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Abstract

Let b be an algebraic number with |b| > 1 and H be a finite set
of algebraic numbers. We study the transcendence of numbers of the
form

∑∞
n=0

an

bn where an ∈ H for all n ∈ N. We assume that the
sequence (an)

∞
n=0 is generated by coding the orbit of a point under

an irrational rotation of the unit circle. In particular, this assumption
holds whenever the sequence is Sturmian. Our main result shows that,
apart from some trivial exceptions, all numbers of the above form are
transcendental. We moreover give sufficient conditions for a finite set
of such numbers to be linearly independent over Q.

1 Introduction

For an integer b ≥ 2, the b-ary expansion of a rational number is eventually
periodic. Over the last few decades, a number of results have emerged to
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the effect that an irrational number whose b-ary expansion has low com-
plexity must be transcendental. For example, Ferenczi and Maduit [12]
proved the transcendence of every number whose b-ary expansion is Stur-
mian. Recall that Sturmian words are those with minimal subword com-
plexity among non-eventually-periodic words. Indeed, let p(n) denote the
number of distinct length-n factors, then an infinite word is Sturmian if
p(n) = n + 1 for all n, whereas a word is eventually periodic iff it satisfies
p(n) ≤ n for some n. The above-mentioned result of [12] was strength-
ened by Adamczewski, Bugeaud, and Luca [5], who showed that if the b-ary
expansion of an irrational number has linear subword complexity; i.e., it
satisfies lim infn→∞

p(n)
n < ∞ , then the number must be transcendental.

The approach of [5, 12] can be refined to derive transcendence measures
based on certain combinatorial characteristics of the b-ary expansion of a
given number (see [4, 9]). In another direction, Adamczewski [2] has given
lower bounds on the subword complexity of the b-ary expansion of certain
transcendental exponential periods.

Our aim in this paper is to prove transcendence results for numbers of
the form

∑∞
n=0

an
bn , where b is complex algebraic with |b| > 1, and the an are

drawn from a finite set H of algebraic numbers. The assumption that we
place on the sequence (an)

∞
n=0 is a generalisation of the Sturmian property—

namely that the sequence be the coding of an irrational rotation on the unit
circle. Roughly speaking, this means that there is an irrational number θ
and a partition of the unit circle into finitely many disjoint intervals such
that an is determined by the interval containing {nθ} for all n ∈ N. Morse
and Hedlund [15] showed that all Sturmian words over a two-letter alphabet
arise as codings of a rotation into two intervals of respective lengths θ and
1−θ; moreover, it is known that such codings have affine subword complexity
function p(n) = cn + d for all sufficiently large n [7, 18]. A special case of
our main result is that

∑∞
n=0

an
bn is transcendental whenever (an)

∞
n=0 is the

coding of a rotation (and hence whenever (an)
∞
n=0 is Sturmian).

A key difference between the aforementioned transcendence results of [5,
12] and the setting of this paper is that our base b is allowed to be any
algebraic number with |b| > 1 and our set of digits H is allowed to be an
arbitrary set of algebraic numbers, not just {0, 1, . . . , b − 1}. We note that
Adamczewski and Bugeaud [3] were able to slightly generalise the transcen-
dence criterion from [5] to accommodate the situation of a base b > 1 that
is a Pisot or Salem number. The papers [5, 3, 12] use p-adic versions of
Roth’s Theorem and the Subspace Theorem. The Mahler method has also
been used to establish transcendence of numbers of the form

∑∞
n=0

an
bn for

(an)
∞
n=0 a non-ultimately periodic automatic sequence and b > 1 real alge-
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braic. An apparent limitation of this approach, as pointed out by Becker [6],
is that it only appears to work when b is sufficiently large in terms of (an)

∞
n=0

(however, see the remark following Theorem 1 relative to the work [10]).
We now introduce the technical setting of our main results. Let b be

complex algebraic with |b| > 1, and θ be real irrational. Let ℓ ≥ 1 and

A = {r1, . . . , rℓ} ⊂ (0, 1). (1)

We assume that r1 < · · · < rℓ and put r0 := 0, rℓ+1 := 1. For a subset
B ⊂ [0, 1], let

δB := 1NB with NB := {n ≥ 0 : {nθ} ∈ B}. (2)

Let u := (u0, u1, . . . , uℓ) ∈ Qℓ+1
. Put

T (b, θ, A,u) :=
∑
n≥0

ℓ∑
i=0

uiδ[ri,ri+1](n)

bn
. (3)

Our aim is to study conditions under which T (b, θ, A,u) is transcendental.
Note that

T (b, θ, A,u) =
∑
n≥0

ℓ∑
i=0

ui(δ[0,ri+1](n)− δ[0,ri](n))

bn

=

ℓ∑
i=0

∑
n≥0

(ui − ui+1)
δ[0,ri+1](n)

bn
,

where uℓ+1 := 0. The last term in the above sum on the right (when i = ℓ) is
uℓ
∑

n≥0 1/b
n = uℓb/(b−1). So, we see that if ui = ui+1 for i = 0, 1, . . . , ℓ−1,

then T (b, θ, A,u) ∈ Q. So, we assume that there exists i ∈ {0, 1, . . . , ℓ− 1}
such that ui ̸= ui+1. In fact, we may assume that this condition holds for
all i = 0, . . . , ℓ− 1, for if this condition fails for i = j ∈ {0, . . . , ℓ− 1}, then
we can work with the set A\{rj} (so, we eliminate rj from A).

In addition, we also assume that

rj − ri ̸∈ Zθ + Z for 1 ≤ i ̸= j ≤ ℓ. (4)

This does not restrict the generality of our problem. Indeed, assume say
that rj = ri + vθ + u for some u, v ∈ Z. We may suppose that v ≥ 0
otherwise we swap ri and rj . Then

nθ − rj ≡ (n− v)θ − ri (mod 1).
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Thus, {nθ} ∈ [0, rj ] if and only if {(n− v)θ} ∈ [0, ri], which shows that

∑
n≥0

δ[0,rj ](n)

bn
=

v−1∑
n=0

δ[0,rj ](n)

bn
+

1

bv

∑
m≥0

δ[0,ri](m)

bm
. (5)

In particular, up to translating T (b, θ,A,u) by an algebraic number and
replacing u0, . . . , uj−1, uj+1, . . . , uℓ by some linear combination of themselves
with uj with algebraic coefficients, we may eliminate rj out of A. Thus, we
assume that any two values among r1, . . . , rℓ are incongruent modulo the
lattice Zθ+Z. Note that condition (4) is satisfied for example when ri ∈ Q
for i = 1, . . . , ℓ. Indeed, in this case, since θ is irrational, it follows that if
rj−ri ∈ Zθ+Z, then rj−ri ∈ Z and since both ri and rj are in (0, 1), this is
impossible. Let b1, b2, . . . , bk be complex numbers. We label them such that
|b1| ≤ |b2| ≤ · · · ≤ |bk| and let r ∈ {1, . . . , k} be such that |b1| = |br| < |br+1|.
That is, r is the number of the bi’s which have maximal absolute value. Then
we have.

Theorem 1. Let θ be irrational, ℓ ≥ 1, A be the set given by (1), satisfying

(4) and u ∈ Qℓ+1\{0} satisfying ui ̸= ui+1 for all i = 0, 1 . . . , ℓ−1. Assume
that b1, . . . , bk are multiplicatively independent algebraic numbers of modulus
> 1. Then

1, T (b1, θ, A,u), . . . , T (bk, θ, A,u)

are linearly independent over Q in the following cases:

(i) r = 1;

(ii) r = 2, θ is a ratio of two logarithms of algebraic numbers and A
consists of algebraic numbers;

(iii) θ has bounded partial quotients.

The case k = ℓ = 1 and b > 1 real algebraic has been established
recently in [10]. As an example application of Theorem 1, we derive the
transcendence of the sum ∑

n
cos(nθ)>0

cos(nθ)

bn

in case θ is real such that eiθ is algebraic but not a root of unity. This answers
a question posed in [13, Section 4] in relation to a decision problem in control
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theory. The application proceeds as follows. Put b1 := beiθ, b2 := be−iθ and
note that the number above is

1

2

 ∑
n>0

cos(nθ)>0

eiθn

bn
+

e−iθn

bn

 =
1

2

∑
n>0

cos(nθ)>0

(
1

bn1
+

1

bn2

)

=
1

2
T (b1, θ1, A,u) +

1

2
T (b2, θ1, A,u),

where θ1 := θ/(2π) = log(eiθ)/ log(−1) is irrational and a ratio of two log-
arithms of algebraic numbers, ℓ = 2, A = {1/4, 3/4} ⊂ Q, u = (1, 0, 1).
Condition (4) holds since r1, r2 are rational. To see that b1, b2 are mul-
tiplicatively independent, assume on the contrary that bx1 = by2 for some
integers x, y not both zero. Taking absolute values we get |b|x = |b|y, so
x = y. Thus, the relation bx1 = by2 now simplifies to e2ixθ = 1, a contra-

diction since eiθ is not a root of 1. Thus transcendence of
∑
n>0

cos(nθ)>0

cos(nθ)

bn

follows from Theorem 1. In fact, our result gives more: for example, we
have that

1,
∑
n>0

cos(nθ)>0

cos(nθ)

bn
,

∑
n>0

sin(nθ)>0

sin(nθ)

bn

are linearly independent over Q.
We now describe a second consequence of Theorem 1. Let v := (v1, . . . , vℓ) ∈

Qℓ\{0} and put

S(b, θ, A,v) :=
∑
n≥0

ℓ∑
i=1

vi

b⌊nθ+ri⌋
. (6)

Again we assume condition (4) for if not, say if rj − ri ∈ Zθ + Z, then an
argument similar to the one from (5) shows that∑

n≥0

1

b⌊nθ+rj⌋
∈ Q

∑
n≥0

1

b⌊nθ+ri⌋
+Q.

Hence, up to a translate of S(b, θ, A,v) by a number in Q and up to replacing
vi by a linear combination of vi and vj , we can eliminate rj from A. Then
we have.
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Theorem 2. Let θ be irrational, A be the set given by (1) satisfying (4),

and v ∈ Qℓ\{0}. Assume that b1, . . . , bk are multiplicatively independent
algebraic numbers of modulus > 1. Then

1, S(b1, θ, A,v), . . . , S(bk, θ, A,v)

are linearly independent over Q in the following cases:

(i) r = 1;

(ii) r = 2, θ is a ratio of two logarithms of algebraic numbers and A
consists of algebraic numbers;

(iii) θ has bounded partial quotients.

The particular case k = ℓ = 1 and b := b1 ∈ Z has been proved by
Adamczewski and Bugeaud in [4], while the case when k = 1, ℓ = 2 and
b = b1 ∈ Z appears in [8].

2 The Subspace Theorem

Our main tool is the Subspace Theorem which we now recall. For a prime
p and x ∈ Q we put

|x|p = p−ordp(x),

for x ̸= 0, where ordp(x) is the exponent of p in the factorisation of x, and
|0|p = 0. We also put |x|∞ := |x| and M := {∞} ∪ {p : p prime}. For all
x ∈ Q∗ we have the product formula∏

v∈M
|x|v = 1 .

We extend the p-adic valuation to algebraic numbers by putting for x ∈ Q,

|x|p = |NK/Q(x)|1/[K:Q]
p for Q(x) ⊂ K and [K : Q] < ∞.

As is well known, the above formula depends only on x and p and not on the
number field K containing x. We will work with linear forms L(x) ∈ Q[x],
where x := (x1, . . . , xm). When specialising (x1, . . . , xm) to a vector in Km

for some number field K, we will need to work with the infinite valuations
of K extended to Q. Assume that the field K has r + s infinite valuations,
where r is the number of real ones and s is the number of complex ones.
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Labelling them σ1, . . . , σK , where K := r + s, they are defined, for x ∈ K,
by

|x|∞k
:= |x(σk)|δk/[K:Q] for all k = 1, . . . ,K,

where δk = 1 if K(σk) is real and δk = 2 if K(σk) is complex non-real for
k = 1, . . . ,K. We extend these valuations to Q in the same way as we
extended the p-adic valuations from Q to Q. Namely, if x ∈ Q, we put

|x|∞k
:= |NL/K(x)|1/[L:K]

∞k
, where K(x) ⊂ L and [L : Q] < ∞

for k = 1, . . . ,K. As in the case of the p-adic valuations, the above number
depends only on K and x and does not depend on the number field L con-
taining K(x). We put MK for the set of all the valuations of K extended to
Q, namely MK := {∞1, . . . ,∞K}∪ {p : p primes}. Below is the form of the
Subspace Theorem that we use. It was first proved in 1977 by Schlickewei
[19].

Theorem 3. Let K be a number field and S be a finite subset of MK con-
taining all the infinite valuations on K. Let m ≥ 2. For each v ∈ S, let

L1,v(x), . . . , Lm,v(x),

where x := (x1, . . . , xm) be linearly independent linear forms in x with coef-
ficients in Q. Given δ > 0, the set of solutions to

∏
v∈S

m∏
i=1

|Li,v(x)|v < ∥x∥−δ, x ∈ Om
K (7)

belongs to finitely many proper subspaces of Km. Here,

∥x∥ := max{|xi|v, v ∈ MK, 1 ≤ i ≤ m}.

Note that since a solution x to inequality (7) is a vector with algebraic
integer components, it follows that ∥x∥ is realised by one of the infinite
valuations |xi|v, v ∈ {∞1, . . . ,∞K} of the coordinate xi for i ∈ {1, . . . ,m}
of x.

3 A Transcendence Criterion

The transcendence of automatic numbers of certain forms has been studied
in many papers. See [3], [4], [5] for example. Here is the setup. Let b ≥ 2 be
an integer, {an}n≥0 be a sequence with values in a finite set of nonnegative
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integers say B = {0, 1, . . . , b− 1} which is not eventually periodic. Consider
the infinite word

a := a0a1 . . . ak . . .

Assume that there exist two sequences {rn}n≥1, {sn}n≥1 and a number
w > 1 such that:

(i) rn/sn = O(1);

(ii) The sequence {sn}n≥1 tends to infinity;

(iii) a = UnVn . . . Vn︸ ︷︷ ︸
w times

. . ., where Un, Vn have lengths rn and sn, respectively

(here, we mean that the first rn + ⌊wsn⌋ letters of a and UnVnVn . . .
coincide).

Then the number
Sb(a) :=

∑
n≥1

an
bn

is transcendental. This is the main result in [5] (see also [3] and [4]). A few
comments are in order. For example, how important is it that the set of
values of a is [0, b − 1] ∩ Z? Can it be any finite set of algebraic numbers?
Can one replace the condition b being an integer by the weaker condition
that b is algebraic with |b| > 1? In this paper, we address these questions.

In the rest of this section we reproduce the proof from [5]. In the next
sections we suitably modify it and pay attention to the eventual obstruc-
tions for the method to go through. In the last section we show that our
sequences fulfil all the criteria that we introduce along the way and we get
the announced results. Put α := Sb(a). The proof uses (iii) and introduces

α(n) :=
∑
j≥1

a
(n)
j

bj
, (8)

where a(n) := a
(n)
1 a

(n)
2 . . . a

(n)
j . . . is the approximant UnVnVnVn · · · of a.

More precisely the numbers a
(n)
j appearing in α(n) are given by

a
(n)
j :=

{
aj for j ≤ rn + wsn;

a
(n)
j−sn

for j > rn + wsn.

Certainly, since α(n) has the compact formula

α(n) =
pn

brn(bsn − 1)
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for some pn ∈ Z, we see that (iii) leads to

|α− α(n)| < 1

brn+wsn
.

This in turn leads to

|αbrn+sn − αbrn − pn| <
1

b(w−1)sn
. (9)

Assuming α is algebraic, the above is a linear form in three variables

L(x1, x2, x3) := αx1 − αx2 − x3,

with algebraic coefficients which is “small” in the Archimedean valuation
∞ infinitely often at points (x1, x2, x3) := (brn+sn , brn , pn) of which two are
powers of b, in particular composed only of primes dividing b. Condition
(i) controls the size of the right–hand side of (9) in terms of the height of
(x1, x2, x3). Namely, since sn ≥ 0, we get that pn ≍ brn+sn . Recall that
the notation A ≍ B, means that both |A| ≪ B and |B| ≪ A hold. In
particular, ∥x∥ ≍ brn+sn . Hence, we see that bsn ≫ ∥x∥η, where η can be
taken to be 1/(C1 + 1), and C1 > rn/sn holds for all n ≥ 1. Condition
(ii) ensures that there are infinitely many solutions to the above inequality
(9). An immediate application of the Subspace Theorem (with K := Q and
S := {∞}∪{p : p | b} and δ := (w−1−ε)η, where ε > 0 is sufficiently small so
δ is positive), gives that infinitely many of those points must satisfy a linear
equation. We give these details in subsequent sections. But we already have
a natural candidate for the linear equation namely L(brn+sn , brn , pn) = 0.
One shows that in fact, only this linear form can vanish infinitely often (other
potential candidates of fixed linear forms vanishing on (brn+sn , brn , pn) give
only finitely many possibilities for n), but this leads to α being rational.
Since an has values in {0, 1, . . . , b − 1}, the series Sb(a) is in fact the base
b expansion of α and one now invokes the elementary criterion that α is
rational only if {an}n≥0 is eventually periodic which is not the case. This
gives the desired contradiction.

4 A New Transcendence Criterion

This bird’s eye view of the proof of the main result in [5] shows that if one
wants to make progress one needs to get better at two things:

(1) get better (“smaller”) expressions like (9).
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(2) replace the requirement that {an}n≥0 take values in {0, 1, . . . , b − 1}
by a combinatorial condition on a that allows the an to have values in
any finite set of algebraic numbers.

We start by considering transcendence of a single number Sb(a). We assume
that b is algebraic with |b| > 1. As suggested by (2) above, we shall assume
that the set of values of a is a finite set of algebraic numbers denoted H.
We put K := Q(b) and assume it has degree D. Up to multiplying through
by a common denominator of the numbers in H, we assume that they are
all algebraic integers and we let H be an upper bound for the house (largest
absolute values of the conjugates) of any of these numbers. We keep the
sequences {rn}n≥1 and {sn}n≥1 satisfying (i) and (ii) and we assume addi-
tionally that they are strictly increasing. We carry over also the definition
of the ultimately periodic approximant a(n) of a. As before, we assume
that C1 > rn/sn for all n ≥ 1. Along the way, we will find other constants
C2, C3, . . .. They all depend on our data a, b, b1, . . . , bk, but not on w. If we
want to write something depending on w, we will emphasise the dependence
by writing C(w), or Ow(1).

We replace (iii) by the following requirement:

(iii.1) BPP: For each integer w > 1 there exists nw such that for all n ≥ nw

there exists tn such that, putting m := rn + wsn, we have{
j ∈ [0,m) : aj ̸= a

(n)
j

}
= ({i1(n), . . . , itn(n)}+ Z≥0sn) ∩ [0,m) .

We assume further that the iℓ(n) ≥ sn are distinct modulo sn and
write Iw(n) for the union of all arithmetic progressions on the right-
hand side above. We further require that for j = 1, 2, . . . , w − 1,

#({i1(n), . . . , itn(n)} ∩ [rn + jsn, rn + (j + 1)sn)]) = O(1).

(iii.2) EGP: If tn ≥ 2, then iℓ(n) − iℓ−1(n) tends to infinity with n for
ℓ = 2, 3, . . . , tn. Formally, we write this as

lim
n→∞

min
2≤ℓ≤tn

iℓ(n)− iℓ−1(n) = +∞.

We also make the convention that the above limit is also +∞ when
tn = 1.

(iii.3) LPP: There exists a function f0 : N → N such that f0(m) tends to
infinity with m and for ℓ = 1, . . . , tn and m ∈ Z≥0, we have

aiℓ(n)+msn = aiℓ(n)+(m+1)sn , for all 0 ≤ m ≤ f0(sn+1).
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We use BPP for “Bounded Progression Property”, EGP for “Expanding
Gaps Property” and LPP for “Long Pattern Property”. Note that (iii.1)
implies that tn = O(w). Furthermore, (iii.1), (iii.3), the facts that w is
fixed, f0 tends to infinity and (sn)n≥1 is strictly increasing insures that for
all w and all n > nw,f0 (a sufficiently large positive integer), we have

aiℓ(n) = aiℓ(n)+jsn for j = 1, 2, 3, . . . , w.

This property is crucial in what follows.

4.1 Using condition (iii)

Let us see what is the advantage of the above condition (iii). We follow the
method from [5]. Let any w > 1 be arbitrarily large but fixed. We will see
how large we need it later. Let n > nw,f0 and let α(n) be given by (8) with

the same definition of a
(n)
k . Conditions (iii.1), (iii.3) and the remark at end

of the previous subsection imply∣∣∣∣∣α− α(n) −
tn∑
ℓ=1

cℓ
biℓ(n)(bsn − 1)

∣∣∣∣∣ < 2H

|b|rn+wsn
,

where cℓ := aiℓ(n)−aiℓ(n)−sn for ℓ = 1, 2, . . . , tn. Note that cℓ is well–defined
since iℓ(n) ≥ sn. Note also that since an ∈ H it follows that the cℓ’s have
values in the finite set H−H of algebraic integers. In particular, the house
of cℓ is at most 2H for ℓ = 1, . . . , tn. Since tn = O(w) and w is fixed, by
passing to a subsequence, we may assume that tn = t is fixed. Since t is
fixed and the cℓ’s take values in a finite set, we may assume, by passing
again to a subsequence, that the cℓ’s are fixed for ℓ = 1, . . . , t. Clearly, there
are finitely many choices for (t, c1, . . . , ct). Replacing α(n) by its formula we
get ∣∣∣∣∣α− pn

brn(bsn − 1)
−

t∑
ℓ=1

cℓ
biℓ(n)(bsn − 1)

∣∣∣∣∣ < 2H

|b|rn+wsn
. (10)

Multiplying across by brn(bsn − 1), we get∣∣∣∣∣αbrn+sn − αbrn − pn −
t∑

ℓ=1

cℓb
rn−iℓ(n)

∣∣∣∣∣ < 2H

|b|(w−1)sn
. (11)

The left–hand side in (11) above is a linear form in t+ 3 indeterminates

L(u1, u2, y, z1, z2, . . . , zt) := αu1 − αu2 − y −
t∑

ℓ=1

cℓzℓ. (12)
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Assuming α ∈ Q, the above form has coefficients which are algebraic num-
bers in the extension L := K(α,H). Here is our intermediate result.

Lemma 1. Assume that conditions (i), (ii) and (iii) hold, that b is alge-
braic, |b| > 1 and that α := Sb(a) is also algebraic. Then there exists a
constant C2 := C2(b,a) such that for w > C2 and all n > nw,f0 the following
holds: There exist C3(w), a finite set E of numbers in L containing 0 (which
depends on w), ℓ ∈ {1, 2, . . . , tn} with iℓ(n) > wsn − C3(w) in Iw(n), such
that the left-hand side of (10) equals

α− pn
brn(bsn − 1)

−
tn∑
u=1

cu

biu(n)(bsn − 1)
=

e

biℓ(n)(bsn − 1)
for some e ∈ E.

(13)
If Iw(n) = ∅, then we understand that in the above equation the number e
is zero.

Proof. For simplicity we write t := tn. Let B be a common denominator for
b and 1/b. That is, B is a positive integer such that both bB and B/b are
algebraic integers. Assume w > C1 + 2. Multiplying (11) by Bwsn , we get∣∣∣∣∣αBwsnbrn+sn − αBwsnbrn −Bwsnpn −

t∑
ℓ=1

cℓB
wsnbrn−iℓ(n)

∣∣∣∣∣
<

2H|B|wsn

|b|(w−1)sn
. (14)

The left–hand side is L(x), where x := (x1, . . . , xt+3) and L is given by (12).
We label the coordinates of x as (u1, u2, y, z1, . . . , zt), where

(u1, u2, y) :=
(
Bwsnbrn+sn , Bwsnbrn , Bwsnpn

)
, (15)

and
zℓ := Bwsnbrn−iℓ(n) for ℓ = 1, . . . , t. (16)

These vectors have algebraic integer components in OK. Indeed the first two
are clear, the last t are so since B is a common denominator of b and 1/b
and rn + wsn ≥ rn + iℓ(n)sn for all ℓ = 1, . . . , t. The only one that is in
doubt is x3 but since

pn =

rn+sn∑
i=0

aib
rn+sn−i,

it follows that

pnB
rn+sn =

rn+sn∑
i=0

ai(bB)rn+sn−iBi ∈ OK.

12



So, in fact x3 is an algebraic integer which is a multiple of B(w−1)sn−rn .
Recall that w > C1+2, so the exponent of B above is positive. We consider
the set S consisting of all the infinite places of K (where we adopt the
convention that the regular absolute value of K is denoted ∞1), and the
primes p dividing B or such that |b(σ)|p ̸= 1 for some σ ∈ Gal(K/Q). We
extend these valuations to L := K(α,H). The system of linear forms is

Li,ν(x) := xi for all (i, ν) ∈ {1, . . . , t+ 3} ∪ S\{(3,∞1)},

and
L3,∞1(x) := L(x).

For each ν ∈ S the t + 3 forms are linearly independent. We compute the
double product ∏

ν∈S

t+3∏
i=1

|Li,ν(x)|ν ,

where the coordinates of x are given by (15) (the first three) and (16) (the
last t). By the product formula and the fact that all coordinates except
the third one are S-units, the subproducts corresponding to any fixed i ̸= 3
in the set {1, 2, . . . , t + 3} (and all valuations ν in S) is 1. For the third
coordinate, the product over the finite places is at least B−((w−1)sn−rn) since
this coordinate is an algebraic integer divisible by B(w−1)sn−rn . For the
infinite place ∞1, we get that

|L3,∞1(x)|∞1 ≪
(

Bwsn

|b|(w−1)sn

)1/δ1

,

where δ1 ∈ {1/D, 2/D}. Finally, for the infinite places ∞k with k > 1, we
get that

|L3,∞k
(x)|∞k

= |x3|∞k
≪ sn|B|wsnδk |B1|(rn+sn)δk ,

where δk ∈ {1/D, 2/D}, the implied constant can be taken to be

2|H|(1 + C1),

and we put B1 := max{B|b(σ)| : σ ∈ Gal(K/Q)}. Thus,

∏
ν∈S

t+3∏
i=1

|Li,ν(x)|ν ≪ snB
sn+rnBrn+sn

1

|b|(w−1)sn/D
≪ sn

(
B

2(C1+1)
1

|b|(w−1)/D

)sn

.

Taking w such that

w > 4D(C1 + 1)
logB1

log |b|
+ 1,

13



we get that

∏
ν∈S

t+3∏
i=1

|Li,ν(x)|ν ≪ sn
|b|η1sn

≪ 1

∥x∥η2
provided w >

4D

log |b|
+ 1,

where we can take

η1 :=
w − 1

2D
, η2 :=

δ1 log |b|
2(C1 + w) logB

=
(w − 1) log |b|

4D(C1 + w) logB1
,

and w is large enough such that |b|η1/2 > 2 (so we can use the inequality
|b|η1sn/2 > 2sn > sn which holds for all n ≥ 1). An interesting feature of
η2 is that it is bounded from below by the quantity log |b|/(8D logB1) for
sufficiently large w. Further, the height of our points is at least as large
as (rn + sn) log |b|, so they are “large points”. Now the Subspace Theorem
tells us that such points x lie in finitely many proper subspaces. There are
bounds on the number of such subspaces. We cite such bounds from a paper
of Evertse and Schlickewei [11]. For the bounds, one looks at “small points”
and “large points”. The large points are the ones whose height exceeds
the height of the form L. Our points have this property for all n > n0,
where n0 := n0(b,a). The number of subspaces containing “large points”
is bounded by exp(O(t(w)2)) = exp(O(w2)), where the constant implied by
the above O depends on b and a. Thus, there exists a finite set of linear
equations of the form

L1(x) =
t+3∑
i=1

d
(λ)
i xi = 0 for λ = 1, 2, . . . , T (w), (17)

with coefficients d
(λ)
i ∈ Q(b) for i = 1, . . . , t+3 depending on w, not all zero,

such that each of our points x satisfies one of the above equations. And all
we have to do is to show that any of the equations given at (17) has Ow(1)
solutions n except if it is equivalent (proportional) to the equation L(x) = 0
or it is equivalent to one of the additional equations (13) permitted by the
lemma. So, let’s do it. We fix one such λ and then omit the dependence on
the superscript λ of the coefficients di’s. Assume that x satisfies equation
(17) with some linear form L1(x) not parallel to L(x). Let j ∈ {1, . . . , t+3}
be such that xj appears in L1(x) with coefficient dj ̸= 0. Assume that it ap-
pears in L(x) with coefficient ej . Replace L(x) by L(x)−(ej/dj)L1(x), which
is not the zero form. The value of the left–hand side of (11) is unchanged
but it is now a linear form in t+2 variables x1, . . . , xj−1, xj+1, . . . , xt+3. By
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the Subspace Theorem again there is some nonzero linear equation among
the variables which cannot be L(x) − (ej/dj)L1(x) = 0 since that would
imply L(x) = 0, which we assume not to hold. Thus, we can eliminate one
more variable. Going in this way, we replace L(x) by

L(x)− µ1L1(x)− µ2L2(x)− · · · ,

where at each step Li(x) = 0 and each Li(x) has at most t+ 3− i indeter-
minates appearing in it with a nonzero coefficient. At the end of the day,
we end up with a form in one variable. If that variable is x3, we then get
that

|pn| ≪w
1

|b|(w−1)sn
,

which implies
|pn|

|b|rn |bsn − 1|
≪w

1

|b|rn+wsn
. (18)

The implied constant depends on w since it comes from one of the above
subspaces. If this will happen for arbitrarily large values of w and infinitely
many n, we would get that pn = 0. In particular, α = 0. Returning to
our inequalities (11), we get that the left–hand side of (11) is a linear form
in S-units, which is small. If it has at least two S-units in it, then we can
write one of finitely many S-unit equations and use each one of them to
eliminate another variable. At the end of the day, we get either L(x) = 0,
which we assumed not to hold, or if L(x) ̸= 0, there is one variable among
x1, x3, . . . , xt+3 which survives. If it is among x1, x2 (so α ̸= 0), we get

|b|rn ≪w
1

b(w−1)sn
,

which a bound on n. This was assuming α ̸= 0, for if α = 0, then x1, x2 did
not appear at all. Thus, it remains to analyse the case when the variable is
among the zℓ’s. We then get

L(x) = ebrn−iℓ(n),

which leads to the desired conclusion by dividing across by brn(bsn − 1).
Note that in this case since |L(x)| ≪ b−rn−wsn , we get iℓ(n) ≥ wsn−C3(w),
as claimed.

To see that this is the right formulation, let us see a multidimensional
version. We start with algebraic numbers b1, . . . , bk which are multiplica-
tively independent and of absolute values larger than 1. We would like to
show that

1, Sb1(a), . . . , Sbk(a)

15



are linearly independent over Q under certain conditions. To show this we
can set up the same machine as in (10). We assume that k ≥ 2 and that

λ0 + λ1Sb1(a) + · · ·+ λkSbk(a) = 0 (19)

for some λ0, . . . , λk algebraic numbers not all zero. We write estimates (10)
for αi = Sbi(a) for i = 1, . . . , k and take an appropriate linear combination
of them to get∣∣∣∣∣∣λ0 +

k∑
j=1

λj
pn(bj)

brnj (bsnj − 1)
+

k∑
j=1

t∑
ℓ=1

d
(j)
ℓ

b
iℓ(n)
j (bsnj − 1)

∣∣∣∣∣∣≪ 1

|b|rn+wsn
.

Here, |b| := min{|bj | : j = 1, . . . , k} and d
(j)
ℓ := λjcℓ are algebraic numbers

for ℓ = 1, . . . , t and j = 1, . . . , k which are linear combinations of the original
cℓ for ℓ = 1, . . . , t with the coefficients λ1, . . . , λk. They belong to the finite
set
∑k

j=1 λjH. Here is the next result.

Lemma 2. Assume that a satisfies (i), (ii), (iii). Assume that b1, . . . , bk
are algebraic, |bj | > 1 for j = 1, . . . , k and that there is a nontrivial linear
relation with algebraic coefficients among 1, Sb1(a), . . . , Sbk(a):

λ0 +
k∑

j=1

λjSbj (a) = 0. (20)

Then there exists a constant C4 := C(a, b1, . . . , bk, λ0, λ1, . . . , λk) such that
for each w > C4 and n > nw,f0, there exists a finite set E depending on w
such that for all but finitely many n, one of the equations

λ0 +

k∑
j=1

λj
pn(bj)

brnj (bsnℓ − 1)
+

k∑
j=1

tn∑
u=1

d
(j)
iu(n)

b
iu(n)
j

=
e
∏k

m=1 b
δjsn
m

b
iℓ(n)
j (bsn1 − 1) · · · (bsnk − 1)

(21)

holds for some j = 1, . . . , k and ℓ ∈ {1, . . . , tn}, where if e ̸= 0 then δi ∈
{0, 1} for i = 1, . . . ,m with δj = 0. In addition, if e ̸= 0, then iℓ(n) > C5wsn
for some constant C5 provided sn is large enough.

Proof. We work with K := Q(b1, . . . , bk) and as before we denote its degree
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by D. Then we get∣∣∣∣∣∣∣∣λ0

k∏
j=1

brnj (bsnℓ − 1) +
k∑

j=1

λj

 ∏
m̸=j

1≤m≤k

brnm (bsnm − 1)

 pn(bj)

−
k∑

j=1

brnj

t∑
ℓ=1

d
(j)
ℓ b

−iℓ(n)
j

k∏
1≤m≤k
m ̸=j

(bsnm − 1)

∣∣∣∣∣∣∣∣
≪ 1

|b|rn+wsn−C6(rn+sn)
≪ 1

|b|(w−C7)sn
, (22)

where |b| := min{|bj | : 1 ≤ j ≤ k}. Here, we can take

C6 := (
k∑

j=1

log |bj |)/ log |b|), and C7 := C6(C1 + 1).

In the left, we expand all parenthesis and have a linear form in

2k + k2k−1 + 2k−1kt

variables. Putting

M :=

k∏
j=1

brn+sn
j ,

our variables are

M

∏
j∈T

bsnj

−1

, T ⊆ {1, . . . , k},

M/(brn+sn
j )×

 ∏
m∈Tj

bsnm

−1

pn(bj), 1 ≤ j ≤ k, Tj ⊆ {1, . . . , k}\{j},

and

Mb
−iℓ(n)
j

 ∏
m∈Tj

bsnm

−1

, Tj ⊆ {1, . . . , k}\{j}, 1 ≤ j ≤ k, 1 ≤ ℓ ≤ t.
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Letting B be a common denominator for bj , 1/bj for all j = 1, . . . , k, we mul-
tiply both sides of (22) by Bkrn+ksn . The finite set of valuations S consists
of the infinite ones of K together with the finite ones p such that either p is a

factor of B or |b(σ)j |p ̸= 1 for some j = 1, . . . , k and some σ ∈ Gal(K/Q). We
extend these valuations to L := K(λ0, . . . , λk,H). All coordinates except for
k2k−1 of them (the ones involving the expressions pn(bj) for j = 1, . . . , k)
are S-units. We take the same system of forms namely Li,ν(x) := xi except
for one form corresponding to the infinite place ν1 which is the embedding
corresponding to b, and i := 2k + 1 (first indeterminate containing one of
pn(b1)), where we take it to be L2k+1,ν1(x) = L(x) where this form is the
one from the left–hand side of (22) after expanding all the parenthesis. A
similar calculation as in Lemma 1 shows that with this system of forms and
for the above points x, we have,

∏
ν∈S

2k+k2k−1+2kkj∏
i=1

|Lν,i(x)|ν ≪H,k,Λ
(snB

2(C1+1)sn
1 )k2

k−1

|b|(w−C7)sn/D
.

The implied constant depends on k,H and Λ, where this last parameter is
an upper bound on the houses (largest conjugate) of the algebraic integers
λ0, . . . , λk and

B1 := max{B|b(σ)j | : 1 ≤ j ≤ k, σ ∈ Gal(K/Q)}.

Taking w > 4D(C1 + 1)2k−1k logB1/ log |b| + C7, it follows that the factor
involving B1 can be absorbed into the denominator at the cost of halving the
exponent of |b|, namely from (w−C7)/(2D) replacing it by (w−C7)/(4D).
Assuming further that (w − C7)/(8D) > k2k−1/ log |b|, we may in fact also
absorb the power of sn from the denominator of the right–hand side into the
numerator at the cost of replacing the exponent of |B| from (w−C7)/(4D)
by (w − C7)/(8D). Thus,

∏
ν∈S

2k+k2k−1+2kkj∏
i=1

|Lν,i(x)|ν ≪H,k,Λ
1

|b|(w−C7)/(8D)
≪ 1

∥x∥η
,

where we can take

η :=
(w − C7) log |b|

8D((C1 + w) logB1
.

As in the 1-dimensional case, η is bounded from below by log |b|/(9D logB1)
once w is sufficiently large. The conclusion of the Subspace Theorem is that
x satisfies one of finitely many linear relations. The number of relations is
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exponential in the square of the number of variables so it is exp(O(w2)),
where now the constant implied by O depends on k, a and b1, . . . , bk and
this holds for all n > n0, where now n0 depends on |b|, B1, H, Λ only.
We need to exploit these relations. In the 1-dimensional case we succeeded
in proving that all but finitely many n satisfy the linear relation given by
imposing that the left–hand side of (11) is either 0 or one of the involved
variables arising from the exponents iℓ(n) for some ℓ ∈ {1, . . . , t}. We will
prove that the same holds for (22). Let’s see the details. Assume L(x) ̸= 0
infinitely often. We pick a linear form L1(x) such that L1(x) = 0. Clearly,
L1(x) is not parallel to L(x). We pick an indeterminate xj which appears
in L1(x) with nonzero coefficient and replace L(x) by L(x) − µ1L1(x) for
some suitable nonzero coefficient µ1 in order to eliminate xj , obtaining in
such a way a “small” linear form in fewer variables (at least the variable xj
is no longer present). Note that this new small linear form is not zero since
otherwise L(x) = 0, which is something we assume not to hold. We continue
in this way at each stage creating a “small” linear form in fewer variables
which is a linear combination of L(x) with other linear forms encountered
along the way, and all except for L(x) vanish at our vector x. Hence, the new
linear form in fewer variables does not vanish at our x. At the end, we end
up with the last linear form in one variable L′(x) = xi being small. If this
is one of the small indeterminates containing pn(bj) for some j = 1, . . . , k,
(and λj ̸= 0 otherwise these coordinates did not appear to begin with) then
we argue as before that pn(bj) = 0 for all but finitely many n satisfying
this equation. So, again we get fewer variables and continue. So, let us
assume that xi is an S-unit indeterminate. If it is one of the first 2k small
S-units indeterminate, we get a contradiction for large n unless λ0 = 0 so
these variables did not appear to begin with. The final case is when the
variable is one of the large S-unit indeterminates involving some iℓ(n) in
the exponent. Then we get

L(x) = eb
−iℓ(n)
j (b1 · · · bk)rn

k∏
m

bδmsn
m , δm ∈ {0, 1}, 1 ≤ m ≤ k, δj = 0.

Further, e ∈ E, where E is finite (depends on w) and there are finitely many
choices for (j, δ1, . . . , δk). The desired equation follows by dividing both sides
above by

∏k
i=1 b

rn
i (bsni − 1). Note further that since |L(x)| ≪ |b|−(w−C7)sn ,

we get that

|bj |rn−iℓ(n)
k∏

1≤m≤k
m ̸=j

|bm|rn+δmsn ≪w
1

|b|(w−C7)sn
, where δm ∈ {0, 1} (23)
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for all m = 1, . . . , j. This gives

iℓ(n) log |bj | ≥ (w − C8)sn log |b|+Ow(1),

where

C8 := C7 + k(C1 + 1) log |b∗|/ log |b| and b∗ := max{|bj |, 1 ≤ j ≤ k}.

In particular, taking C4 := 2C8, w > C4, and sn > nw,f0 , we see that there is
indeed C5, which can be taken to be C5 := C4 log |b|/(2 log |b∗|), such that if
w > C4 and sn > nw,f0 , then iℓ(n) > C5wsn, which is what we wanted.

5 The Easy Case

We will use Lemmas 1 and 2 to obtain linear independence properties of
the numbers Sb(a) over Q. For this we augment conditions (iii.1)–(iii.3) of
Section 4. There are several different cases. We start with the easiest one.

(iv.1) For any ε ∈ (0, 1) there exist arbitrarily large positive integers w such
that for infinitely many n, the interval [rn + εwsn, rn +wsn] does not
contain any iℓ(n).

Taking ε sufficiently small (smaller than 1/2 in the case of Lemma 1
and smaller than C6 in the case of Lemma 2), choosing a large w which is
convenient for us and satisfies (iv.1), then for infinitely many large n (for
example larger than 2C4(w)) condition (iv.1) will apply to show that in
the right–hand side of (13) and (21) we have the number e = 0. For the
1-dimensional case we get that

α =
pn

brn(bsn − 1)
+

t∑
ℓ=1

cℓ
biℓ(n)(bsn − 1)

holds. The right–hand side encodes the values of an only up to rn + wsn.
Comparing it with the expression for α, we get that

∑
p>rn+wsn

p ̸≡iℓ(n) (mod sn), ℓ=1,2,...,t

ap − ap
bp

+O

 ∑
p>f0(sn+1)sn

1

bp

 = 0, (24)

where we put p for the unique index in [rn + 1, rn + sn] such that p ≡ p
(mod sn). The second sum encodes the difference of values of aiℓ(n)+msn
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and aiℓ(n) for m > f0(sn+1)sn. And it remains to decide if relation (24) can
happen infinitely often.

Here is an easy to check condition under which it cannot happen infinitely
often:

(v.1) ETGP: Letting κ1(n) < κ2(n) be the first two indices p which are
larger than rn + wsn such that κi(n) ̸≡ iℓ(n) for all ℓ = 1, . . . , t and
both i = 1, 2, ap ̸= ap for both p ∈ {κ1(n), κ2(n)} and aκ1(n) ̸= aκ2(n),
suppose that κ2(n) = o(f0(sn+1)sn) as n → ∞ and that both κ1(n)
and κ2(n)− κ1(n) tend to infinity with n.

Then relation (24) implies that

1 ≪ |aκ1(n) − a
κ1(n)

|

=

∣∣∣∣∣∣
∑

p≥κ2(n)

ap − ap

bp−κ1(n)
+O

 ∑
p≥f0(sn+1)sn

1

bp−κ1(n)

∣∣∣∣∣∣
≪ 1

|b|κ2(n)−κ1(n)
, (25)

which yields a contradiction for values of n such that κ2(n) − κ1(n) is suf-
ficiently large. We call (v.1) ETGP for “Expanding Tail Gaps Property”.
Here is what we have proved.

Theorem 4. Assume that a satisfies (i), (ii), (iii), (iv.1) and (v.1). Then
for every algebraic b with |b| > 1 the number Sb(a) is transcendental.

In particular, α ̸= 0 in the case of Lemma 1 under (iv.1). As such
pn(bj) ̸= 0 for any j and n large enough under (iv.1).

The multidimensional version works equally well. Namely, we write equa-
tion (21) with e = 0 for a suitable large w and infinitely many sn. We
subtract (21) from (20) and get the analogue of (25)∣∣∣∣∣(aκ1(n) − a

κ1(n)
)

(
k∑

ℓ=1

λℓb
−κ1(n)
ℓ

)∣∣∣∣∣≪ ∑
t≥κ2(n)

|at − at|
|b|t

≪ 1

|b|κ2(n)
. (26)

In case |b1|, . . . , |bk| are all distinct, the above inequality is impossible for
large n by (iv.1). Namely, we leave on the left–hand side only b1 which
realises the minimum absolute values among them and put the rest of the
terms in the right–hand side and apply the previous argument. This will
take care of (i) of Theorem 1 assuming (iv.1) holds. Let us see how to deal
with (ii) of Theorem 1 assuming (iv.1) holds.
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So, assume that r = 2. In this case, dividing by λ1 we get∣∣∣∣∣(aκ1(n) − a
κ1(n)

)

(
1 +

λ2

λ1

(
b1
b2

)κ1(n)
)∣∣∣∣∣≪ 1

|b1|κ2(n)−κ1(n)
.

and in the left-hand side the second factor can be small. However, by lower
bounds for linear forms in logarithms, we have that∣∣∣∣∣1 + λ2

λ1

(
b1
b2

)κ1(n)
∣∣∣∣∣≫ 1

κ1(n)C9
(27)

for some constants C9 > 0 depending on b1, b2, λ1, λ2. Thus, the above
inequalities (26) and (27) give us

κ2(n)− κ1(n) ≤ C9 log κ1(n) +O(1).

Again we can increase the value of C9 (say replace C9 by C10 = 2C9) and
assume that n is large in order to omit the additive O(1) term in the right–
hand side above. Thus,

κ2(n)− κ1(n) ≤ C10 log κ1(n). (28)

So, we formulate the following criterion.

(v.2) Assume r = 2 and that for any C10 ≥ 1, inequality (28) holds only for
finitely many n.

So, (v.1) and (v.2) are enough to deal with statements (i) and (ii) of our
Theorem 1 assuming (iv.1) is satisfied. Part (iii) is dealt with in the next
section.

6 The Harder Case

(iv.2) Assume that there exists C11 and w0 such that for all w > w0, the
interval [rn + C11wsn, rn + wsn] contains at least one iℓ(n).

Since κ1(n) is the first iℓ(n) larger than rn + wsn (for some new w′),
we get that κ1(n) ∈ [rn + wsn, rn + C12wsn], where C12 = C−1

11 . Further,
κ2(n) < rn+C2

12wsn, etc. So, let κ1(n) < κ2(n) < κj(n) < . . . be the points
starting the progressions of changes after rn + wsn as we increase w. As
we have seen, κj(n) < rn + Cj

12wsn. In particular, κj(n)/sn = Oj(w). In
addition we want
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(v.3) There exist a function f1(w) tending to infinity such that for large w
and any fixed j there exists i such that

κi(n) < κi(n+ 1) < · · · < κi+j(n) < rn + w2sn,

and furthermore κi+j(n)− κi(n) ≪j κi+j(n)/f1(w).

(v.4) Furthermore, there exists a number L such that if j > L, there are
ℓ′ > ℓ ∈ {i, i + 1, . . . , i + j}, with kℓ′(n) − kℓ(n) ≫j κℓ′(n)/f2(w) for
some function f2(w) tending to infinity.

Let us now finish. We return to our equations (13) and to its multidimen-
sional analogue (21). We let K be larger than the bound O(1) from (iii.1).
We let j := 3K + 3. Part (v.4) above gives us a string of κi(n), . . . , κi+j(n)
which are close together. Note that all of them are of the form iℓ(n) for
some ℓ once we change w to w2. By (iii.1), the interval [κi(n), κi+j(n)] will
contain at least three multiples of sn. Let any of the middle one (so not
the first or last) be of the form u+ w1sn for some u ≤ rn. We change w to
w1. That is we cut–off our problem at rn + w1sn. Everything (number of
variables, coefficients ci, etc.) are in finitely many configurations controlled
by w2. Let i0 be such that κi+i0(n) ≤ rn + w1sn < κi+i0+1(n). As far
as this rn + w1sn is concerned, the numbers κi+ℓ(n) for ℓ ≤ i0 are iℓ′(n)
for some ℓ′ ≤ tn = O(w1) and κi+i0+1(n), κi+i0+2(n) and larger ones are
κ1(n), κ2(n), etc. Since the relative ratios κi+ℓ(n)/κi+ℓ−1(n) tend to 1 (can
be made arbitrarily close to 1 by (v.3) and by choosing a sufficiently large
w), in the left–hand sides we only keep b1, . . . , br among the numbers which
realize the minimum of the absolute values and put the rest in the other
side. The same goes for the eventual variable involving e (if e is nonzero),
which we expand in series using the products of 1/(bsnm −1) for m = 1, . . . , k
and keep only the first term. And we get∣∣∣∣∣

r∑
m=1

cm

b
κi+i0+1(n)
m

− e

b
iℓ(n)
j

∏j
m=1 b

(1−δm)sn
m

∣∣∣∣∣≪ 1

|b1|(1+δw)κi+i0
(n)

for some positive δw1 which depends on w1, but is otherwise bounded from
below in terms of w. In the left, we have a linear form in S-units which is
small. Thus, there are finitely many linear equations in these variables. We
may assume that they are non-degenerate. Any equation involving two of
the bj ’s will give only finitely many values for κi+i0+1(n) since the bj ’s are
multiplicatively independent. So, r = 1 and e is nonzero. It now follows

that the only possibility is that identically c1/b
κi+i0+1(n)
1 equals the unknown
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involving e with finitely many exceptions. This implies that j = 1, and
δm = 0 for m ̸= j, so κi+i0+1(n) = iℓ(n) + Ow(1). Since κi+i0+1(n) − iℓ(n)
tends to infinity, we get that Ow(1) is not present so κi+i0+1(n) = iℓ(n), but
this is wrong since iℓ(n) < rn+wsn ≤ rn+w1sn < κi+i0+1(n), namely these
two changes were sitting on opposite sides of rn+w1sn. This argument shows
that under conditions (iv.2), (v.3) and (v.4) we may assume that e = 0 in
equations (13) and (21). Now the argument from the previous section takes
care of the case r = 1 so we assume that r ≥ 2. We need to deal with (24).
We may move all the b’s such that |bi| > |b| (so i ≥ r+1), to the right–hand
side and leave only the ones with the same absolute value in the left. In a
first step we go to inequality (26). By the Subspace theorem, for any ε > 0,
if n is large enough the left–hand side of (26) exceeds |b|(1+ε)κ1(n). Thus,
if κ2(n) > (1 + 2ε)κ1(n) for all large n, then we are done. If not, it means
that κ2(n) is very close to κ1(n). We shall assume that

κ2(n)/κ1(n) < log |br+1|/ log |b1| in case r < k.

Then we can also incorporate the tails corresponding to κ2(n) in the left, so
as to write it as∣∣∣∣∣(aκ1(n) − a

κ1(n)
)

(
r∑

ℓ=1

λℓ

b
κ1(n)
ℓ

)
+ (aκ2(n) − a

κ2(n)
)

(
r∑

ℓ=1

λℓ

b
κ2(n)
ℓ

)∣∣∣∣∣
≪ max

{
1

bκ3(n)
,

1

|br+1|κ1(n)

}
.

The left–hand side again by the Subspace Theorem exceeds |b|(1+ε)κ1(n) un-
less there are some degeneracies (zero subsums in the left–hand side). Since
the bi’s are multiplicatively independent, for large n the only degeneracies

can come from some i and from the terms b
κ1(n)
i and b

κ2(n)
i , and would lead

to the conclusion that b
κ2(n)−κ1(n)
i is in a fixed finite set, and this is impos-

sible for large n since κ2(n)−κ1(n) tends to infinity by (iii.2). So, assuming
again that ε is small enough, say 1 + ε < log |br+1|/ log |b1|, we get that
the only possibility is that also κ3(n) ≤ (1 + ε)κ2(n) + O(1). In particu-

lar that κ3(n) ≤ (1 + 2ε)κ1(n) for large n. Then we incorporate b
κ3(n)
i for

i = 1, 2, . . . , r to the left as well. Going in this way, we get that κ2(n)/κ1(n),
later κ3(n)/κ1(n) and so on are all smaller than 1+ε where ε can be chosen
as small as we want. However, by (v.4) we know that by the time we get to
κL+1(n) this can no longer be the case since κL+1(n)/κ1(n) > 1 + 1/f2(w)
for some function f2(w). So, if this patters continues for L steps we then
get 1/f2(w) < ε, so if we choose an ε smaller than 1/f2(w), we reach a
contradiction. Let us record what we proved.
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Theorem 5. Assume that a satisfies (i), (ii), (iii), (iv.2), and (v.1), (v.3),
(v.4). Then for every collection of algebraic numbers b1, . . . , bk of absolute
values larger than 1 and multiplicatively independent we have that

1, Sb1(a), . . . , Sbk(a)

are linearly independent over Q.

Note now that the case (i), namely r = 1 of Theorem 1 is covered.
Namely, either (iv.1) holds or (iv.2) hold and in either case the statement
follows from Theorems 4 and Theorem 5, respectively. Theorem 5 also covers
case (iii). The case (ii), namely r = 2 and extra conditions on θ and A, is
covered by the following theorem.

Theorem 6. Assume that a satisfies (i), (ii), (iii), (v.1) and (v.2). Then
for every collection of algebraic numbers b1, . . . , bk of absolute values larger
than 1 and multiplicatively independent satisfying r = 2, we have that

1, Sb1(a), . . . , Sbk(a)

are linearly independent over Q.

The combination of these theorems covers our first Theorem 1 in light of
the properties from the next section. We comment about Theorem 2 after
the next section.

7 Continued Fractions

This section is independent of the previous ones, so we can relabel our
variables. We assume now that k is the cardinality of the set of boundary
points A.

Let θ ∈ R\Q, k ≥ 1, r1, . . . , rk be distinct numbers in (0, 1). We further
set r0 := 0 and rk+1 := 1. Let θ =: [a0, a1, . . . , am, . . .] be the continued
fraction expansion of θ and {pm/qm}m≥0 be the sequence of its convergents.
Let δi(n) be the characteristic function of the set {n : {nθ} ∈ [ri, ri+1]} for
i = 0, . . . , k and

δ(n) = (δ0(n), . . . , δk(n)) : N → {0, 1}k+1.

For integers w ≥ 1, N ≥ 1, let

Iw(N) = {1 ≤ M < qN : δ(M+ℓ1qN ) ̸= δ(M+ℓ2qN ) for some 0 ≤ ℓ1 < ℓ2 ≤ w}.
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We are interested in the structure of the elements in Iw(N) for all w espe-
cially when it comes to verifying (iii) as well as the rest of the conditions
(iv) and (v). With the formalism from the previous sections we take rn = 0
(and hope the reader will not confuse them with the distinct numbers in
(0, 1)), and sn = qn to be the denominator of the nth convergent to θ.

We may assume that θ is positive; if it is not positive then we replace θ
by −θ and ri by 1− ri for i = 0, . . . , k. We put

η := min{ri+1 − ri : i = 0, 1, . . . , k}

for the smallest of the lengths of Ii = [ri+1, ri]. Recall that

qmθ − pm =
(−1)m−1

qmθm+1 + qm−1

holds for all m ≥ 0, where θm+1 := [am+1, am+2, . . .]. In particular,

{qmθ} ≡ (−1)m−1

qmθm+1 + qm−1
(mod 1).

In particular, for all integers ℓ and m ≥ 1, we have

{qmℓθ} ≡ (−1)m−1ℓ

qmθm+1 + qm−1
(mod 1).

Now let m = N , a large positive integer and ℓ an integer in [0, w]. Assume
qN > 2(w+1)/η. Then the numbers shown on the right above when m = N
are in (0, 1) and either they are all smaller than η/2 or all within η/2 of 1
depending on the parity of N . This means that for a fixed positive integer
M and large N the numbers

{Mθ}, {(M + qN )θ}, . . . , {(M + wqN )θ}

are in fact the same as

{Mθ}, {Mθ}+ {qNθ}, . . . , {Mθ}+ {wqNθ}.

Let i ∈ {0, . . . , k} be such that {Mθ} ∈ [ri, ri+1]. If we have the disequality
δ(M+ℓ1qN ) ̸= δ(M+ℓ2qN ) it follows that {(M+wqN )θ} ̸∈ [ri, ri+1]. Thus,
there exists a unique minimal ℓ ∈ {0, 1, . . . , w − 1}, such that

{(M + ℓqN )θ} ∈ [ri, ri+1] and {(M + (ℓ+ 1)qN )θ} ̸∈ [ri, ri+1].

This shows that {(M + (ℓ + 1)qN )θ} is either in [ri+1, ri+2] or in [ri−1, ri]
where the indices are taken modulo k (so if i = k, then [rk, rk+1] means

26



[rk, 1] ∪ [0, r1]). We assume that this is [ri+1, ri+2]. Further, the distance
from one of {(M+ℓqN )θ} and {(M+(ℓ+1)qN )θ} to ri+1 is at most ∥qNθ∥/2
(since the sum of the distances from {(M+ℓqN )θ} and {(M+(ℓ+1)qN )θ} to
ri+1 is exactly ∥qNθ∥). We assume that it is the distance from {(M+ℓqN )θ}
to ri+1 that is smaller than or equal to ∥qNθ∥/2. In particular,

δ((M + jqN )θ) = (0, 0, . . . , 0︸ ︷︷ ︸
x times

, 1, 0, . . .),

where x = i for j = 0, 1, . . . , ℓ and x = i + 1 if j = ℓ + 1, . . . , w. We write
this as

{(M + ℓqN )θ} = ri + ζM,ℓ,N ,

where |ζM,ℓ,N | ≤ ∥qNθ∥/2. Thus,

(M + ℓqN )θ = pM,ℓ,N + ri + ζM,ℓ,N , pM,ℓ,N ∈ Z,

or

(Mθ − TM )− ri =
ℓ(−1)N−1

qNθN+1 + qN−1
+ ζM,ℓ,N , (29)

where Tm := pM,ℓ,i − ℓpN . We need an upper bound for the number of
positive integers M < qN arising from such a representation for some ℓ ≤
w and ζM,ℓ,N a real number of absolute value at most ∥qNθ∥/2. Let us
note that ℓ and i determine M in at most two ways. Indeed assume that
(M,TM ), (M ′, T ′

M ), (M ′′, T ′′
M ) are all solutions of an equation like (29) for

the same ℓ and i and some different numbers ζM,ℓ,N , ζM ′,ℓ,N , ζM ′′,ℓ,N . Two
of the ζ’s will have the same sign. Assume they are ζM,ℓ,N and ζM ′,N,ℓ. Then

|(M−M ′)θ−(TM−TM ′)| = |ζM,ℓ,N−ζM ′,ℓ,N | < |ζM,ℓ,N |+|ζM ′,ℓ,N ′ | ≤ ∥θqN∥.

If M ̸= M ′, then |M − M ′| < qN , so by known facts about continued
fractions the left–hand side is at least |qNθ− pN | = ∥θqN∥, a contradiction.
Thus, M = M ′ and then TM = TM ′ . So, here is our first result.

Lemma 3. The constant mentioned in (iii.1) can be taken to be equal to
twice the number of elements of A.

This confirms (iii.1). For (iii.2) note that iℓ(n) is of the form u + ℓsn,
with 1 ≤ ℓ ≤ w and u ≤ sn (in particular, iℓ(n) ≥ sn) such that for some i,
we have

|{iℓ(n)θ} − ri| = O

(
1

sn+1

)
. (30)
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The implied constant above can be taken to be 1. Further, at m := iℓ(n),
{mθ} just changed from say having been in the interval [ri−1, ri] to being
into the interval [ri, ri+1]. But then, in order to change again by adding
multiples of sn to it, we need to add at least ≫ η × sn+1 of such multiples.
This confirms (iii.3) with f0(s) ≫ ηs. Finally, if tn ≥ 2 and ℓ ≥ 2, then
there exists j such that

|{iℓ−1(n)θ} − rj | = O

(
1

sn+1

)
. (31)

Relations (30) and (31) show that

|(iℓ(n)− iℓ−1(n))θ− T − (ri − rj)| = O

(
1

sn+1

)
holds with some T ∈ Z.

For i = j, the above relation shows that ∥(iℓ(n)− iℓ−1(n))θ∥ ≪ s−1
n+1, which

shows that iℓ(n)− iℓ−1(n) tends to infinity. If i ̸= j, then (iℓ(n)− iℓ−1(n))θ
is close (within O(1/sn+1)) from one of the finitely many numbers ri − rj
(mod 1) for i ̸= j ∈ {1, . . . , k}. This shows that iℓ(n) − iℓ−1(n) tends to
infinity unless (iℓ(n)− iℓ−1(n))θ is exactly one of the above numbers modulo
1, but this is impossible because of condition (4). Hence, we have just
confirmed the following.

Lemma 4. Conditions (iii.1)–(iii.3) are satisfied.

We next check that condition (v.1) is always satisfied and that condition
(v.2) is satisfied when θ is a ratio of logarithms of algebraic numbers and A
consists of algebraic numbers.

Let w be given, and take r1. We pick ε to be small (we will figure out how
small we need it later). Take the intervals [r1−2ε, r1−ε] and [r1+ε, r1+2ε].
Take the numbers qn for large n. By uniform distribution theory, for large
n, there are at least 2kw+2 numbers κ such that {κθ} is in [r1 − 2ε, r1 − ε]
and the same is true for [r1 + ε, r1 + 2ε]. Assume of course that qn is larger
than any one of these 4kw + 4 numbers. Now take each one of these and
start adding multiples of qn to them. Since adding one extra qn changes the
distance to the nearest integer of that resulting multiple of θ by O(1/qn+1),
it follows that after about Wε := ⌊C13εqn+1⌋ + 1 steps (where we can take
C13 to be equal to 6) all the first numbers passed on the side larger than
r1 if n was odd, and on the side smaller than r1 if n was even. Since those
numbers remain congruent to the initial numbers we have chosen modulo
qn, it follows that once they change not all of them can be in Iw(n) because
this set has only at most 2kw progressions. In fact at least two of them
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are outside. This shows that κ2(n) = O(εqnqn+1) and since this was true
for any ε > 0, we get that κ2(n) = o(qnqn+1) = o(f0(sn+1)sn) as n tends
to infinity. To see that κ2(n) − κ1(n) tends to infinity, we distinguish two
cases, namely whether they caused a change with respect to the same ri or
not. In the first case, note that κ2(n)− κ1(n) is of the form k2 − k1, where
both {k2θ} and {k1θ} were at most ε apart, plus some integer of the form
(ℓ2−ℓ1)qn, where max{ℓ1, ℓ2} = O(εqn+1). Thus, ∥(κ2(n)−κ1(n)θ∥ = O(ε).
Since ε > 0 was arbitrary, this proves the statement. In the second case,
k2θ was within O(ε) of Z + ri and k1θ was within O(ε) of Z + rj for some
i ̸= j. Thus, ∥(k2 − k1)θ − (rj − ri)∥ = O(ε). Since ε is arbitrary and the
left–hand side cannot be zero by condition (4), we conclude that k2 − k1
tends to infinity. Thus, (v.1) is verified.

Let us now verify the condition (v.2) in the case θ is a ratio of two
logarithms of algebraic numbers and A consists of algebraic numbers. Re-
call that the discrepancy DN of a sequence (bm)Nm=1 of real numbers (not
necessarily distinct) is defined as

DN = sup
0≤γ≤1

∣∣∣#{m ≤ N : {bm} < γ}
N

− γ
∣∣∣.

The Koksma-Erdős-Turán inequality (see, for example, Kuipers and Nieder-
reiter [14, Lemma 3.2]) states that

DN ≤ 3

H
+

3

N

H∑
m=1

1

m∥bm∥
, (32)

whereH ≤ N is an arbitrary positive integer. We apply the above inequality
with bm := {mθ}, where θ := log γ1/ log γ2 is a real number which is a ratio
of two logarithms of algebraic numbers. We get

DN ≪ 1

H
+

logH

N min{∥mθ∥ : 1 ≤ m ≤ H}
≪ 1

H
+

Hδ

N
. (33)

For the right–hand side above, we used the fact that for m ≥ 2,

∥mθ∥ = ∥m log γ1/ log γ2∥ =
1

log γ2
∥m log γ1 −m′ log γ2|

≫ exp(−δ logmax{m,m′}) ≫ 1

mδ
,

where in the above calculation m′ is the closest integer to mθ (clearly, m′ ≍
m), and the lower bound in the right–hand side above follows from Baker’s
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lower bounds for linear forms in logarithms. The constant δ depends on the
heights of the algebraic numbers γ1, γ2. Choosing H := ⌊N1/(1+δ)⌋, we get
that

DN ≪ N−δ1 , where we put δ1 := 1/(1 + δ).

This inequality shows that if we put N := qn then∣∣∣∣#{m ≤ qn, {mθ} ∈ [r1 + ε, r2 + 2ε]}
N

− ε

∣∣∣∣ < 2DN ≪ 1

qδ1n
,

so
#{m ≤ qn, {mθ} ∈ [r1 + ε, r2 + 2ε]}

N
≥ ε−O

(
1

qδ1n

)
,

which shows that we can choose ε of size O(q−δ1
n ) (a similar argument works

for the interval [r1 − 2ε, r1 − ε]). Further, qn+1 = q
O(1)
n by Baker’s method.

Indeed, for this we use the fact that

1

qnqn+1
≫ ∥qnθ∥ = |qn log γ1/ log γ2 − pn| ≫ |qn log γ1 − pn log γ2|

≫ exp(−δmax{log qn, log pn}) ≫
1

qδn
.

The previous argument which verified (v.1) shows that

κ2(n) = o(qnqn+1) = qO(1)
n ,

and the ending of that argument shows that

|(κ2 − κ1)θ − T − (ri − ri′)| = O(ε) = O

(
1

qδ1n

)
for some T ∈ Z,

(34)
where i, i′ ∈ {1, . . . , k}. If i = i′, the left–hand side is not zero. If i ̸= i′,
the left–hand side is not zero by condition (4). Since A consists of algebraic
numbers, inequality (28) gives κ2 − κ1 = O(log κ2) = O(log qn). By linear
forms in logarithms once again using that θ = log γ1/ log γ2, in the left–hand
side of the inequality (34), we get that the left–hand side of (34) is

≫ 1

(κ2 − κ1)δ
≫ 1

(log qn)δ
,

which gives
qδ1n ≪ (log qn)

δ,

so qn = O(1), a contradiction. Let us summarise what we have proved.

Lemma 5. Condition (v.1) holds. Condition (v.2) holds when r = 2, θ is
a ratio of two logarithms of algebraic numbers and A consists of algebraic
numbers.
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7.1 The easy case

Next let us show that condition (iv.1) is satisfied when {am}m≥1 is un-
bounded. Take C to be any constant. Look at elements iℓ(n) in the interval
[rn + wsn, rn + Cwsn]. They are of the form iℓ(n) = u + mqn for some
m ∈ [w,Cw], and

{(u+mqn)θ} = {uθ}+O

(
Cw

an+1qn

)
.

The implied constant above can be taken to be 1. So, if iℓ(n) exists of
this form then {uθ} is very close to some ri, and so ∥(u + mqn)θ − ri∥ =
O(Cw/(an+1qn). For a fixed i, we saw that u can take at most two values.
But assuming an+1 ≫ Cwη−1, there cannot be another value m′ ̸= m in
[w,Cw] such that u+m′qn = iℓ′(n). Thus, the interval [rn+wsn, rn+Cwsn]
contains at most 2k integers of the form iℓ(n). Putting C ′ := C1/(2k+1), one
of the intervals [rn +C ′jw, rn +C ′j+1w] for j = 0, 1, . . . , k does not contain
any number of the form iℓ(n). Since C can be made arbitrarily large, so can
C ′. So, we have (iv.1), which we record.

Lemma 6. If {am}m≥0 is unbounded, then we have (iv.1).

7.2 The hard case

Assume that {am}m≥0 is bounded. We need to verify that (iv.2), (v.3) and
(v.4) hold. By a result of Khintchine (see [17]), there are infinitely many
u such that ∥uθ − r1∥ = O(1/u). The constant in O can be taken to be
1/
√
5. Taking such an u and the least n such that qn > u, we have qn ≍ u,

so ∥uθ − r1∥ = O(1/u) = O(1/qn). Since ∥ℓqnθ∥ ≫ ℓ/qn for any fixed ℓ
and large n, we get that if we add sufficient large multiples of qn to u we
will find an iℓ(n). This shows that for all w sufficiently large, we have that
Iw(n) is nonempty. Now we iterate this. We return to the situation where
∥uθ − r1∥ = O(1/u). For large w start with the minimal n odd such that
qn ≍ uw (and qn > w3). We pick i maximal even such that qn−i ≤ qn/w.
Clearly, qn−i ≍ qn/w. Let a and b be any positive integers which are fixed
for the moment. Thus, with v = aqn−i − bqn−i−1, we have that

∥(u+ v)θ − r1∥ = ±∥uθ − r1∥+ a∥qn−iθ∥+ b∥qn−i−1θ∥.

All three players in the right–hand side have sizes ≍ w/qn. Hence, if we add
multiples of qn of the form sqn with s ∈ [C14w,C15w], then we will see a
change (the fractional part will get to the right of r1 if it was on the left of
it and vice versa). Now we are ready to prove (v.3) and (v.4).
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To create many of them close together, keep the same conditions, namely
n odd, i even minimal such that qn−i ≤ qn/w, but take a > b between
[w1/3/2, w1/3] but otherwise independent. The number of such pairs is ≫
w2/3. Clearly, with the same choices v := aqn−i − bqn−i−1, we have that

∥(u+ v)θ − r1∥ ≍ w4/3/qn,

so m can be chosen such that iℓ = u+ v +mqn creates a shift around r1 in
the interval [C16w

4/3qn, C17w
4/3qn]. For large w these iℓ(n)’s are all smaller

than w2qn. And since we have ≫ w2/3 pairs (a, b), we get that there must be
two of them at distance O(w2/3qn) = O(iℓ(n)/w

1/3), unless there are some
coincidences (so, two pairs (a1, b1) and (a2, b2) and their corresponding m’s
will yield the same number). Well, assume they do. So, we have (aj , bj ,mj)
for j = 1, 2 such that u+ajqn−i− bjqn−i−1+mjqn are the same for j = 1, 2.
If the m′

js are not the same, then |m1−m2|qn ≫ qn. Since qn−i ≪ qn/w and

ai, bi are of sizes O(w1/3) for i = 1, 2 and also u = O(qn/w), this is impossible
for large w. So, m1 = m2 and then (a1 − a2)qn−i = (b1 − b2)qn−i−1. Since
qn−i and qn−i−1 are coprime, this forces qn−i to divide b1 − b2 and qn−i−1

to divide a1 − a2, which is false for large w (since qn−i ≫ qn/w > w2,
while max{|a1 − a2|, |b1 − b2|} ≪ w1/3), unless a1 = a2, b1 = b2, which
is not allowed. Thus, these numbers are distinct. Fixing j, since we have
≫ w2/3 values of the κ’s in an interval of length O(w4/3qn), we must have
two of them whose indices differ by j, say κi+j(n) and κi(n) such that
κi+j(n)− κi(n) = O(jw2/3qn) = O(κi+j(n)/w

2/3). So, for a fixed j, we can
choose the function f1(w) ≫ w2/3.

Finally, for (v.4), let κi(n) < κi+1(n) < · · · be consecutive such that for
each j ≥ 1 we have

∥κj+j(n)θ − rtj∥ = O

(
w4/3

qn

)
for some tj ∈ {1, . . . , k}.

As j travels from 1 to 2k + 1, there will be a repeated value of tj . Say,
tj = tj′ for j < j′. Then

∥(κi+j′(n)− κi+j(n))θ∥ = O

(
w4/3

qn

)
.

Since {am}m≥0 is bounded, the left–hand exceeds ≫ 1/(κi+j′(n)−κi+j(n)).
Thus, we get

κi+j′(n)− κi+j(n) ≫
qn

w4/3
≫

κi+j′(n)

w8/3
,

so f2(w) can be chosen to be w3. So, (v.3) is satisfied with L = 2k + 1.
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8 Proofs of Theorems

Theorem 1 is proved. All we need to do is to indicate how Theorem 2 follows.
Note that for a fixed r ∈ [0, 1), we have∑

n≥1

1

b⌊nθ+r⌋ =
∑
m≥0

cr(m)

bm
,

where
cr(m) := #{n : ⌊nθ + r⌋ = m}.

An easy calculation shows that c(m) = ⌊1/θ⌋+ δr(m), where

δr(m) :=

{
0 for {(m− r)/θ} ∈ [0, 1− {1/θ});
1 for {(m− r)/θ} ∈ (1− {1/θ} , 1).

Since θ is irrational and r ∈ (0, 1), the end points of the above intervals are
not achieved. Hence,

S(b, θ, A,v) = T (b, 1/θ,A′,u),

where A′ is the set of values

1− (1− r1)/θ, 1− (1− r2)/θ, . . . , 1− (1− rℓ)/θ (mod 1).

Note that if θ > 1, then the above numbers are already in (0, 1) and they
are ordered from small to large. If θ < 1, the ordering might be different.
Also, since condition (4) is satisfied, it follows that the above numbers are
indeed incongruent modulo the lattice Z + Z(1/θ). Let us see what the
components of u are. For the sake of simplicity we only assume that θ > 1.
We also assume that vi ̸= 0 for all i = 1, . . . , ℓ (otherwise, if vi = 0 then ri
should not be present). Then u0−u1 = v1, u1−u2 = v2, . . . , uℓ−uℓ+1 = vℓ
(and uℓ+1 = 0). In particular, uj+1 ̸= uj for any j = 0, 1, . . . , ℓ + 1. Thus,
Theorem 2 follows from Theorem 1.
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