MATHEMATICS OF COMPUTATION

Volume 93, Number 347, May 2024, Pages 1333-1353
https://doi.org/10.1090/mcom/3893

Article electronically published on August 31, 2023

ON THE p-ADIC ZEROS OF THE TRIBONACCI SEQUENCE

YURI BILU, FLORIAN LUCA, JORIS NIEUWVELD, JOEL OUAKNINE,
AND JAMES WORRELL

ABSTRACT. Let (Th)nez be the Tribonacci sequence and for a prime p and
an integer m let vp(m) be the exponent of p in the factorization of m. For
p = 2 Marques and Lengyel found some formulas relating v, () with v, (f(n))
where f(n) is some linear function of n (which might be constant) according
to the residue class of n modulo 32 and asked if similar formulas exist for other
primes p. In this paper, we give an algorithm which tests whether for a given
prime p such formulas exist or not. When they exist, our algorithm computes
these formulas. Some numerical results are presented.

1. INTRODUCTION

Let A = {\1, X2, A3} C Q be the set of roots of the polynomial
PX)=X3-X?-X—1.

For X\ € A define ¢y = AP’(\)~!. For n € Z, the Tribonacci number T(n) € Z is
defined by

T(n) = Z A"

AEA

More famously, T : Z — Z is defined by the recurrence relation

TO)=0, T(1)=T(2)=1,
Tn+3)=Tn+2)+T(n+1)+T(n) (n€Z).

Attention: a(n) in [8] corresponds to our T'(n + 1).

It is known that T'(n) = 0 if and only if n € Zr := {0, -1, —4, —17}. For a proof
see, for instance, [I0, Example 2 on page 360]; in that example u,, corresponds
to our T(—n). In [9], Marques and Lengyel determined the exponent of 2 in T,.
Denoting for a prime p and a non-zero integer m by v,(m) the exact exponent of p
in the factorization of m, and setting v,(0) = oo, they proved Theorem [L11
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Theorem 1.1. For n > 1, we have

0, if mn=1,2 (mod 4);

1, if mn=3,11 (mod 16);

2, if n=4,8 (mod 16);
3, if n=7 (mod 16);
va(Tn) = va(n) — 1, if mn=0 Emod 16;,
va(n+4)—1, if n=12 (mod 16);
ve(n+17)4+1, if n=15 (mod 32);
valn+1)+1, i n=31 (mod 32).

Encouraged by their result for the prime p = 2, they conjectured that such
formulas should hold for v,(T;,) for every prime p. More precisely, here is their
conjecture.

Conjecture 1.2 (Conjecture 8 from [9]). Let p be a prime number. There exists
a positive integer Q) such that for every i € {0,1,...,Q — 1} we have one of the
following two options.
(C) There exists k; € Z>q such that for all but finitely many n € Z satisfying
n =1 (mod Q) we have v,(T(n)) = k;.
(L) There exist

a; € Z, Ki € Z7 Wi € Z>0
satisfying
(1.1) vp(a; — i) 2 vp(Q),
such that for all but finitely many n € Z satisfyingn =i (mod Q) we have
(1.2) vp(T(n)) = ki + pavp(n — aq).

Note that our statement looks different from Conjecture 8 from [9], but, in fact,
it is equivalent to it.

Informally, in the case (C) (that is, “constant”) v,(T'(n)) is a constant function
on the entire residue class n = ¢ (mod @) with finitely many n removed, while in
the case (L) (“linear”) it is a linear function of v,(n — a;).

Remark 1.3. Let us comment on condition (IZ1I), which does not appear in [9]. This
condition is needed to ensure that the right-hand side of (LZ)) is not constant (in
which case option (C) would hold for the class n =4 (mod @)). To be precise, the
following three statements are equivalent:

(1) (CI) holds;

(2) vp(n — a;) is not constant on the residue class n = ¢ (mod Q);

(3) vp(n — a;) is not bounded on the residue class n =4 (mod Q).

Indeed, if v, (a; — i) < v,(Q) then vy(n — a;) = vp(i — a;) for n =4 (mod Q), which

proves the implication The implication is obvious. Finally, as-
sume that (L)) holds. Denoting v := 1,,(Q), for every k > v the Chinese remainder
theorem provides my, € Z satisfying
my = ai:Z (mod p

p
Then ny, := i + myp” satisfies ny, = a; (mod pk) and ny =4 (mod @), which proves

the implication (3)]

Already the case p = 3 looks encouraging.

P, mp =0 (mod QpY).
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Theorem 1.4. For n > 1, we have

0, if n=123,4,506,810,11 (mod 13);
1, if n=7 (mod 13);
v3(n) + 2, if n=0 (mod 13);
v3(T,) =1} vs(n+1)+2, if n=12 (mod 13);
4, if n=9 (mod 39);
vs(n+17)+4, if n=22 (mod 39);
vs(n+4)+4, if n =35 (mod 39).

However, Theorem [[Hlshows that Conjecture [L2fails for infinitely many primes.

Theorem 1.5. There is an infinite sell of prime numbers congruent to 2 (mod 3)
such that for every prime p from this set the following hold.

(1) For each n € Z satisfying n =1/3 (mod p — 1) we have
vp(T(n)) = vp(n —1/3).

(2) For each n € Z with n = —5/3 (mod p — 1) we have
v(T(n)) = vy(n + 5/3).

Clearly, Theorem contradicts Conjecture Indeed, let p be as in the
theorem, and let (ny) be a sequence of integers satisfying

nk=1/3 (mod (p— 1)p").
If Conjecture is true for this p then for some i € {0,...,Q — 1} the residue

class ¢ (mod @) contains infinitely many ny. Since v,(ny —1/3) — oo, we have
vp(T(n)) — oo. Hence for this ¢ we must have option (L) of Conjecture

vp(T(ni)) = ki + pavp(nk — ai).
Moreover, we must have v,(ny —a;) — oo as well. But, since a;, € Z, we have
a; # 1/3, and hence v,(ni — 1/3) and vp(ny — a;) cannot both tend to infinity.

One may hope to rescue Conjecture by allowing a; to be rational numbers,
as below:

Conjecture 1.6. Let p be a prime number. There exists a positive integer Q
such that for every i € {0,1,...,Q — 1} we have one of the following two options.

(C) There exists k; € Z>q such that for all but finitely many n € Z satisfying
n =1 (mod Q) we have v,(T(n)) = k;.
(L) There exist
a; € Q, K; € L, Wi € Z>o
satisfying vp(a; — i) > v,(Q), such that for all but finitely many n € Z
satisfying n =i (mod Q) we have v,(T(n)) = Kk; + pivp(n — a;).

However we show that even this weaker conjecture fails for many primes. In fact
we provide a method to decide for which primes p Conjectures and hold
and for which they fail. In some cases our method is unable to make the desired
decision. When the method works and decides that the conjecture holds, it also
determines the parameters @ and (a;, ;) for those i = {0,...,Q — 1} for which
option (L) takes place.

Concerning Conjecture [[L2, we have:

We will see that this set of primes is not only infinite, but is of relative density 1/12 in the
set of all primes.
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Theorem 1.7.
(i) Conjecture fails for p € [5,599]\{11, 83,103, 163,397}.
(ii) Conjecture holds for p € {83,397} in the form

vy (T,) = vp(n+c)+1, if n=—c (mod Q,), —c€ Zr;
pAins 0, otherwise,

with Qgg = 287 and Q397 = 132.

Note that our method does not handle the prime p = 11. As for the cases
p € {103,163}, our method failed to decide whether Conjecture holds.
Concerning Conjecture [[LG, we have:

Theorem 1.8.
(i) Conjecture [0 fails for
p € [5,599]\{11, 47, 53, 83, 103, 163, 269, 397, 401, 419, 499, 587}.
(ii) Conjecture holds for p € {269, 401,419,499, 587} in the form

vp(n+c)+1, if n=c (mod @,),
vy (T,) = ce{0,—1,-4,-17,1/3, —5/3};
0, otherwise,

with Q269 = 268, Q01 = 400, Q419 = 418, Q99 = 166 and Q537 = 293.

Note here that (again) our method does not apply to the prime p = 11. As for
p € {47,53,103,163}, our method failed to decide whether Conjecture holds.

Plan of the article. In Section 2l we introduce the basic notions of this article,
those of twisted zeros and of rational zeros of the Tribonacci sequence.

In Section [3] we recall the necessary tools from p-adic analysis. In Sections EHS]
we apply these tools to study the Tribonacci sequence. In particular, Theorem
is proved in Section Bl In Section Bl we give a p-adic analytic interpretation of
Conjectures[[2and Using it, we produce in Section [ easily verifiable sufficient
conditions for both conjectures to hold and to fail.

Theorems [[4] and [[L7] are proved in Section [@ as application of the previous
results together with some computations.

The final Section [I0l contains heuristics which suggest that if ML and NMLR
are the sets of all primes such that Conjecture holds and Conjecture fails,
respectively, then both ML and NMLR are infinite and maybe even of positive
relative densities as subsets of all primes.

A convention. Unless otherwise stated, all congruences such as z =y (mod N)
and divisibility relations such as z | y refer to the ring of rational integers Z.

We slightly abuse notation by writing =y (mod N) with z,y € Q if there
exists m € Z with ged(m, N) = 1 such that mz, my € Z and ma = my (mod N).

2. RATIONAL ZEROS OF THE TRIBONACCI SEQUENCE

As we mentioned in Section [ T'(n) =0 if and only if n belongs to the set
Zr ={0,—1,—4,—17}. Tt turns out that, in a sense, the Tribonacci sequence also
“vanishes” at some non-integral rational numbers.

Proposition 2.1. For some definition of the cubic roots

(2.1) A\/3 (A€ A),
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we have

(2.2) > et =o.

AEA
Similarly, for some definition of the cubic roots [ZI)) we have )y A3 =0.

Proof. Consider the polynomial
F(X1, X, X3) = XJ + X5 4+ X3 - 3X1 X5 X3 € Z[ X1, Xo, X3].

Write again A = {1, A2, As}. Define somehow the cubic roots )\}/3, )\;/3 and set
/\;)/3 = (/\}/3)\%/3)_1. Now define

o; = C)\i)\l/g Bi = C)\i)\;5/3 (Z = 1, 273).

i
A direct verification shows that

F(al,ag,a3):Zc§’\)\—3Hc>\:0,

AEA AEA
and, similarly, F'(831, 82, 03) = 0. Since F(X;, X2, X3) factors as

F(X1, X5, X3) = (X1 + Xo + X3) (X1 + (X2 + (X3)(X1 4 (Xa + (X3),
where ¢, are the primitive cubic roots of unity, the result follows. O

Call r € Q a rational zero of T if for some definition of the rational powers
AT, A5, AL we have Z?Zl ex A = 0.

More generally, call r € Q a twisted rational zero of T if for some definition
of the rational powers A7, A5, A5 and for some roots of unity &;,&2,&3, we have
S0 e A = 0.

We denote Q7 the set of twisted rational zeros of T. Clearly, Z;r C Qr and
1/3,—-5/3 € Qp. It turns out that T has no other twisted rational zeros.

Theorem 2.2. We have
Qr=Z2ruU{1/3,-5/3} ={0,—-1,—-4,-17,1/3,-5/3}.

Moreover, if r € Qr and the powers A], A5, Ay are suitably defined, then for the
roots of unity &1,&s,&s satisfying Zf 1&icnAf =0 we have § = & = &3.

The full proof of Theorem will appear in [I]. In this paper we prove only a
weaker version of this theorem, addressing twisted integral zeros.

Theorem 2.3. Letn € Z and &1, &2, &3 roots of unity such that E?Zl &, A =0.
Then n € Zy and & = & = &3 = 1. In particular, the only twisted integral zeros
of the Tribonacci sequence are its actual zeros 0,—1,—4, —17.

Remark 2.4. Of course, twisted zeros can be defined for any linear recurrent se-
quence, not just of the Tribonacci sequence: if U(n) is a linear recurrence with
Binet expansion
Un) = Pr(n)yf' + -+ Po(n)yy

(where ~1, ..., 7s are non-zero algebraic numbers and P, ..., Py are polynomi-
als with algebraic coefficients), then we call r € Q a twisted rational zero of U if
for some definition of the powers ~f, ..., 75 and some roots of unity &;, ..., &
we have & Py (r)y] + -+ + & Ps(r)ys = 0. Note that the analogue of Theorem [Z3]
does not hold for any linear recurrent sequence. For instance, the binary sequence
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U(n) = 2™ 4+ 1™ has no integral zeros, but it has a twisted zero at n = 0, the relevant
roots of unity being 1 and —1:

1224 (-1)-1°=0.
For the proof of Theorem [2.3] we need some lemmas.

Lemma 2.5. Let a be an algebraic number of degree 3. Assume that Q(«) is
not a Galois extension of Q. Let ai(= a), s, a3 be the conjugates of a over Q.
Assume further that the field Q(ay, as, a3) does not contain primitive cubic roots
of unity.

Let &1,&5, &3 be roots of unity such that

a1€1 + agés + azés = 0.
Then & = & = &3 and hence ay + as + az = 0.

Proof. We may assume that {5 = 1, so that a1&1 + a2 + a3 = 0. We want to
prove that & = & = 1.

Denote K = Q(aq, ae, aig) and let Ky be the unique quadratic subfield of K; note
that Ky is the maximal abelian subfield of K.

Assume for a contradiction that {£1,&2} ¢ K. Then there is a non-trivial ele-
ment o € Gal(K(&1,£2)/K). We have a1&] + a2éd + a3 = 0 and, without loss of
generality, £7 # &. Tt follows that 1 = a;/as = — (&2 — £9) /(&1 — £7). In partic-
ular, n belongs to an abelian field and so 7 € Ky. But the elements of Ky are
fixed by a cyclic permutation of aq, ag, 3. Hence n = a1 /as = as/asz = as/a;. It
follows that n® = (a1 /ag)(aa/as)(as/a1) = 1, contradicting the hypothesis that K
contains no primitive cubic roots of unity. We conclude that £&; and & belong to K
and hence also to Kg.

Observe that any element of Gal(K/Q) of order 2 restricts to the non-trivial
element ¢ of Gal(Ky/Q). Consider first the element of Gal(K/Q) that switches
a1, a0 and fixes az. Now we have a1&5 + aof + as = 0. If £ # & then

ar/an = (§1 — &)/ (& — &) € Ko,
and we finish as before. Thus, £ = &; (and & = &). Applying next the element
that switches aq, ag and fixes g, we obtain ay + @&y + aszés = 0. Multiplying by
& = {51, we get 1€y + aef? + az = 0. Hence az(£2 — &) = 0, which shows that
£ =& =& 1 Thus, € =1, which implies that & = 1 by our hypothesis. Hence
& =& =1 as well, and we are done. ]

Lemma 2.6. Let A\ be a root of P(X)=X?—-X2—-X—1, and n € Z. Then
a = A\"/P'(\) satisfies the hypothesis of Lemma 25

Proof. Clearly, a € Q()), which is a field of degree 3. If Q(«) # Q()\) then a € Q.
Hence, denoting A1, A2, A3 the roots of P(X), the three numbers AP/P’(\;) must
be equal. In particular, if A; is the real root, and A9, A3 are the complex conjugate
roots, then AT /P’(\1) = A} /P’(\2), which implies that
_ log|P'(A2)/P"(A1))]
log [A1/Az]

=—0718... ¢ Z,

a contradiction.

Thus, Q(«) = Q() is not a Galois extension of Q. It remains to note that its
Galois closure Q(A1, A2, A3) may not contain primitive cubic roots of unity, because
the prime 3 is not ramified therein. ([l
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Proof of Theorem 23 1f Zle &iex, AT = 0 then Lemmas 20 and 8 yield the con-
clusion & = & = &. Hence T'(n) = 0, and we are done. |

Theorem is proved in two steps. Using a Galois-theoretic argument similar
to that of Lemma [Z5] but more involved, one reduces the problem to finding actual
integral zeros of another linear recurrence, of order 4. Those are determined using
standard technique, with logarithmic forms and the Baker-Davenport reduction.
See [I] for the details.

3. p-ADIC ANALYTIC FUNCTIONS

In this section we recall some very basic facts about p-adic analytic functions.
Most of them are quite standard. All missing proofs, unless indicated otherwise,
can be found in any standard text like [7].

Let p be a prime number and let K be a finite extension of Q,. We extend the
standard p-adic absolute value | - | from Q, to K, so that [p|, = p~!. We will also
use the additive valuation v, defined by v,(2) = —log|z|,/logp for z € K*, with
the convention v,(0) = +o0.

For a € K and r > 0 we denote D(a,r) and D(a,r) the open and the closed disk
with center a and radius r:

D(a,r)={2z€ K:|z—al|, <r}, D(a,r)={2z€ K:|z—al|, <r}

We denote by Ok, or simply by O if this does not lead to a confusion, the ring of
integers of K:

O={zeK:|z|, <1} =D(0,1).

We call f: O — O an analytic function if there is a sequence «q, a1, as, ...€ O
with lim,,_,  |on|p = 0 such that

f(z) = Zanz" (z € 0).

Note that for any b € O we have

(3.1) F(z) = Be(z = b)¥,
k=0
where
™ (b — n—
o= L0 ()

3.1. p-Adic order of values of an analytic function. We start from the fol-
lowing trivial, but useful observation.

Proposition 3.1. Let f(z) be an analytic function. Then for any a,b € O we
have [f(a) — f(b)]p < |a — blp.
Proof. Substituting z = @ into [BI) and noting that 8y = f(b), we obtain

> Brla—b*!

k=1

|f(a) = f(b)]p = [b—alp

P
All terms in the sum on the right belong to O, whence the result. ([l
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Assume now that f is not identically 0. Then the set of zeros of f is finite,
because it is a discrete subset of the compact set O; we denote this set A.

Theorem 3.2. Let e be the ramification index of K/Q,. Then there exists a
positive integer k such that for every i € {0,1,...,p* — 1} we have one of the
following two options.

(C) There exists k; € e 17 such that for z € O satisfying z =i (mod p*) we
have vp(f(2)) = ki; in other words, vy(f(z)) is constant on the residue
class z =i (mod p*).

(L) There exist

a; € A, ki € e 'Z, Wi € Z>q
such that for z € O satisfying z =i (mod p*) we have
vp(f(2) = ki + pavp(z — a;).

Proof. Let m be a positive integer, and for every j € {0,1,...,p™ — 1} define
fi(z) = f(j +p™z). Clearly, if the statement holds true for every f; then it holds
for f as well. Taking m so large that every residue class z = j (mod p™) contains
at most one element from .4, we reduce the theorem to the case when f has at most
one zero. If f does have a zero, say a, then, expanding

f(Z) = O‘,u(z _G)M +OZH+1(2: —a)“"'l 4+

with ¢ > 1 and «a, # 0, we note that the statement holds for f as soon as it holds
for the analytic function ay, + a41(2 — a) + - - -, which has no zero at all.
Thus, it suffices to consider the case A = &. We need to show that the p-adic
order v,(f(z)) is constant on every residue class modulo a suitable power of p.
Since f does not vanish on O, then, by compactness, |f(z)|, must be bounded
from below by some strictly positive number. It follows that f(z) belongs to one
of the finitely many sets

o*,n0*,...,m"O0*,
where 7 is a uniformizer of K and n is some positive integer. Note that v,(7) = e~ 1.
Since these sets are open, their inverse images by f are open as well. Hence

each of these inverse images is a union of finitely many residue classes modulo some
power of p. This completes the proof. O

3.2. Vanishing of power series. In this subsection we recall two fundamental
results about vanishing of a power series on O: Hensel’s Lemma and Strassman’s
Theorem.

Hensel’s Lemma is the principal technical tool of p-adic analysis. It is usually
stated for polynomials, but in this article we need a slightly more general version,
for power series.

Proposition 3.3 (Hensel’s Lemma for power series). Let by € O be such that
|f(bo)|p <1 and|f'(by)|, =1. Then there exists a unique b € O such that f(b) =0
and |b—bolp < |f(bo)lp-

The proof can be found, for instance, in [3], see Theorems 8.2 and 9.4 therein,
or in [II], see Theorem 27.6 therein.
The number of zeros can be estimated using Strassman’s Theorem.
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Theorem 3.4 (Strassman). Assume that f(z) does not vanish identically on O;
equivalently, the coefficients g, a1, ... are not all 0. Define u as the largest m
with the property

lam|p = max{|a,|, :n=0,1,...}.

(Since ||, — 0, such p must exist.) Then f(z) has at most p zeros on O.
The proof can be found in many sources; see, for instance, [2, Theorem 4.1].

3.3. Functions exp and log in the p-adic domain. We denote p = p~ /=1,
Let us recall the definition and the basic properties of the p-adic exponential and
logarithmic functions.

(1) For z € D(0, p) we define

o n

exp(z) = Z %

n=0
For z,w € D(0, p) we have

lexp(2) — 1], = |2lp, exp(z +w) = exp(z) exp(w), exp'(z) = exp(z).
(2) For z € D(1,1) we define
log(z) = Y W
n=1

For z,w € D(1,1) we have

log(zw) = log(z) + log(w), log'(z) = l
z
(3) For z € D(1, p) we have

[log(2)|, = |z — 1]p, exp(log(z)) = z.
(4) For z € D(0, p) we have log(exp(z)) = z.

4. p—ADIC ANALYTIC INTERPOLATION OF THE TRIBONACCI SEQUENCE
Recall that we denote A = {A1, A3, A3} the set of roots of the polynomial
P(X)=X3-X?-X—1.
Let p be a prime number and let K = Q, (A1, A2, A3) be the splitting field of P(X)
over Q,. As before, we denote O its ring of integers. The discriminant of P(X)

is —44. Hence, assuming in the sequel that p # 2,11, the field K is unramified
over Q. In particular, with the notations from Section B3] we have
D(0,p) =D(0,1),  D(1,p) =D(1,1),  D(0,1)=D(0,p").

We denote d = [K: Qp]. There are three possibilities. If all the roots of P(X)
are in Q, then K = Q,, and d = 1. If P(X) has exactly one root in Q, then d = 2.
Finally, if P(X) is irreducible in Q, then d = 3.

Recall that

T(n) =Y e\, cx=AP'(\)7"
AEA
Note that, since p # 2,11, we have ¢y € O for A € A. Recall also that T'(n) = 0 if
and only if n € Zp. Note that A C O*. Let N = IV, be the order of the subgroup
of the multiplicative group (O/p)* generated by A. In [9] this quantity is denoted
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7(p). Note that N | p¢ —1. When d = 3, we have the more precise divisibility
relation N | p? +p + 1.
For £ € {0,1,...,N — 1} we consider the analytic function f; : Z, — Z, defined
by
(4.1) fe(z) = Z exAfexp(zlog(AY)).
AEA
Note that by the definition of N we have

AV e D(1,1) = D(1, p),
so f¢(z) is indeed well-defined for z € Z,,. Furthermore, for m € Z we have
(4.2) fe(m) =T +mN) € Z.

Since Z is dense in Z, and f is continuous, we indeed have f¢(z) € Z,, for z € Z,,.
Note also that fy(z) does not vanish identically on Z,: this also follows from

equation ([A2]).
5. PROOF OF THEOREM

We use the terminology and the notation of Section Ml In this section p is a
prime number, distinct from 2 and 11, and satisfying the following two conditions:
p =2 (mod 3) and A C Q. The last condition means that K= Q,, and d = 1. By
the Chebotarev Density Theorem, the set of such p is infinite and, moreover, it is
of density 1/12 in the set of all primes.

We are going to show that for every such p both statements of Theorem hold
true. Actually, we will prove only the former statement:

(5.1) n=1/3 (modp—1)= v,(T(n)) > vy(n—1/3),
because the second statement, with 1/3 replaced by —5/3, is proved absolutely
similarly.

To start with, let us make the following observation: since p =2 (mod 3), every
element of Z) has a single cubic root in Z,. In particular, for every A € A there is

a well-defined cubic root \'/3 € Z,.
It turns out that these cubic roots are exactly those for which we have (2Z2]).

Proposition 5.1. With our choice of the cubic roots \'/3 we have
Z C)\>\1/3 =0.
AEA

Proof. Assuming the contrary, we must have one of the options

(5.2) e A3+ e A+ Ce A =0,
(5.3) e A3 4 Cen AP+ Ce A =0,
(5.4) e A3 4 Cen A 4 Ce AP =0,

where ¢ and ¢ are the primitive cubic roots of unity. Option (53)) reduces to (5.2),
so we only need to rule out (5.2)) and (5.4).

Note that ¢ ¢ Q, because p = 2 mod 3. Therefore, by Galois conjugation, in the

case (5.2) we also have cAl)\}/B + c&)\é/‘g + Zc)\g)\é/g = 0. Hence, we get

(C - Z)C)\s)‘;)/:a =0,
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a contradiction. 3
Similarly, in the case (&4]) we also have cAl)\}B + Cc)\z)\é/g + Qc)\a)\é/g =0. It
follows that (¢ — ¢)(ca, /\%/3 —Chs /\:13/3) = 0, again a contradiction. O

Now we are in a position to prove (GI)). We define N = N, as in Section [}
note that in our special case d = 1 and so N | p — 1. In particular, the residue class
1/3 (mod N) is well-defined.

Let n € Z and ¢ € {0,..., N — 1} satisfy

n=¢=1/3 (mod N).

We define fy(z) as in [@I). Write n = ¢+ Nm and 1/3 = ¢+ Nb with m € Z and
b€ Z,NQ. We have clearly T'(n) = f;(m). We claim that f,(b) = 0. Indeed, for
A € A we have

(A exp(blog(AN))* = ABEEND) — )

Since A’ exp(blog(AY) € Z,, it must be equal to the cubic root A'/3 specified above.
Hence

(55) fl(b) = Z C/\AK eXp(blog(/\N)) = Z Ck)\l/g = Oa
AEA AEA
by Proposition 5.1l
Now we are done: Proposition [3.1] implies that

vp(T'(n)) = vp(fe(m) — fe(b)) = vp(m —b) = vp(n —1/3),
as wanted. Note that p = 2 mod 3 was only required to ensure that 34 N. The
argument above can be generalized for all p such that 34 N and A C Q,,.

6. ANALYTIC FORM OF CONJECTURES AND

In this section p is a prime number distinct from 2,3, 11. We continue using the
notation of Section [l

We are going to show that Conjectures and have very natural interpre-
tations in terms of the zeros of the functions fy(z).

Theorem 6.1.

(1) The following three statements are equivalent.
(1) Conjecture holds for the given p.
(2) For every ¢ €{0,...,N — 1}, the zeros of the function fi(z) belong
to N~'Z.
(3) For every £ the following holds: if b€ Z, is a zero of f¢(z) then
{+ Nbe Zrp.
(2) The following three statements are equivalent.
(4) Conjecture holds for the given p.
(5) For every ¢ €{0,...,N — 1}, the zeros of the function fi(z) belong
to QN Z,.
(6) For every £ the following holds: if b€ Z, is a zero of fi(z) then
L+ Nbe Qr.

Theorem is very useful for producing counter-examples to Conjectures
and [ see Section § More importantly, it provides a clear motivation why the
conjectures can only be expected to hold for relatively few primes. Indeed, there is
absolutely no reason to expect that every fy(z) would have only zeros in Q, and it
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is even less of a reason to expect that it would not vanish outside a fixed set of six
elements.
Let us start with some lemmas.

Lemma 6.2. If be QNZ, is a zero of fi(z) then £+ Nb is a twisted rational
zero of T, as defined in Section 2l

Proof. Denote a = ¢+ Nb and for every A € A choose some determination for \*.
Let m be a non-zero integer such that mb € Z. Then

()\Z exp (blog()\N)))m = A" exp(mblog(A\Y)) = A™e.
Hence A exp (b log(AN )) = & A%, where &), is a root of unity. It follows that
0= fo(d) =Y &ear?,

AEA

as wanted. O

Lemma 6.3. Assume that Conjecture holds for a given p.

(1) Let £€{0,1,...,N —1} and let b€ Z, be a zero of fi(z). Then there
exists i € {0,1,...,Q — 1} such that option (L) holds for the residue class
of i, and such that a; = ¢+ Nb. In particular, b € Q, and if a; € Z then
be N~1Z.

(2) Conversely, let i € {0,1,...,Q — 1} be such that option (L) holds for the
residue class of i. Then there exists £ € {0,1,...,N — 1} such that

fe <ai]\;€> =0.

Only item will be used, but we include the converse statement for complete-
ness.

Proof of item . This is the argument that already appeared in Section [Il Let
(ms) be a sequence of rational integers satisfying mj = b (mod p*), and set ny, =
f+ Nmy. Then

vp(T(nx)) = vp(fe(me)) > vp(ny, —b) > k,

and, in particular, v,(T(ng) — oo as k — oco. Infinitely many of the numbers ny
belong to the same residue class ¢ (mod @), and we will assume in the sequel that
all ny, do, by taking a subsequence. Since v,(T'(n)) — oo, we must have option (L)
for this residue class, and moreover, we must have v,(ng — a;) — co. Since we also
have vp(ng — (£ + Nb)) — oo, we obtain a; = ¢ + Nb. O

Proof of item . It is similar, but other way around. As in Remark [[L3] we find
a sequence of integers (ny) such that ny =4 (mod Q) and ny = a; (mod p*). By
choosing a subsequence, we find £ € {0,1,...,N — 1} such that ny =¢ (mod N)
for all k.

Define my, = (ny, — £)/N. The sequence (my,) converges p-adically to (a; — ¢)/N.
Since v, (fe(mi)) = vp(T(ngk) > k, the sequence (fe(my)) converges p-adically to 0.
Hence f¢((a; —¢)/N) = 0. O
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follow by combining Lemma with Theorems 23] and 2.2] respectively. Finally,

the converse implications |(c)=(b)|and |(f)={(e)| are trivial. O

As a byproduct, we also established the following.

Corollary 6.4. If Conjecture[L2 holds for the given p, then the numbers a; emerg-
ing in the residue classes with option (L) belong to the set Zp. If Conjecture
holds, then a; belong to Qr.

7. DETECTING ZEROS OF fy(z)

To make use of Theorem [6.1] we must develop a practical method for locating
zeros of fy(z). As in the previous sections, p is a prime number distinct from 2
and 11, and £ € {0,1,...,N — 1}.

7.1. A non-vanishing condition. To start with, let us give a simple sufficient
condition for f; to be non-vanishing on Z,.

Proposition 7.1. If ptT({) then fi(z) # 0 for z € Z,,.

Proof. By the definition of N we have f(n) = f(¢) (mod p) when n = /¢ (mod N).
In particular, for such n we have |T'(n)|, = |T(€)|, = 1. In other words, for m € Z
we have |f¢(m)|, = 1. By continuity, |f¢(z)|, =1 for z € Z,. This completes the
proof. O

7.2. The first vanishing condition. Now let us study sufficient conditions for
fe(%) to have a zero Z,. As follows from above, the first condition must be

(7.1) p | T(0).

This will be assumed for the rest of the section.
It will be more convenient to work with the function

fe(z)
9(z) = T
instead of fy(z) itself. For further use, note that g(z) has the expansion
oo
(7.2) 9(2) = Bz"
k=0
with the following properties:
(7.3) By € Z, (k=0,1,2...);
(7.4) Bk € pZ, (k=2,3,...);
(7.5) |Bklp = 0 (k — 00).
Indeed,
(7.6) ﬁozg(0)2@=¥62
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by our choice of £. Furthermore, we have

k
(7.7) o= e (M) .

Since AN =1 (mod p), we have log(A\Y) =0 (mod p), which shows that the sum
in (T7) belongs to Z,. We also have pk_l/k! € Z, when p > 3 and k > 1. Hence
Br € Zy, for k > 1 as well. This proves (7.3)).

Next, since the sum in (7)) belongs to Z,, we have v,(8) > k — 1 — v, (k!). It
is known that v, (k!) < k/(p — 1) for k > 1. In particular, v, (k!) < k/2 for p > 3. It
follows that v,(8)) > 0 for k > 2 and v,(8x) — +00 as k — oo. This proves (T.4)
and (TH).

Note the following consequence of (Z4): for z € Z, we have

(7.8) 9'(z) =4'(0) (mod p).
Indeed,
g(z) =B+ kB
k=2

Here 81 = ¢’(0) and each term in the sum is divisible by p by (T.4).

7.3. The second vanishing condition. The second condition that we impose is

(7.9)

g/(0)#0 (mod p).|

This condition means that 81 = ¢'(0) € Z,’. Hence there exists by € Z such that

(7.10) bo=—pof; ! (mod p).
Substituting z = by into expansion (.2)), and using (T.4]), we obtain
(7.11) P | g(bo)-

On the other hand, (Z.8) and (T9]) imply that ¢'(bg) = ¢’(0) Z 0 (mod p). Together
with (ZIT]) this can be expressed as

lg(bo)lp < 1, 9" (bo)|p = 1.

Now using Hensel’s Lemma as given in Proposition B.3] we find b € Z, such that
g(b) = 0. Then we also have f,(b) = 0.
Actually, we have even more.

Proposition 7.2. Assume that (1)) and [T3) hold. Then f¢(z) has exactly one
zero on ZLy.

Proof. Existence of a zero is already proved above. To show uniqueness, we invoke
Strassman’s Theorem[34l Since |51, = 1 by (Z9), the quantity p from Theorem [3.4]
must be 1 by ([C4). Whence the result. O
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8. SUFFICIENT CONDITIONS FOR VALIDITY AND FOR FAILURE OF
CONJECTURES AND

To implement this in practice, we need to express condition (CH]) in terms of
the Tribonacci numbers T'(n) rather than the function g(z). This is not hard. For
z € pO we have

logz=2—1 (mod p?).
In particular, for A € A we

log(ANY) AN —1

= mod p).
) ,— (modp)
Hence,
(8.1)
log(AN AN -1 TU+N)-T(
g (0)=p = Zc,\)\éig( ) = Z e\t = ( ) () (mod p).
xeA AeA p p

Therefore condition () is equivalent to
(8.2) [T(t+N)£T(¢) (mod p?).|

Now, to disprove Conjecture for some prime number p, we must find ¢ such
that both (TI)) and ([B2]) are satisfied, and such that the resulting zero b of fy(z)
satisfies

L+bN & Zrp.
It suffices to show that
£+ bN £0,-1,—4,—17 (mod p).
Moreover, since b = by (mod p), this can be re-written as
0+boN #0,~1,—4,—~17 (mod p).
Using (ZI0) and &), this translates into

(8.3) ui=4f—

T(0) (T(z+ N)

-1
— T(£)> N #£0,-1,—4,-17 (mod p).
p p

Similarly, when p # 3, then Conjecture would fail if

(8.4) |u#0,-1,-4,-17,1/3,-5/3 (mod p). |

Let us summarize what we proved.

Theorem 8.1. Let p # 2,11 be a prime number, and let ¢ € {0,1,... N, — 1} be
such that [T1)), B2) and B3) hold true. Then Conjecture [L2 fails for this p.
Similarly, if p # 3 and (1), B82) and BQ) hold true then Conjecture [0l fails
for this p.

Now let us give sufficient conditions of validity of each conjecture.

Theorem 8.2. Let p be a prime number distinct from 2 and 11. Assume that for
every £ satisfying (1)), condition [82) holds true as well, and the following also
holds: £ =a (mod N) for some a € Zp. Then Conjecture holds for this p.
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Theorem 8.3. Let p be a prime number satisfying A C Q, and 31 N. Assume
that for every € satisfying [l), condition [B2) holds true as well, and the fol-
lowing also holds: ¢ = a (mod N) for some a € Qp. Then Conjecture holds
for this p.

Proof of Theorem B2 Fix ¢ € {0,1,...,N —1}. If pt T(¢) then f,;(z) has no zeros
on Z,, see Proposition [[.Il Now assume that p | T'(¢). Proposition implies that
fe(%) has a single zero on Z,.

Now let a € Zr be such that £ =a (mod N). Write a = ¢+ Nb with b € Z.
Then fo(b) = T(¢ + Nb) = 0. Thus, the single zero of f,(z) is b.

We have just showed that condition of Theorem [G.1] holds true for this p.
The theorem is proved. (I

The proof of Theorem is the same, with the exception that this time we may
have b ¢ Z. However, when A C Q,, p # 2,11 and due to 3 t N, we still have

fe(b) =0, see (B5).

9. THE PROOFS OF THEOREMS [[.4], [[7, AND [L§]

We start with the negative part (part (i)) of Theorem [[.71 We implemented the
algorithms implied by Theorem BTl in Mathematica for all primes p < 600. There
are 109 primes p < 600. For each prime p, we first computed N := N,, the period
of (T},)nez modulo p. Then for each p we searched ¢ such that (I)), (82]) and (83)
all hold true. This calculation took a few minutes and found such an example /¢
for all p < 600 except for p € {2,3,11,83,103,163,397}. See Table[l for the actual
data. This proves the negative part of Theorem [[7l

As for part (ii) of Theorem [L7] when p € {83,397}, we have that N = N, is
287 and 132, respectively. In both cases, the only ¢ € {0,1,..., N — 1} such that
T(¢) =0 (mod p) are £ = —17,—4,—1,0 (mod N). Furthermore for £ € Zr, we
have (T'(N +¢) —T(£))/p = T(N + ¢)/p # 0 (mod p). Thus, taking £ € Zr and
writing for positive integers n = ¢ (mod N), z = (n — £)/N, we have that

T(n) = fo(z) = pg(z) =p Y _ Br2".
k>0
Note that 8y = ¢(0) = T(¢)/p = 0, and B; = ¢’(0) = T(N + £)/p (mod p), so
|B1], = |¢'(0)|, = 1. Further, since v,(p*~1/(k — 1)!) > 1 for all k > 2, it follows
that |Bk|, < 1 for k > 2. This shows that

vp(T(n)) =1+ 1p(9(2) =1+ 1p [ D Bed® | =14 1p(2) = 1+ 1(n - 0),
k>1

which proves part (ii) of Theorem [I7l
Theorem [[§]is proved similarly, only ([83]) is exchanged for (84]) and Zr for Or.

Proof of Theorem [L4l For p = 3, we have N = 13. The only ¢ € {0,...,12} such

that T'(¢) = 0 (mod 3) are £ € {0,7,9,12}. When ¢ = 7, the subsequence T'(13n+¢)
is always 6 modulo 9, and so v3(T(n)) =1if n =7 mod 13.
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TABLE 1. Data for the proofs of Theorems [.7] and A * means
that for this prime, Theorem does not conclude.

P N l U P N l U P N l U
5 31 21 2 179 | 32221 | 100 | 114 || 379 | 48007 | 309 | 76
7 48 5 1 181 | 10981 25 | 66 || 383 | 147073 | 219 | 338
13 | 168 6 4 191 | 36673 | 72 | 22 || 389 | 151711 | 1739 | 354
17 96 28 | 7 193 | 4656 171 | 76 || 401* 400 265 | 132
19 | 360 18 | 12 || 197 | 3234 | 382 | 84 | 409 | 41820 | 365 | 310
23 | 553 | 29 | 15 || 199 198 26 | 40 || 419* 418 277 | 138

29 | 140 | 77 | 24 || 211 | 5565 83 | 203 || 421 420 118 | 214
31 331 14 | 22 || 223 | 16651 | 361 | 38 | 431 | 61920 | 465 | 51

37 | 469 19 | 17 || 227 | 17176 | 34 | 57 | 433 | 62641 | 385 | 334
41 560 | 35 | 15 || 229 | 17557 | 249 | 61 | 439 | 6424 | 781 | 160
43 | 308 | 82 | 11 | 233 | 9048 36 | 126 || 443 | 196693 | 516 | 21

47 46 31 | 16 || 239 | 4760 28 | 85 || 449 | 202051 | 107 | 229
53* 52 33 | 16 || 241 | 29040 | 506 | 57 || 457 | 34808 | 858 | 30
59 | 3541 | 64 | 34 || 251 | 63253 | 304 | 218 || 461 | 35420 | 192 | 9

61 | 1860 | 68 | 34 | 257 256 54 | 34 || 463 | 71611 | 624 | 199
67 | 1519 | 100 | 43 || 263 | 23056 | 37 | 214 || 467 | 218557 | 1269 | 70
71 | 5113 | 132 | 62 || 269* 268 177 | 88 || 479 | 76480 | 56 8

73 | 5328 | 31 | 30 || 271 | 73440 | 331 | 165 || 487 | 79219 | 131 | 85
79 | 3120 | 18 | 76 || 277 | 12788 | 61 | 191 || 491 | 10045 | 802 | 289
89 | 8011 | 109 | 8 281 | 13160 | 536 | 62 | 499* 166 109 | 331
97 | 3169 | 19 | 51 || 283 | 13348 | 777 | 193 || 503 | 42168 | 107 | 497
101 680 | 186 | 23 | 293 | 28616 | 458 | 200 || 509 | 259591 | 1228 | 433
107 | 1272 | 184 | 52 | 307 | 31416 | 30 | 163 | 521 | 271963 | 2058 | 220
109 990 | 105 | 62 | 311 310 123 | 58 || 523 | 273528 | 237 | 16

113 | 12883 | 172 | 15 || 313 | 32761 29 | 184 || 541 | 58536 | 633 | 200
127 | 5376 | 586 | 30 | 317 | 100807 | 36 | 186 || 547 | 149604 | 104 | 72

131 5720 | 79 | 101 || 331 | 36631 | 188 | 4 557 | 103416 | 509 | 424
137 | 18907 | 11 5 337 | 16224 | 320 | 103 || 563 | 52828 | 87 | 232
139 | 3864 | 34 | 49 || 347 | 40136 | 156 | 244 || 569 | 53960 | 322 | 49

149 | 7400 | 10 | 38 || 349 | 17400 | 1428 | 33 | 571 | 40755 | 527 | 155
151 | 2850 | 223 | 142 || 353 | 124963 | 95 | 38 || 577 | 111169 | 361 | 85

157 | 8269 | 71 | 107 || 359 | 42960 | 1204 | 115 || 587" 293 96 | 194
167 | 9296 | 41 | 68 | 367 | 45019 | 692 | 99 | 593 | 3256 | 849 | 422
173 2494 | 314 | 25 || 373 | 139128 | 279 | 188 || 599 598 257 | 485

Next assume that ¢ = 0, —1. Then ¢(0) is congruent modulo 3 to one of
T(13)/3, T(12)/3 and they are both 0, so we need additional terms. We have

N
Bi=> <%)

AEA
N _ N _ 12
EZC)\)\Z <>\ 3 1—(>\2.31) ) (mod 3%)
AEA
_T(N+0)-T() TEN+L-2T(N+6)+T(0) d 32)
= 3 53 (mo .

For both £ =0, —1, we have v3((T(N +¢) — T(¢))) = 2 and
vs(T(2N +£0) = 2T (N +0) + T(¢)) = 3.
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Thus, v3(81) = 1. For j > 4, we get that v3(3;) > v3(3771/4!) > 2. It remains to
B

study v3(B;) for j = 2,3. But we have
3i-1 o (log \V\?
= T (U5)
AEA
J—1 — ,
= 3 ZC)\)\Z < 1) (mod 37)
: PN
i1 (S (C1)i i (YT((f — i)N + ¢ .
_ 3]-' ( o(-1) (?)ﬂ (G DN + )) (mod 39)

and computations show that for j = 2,3, we have
vs(T(2N +0) —2T(N + £) + T(¢)) = 3;
vs(T(BN +4) —3T(2N +£) +3T(N +4¢) —T(¢)) =5
2

Since also v3(3771/j1) = 1 for j = 2,3, we get that v5(82) > 2, v3(83) > 2. Thus,

for n = ¢ (mod 13), we have

v3(T(n)) =vs | b1z + Zﬁkzk =v3(612) =2+ v3(n —0).

k>2

It remains to study the case £ = 9. For this, we take Ny = 3N = 39. This case
then becomes ¢ = —4,—17,9 (mod 39). For ¢ = 9, the subsequence T'(3Nn + {)
is constantly 3* mod 3°, and so v3(T(n)) = 4 for all n = 9 mod 3N. So let
¢ =—4,—17. Then, if n = ¢ (mod 3N), putting z = (n — ¢)/3N, we get

T(n) = 3%9(2),

o) = oo (RUEXD) -3 ok

AEA k>0

where now

For both possibilities of ¢, o = 0. However, modulo 3* we have

log A3

AEA
1 (N —1)?
Egi(T(?)NM)_T(@_T(2-3N+£)—2;(3N+e)+T(e))_

In both cases, v3(T' (B3N +£)—T'(¢) = 5 but v3(T'(2- N+£)—2T (BN +£)+T(¢)) = 6.
Thus, v3(31) = 3. Since v3(8;) > v3(320~1/j1) > 4 for j > 4, we only need to
calculate 8o and 83. We find that

32 (T(2 3N +0) —2T (3N +£) +T(¢)
B2 =

) =0 (mod 3%)

34
and

4 . _ . _
B, = % <T(3 3N +¢)—3T(2 3]\;; )+ 3T(3N +4¢) T(E)) —0 (mod 36).
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We conclude that

v () = s [ 3 | 3 Bt
k>0
= 13(326p2%)
=5+wvs((n+10)/39)
=4+ v3(n+0),

which completes the proof of this theorem. O

For the primes p € {11,103, 163} not covered by Theorem [[7] as we previously
said, our methods do not handle 11. As for p € {103,163}, a computer calculation
found that for such primes whenever £ € {0,1,..., N — 1} is such that condition
([T is satisfied, then ([82) holds but (B3] fails, so our method could not conclude.
For p = 163, N, = 162 = 2 - 3%, and the orders of A1, Ay and A3 in Z,/pZ, are all
divisible by 3. Thus, for £ € Zr and n € Z satisfying n = £ mod Np, n + % =/
mod N, or n + 2];? ={ mod N,, p | T;,. This pattern causes (83)) to fail, and a
more careful analysis is required. For p = 103, a similar phenomenon occurs.

Similarly, for the primes p € {11,47,53,103,163} which are not covered by
Theorem [[.8 our methods fail. Again, 11 is excluded and for p € {103,163} we
cannot conclude for the same reason. Moreover, p € {47,53} suffer the problem
that modulo N, —17 is congruent to either 1/3 or —5/3, and so congruences modulo
p are too weak to conclude.

Using Sagemath, we analyzed all 1229 primes up to 10*. Conjecture holds
for 18 primes and Conjecture for 52 primes. For 58 primes our methods neither
prove nor disprove whether Conjecture holds. All, save for p = 11, exhibit the
same behavior as p = 163. For 4 primes, our methods neither prove nor disprove
Conjecture The only new prime in this set is 2621, for which (82) fails once.

Save for 11, our methods deal with all primes p < 10% such that A ¢ Q,. Only for
p = 83, our algorithm does not reject Conjectures L2 and [[.6] directly. Such primes
are rare (but not non-existent. For example, for 23977 we cannot decide whether
Conjecture[[.2 holds while 25121 satisfies Conjecture[[2]). As N, is generally much
larger for these primes, we ran our algorithm for all 13059 primes p < 10° such
that A C Q,. Of those, 1186 (9.1%) and 3269 (25.0%) primes satisfy Conjectures
and [L6] respectively. For 3451 (26.4%) and 3 (< 0.1%) primes, respectively,
Conjectures and cannot be decided using our methods. For the remaining
5150 primes (39.4%), both conjectures fail.

10. CONJECTURES AND HEURISTICS

Let ML and NM LR be the subsets of primes p such that Conjecture holds
and Conjecture fails, respectively. We propose Conjecture [T0.11

Conjecture 10.1. Both subsets ML and NMLR are infinite. In fact, they are
both of positive lower density as subsets of the set of all primes.

We conclude by offering some heuristics to support our conjecture. Let k be a
large positive integer. The splitting field of the polynomial

9(X) = f(X*) = X% - X — XF -1
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is Ly = Q(¥a, ¥/8,(), where ( is some primitive root of unity of order k.
The degree of L, is at most k?¢(k), where ¢(k) is the Euler function of k. By
the Chebotarev Density Theorem, the primes such that p = 1 (mod k) and also
aP=D/k = g(=1)/k =1 (mod p) form a set of density which is at least 1/(k2p(k)).
For such primes, N | (p — 1)/k, so N is small. Since N < (p — 1)/k a pro-
portion of only about 1/k residues modulo p (at most) are in the image of {7
(mod p) : 0 < £ < N — 1} which suggests that the probability of having an ad-
ditional zero modulo p; i.e., a positive integer £ such that T, = 0 (mod p) and
¢ #£17,—4,-1,0 (mod p) should be at most 1/k. Thus, a positive proportion of
such primes, maybe at least (k—1)/(k3¢(k)) of them, have the property that T, = 0
(mod p) implies £ = —17,—4,—1,0 (mod p). For such primes, fy(0) = 0, so

fo(z2) =p_ B,
f=1

If additionally (B2 is satisfied, so $1 # 0 (mod p), which we conjecture happens
for most such primes, then we would get that v,(7},) = 0 provided that we have
n # —17,—4,—-1,0 (mod p) and v,(T},) = 1+ vp(n — ¢) for n = ¢ (mod p), with
¢ € {—17,—4,—1,0}. This heuristic suggests that ML is infinite and of positive
lower density.

For NMLR let p be a prime such that p = 2 (mod 3) and f(X) (mod p) is
irreducible. By the Chebotarev Density Theorem the set of such primes has density
1/6. For them N | p?> +p+ 1. Let P(m) be the largest prime factor of the positive
integer m. For each fixed u € (0,1), the positive integers n such that P(n) < n*
are called smooth. It is known that the set of smooth numbers has a density
p(u), where p is the Dickman function. It is conjectured that numbers of the form
g(p) where g(X) is some irreducible polynomial should behave like random integers
with respect to smoothness and in particular that P(g(p)) > g(p)" should hold for a
positive proportion of primes p, but this has only been proved for linear polynomials
g(X) and values of u not very close to 1 (for example, Fouvry [6] proved that for any
non-zero integer a the inequality P(p —a) > p®-%7 holds for a positive proportion of
primes p). So, let us assume that there is a positive proportion of primes p such that
f(X) is irreducible modulo p and P(p? + p+ 1) > p*S. Let p be such a prime and
let g= P(p?+p+1). Then N |p?> +p+1. If ¢{ N, then N | (p*> +p+1)/q < p°*.
However, an argument of Erdés and Murty from [4] shows that for any positive real
number X the number of primes p < X which divide NK/Q(ak) for some k < X0-4
is O(X%®) which is o(m(X)) as X — co. This shows that for most of our primes
p (namely, p = 2 (mod 3), f(X) (mod p) is irreducible and P(p? + p + 1) > p*©),
we have that ¢ | N. In particular, N > p'-6. Now Theorem 7.2 in [5] tells us that

#{0<I<N-1:T,=0 (modp)}= % +0(p*?) = (1+0(1))%~

Thus, there are many ¢ in [0, N — 1] with Ty = 0 (mod p). Of these not all might
create p-adic zeros since for example, it might happen that (T4, — T¢)/p = 0
(mod p), or even if this number is non-zero modulo p, it might be that (84) is
not satisfied. However, since we have no reason to believe that the above numbers
are anything but random modulo p, we assume that the first condition fails with
probability 1/p and the second one fails with probability 6/p, getting in this way
that the number of ¢ € [0, N — 1] such that ¢ # —17,—4,—1,0 (mod p) and both
conditions (82) and &4) hold is (1 + o(1))N/p + O(N/p?) = (1 + o(1))N/p. So,
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for most of such primes Conjecture would fail, which suggests that NMLR is
of positive lower density.
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