , and completes the proof.

Theorem 3 µ(t) = Ψ(t)λ(0) =
(
e(A−ωI)t + ω(A− ωI)−1(e(A−ωI)t − I)

)
λ(0).

Proof We first compute the Laplace transform Ψ̂(z) :=
∫∞
0 e−ztΨ(t) dt. Using lemma 2, we have

Ψ̂(z) =
1

z

∞∑

i=0

Ai

(z + w)i
=

(z + w)

z

∞∑

i=0

Ai+1

(z + w)i

Second, let F̂ (z) :=
∑∞

i=0
Ai

zi+1 and its inverse Laplace transform be F (t) =
∫∞
0 eztF̂ (z) dz =

∑∞
i=0

(At)i

i! = eAt, where eAt is a matrix exponential. Then, it is easy to see that Ψ̂(z) =
(z+w)

z F̂ (z+w) = F̂ (z+w)+ w
z F̂ (z+w). Finally, we perform inverse Laplace transform for Ψ̂(z),

and obtain Ψ(t) = e(A−ωI)t + ω
∫ t
0 e(A−ωI)sds = e(A−ωI)t + ω(A − ωI)−1

(
e(A−ωI)t − I

)
,

where we made use of the property of Laplace transform that dividing by z in the frequency domain
is equal to an integration in time domain, and F (z + w) = e−ωteAt = e(A−ωI)t.

Corollary 4 µ = (I− Γ)−1 λ(0) = limt→∞ Ψ(t)λ(0).

Proof If the process is stationary, the spectral radius of Γ = A
w is smaller than 1, which implies

that all eigenvalues of A are smaller than ω in magnitude. Thus, all eigenvalues of A − ωI
are negative. Let PDP−1 be the eigenvalue decomposition of A − ωI , and all the elements
(in diagonal) of D are negative. Then based on the property of matrix exponential, we have
e(A−ωI)t = P eDtP−1. As we let t → ∞, the matrix eDt → 0 and hence e(A−ωI)t → 0. Thus
limt→∞ Ψ(t) = −ω(A− ωI)−1, which is equal to (I − Γ)−1, and completes the proof.

10

Algorithm 3: Gradient For Least-squares Activity Shaping
input : A, ω, t, v, λ(0)

output: g(λ(0))
v1 = Ψ(t)λ(0) ; //Application of algorithm 1
v2 = Bv1 ; //Sparse matrix vector product
v3 = B$(v2 − v) ; //Sparse matrix vector product
v4 = Ψ(t)v3 ; //Application of algorithm 1
return 2v4

Algorithm 4: Gradient For Activity Homogenization
input : A, ω, t, v, λ(0)

output: g(λ(0))
v1 = Ψ(t)λ(0) ; //Application of algorithm 1
v2 = ln(v1);
v3 = Ψ(t)$v2 ; //Application of algorithm 1
v4 = Ψ(t)$1 ; //Application of algorithm 1
return v3 + v4

B Gradients for Least-Square Activity Shaping and Activity
Homogenization

Algorithm 3 includes the efficient procedure to compute the gradient in the least-squares activity
shaping task. Since B is usually sparse, it includes two multiplications of a sparse matrix and a
vector, two matrix exponentials multiplied by a vector, and two sparse linear systems of equations.
Algorithm 4 summarizes the steps for efficient computation of the gradient in the activity homoge-
nization task. Assuming again a sparse B, it consists of two multiplication of a matrix exponential
and a vector and two sparse linear systems of equations.

C More on the Experimental Setup

Table 1 shows the number of adopters and usages for the six different URL shortening services. It
includes a total of 7,566,098 events (adoptions) during the 8-month period.

Next, we describe the considered baselines proposed to compare to our approach for i) the capped
activity maximization; ii) the minimax activity shaping; and iii) the least-squares activity shaping
problems.

For capped activity maximization problem, we consider the following four heuristic baselines:

• XMU allocates the budget based on users’ current activity. In particular, it assigns the
budget to each of the half top-most active users proportional to their average activity, µ(t),
computed from the inferred parameters.

• WEI assigns positive budget to the users proportionally to their sum of out-going influence
(
∑

u auu′). This heuristic allows us (by comparing its results to CAM) to understand the
effect of considering the whole network with respect to only consider the direct (out-going)
influence.

• DEG assumes that more central users, i.e., more connected users, can leverage the total
activity, therefore, assigns the budget to the more connected users proportional to their
degree in the network.

• PRK sorts the users according to the their pagerank in the weighted influence network (A)
with the damping factor set to 0.85%, and assigns the budget to the top users proportional
their pagerank value.

In order to show how network structure leverages the minimax activity shaping we implement
following four baselines:

11

Service # adopters # usages
Bitly 55,883 5,046,710

TinyURL 46,577 1,682,459
Isgd 28,050 596,895

TwURL 15,215 197,568
SnURL 4,462 41,823
Doiop 88 643

Table 1: # of adopters and usages for each URL shortening service.

• UNI allocates the total budget equally to all users.
• MINMU divides uniformly the total budget among half of the users with lower average

activity µ(t), which is computed from the inferred parameters.
• LP finds the top half of least-active users in the current network and allocates the budget

such that after the assignment the network has the highest minimum activity possible. This
method uses linear programming to learn exogenous activity of the users, but, in contrast
to the proposed method, does not consider the network and propagation of adoptions.

• GRD finds the user with minimum activity, assigns a portion of the budget, and computes
the resulting µ(t). It then repeats the process to incentivize half of users.

We compare least-square activity shaping with the following baselines:

• PROP shapes the activity by allocating the budget proportional to the desired shape, i.e.,
the shape of the assignment is similar to the target shape.

• LSGRD greedily finds the user with the highest distance between her current and target
activity, assigns her a budget to reach her target, and proceeds this way to consume the
whole budget.

Each baseline relies on a specific property to allocate the budget (e.g. connectedness in DEG). How-
ever, most of them face two problems: The first one is how many users to incentivize and the second
one is how much should be paid to the selected users. They usually rely on heuristics to reveal these
two problems (e.g. allocating an amount proportional to that property and/or to the top half users
sorted based on the specific property). In contrast, our framework is comprehensive enough to ad-
dress those difficulties based on well-developed theoretical basis. This key factor accompanied with
the appropriate properties of Hawkes process for modeling social influence (e.g. mutually exciting)
make the proposed method the best.

Finally, we elaborate on the rationale behind our held-out evaluation scheme. It is beneficial to
emphasize that the held-out experiments are essentially evaluating prediction performance on test
sets. For instance, suppose we are given a diffusion network and two different configurations of
incentives. We have shown our method can predict more accurately which one will reach the activity
shaping goal better. This means, in turn, that if we incentivize the users according to our method’s
suggestion, we will achieve the target activity better than other heuristics.

Alternatively, one can understand our evaluation scheme like this: if one applies the incentive (or
intervention) levels prescribed by a method, how well the predicted outcome coincides with the
reality in the test set? A good method should behavior like this: the closer the prescribed incentive
(or intervention) levels to the estimated base intensities in test data, the closer the prediction based on
training data to the activity level in the test data. In our experiment, the closeness in incentive level
is measured by the Euclidean distance, the closeness between prediction and reality is measured by
rank correlation.

12

D Temporal Properties

For the experiments on simulated objective function and held-out data we have estimated intensity
from the events data. In this section, we will see how this empirical intensity resembles the theo-
retical intensity. We generate a synthetic network over 100 users. For each user in the generated
network, we uniformly sample from [0, 0.1] the exogenous intensity, and the endogenous parame-
ters auu′ are uniformly sampled from [0, 0.1]. A bandwidth ω = 1 is used in the exponential kernel.
Then, the intensity is estimated empirically by dividing the number of events by the length of the
respective interval.

We compute the mean and variance of the empirical activity for 100 independent runs. As illustrated
in Figure 3, the average empirical intensity (the blue curve) clearly follows the theoretical instanta-
neous intensity (the red curve) but, as expected, as we are further from the starting point (i.e., as time
increases), the standard deviation of the estimates (shown in the whiskers) increases. Additionally,
the green line shows the average stationary intensity. As it is expected, the instantaneous intensity
tends to the stationary value when the network has been run for sufficient long time.

100 200 300 400 5000

100

200

300

400

500

600

700

time

in
te

ns
ity

Empirical Intensity
Instantanous Intensity
Stationary Intensity

Figure 3: Evolution in time of empirical and theoretical intensity.

E Visualization of Least-squares Activity Shaping

To get a better insight on the the activity shaping problem we visualize the least-squares activity
shaping results for the 2K and 60K datasets. Figure 4 shows the result of activity shaping at t = 1
targeting the same shape as in the experiments section. The red line is the target shape of the
activity and the blue curve correspond to the activity profiles of users after incentivizing computed
via theoretical objective. It is clear that the resulted activity behavior resembles the target shape.

500 1000 1500 20000

0.1

0.2

user

ac
tiv

ity

LSASH
Target

2 4 6
x 104

0

5

10

15

user

ac
tiv

ity

LSASH
Target

(a) 2K dataset. (b) 60K dataset.

Figure 4: Activity shaping results.

13

F Sparsity and Activity Shaping

In some applications there is a limitation on the number of users we can incentivize. In our proposed
framework, we can handle this requirement by including a sparsity constraint on the optimization
problem. In order to maintain the convexity of the optimization problem, we consider a l1 regu-
larization term, where a regularization parameter γ provides the trade-off between sparsity and the
activity shaping goal.

maximizeµ(t),λ(0) U(µ(t))− γ||λ(0)||1
subject to µ(t) = Ψ(t)λ(0), c$λ(0) ! C, λ(0) " 0

(17)

Tables 2 and 3 demonstrate the effect of different values of regularization parameter on capped
activity maximization and minimax activity shaping, respectively. When γ is small, the minimum
intensity is very high. On the contrary, large values of γ imposes large penalties on the number of
non-zero intensities which results in a sparse and applicable manipulation. Furthermore, this may
avoid using all the budget. When dealing with unfamiliar application domains, cross validation may
help to find an appropriate trade-off between sparsity and objective function.

γ # Non-zeros Budget consumed Sum of activities
0.5 2101 0.5 0.69
0.6 1896 0.46 0.65
0.7 1595 0.39 0.62
0.8 951 0.21 0.58
0.9 410 0.18 0.55
1.0 137 0.13 0.54

Table 2: Sparsity properties of capped activity maximization.

γ(×10−3) # Non-zeros Budget Consumed umin(×10−3)

0.6 1941 0.49 0.38
0.7 881 0.17 0.22
0.8 783 0.15 0.21
0.9 349 0.09 0.16
1.0 139 0.06 0.12
1.1 102 0.04 0.11

Table 3: Sparsity properties of minimax activity shaping.

14

2000 4000 6000 8000 10000

2

4

6

8x 104

users

tim
e

(s
)

Our
Naive

1 2 3 4 5
x 104

0.5

1

1.5

2

2.5
x 108

users

tim
e

(s
)

Our
Naive

(a) For 10,000 users. (b) For 50,000 users.

Figure 5: Scalability of least-squares activity shaping.

0 1 2 3 4 5 6 7 8 9

5

10

15

logarithm of time

su
m

 o
f u

se
rs

’ a
ct

iv
ity

CAM XMU WEI DEG PRK

0 1 2 3 4 5 6 7 8 90

2

4

x 10−5

logarithm of time

m
in

im
um

 a
ct

iv
ity

MMASH UNI MINMU LP GRD

0 1 2 3 4 5 6 7 8 9
4

4.5

5

5.5
x 10 3

logarithm of time

Eu
cl

id
ea

n
di

st
an

ce

LSASH PROP LSGRD

(a) Capped activity maximization. (b) Minimax activity shaping. (c) Least-square activity shaping.

Figure 6: Activity shaping on the 60K dataset.

G Scalability

The naive implementation of the algorithm requires computing the matrix exponential once, and
using it in (non-sparse huge) matrix-vector multiplications, i.e.,

Tnaive = TΨ + kTprod.

Here, TΨ is the time to compute Ψ(t), which itself comprised of three parts; matrix exponential
computation, matrix inversion and matrix multiplications. Tprod is the time for multiplication be-
tween the large non-sparse matrix and a vector plus the time to compute the inversion via solving
linear systems of equation. Finally, k is the number of gradient computations, or more generally, the
number of iterations in any gradient-based iterative optimization. The dominant factor in the naive
approach is the matrix exponential. It is computationally demanding and practically inefficient for
more than 7000 users.

In contrast, the proposed framework benefits from the fact that the gradient depends on Ψ(t) only
through matrix-vector products. Thus, the running time of our activity shaping framework will be
written as

Tour = kTgrad,
where Tgrad is the time to compute the gradient which itself comprises the time required to solve a
couple of linear systems of equations and the time to compute a couple of exponential matrix-vector
multiplication.

Figure 5 demonstrates Tour and Tnaive with respect to the number of users. For better visualization
we have provided two graphs for up to 10,000 and 50,000 users, respectively. We set k equal to the
number of users. Since the dominant factor in the naive computation method is matrix exponential,
the choice of k is not that determinant. The time for computing matrix exponential is interpolated
for more than 7000 users; and the interpolated total time, Tnaive, is shown in red dashed line. These
experiments are done in a machine equipped with one 2.5 GHz AMD Opteron Processor. This graph
clearly shows the significance of designing an scalable algorithm.

Figure 6 shows the results of running our large-scale algorithm on the 60K dataset evaluated via
theoretical objective function. We observe the same patterns as 2K dataset. Especially, the proposed
method consistently outperforms the heuristic baselines. Heuristic baselines provide similar perfor-

15

mance as for the 2K dataset. DEG shows up again as a reasonable surrogate for influence, and the
poor performance of XMU on activity maximization shows that high activity does not necessarily
mean being more influential. For minimax activity shaping we observe MMASH is superior to oth-
ers in 2 × 10−5 actions per unit time, which means that the person with minimum activity uses the
service 2 × 10−5 × 60 ∗ 24 ∗ 30 = 0.864 times more compared to the best heuristic baseline. An
increase in the activity per month of 0.864 is not a big deal itself, however, if we consider the scale at
which the network’s activity is steered, we can deduce that now the service is guaranteeing, at least
in theory, about 60000× 0.864 = 51840 more adoptions monthly. As shown by the experiments on
real-world held-out data, our approach for activity shaping outperforms all the considered heuristic
baselines.

H Discussion

We acknowledge that our method has indeed limitations. For example, our current formulation as-
sumes that exogenous events are constant over time. Thus, subsequent evolution in the point process
is a mixture of endogenous and exogenous events. However, in practice, the shaping incentives need
to be doled out throughout the evolution of the process, e.g., in a sequential decision making setting.
Perhaps surprisingly, our framework can be generalized to time-varying exogenous events, at the
cost of stating some of the theoretical results in a convolution form, as follows:

• Lemma 1 needs to be kept in convolution form, i.e., µ(k)(t) = G(!k)(t) ! λ(0)(t). The
sketch of the proof is very similar, and we only need to further exploit the associativity
property of the convolution at the inductive step, to prove the hypothesis holds for k + 1:

µ(k+1)(t) =

∫ t

0
G(t−s)

(
G(!k)(s) ! λ(0)(s)

)
ds = G(!k)(t)!G(t)!λ(0)(t) = G(!k+1)(t)!λ(0)(t)

(18)

• Lemma 2 is responsible for finding a closed form for Ĝ(!k)(z) and thus is not affected by
a time-varying exogenous intensity. It remains unchanged.

• Theorem 3 derives the instantaneous average intensity µ(t) and, therefore, needs to be
updated accordingly using the modified Lemma 1:

µ(t) = Ψ(t) ! λ(0)(t) =
(
e(A−ωI)t + ω(A− ωI)−1(e(A−ωI)t − I)

)
! λ(0)(t). (19)

Many simple parametrized incentive functions, such as exponential incentives λ(0)(t) =
λ(0) exp(−αt) with constant decay α or constant incentives within a window λ(0)(t) = λ(0)I[t1 <
t < t2], for a fixed window [t1, t2], result in linear closed form expressions between the exogenous
event intensity and the expected overall intensity. Nonparameteric functions result in a non-closed
form expression, however, we still benefit the fact that the mapping from λ0(t) to µ(t) is linear, and
hence the activity shaping problems can still be cast as convex optimization problems. In this case,
the optimization can still be done via functional gradient descent (or variational calculus), though
with some additional challenge to tackle.

There are many other interesting venues for future work. For example, considering competing in-
centives, discovering the branching structure and using it explicitly to shape the activities, exploring
other possible kernel functions or even learning them using non-parametric methods remain for
future work.

16

