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Abstract. We study the decidability and complexity of verification prob-
lems for timed automata over time intervals of fixed, bounded length.
One of our main results is that time-bounded language inclusion for
timed automata is 2EXPSPACE-complete. We also investigate the satis-
fiability and model-checking problems for Metric Temporal Logic (MTL),
as well as monadic first- and second-order logics over the reals with or-
der and the +1 function (FO(<, +1) and MSO(<, +1) respectively). We
show that, over bounded time intervals, MTL satisfiability and model
checking are EXPSPACE-complete, whereas these problems are decid-
able but non-elementary for the predicate logics. Nevertheless, we show
that MTL and FO(<, +1) are equally expressive over bounded intervals,
which can be viewed as an extension of Kamp’s well-known theorem to
metric logics.
It is worth recalling that, over unbounded time intervals, the various
problems listed above are all undecidable.

1 Introduction

Timed automata were introduced by Alur and Dill in [2] as a natural and versatile
model for real-time systems. They have been widely studied ever since, both by
practitioners and theoreticians. A celebrated result concerning timed automata,
which originally appeared in [1] in a slightly different context, is the PSPACE
decidability of the language emptiness (or reachability) problem.

Unfortunately, the language inclusion problem—given two timed automata
A and B, is every timed word accepted by A also accepted by B?—is known to
be undecidable. A related phenomenon is the fact that timed automata are not
closed under complementation. For example, the automaton below accepts every
timed word in which there are two a-events separated by exactly one time unit.
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The complement language consists of all timed words in which no two a-events
are separated by precisely one time unit. Intuitively, this language is not express-
ible by a timed automaton, since such an automaton would need an unbounded
number of clocks to keep track of the time delay from each a-event. (We refer
the reader to [17] for a formal treatment of these considerations.)

The undecidability of language inclusion severely restricts the algorithmic
analysis of timed automata, both from a practical and theoretical perspective,
as many interesting questions can be phrased in terms of language inclusion.
Over the past decade, several researchers have therefore attempted to circum-
vent this obstacle by investigating language inclusion, or closely related con-
cepts, under various assumptions and restrictions. Among others, we note the
use of (i) topological restrictions and digitisation techniques: [14, 10, 31, 28];
(ii) fuzzy semantics: [13, 15, 30, 7]; (iii) determinisable subclasses of timed au-
tomata: [4, 37]; (iv) timed simulation relations and homomorphisms: [43, 26, 23];
and (v) restrictions on the number of clocks: [32, 11].

The undecidability of language inclusion, first established in [2], derives from
the undecidability of an even more fundamental problem, that of universality :
does a given timed automaton accept every timed word? The proof of undecid-
ability of universality in [2] uses in a crucial way the unboundedness of the time
domain. Roughly speaking, this allows one to encode arbitrarily long computa-
tions of a Turing machine. On the other hand, many verification questions are
naturally stated over bounded time domains. For example, a run of a commu-
nication protocol might normally be expected to have an a priori time bound,
even if the total number of messages exchanged is potentially unbounded. Thus
numerous researchers have considered the problem of time-bounded verification
in the context of real-time systems [39, 8, 22]. This leads us to the question of the
decidability of the time-bounded version of the language inclusion problem for
timed automata. This problem asks, given timed automata A and B and a time
bound N , whether all finite timed words of duration at most N that are accepted
by A are also accepted by B. One of the main results of this paper is that the
time-bounded language inclusion problem is 2EXPSPACE-complete. It is worth
noting that, since we are working with a dense model of time, time-bounded
runs of a given automaton may contain arbitrarily many events. Moreover, the
restriction to time boundedness does not alter the fact that timed automata
are not closed under complement, and hence classical techniques for language
inclusion do not trivially apply.

A second line of investigation in this paper concerns the relative expres-
siveness of monadic second-order and first-order metric logics over the reals.
This direction is motivated by the celebrated result of Kamp [21] that Linear
Temporal Logic (LTL) has the same expressiveness over the structure (N, <) as
monadic first-order logic (FO(<)). An influential consequence of Kamp’s result
is that LTL has emerged as the canonical temporal logic over the naturals. While
a version of Kamp’s result holds over the structure (R≥0, <), the correspondence
between predicate logics and temporal logics becomes considerably more com-
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plicated with the introduction of metric specifications. In practice this has led
to a veritable babel of metric temporal logics over the reals [5].

A natural predicate logic in which to formalise metric specifications over the
reals is the first-order monadic logic over the structure (R≥0, <,+1). Given a
set of uninterpreted monadic predicates P, a model over (R≥0, <,+1) is nothing
but a function f : R≥0 → 2P mapping each x ∈ R≥0 to the set of predicates that
hold at x. Such a model is called a flow or signal, and naturally corresponds to
the trajectory of a real-time system.

On the side of temporal logics, an appealing extension of LTL, called Metric
Temporal Logic (MTL), was proposed by Koymans [24] almost twenty years ago.
While MTL has been widely studied, it is well-known that there are first-order
formulas over (R≥0, <,+1) that cannot be expressed in MTL [20].

Our second main result is that, over bounded time domains, MTL has the
same expressiveness as monadic first-order logic. Specifically, we show that MTL
is as expressive as first-order logic over the structure ([0, N), <,+1), for any fixed
bound N . Thus, as with language inclusion for timed automata, the restriction
to time-boundedness leads to a better-behaved theory.

Finally, we relate automata and logics by showing decidability of the model-
checking problem for timed automata against specifications expressed in MTL,
first-order, and second-order monadic logics over ([0, N), <,+1). We also show
decidability of the satisfiability problems for these logics. In contrast to the case
of language inclusion between timed automata, the model-checking and satisfia-
bility problems for monadic predicate logics all have non-elementary complexity,
whereas these problems are EXPSPACE-complete in the case of MTL.

2 Timed Automata

Let X be a finite set of clocks, denoted x, y, z, etc. We define the set ΦX of
clock constraints over X via the following grammar, where k ∈ N stands for any
non-negative integer, and ./ ∈ {=, 6=, <,>,≤,≥} is a comparison operator:

φ ::= true | x ./ k | x− y ./ k | φ1 ∧ φ2 | φ1 ∨ φ2 .

A timed automaton A is a six-tuple (Σ,S, S0, SF , X,∆), where

– Σ is a finite set (alphabet) of events,
– S is a finite set of states,
– S0 ⊆ S is a set of initial states,
– SF ⊆ S is a set of accepting states,
– X is a finite set of clocks, and
– ∆ ⊆ S × S × Σ × ΦX × 2X is a finite set of transitions. A transition

(s, s′, a, φ,R) allows a jump from state s to s′, consuming event a ∈ Σ
in the process, provided the constraint φ on clocks is met. Afterwards, the
clocks in R are reset to zero, while all other clocks remain unchanged.
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Given a timed automaton A as above, a clock valuation is a function ν : X →
R≥0. If t ∈ R≥0, we let ν+t be the clock valuation such that (ν+t)(x) = ν(x)+t
for all x ∈ X.

A configuration of A is a pair (s, ν), where s ∈ S is a state and ν is a clock
valuation.

An accepting run of A is a finite alternating sequence of configurations and
delayed transitions π = (s0, ν0)

d1,θ1−→ (s1, ν1)
d2,θ2−→ . . .

dn,θn−→ (sn, νn), where each
di ∈ R>0 and each θi = (si−1, si, ai, φi, Ri) ∈ ∆, subject to the following condi-
tions:

1. s0 ∈ S0, and for all x ∈ X, ν0(x) = 0.
2. For all 0 ≤ i ≤ n− 1, νi + di+1 satisfies φi+1.
3. For all 0 ≤ i ≤ n − 1, νi+1(x) = νi(x) + di+1 for all x ∈ X \ Ri+1, and
νi+1(x) = 0 for all x ∈ Ri+1.

4. sn ∈ SF .

Each di is interpreted as the (strictly positive3) time delay between the firing of
transitions, and each configuration (si, νi), for i ≥ 1, records the data immedi-
ately following transition θi. Abusing notation, we also write runs in the form
(s0, ν0)

d1,a1−→ (s1, ν1)
d2,a2−→ . . .

dn,an−→ (sn, νn) to highlight the run’s events.
A timed word is a pair (σ, τ), where σ = 〈a1a2 . . . an〉 ∈ Σ∗ is a word

and τ = 〈t1t2 . . . tn〉 ∈ (R>0)∗ is a strictly increasing sequence of real-valued
timestamps of the same length.

Such a timed word is accepted by A if A has some accepting run of the form
π = (s0, ν0)

d1,a1−→ (s1, ν1)
d2,a2−→ . . .

dn,an−→ (sn, νn) where, for each 1 ≤ i ≤ n,
ti = d1 + d2 + . . .+ di.

In this paper, we are mainly concerned with behaviours over time domains
of the form [0, N), where N ∈ N is a positive integer.4 Let us in general write
T to denote either [0, N) or R≥0. We then define LT(A) to be the set of timed
words accepted by A all of whose timestamps belong to T.

Remark 1. Our timed automata have transitions that are labelled with instan-
taneous events; this is by far the most common model found in the literature.
Alternatives include automata in which states are labelled with atomic propo-
sitions [3], or even mixed models in which states carry atomic propositions and
transitions carry events. Other variants allow for silent transitions (invisible
events), invariants on states, and combinations thereof. All the results presented
in this paper carry over without difficulty to these more expressive models.

3 This gives rise to the strongly monotonic semantics for timed automata; in contrast,
the weakly monotonic semantics allows multiple events to happen ‘simultaneously’
(or, more precisely, with null-duration delays between them). The main results of this
paper remain substantively the same under either semantics, although the weakly
monotonic semantics causes some slight complications.

4 All our results in fact carry over to the case in which N is chosen to be an arbitrary
positive real number [29].
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Note that we are focussing on finite words. Timed automata can be defined
to accept infinite words (for example, by using Büchi acceptance conditions [2]),
although over bounded time infinite words are automatically Zeno (and ipso
facto ruled out from the accepted language by most researchers). Theorem 4
could nonetheless be extended to such infinite words, if desired [29].

3 Metric Logics

3.1 Syntax

Let Var be a set of first-order variables, denoted x, y, z, etc., ranging over non-
negative real numbers. Let MP be a set of monadic predicates, denoted P,Q,R,
etc. Monadic predicates will alternately be viewed as second-order variables over
R≥0, i.e., ranging over sets of non-negative real numbers, and as atomic propo-
sitions holding at various points in time.

Second-order monadic formulas are obtained from the following grammar:

ϕ ::= true | x < y | +1(x, y) | P (x) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∀xϕ | ∀P ϕ ,

where +1 is a binary relation symbol, with the intuitive interpretation of +1(x, y)
as ‘x + 1 = y’.5 We refer to ∀x and ∀P as first-order and second-order quanti-
fiers respectively. Existential quantifiers ∃x and ∃P are definable via standard
dualities.

The monadic second-order metric logic of order , written MSO(<,+1),
comprises all second-order monadic formulas. Its first-order fragment, the
(monadic) first-order metric logic of order , written FO(<,+1), comprises
all MSO(<,+1) formulas that do not contain any second-order quantifier; note
that these formulas are however allowed free monadic predicates.

We also define two further purely order-theoretic sublogics, which are pe-
ripheral to our main concerns but necessary to express some key related re-
sults. The monadic second-order logic of order, MSO(<), comprises all second-
order monadic formulas that do not make use of the +1 relation. Likewise, the
(monadic) first-order logic of order, FO(<), comprises those MSO(<) formulas
that do not figure second-order quantification.

Metric Temporal Logic, abbreviated MTL, comprises the following tem-
poral formulas:

θ ::= true | P | θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ | 3Iθ | �Iθ | θ1 UI θ2 ,

where P ∈MP is a monadic predicate, and I ⊆ R≥0 is an open, closed, or half-
open interval with endpoints in N ∪ {∞}. If I = [0,∞), then we omit the anno-
tation I in the corresponding temporal operator. We also use pseudo-arithmetic
5 The usual approach is of course to define +1 as a unary function symbol; this however

necessitates an awkward treatment over bounded domains, as considered in this
paper. We shall nonetheless abuse notation later on and invoke +1 as if it were a
function, in the interest of clarity.
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expressions to denote intervals. For example, the expression ‘≥1’ denotes [1,∞)
and ‘=1’ denotes the singleton {1}.

Note that our version of MTL includes only forwards temporal operators, in
keeping with the most common definition found in the literature. All our results
extend straightforwardly to variants of MTL that make use of both forwards and
backwards operators. It is also worth pointing out that the 3I and �I operators
are derivable from UI .

Finally, Linear Temporal Logic, written LTL, consists of those MTL formulas
in which every indexing interval I on temporal operators is [0,∞) (and hence
omitted).

Figure 3.1 pictorially summarises the syntactic inclusions and relative ex-
pressive powers of these various logics.

MSO(<, +1)

mmmmmm
RRRRRRR

MSO(<) FO(<, +1) MTL

FO(<)

QQQQQQQ
lllllll

LTL

Fig. 1. Relative expressiveness among the various logics. Metric logics are enclosed in
boxes. Straight lines denote syntactical inclusion, whereas dotted lines indicate expres-
sive equivalence over bounded time domains (cf. Section 5).

3.2 Semantics

Let P ⊆ MP be a finite set of monadic predicates, and let us again write T
to denote either [0, N) (for some fixed N ∈ N) or R≥0. A flow (or signal)
over P is a function f : T → 2P that is finitely variable. Finite variability
means that the restriction of f to any finite subinterval of T has only finitely
many discontinuities.6 Note that, unlike [44], we do not place any bound on the
variability, other than requiring that it be finite.

A flow f : T→ 2P corresponds to an interpretation of the monadic predicates
in P: for any P ∈ P, the interpretation of P as a subset of T is simply {t ∈ T |
P ∈ f(t)}. Conversely, any (finitely-variable) interpretation of all the predicates
in P defines a unique flow f : T→ 2P.

A timed word (〈a1 . . . an〉, 〈t1 . . . tn〉) over alphabet Σ can be viewed as a
(particular type of) flow, as follows. Let T be either [0, N) (for some N > tn) or

6 The restriction to finitely-variable flows can be partially lifted, as we discuss in the
full version of this paper [29]. Note however that from a computer-science perspec-
tive, infinitely-variable flows do not correspond to feasible computations, hence the
widespread adoption of the present restriction in the literature.
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R≥0, and let P = Σ. Set f(ti) = {ai}, for 1 ≤ i ≤ n, and f(t) = ∅ for all other
values of t ∈ T.

Fix a time domain T, equipped with the standard order relation < and the
obvious binary relation +1, i.e., +1(a, b) iff a, b ∈ T and a+1 = b. Given a formula
ϕ of MSO(<,+1) or one of its sublogics, let P and {x1, . . . , xn} respectively be
the sets of free monadic predicates and free first-order variables appearing in
ϕ. For any flow f : T → 2P and real numbers a1, . . . , an ∈ T, the satisfaction
relation (f, a1, . . . , an) |= ϕ is defined inductively on the structure of ϕ in the
standard way. For example:

– (f, a) |= P (x) iff P ∈ f(a).
– (f, a1, . . . , an) |= ∀P ϕ iff for all finitely-variable flows g : T → 2P∪{P}

extending f (i.e., such that g�P = f), we have (g, a1, . . . , an) |= ϕ.
(Here P is the set of free monadic predicates appearing in ∀P ϕ, and therefore
does not contain P .)

And so on.
We shall particularly be interested in the special case in which ϕ is a sentence,

i.e., a formula with no free first-order variable. In such instances, we simply write
the satisfaction relation as f |= ϕ.

For θ an MTL or LTL formula, let P be the set of monadic predicates appear-
ing in θ. Given a flow f : T→ 2P and t ∈ T, the satisfaction relation (f, t) |= θ
is defined inductively on the structure of θ, as follows:

– (f, t) |= true.
– (f, t) |= P iff P ∈ f(t).
– (f, t) |= θ1 ∧ θ2 iff (f, t) |= θ1 and (f, t) |= θ2.
– (f, t) |= θ1 ∨ θ2 iff (f, t) |= θ1 or (f, t) |= θ2.
– (f, t) |= ¬θ iff (f, t) 6|= θ.
– (f, t) |= 3Iθ iff there exists u ∈ T with u > t, u− t ∈ I, and (f, u) |= θ.
– (f, t) |= �Iθ iff for all u ∈ T with u > t and u− t ∈ I, (f, u) |= θ.
– (f, t) |= θ1 UI θ2 iff there exists u ∈ T with u > t, u− t ∈ I, (f, u) |= θ2, and

for all v ∈ (t, u), (f, v) |= θ1.

Finally, we write f |= θ iff (f, 0) |= θ. This is sometimes referred to as the
initial semantics.

Note that we have adopted a strict semantics, in which the present time t
has no influence on the truth values of future temporal subformulas. Strictness
is required for Theorem 2, but our other results hold under both the strict and
non-strict semantics.

An important point concerning our semantics is that it is continuous, rather
than pointwise: more precisely, the temporal operators quantify over all time
points of the domain, as opposed to merely those time points at which a discon-
tinuity occurs. Positive decidability results for satisfiability and model checking
of MTL over unbounded time intervals have been obtained in the pointwise se-
mantics [33, 34, 35]; it is worth noting that none of these results hold in the
continuous semantics.
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4 Satisfiability

The canonical time domain for interpreting the metric logics MSO(<,+1),
FO(<,+1), and MTL is the non-negative real line R≥0. Unfortunately, none
of these logics are decidable over R≥0 [5, 6, 19].

Our main focus in this paper is therefore on satisfiability over bounded time
domains of the form [0, N), for N ∈ N. For each of the logics introduced in
Section 3.1, one can consider the corresponding time-bounded satisfiability
problem : given a sentence ϕ over a set P of free monadic predicates, together
with a time bound N ∈ N, does there exist a flow f : [0, N) → 2P such that
f |= ϕ?

One of our main results is the following:

Theorem 1. The time-bounded satisfiability problems for the metric logics
MSO(<,+1), FO(<,+1), and MTL are all decidable, with the following com-
plexities:7

MSO(<,+1) Non-elementary
FO(<,+1) Non-elementary

MTL EXPSPACE-complete

Remark 2. It is worth noting that if one allows second-order quantification over
predicates of arbitrary variability, then MSO(<) is undecidable over R≥0 [40].
Since any non-trivial interval of the form [0, N) is order-isomorphic to R≥0, the
undecidability of MSO(<) carries over to bounded time domains, and a for-
tiori to MSO(<,+1) over bounded time domains. FO(<,+1) and MTL however
remain decidable over bounded time domains regardless of the variability of
flows—see [29].

The proofs of all theorems in this paper are given in Appendix A.

5 Expressiveness

Fix a time domain T to be either [0, N) (for some N ∈ N) or R≥0. Let L and
J be two logics. We say that L is at least as expressive as J if, for any
sentence θ of J , there exists a sentence ϕ of L such that θ and ϕ are satisfied
by precisely the same set of flows over T.

Two logics are then said to be equally expressive if each is at least as
expressive as the other.

The following result can be viewed as an extension of Kamp’s celebrated
theorem [21, 12] to metric logics over bounded time domains:

Theorem 2. For any fixed bounded time domain of the form [0, N), with N ∈
N, the metric logics FO(<,+1) and MTL are equally expressive. Moreover, this
equivalence is effective.
7 All the complexity results in this paper assume that the time bound N is provided

in binary.
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Remark 3. Note that expressiveness here is relative to a single structure T,
rather than to a class of structures. In particular, although FO(<,+1) and MTL
are equally expressive over any bounded time domain of the form [0, N), the
correspondence and witnessing formulas may very well vary according to the
time domain.

It is interesting to note that FO(<,+1) is strictly more expressive than MTL
over R≥0 [20]. For example, MTL is incapable of expressing the following formula
(in slightly abusive but readable notation)

∃x∃y ∃z (x < y < z < x+ 1 ∧ P (x) ∧ P (y) ∧ P (z))

over the non-negative reals. This formula asserts that, sometime in the future,
P will hold at three distinct time points within a single time unit.

It is also worth noting that MSO(<,+1) is strictly more expressive than
FO(<,+1)—and hence MTL—over any time domain; see [29].

Finally, we point out that, in contrast to Kamp’s theorem [21], but similarly
to [12], Theorem 2 does not require backwards temporal operators for MTL
(although adding these would be harmless). This may appear surprising in view
of the main results of [18], and indeed backwards temporal operators for MTL
would be required had we allowed flows to be infinitely variable [29].

6 Model Checking and Language Inclusion

We now turn to questions concerning the time-bounded behaviours of timed
automata. Recall from Section 3.2 that timed words over an alphabet Σ can be
viewed as flows from a sufficiently large time domain over the set of monadic
predicates P = Σ. The model-checking problem takes as inputs a timed
automaton A with alphabet Σ, a sentence ϕ with set of free monadic predicates
P = Σ, and a time domain T (taken to be either [0, N), for some N ∈ N, or
R≥0). The question is then whether every timed word (flow) in LT(A) satisfies
ϕ.

Unfortunately, the model-checking problem for timed automata and any of
the metric logics introduced in this paper is undecidable over the non-negative
real line R≥0 [5, 6]; this follows easily from the undecidability of the satisfiability
problem for these logics over flows. We therefore focus on the time-bounded
model-checking problem , in which the time domain is required to be bounded.
We have:

Theorem 3. The time-bounded model-checking problems for timed automata
against the metric logics MSO(<,+1), FO(<,+1), and MTL are all decidable,
with the same complexities as the corresponding time-bounded satisfiability prob-
lems (cf. Theorem 1): non-elementary for MSO(<,+1) and FO(<,+1), and
EXPSPACE-complete for MTL.

The language inclusion problem takes as inputs two timed automata, A
and B, sharing a common alphabet, together with a time domain T (of the form
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[0, N), for some N ∈ N, or R≥0). The question is then whether every timed word
accepted by A over T is also accepted by B.

As for model checking, language inclusion is unfortunately undecidable over
R≥0 [2]. The time-bounded language inclusion problem circumvents this
by restricting to bounded time domains. This leads us to our final main result,
as follows:

Theorem 4. The time-bounded language inclusion problem for timed automata
is decidable and 2EXPSPACE-complete.

A Proofs of Theorems

We begin by stating some relatively straightforward facts translating results
about order-theoretic (i.e., non-metric) logics over the reals to bounded domains.
For the purposes of Lemmas 1 and 2, let N ∈ N be a fixed positive integer.

Lemma 1. Let ϕ be an FO(<) formula and ψ be an LTL formula that are sat-
isfied by the same flows over R≥0. Then ϕ and ψ are satisfied by the same flows
over [0, N).

Proof. Let P be the set of monadic predicates appearing in ϕ and ψ. We need
to show that, for any flow f : [0, N)→ 2P, f |= ϕ iff f |= ψ.

Let β : [0, N)→ R≥0 be an order isomorphism (monotone bijection), and let
f : [0, N) → 2P be a finitely-variable flow. Observe that f ◦ β : R≥0 → 2P is
then also finitely variable. We have

f |= ϕ iff f ◦ β |= ϕ iff f ◦ β |= ψ iff f |= ψ ,

as required. The first and third equivalences follow easily by induction on ϕ and
ψ respectively, whereas the second equivalence holds by assumption. ut

Some of our results require the use of Linear Temporal Logic with Past Oper-
ators, LTL+Past. This logic simply augments LTL with the backwards operators
←−
3 (‘sometimes in the past’), ←−� (‘always in the past’), and S (‘since’); see [25].

Lemma 2. The following all hold over the time domain [0, N):

1. FO(<) and LTL are equally expressive.
2. Satisfiability for LTL+Past is decidable in PSPACE.
3. Satisfiability for MSO(<) is decidable.
4. Satisfiability for FO(<) is non-elementary.

Proof.

1. It is known from [18] that FO(<) and LTL are equally expressive over R≥0 for
finitely-variable flows.8 It immediately follows from Lemma 1 that these logics
are also equally expressive over [0, N) (for finitely-variable flows).
8 Note that the assumption of finite variability is crucial here: the same paper, [18],

shows that FO(<) is strictly more expressive than LTL when flows of arbitrary vari-
ability are allowed.
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2. Note that while [0, N) and R≥0 are order-isomorphic, finitely-variable flows
over R≥0 do not necessarily translate to finitely-variable flows over [0, N). Rather,
it is easily seen that the finitely-variable flows over R≥0 whose counterparts in
[0, N) are finitely variable are precisely those flows that are ultimately constant:
every monadic predicate P is such that there is a time point beyond which P is
either always true or always false.

The property of an R≥0-flow being ultimately constant is easily captured by
an LTL formula such as

∧
{3(�P ∨�¬P ) | P ∈ P}, where P is the relevant set

of monadic predicates. Let us denote this formula by κ.
Given an LTL+Past formula ϕ, we therefore have that ϕ is satisfiable over

[0, N) iff ϕ is satisfiable over R≥0 by ultimately-constant flows iff ϕ ∧ κ is sat-
isfiable over R≥0. Since satisfiability of LTL+Past over R≥0 is in PSPACE [38],
the desired result follows.

3. The decidability of MSO(<) satisfiability over [0, N) follows similarly to the
case of LTL+Past. A sentence ϕ of MSO(<) is satisfiable over [0, N) iff the sen-
tence ϕ̂ is satisfiable over R≥0, where ϕ̂ is obtained from ϕ by requiring all free
monadic predicates to be ultimately constant and also syntactically restrict-
ing second-order quantification to ultimately-constant monadic predicates. The
result follows from the decidability of satisfiability for MSO(<) over R≥0 by
finitely-variable flows [36].

4. Satisfiability of FO(<) over R≥0 is known to be non-elementary [42, 27]. An
examination of the proof shows that this result in fact also holds over (finitely-
variable) flows that are ultimately constant. It immediately follows that satisfi-
ability for FO(<) over [0, N) is non-elementary. ut

Theorem 1. The time-bounded satisfiability problems for MSO(<,+1) and
FO(<,+1) are decidable and non-elementary, whereas the time-bounded satis-
fiability problem for MTL is EXPSPACE-complete.

Proof. Throughout this proof, let N ∈ N be fixed.

Decidability. An easy first observation is that any MTL formula can be trans-
lated into an equivalent FO(<,+1) formula over [0, N), following an approach
similar to the translation of LTL formulas into FO(<). For decidability, it there-
fore suffices to handle the case of MSO(<,+1).

Let P ⊆ MP be a finite set of monadic predicates. With each P ∈ P, we
associate a collection P0, . . . , PN−1 of N fresh monadic predicates. We then let
P = {Pi | P ∈ P, 0 ≤ i ≤ N − 1}.

Intuitively, each monadic predicate Pi represents P over the subinterval
[i, i+1). Indeed, there is an obvious ‘stacking’ bijection (indicated by overlining)
between the set of flows {f : [0, N)→ 2P} and the set of flows {f : [0, 1)→ 2P}.

Let ϕ be an MSO(<,+1) sentence with set of free monadic predicates P. We
will define an MSO(<) sentence ϕ such that, for any flow f : [0, N)→ 2P, f |= ϕ
iff f |= ϕ.
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We can assume that ϕ does not contain any (first- or second-order) existential
quantifiers, by replacing the latter with combinations of universal quantifiers and
negations if need be. It is also convenient to rewrite ϕ into a formula that makes
use of the constant N − 1 as well as a family of unary functions +k (for k ∈ N)
instead of the +1 relation. To this end, replace every occurrence of +1(x, y) in
ϕ by (x < N − 1 ∧ x+ 1 = y).

Next, recursively replace every instance of ∀xψ in ϕ by the formula

∀x (ψ[x/x] ∧ ψ[x+ 1/x] ∧ . . . ∧ ψ[x+ (N − 1)/x]) ,

where ψ[t/x] denotes the formula resulting from substituting every free occur-
rence of the variable x in ψ by the term t. Intuitively, this transformation is
legitimate since first-order variables in our target formula will range over [0, 1)
rather than [0, N).

Having carried out these substitutions, rewrite every term in ϕ involving a
variable into the form x + k, where x is the term’s variable and k ∈ N is a
non-negative integer constant.

Every inequality occurring in ϕ is now of the form x+k < N −1 or x+k1 <
y + k2. Replace every inequality of the first kind by true if k + 2 ≤ N and by
¬true otherwise, and replace every inequality of the second kind by (i) x < y,
if k1 = k2; (ii) true, if k1 < k2; and (iii) ¬true otherwise.

Every equality occurring in ϕ is now of the form x + k1 = y + k2. Replace
every such equality by ¬(x < y∨y < x)—which of course is the same as x = y—if
k1 = k2, and by ¬true otherwise.

Every occurrence of a monadic predicate in ϕ now has the form P (x + k),
for k ≤ N − 1. Replace every such predicate by Pk(x).

Finally, recursively replace every occurrence of ∀P ψ in ϕ by
∀P0 ∀P1 . . .∀PN−1 ψ. The resulting formula is the desired ϕ.

It is now straightforward to prove by induction that the set of [0, N)-flows
satisfying the original ϕ are indeed in one-to-one correspondence with the set of
[0, 1)-flows satisfying ϕ.

Note that ϕ does not use any +1 or +k functions or relations, and is therefore
a purely order-theoretic sentence of MSO(<). Decidability therefore follows from
Lemma 2.3.

Complexity. Since time-bounded satisfiability for FO(<) is non-elementary
(Lemma 2.4), then a fortiori so are time-bounded satisfiability for FO(<,+1)
and MSO(<,+1).

In [9], it is shown that the satisfiability problem for Bounded Metric Temporal
Logic (Bounded-MTL, which consists of MTL formulas in which all intervals I
appearing as subscripts to temporal operators are bounded) is EXPSPACE-
hard. An examination of that proof shows that it readily carries over to the
time-bounded satisfiability problem for MTL, which is therefore EXPSPACE-
hard as well.

Let θ be an MTL formula. We will sketch how to manufacture an exponential-
size formula θ̃ of LTL+Past such that θ is satisfiable over [0, N) iff θ̃ is satisfiable
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over [0, 1). Since LTL+Past satisfiability is in PSPACE (Lemma 2.2), satisfia-
bility for θ over [0, N) can be decided in exponential space. Together with the
previous paragraph, this will therefore establish EXPSPACE-completeness of
time-bounded satisfiability for MTL.

The process for constructing θ̃ is similar in spirit to the reduction above
of MSO(<,+1) over [0, N) to MSO(<) over [0, 1). Once again, we imagine the
interval [0, N) decomposed into N vertically-stacked unit-length intervals.

Let Sub(θ) denote the set of subformulas of θ.9 For every subformula ρ ∈
Sub(θ) and every i ∈ {0, . . . , N−1}, we postulate an atomic proposition (monadic
predicate) F ρ

i of θ̃. Intuitively, θ̃ will be such that it forces F ρ
i to hold at time

t ∈ [0, 1) precisely when ρ holds at time t+ i ∈ [0, N). This is achieved by con-
structing, for each atomic proposition F ρ

i , an LTL+Past formula ωρ
i that specifies

F ρ
i ’s value, at any time t, in relation to the behaviours—before time t, at time
t, and after time t—of the atomic propositions associated with the subformulas
of ρ.

The various clauses ωρ
i are produced according to the outermost connective

of ρ, following an approach very similar to the reduction in [9] of Flat-MTL
to LTL+Past. We give three examples below that should convey the general
underlying idea:

– For P a monadic predicate, ωP
i is the formula true, since P—being atomic—

is not constrained by any subformula.
– ωρ∧η

i is the formula F ρ∧η
i ↔ (F ρ

i ∧ F
η
i ).

– ω
ρU(2,3)η

i will depend on whether i ≤ N − 4, i = N − 3, or i ≥ N − 2.
Assuming, for example, that i ≤ N − 4, ωρU(2,3)η

i is the formula

F
ρU(2,3)η

i ↔

(
�F ρ

i ∧
←−�F ρ

i+1 ∧ F
ρ
i+1 ∧�F ρ

i+1 ∧
←−�F ρ

i+2 ∧ F
ρ
i+2 ∧(

F ρ
i+2 U F

η
i+2 ∨

(
�F ρ

i+2 ∧
←−
3

(
F η

i+3 ∧
←−�F ρ

i+3

))) ) .

Let us now write Ω to denote the conjunction∧
{ωρ

i ∧�ωρ
i | ρ ∈ Sub(θ), 0 ≤ i ≤ N − 1} .

Observe that Ω fully determines the behaviours of all the F ρ
i ’s according to the

behaviours of the FP
i ’s (for P a monadic predicate of θ), throughout the time

domain [0, 1).
The desired formula θ̃ is then F θ

0 ∧Ω.
To establish the correctness of this construction, consider the set P of monadic

predicates appearing in θ, and let P = {FP
i | P ∈ P, 0 ≤ i ≤ N − 1} be the

set of atomic propositions associated with the monadic predicates of θ. There is
once again a stacking bijection between the set of flows {f : [0, N) → 2P} and
the set of flows {f : [0, 1)→ 2P}. Writing F = {F ρ

i | ρ ∈ Sub(θ), 0 ≤ i ≤ N − 1}
to denote the full set of monadic predicates appearing in θ̃, it is clear that any
9 The subformulas of P ∨(Q U[1,3) R), for example, are P ∨(Q U[1,3) R), P , Q U[1,3) R,

Q, R.
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flow f : [0, 1) → 2P can be uniquely extended into a flow f̃ : [0, 1) → 2F, by
requiring that f̃ |= Ω.

It is now straightforward to prove by induction on ρ ∈ Sub(θ) that, for any
flow f : [0, N) → 2P, any t ∈ [0, 1), and any i ∈ {0, . . . , N − 1}, we have
(f, t + i) |= ρ iff (f̃ , t) |= F ρ

i . The desired result follows by setting t = 0, i = 0,
and ρ = θ. ut

Theorem 2. For any fixed bounded time domain of the form [0, N), with N ∈
N, the metric logics FO(<,+1) and MTL are equally expressive. Moreover, this
equivalence is effective.

Proof. Throughout this proof, let N ∈ N be fixed.
The reduction from MTL to FO(<,+1) is straightforward, and therefore omit-

ted.
For the other direction, let ϕ be an FO(<,+1) sentence with set of free

monadic predicates P ⊆ MP. As in the proof of Theorem 1, let P = {Pi |
P ∈ P, 0 ≤ i ≤ N − 1} be a set of fresh monadic predicates. The stacking
construction used in Theorem 1 yields an FO(<) sentence ϕ with set of free
monadic predicates P, such that there is a bijection (indicated by overlining)
from the set of [0, N)-flows over P satisfying ϕ to the set of [0, 1)-flows over P
satisfying ϕ.

According to [18], one can now construct an LTL formula ψ, with set of
monadic predicates P, that defines precisely the same set of finitely-variable
R≥0-flows as ϕ. By Lemma 1, ϕ and ψ therefore also define precisely the same
set of finitely-variable [0, 1)-flows over P.

It therefore suffices to exhibit an MTL formula θ, over set of monadic predi-
cates P, such that, for any flow f : [0, N)→ 2P, f |= θ iff f |= ψ.

To this end, write ι to denote the MTL formula 3=(N−1)true. Note that,
when interpreted within the time domain [0, N), ι holds precisely over the time
interval [0, 1). Perform the following substitutions on ψ to obtain the desired θ:
(i) for each P ∈ P, replace every occurrence of P0 in ψ by P , and every occurrence
of Pi in ψ (for i ≥ 1) by 3=iP ; (ii) recursively replace every occurrence of 3γ in
ψ by 3(ι∧γ); (iii) recursively replace every occurrence of �γ in ψ by �(ι→ γ);
(iv) recursively replace every occurrence of γ1 U γ2 in ψ by γ1 U (ι ∧ γ2).

Finally, show by induction on ψ that, for any flow f : [0, N) → 2P and any
t ∈ [0, 1), one has (f, t) |= θ iff (f, t) |= ψ. The desired result follows by setting
t = 0. ut

Theorem 3. The time-bounded model-checking problems for timed automata
against the metric logics MSO(<,+1), FO(<,+1), and MTL are all decidable,
with the same complexities as the corresponding time-bounded satisfiability prob-
lems: non-elementary for MSO(<,+1) and FO(<,+1), and EXPSPACE-Com-
plete for MTL.

Proof. Fix N ∈ N, and let A be a timed automaton over alphabet Σ. In [16],
it is shown how to construct (in polynomial time) an MTL formula θA, over
a potentially larger set of monadic predicates P ⊇ Σ, such that, for any flow
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f : [0, N) → 2Σ , f ∈ L[0,N)(A) iff there exists a flow g : [0, N) → 2P such that
g |= θA and g�Σ = f . Intuitively, the extra monadic predicates of θA keep track
of the (otherwise invisible) identity of transitions and clock resets that occur
during runs of A.

Of course, θA can clearly instead be taken to be an FO(<,+1) or MSO(<,+1)
formula, if desired. In all cases, given a metric formula ϕ, the model-checking
problem for A and ϕ over [0, N) boils down to whether θA ∧ ¬ϕ is unsatisfiable
over [0, N) or not.

This shows that time-bounded model checking reduces to time-bounded sat-
isfiability. For the converse, simply pick an automaton A that accepts every flow.

ut

Theorem 4. The time-bounded language inclusion problem for timed automata
is decidable and 2EXPSPACE-complete.

Proof.

2EXPSPACE-membership. Fix N ∈ N, and let A and B be timed au-
tomata over alphabet Σ. We give a procedure for deciding whether L[0,N)(A) ⊆
L[0,N)(B).

As in the proof of Theorem 3, let θA be an MTL formula over set of monadic
predicates P = Σ ∪U, with the property that each [0, N)-timed word over Σ
accepted by A can be extended to a [0, N)-flow over P satisfying θA, and vice-
versa. Likewise, let θB be a similar MTL formula over set of monadic predicates
Q = Σ ∪V for the timed automaton B. We assume that Σ, U, and V are all
pairwise disjoint.

Abusing notation, we see that L[0,N)(A) ⊆ L[0,N)(B) iff the following for-
mula10 holds over [0, N):

∀Σ ∀U∃V (¬θA(Σ,U) ∨ θB(Σ,V)) . (1)

As in the proof of Theorem 1, we can transform the MTL formula
¬θA∨θB into an equisatisfiable but exponentially larger formula ψ of LTL+Past.
More precisely, ψ has a different (and exponentially larger) set of monadic pred-
icates R = Σ ∪U ∪V ∪W, yet there is a one-to-one ‘stacking’ correspondence
between the flows satisfying ¬θA ∨ θB and those satisfying ∃Wψ. We adjust
the outside quantifiers accordingly to transform Formula (1) into the equivalent
formula

∀Σ ∀U∃V ∃Wψ(Σ,U,V,W) .

Next, following [3] (as a special case), we transform ψ into an equivalent
untimed finite-state automaton C whose transitions are labelled by subsets of
Σ ∪U ∪V ∪W. This incurs a second exponential blowup.

Note that the existential quantifications ∃W and ∃V simply correspond to
relabelling all W- and V-labelled transitions in C; this can be carried out in
10 Extensions of temporal logics by second-order quantification can be found in, e.g.,

[16, 41].
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polynomial time. We are therefore asking whether the resulting automaton is
universal over Σ∪U, i.e., accepts any string over this alphabet. Since universality
is decidable in PSPACE, the overall procedure can be carried out in doubly-
exponential space as claimed.

2EXPSPACE-hardness. We now establish 2EXPSPACE-hardness of the time-
bounded language inclusion problem by reduction from the halting problem for
2EXPSPACE Turing machines. In fact we show 2EXPSPACE-hardness of the
time-bounded universality problem: does a timed automaton accept every timed
word over a given bounded time domain?

Suppose we are given a deterministic 22n

-space-bounded Turing machineM,
with a one-way infinite tape, together with input ξ of length n. We first describe
a scheme to encode computations of M as untimed words. Let M have set of
control states Q and tape alphabet Γ ; then we consider untimed words over the
alphabet Σ ∪ {0, 1,#}, where Σ = (Q× Γ ) ∪ Γ . The idea is to encode a single
tape cell as a word matching the regular expression Σ(0+1)2

n

. Here we think of
the element of Σ as recording the contents of the tape cell11 and the bit-string
in (0 + 1)2

n

as giving the address of the given tape cell in binary, measured
from the leftmost tape cell. Now we encode a configuration of M as a string of
22n

tape cells followed by a single #, and a computation of M as a string of
configurations. For example, a configuration with tape contents γ0γ1γ2γ3, with
control state q and with the read head pointing to γ2, is represented by the word
w = 〈γ000γ101(q, γ2)10γ311#〉.

Let us fix the time domain to be [0, 2n) for the remainder of this proof. We
now invoke the above scheme to encode computations of M as timed words
over [0, 2n). Define the timed language LM,ξ to consist of all those timed words
w = (〈a1 . . . am〉, 〈t1 . . . tm〉) over the alphabet Σ ∪ {0, 1,#} such that:

(i) The untimed word 〈a1 . . . ak〉 corresponding to the sequence of events in the
time interval [0, 1) in w encodes an accepting computation ofM on input ξ
according to the scheme presented above.

(ii) For all timestamps ti in w, if ti < 2n − 1 then there exists a subsequent
timestamp tj = ti + 1 such that ai = aj , and if ti ≥ 1 then there exists an
earlier timestamp tj = ti − 1 such that ai = aj .

Condition (ii) essentially says that the sequence of timed events in the interval
[0, 1), which encodes the computation of M, is copied in each subsequent unit-
duration time interval.

It is clear that LM,ξ 6= ∅ iff M accepts input ξ. Next we describe how to
construct (in LOGSPACE) a timed automaton AM,ξ whose accepted language
is the complement of LM,ξ. Thus AM,ξ is universal if and only if M rejects ξ.
Automaton AM,ξ can be described as the union of several components, where
each component accepts the set of timed words violating a requirement of one

11 Symbol γ ∈ Γ denotes a tape cell containing γ, whereas symbol (q, γ) ∈ Q × Γ
denotes a tape cell containing γ that is pointed to by the read head while the Turing
machine is in control state q.
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of the above two conditions. It is well-known that there are simple automata
accepting those timed words violating Condition (ii), see, e.g., [2]. We therefore
focus on Condition (i).

The key idea for capturing timed words violating (i) is embodied in the
automaton Abit in Figure 2. (Here we elide the classification of accepting states.)
Consider a run of this automaton on a timed word w that matches the regular
expression ((Σ(0 + 1)∗)∗#)∗ and that does not already violate Condition (ii).
Recall that such a timed word copies the sequence of timed events in the time
interval [0, 1) to all subsequent time intervals. In such a run, clocks x and y are
initially reset during the first time unit immediately following respective events
σ1 and σ2 in Σ, representing two adjacent tape cells in a given configuration of
the computation of M. Thereafter, whenever x or y reach 1, they are reset on
the next event. By this device we can imagine that automaton Abit scans the
respective bit strings that follow σ1 and σ2 in w, checking one bit every time
unit. Using a variation on automaton Abit we can construct an automaton that
accepts precisely when the bit string following σ2 is not the successor of the bit
string following σ1. Note that this check requires in the worst case 2n time units.

//ONMLHIJK
@GF ECD

Σ∪{0,1,#}

��
Σ //ONMLHIJK x<1 {0,1}

x:=0
//ONMLHIJK
@GF ECD
{0,1}

��
Σ //ONMLHIJK y<1 {0,1}

y:=0
//ONMLHIJK
@GF ECD

Σ∪{0,1,#}

��

x=1

{0,1}
//ONMLHIJK

x:=0{0,1}

��ONMLHIJK

y:=0 {0,1}

OO

ONMLHIJK
BCD@GA

Σ∪{0,1}

??y=1

{0,1}
oo

Fig. 2. The timed automaton Abit.

Let us now assume that the bit strings following each Σ-event in w correctly
give the address of the corresponding tape cell. We can devise an automaton that,
among such timed words, accepts precisely those that do not correspond to valid
accepting computations of M. The automaton detects invalid computations by
guessing two Σ-events in the first time unit, corresponding to the same tape
cell in consecutive configurations of M, and checking whether this tape cell is
correctly updated according to the transition function ofM. One can verify that
the two events do indeed correspond to the same tape cell using a device similar
to that employed in the automaton Abit: one scans the respective bit-string
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addresses of the two tape cells, checking that they match in each bit position.
ut
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automata with applications to temporal logic (extended abstract). In Proceedings
of ICALP, volume 194 of LNCS. Springer, 1985.

[42] L. J. Stockmeyer. The complexity of decision problems in automata theory and
logic. PhD thesis, MIT, 1974.
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