
Tractable Reasoning in a Fragment of Separation
Logic

Byron Cook1,3, Christoph Haase2, Joël Ouaknine2, Matthew Parkinson1, and
James Worrell2

1 Microsoft Research Cambridge, UK
2 Department of Computer Science, University of Oxford, UK

3 Department of Computer Science, Queen Mary University of London, UK

Abstract. In 2004, Berdine, Calcagno and O’Hearn introduced a frag-
ment of separation logic that allows for reasoning about programs with
pointers and linked lists. They showed that entailment in this fragment
is in coNP, but the precise complexity of this problem has been open
since. In this paper, we show that the problem can actually be solved in
polynomial time. To this end, we represent separation logic formulae as
graphs and show that every satisfiable formula is equivalent to one whose
graph is in a particular normal form. Entailment between two such for-
mulae then reduces to a graph homomorphism problem. We also discuss
natural syntactic extensions that render entailment intractable.

1 Introduction

Separation logic (SL) [11, 14] is an extension of Hoare logic to reason about
pointer manipulating programs. It extends the syntax of assertions with pred-
icates describing shapes of memory; aliasing and disjointness can be concisely
expressed within these shapes. This extended assertion languages allows elegant
and concise hand written proofs of programs that manipulate dynamically allo-
cated data structures. However, generating such proofs in an automated fashion
is constrained by the undecidability of separation logic [14]. For that reason, in
recent years research has been concentrating on finding decidable fragments of
this logic, see e.g. [2, 5].

In this paper, we study the SL fragment presented in [2]. This fragment al-
lows for reasoning about structural integrity properties of programs with pointers
and linked lists. In [2], the decidability of checking validity of entailments in this
logic has been shown. Entailment is the problem to decide whether, given two
separation logic assertions α and α′, α′ holds in every memory model in which
α holds. Decidability was shown in model-theoretic terms and by providing a
complete syntactic proof theory for this fragment. Based on these theoretical re-
sults, Berdine, Calcagno and O’Hearn [3] later developed the tool Smallfoot.
This tool decides entailments via a syntactic proof search using the proof theory,
however in the worst case an exponential number of proofs have to be explored.
The tool demonstrated that SL could be used to automatically verify memory

safety of linked list and tree manipulating programs. Based on the success of
Smallfoot, this approach has been extended to allow automatic inference of
specifications of systems code [1, 4], to reason about object-oriented programs [7,
12], and even to reason about non-blocking concurrent programs [3]. But funda-
mentally all these tools are based on the same style of syntactic proof theory.

The precise computational complexity of checking entailments was not fully
answered in [2]. The authors show that a memory model disproving an entail-
ment is polynomial in the size of the input, thus giving a coNP algorithm. As
we are going to show in this paper, entailment can actually be decided in poly-
nomial time. To this end, we take a fundamentally different approach to [2]:
Instead of reasoning syntactically about formulae, we represent them as graphs
in a particular normal form and then compute a homomorphism between those
graphs to prove that an entailment holds. It is well-known [8] that computing
graph homomorphisms is an NP-complete problem, however our graphs in nor-
mal form enjoy some special structural properties that allow one to compute
homomorphisms in polynomial time.

This paper is structured as follows: In Section 2 we formally introduce our
SL fragment, graphs and the decision problems that we consider. Section 3 then
shows how we can compute in polynomial time from a given assertion a graph in
normal form that represents the same set of models of the formula. We then show
in Section 4 that a homomorphism between graphs in normal form witnesses an
entailment, and that such a homomorphism can be computed in polynomial time.
Section 5 deals with syntactic extensions that make entailment coNP-hard.

Due to space constraints, we do not present all algorithms and proofs in the
main part of this paper, they can however be found in an extended version [6].
Moreover, we assume the reader to be familiar with basic notions and concepts
of separation logic. For a comprehensive introduction to separation logic, see
[14].

2 Preliminaries

Let Vars and V be countably infinite sets of variables and nodes. We assume
some fixed total order < on Vars and for any finite S ⊆ Vars, denote by min(S)
the unique x ∈ S such that x ≤ y for all y ∈ S.

The syntax of our assertion language is given by the following grammar,
where x ranges over Vars:

expr ::= x (expressions)
φ ::= expr = expr | expr 6= expr | φ ∧ φ (pure formulae)
σ ::= expr 7→ expr | ls(expr , expr) | σ ∗ σ (spatial forumlae)
α ::= (φ;σ) (assertions)

Subsequently, we call formulae of our assertion language SL-formulae. An exam-
ple of an SL-formula is α = (x 6= y; ls(x, y)∗y 7→ z). It describes memory models

{x1}

{x2}{x3}

{x4}

{x5} {x7}
{x6}

{x1,x2,x3}

{x4,x6}

{x5} {x7}

{x1}

{x4}

{x6}

{x7}

(a) (b) (c)

Fig. 1. Three SL-graphs, where l-edges are dotted arrows, p-edges solid arrows and
d-edges dashed lines. Nodes are labelled with the variables next to them. The graphs
(b) and (c) are in normal form, where (b) is obtained by reducing (a). The arrows from
(c) to (b) depict a homomorphism.

in which the value of the stack variable x is not equal to the value of the stack
variable y, and in which the heap can be separated into two disjoint segments
such that in one segment there is a linked list from the heap cell whose address
is the value of x to the heap cell whose address is the value of y, and where in
the other segment the latter heap cell points to the heap cell whose address is
z. We denote by |φ| the size of a pure formula and by |σ| the size of a spatial
formula, which is in both cases the number of symbols used to write down the
formula. Given an assertion α = (φ;σ), the size of α is |α| def= |φ|+ |σ|. By ε, we
subsequently denote the empty spatial assertion of size zero.

Remark 1. The SL fragment considered in [2] also contains nil as an expression.
This does however not give more expressiveness, since we can introduce a des-
ignated variable nil and implicitly join nil 7→ nil to every spatial assertion to
obtain the same effect.

The semantics of SL-formulae is given in terms of SL-graphs, which we define
to be a special class of directed graphs. Throughout this paper, SL-graphs will
also be used to represent SL-formulae.

Definition 2. An SL-graph G is either ⊥ or (Vb, Vr, El, Ep, Ed, `) such that

– Vb, Vr ⊆fin V , Vb ∩ Vr = ∅, Vb,r
def
= Vb ∪ Vr;

– El ⊆ Vb,r × Vb,r;
– Ep ⊆ Vr × Vb,r and for every v ∈ Vr, Ep(v) is defined;
– Ed ⊆ {{v, w} : v, w ∈ Vb,r, v 6= w};
– ` : Vars ⇀fin Vb,r

I |= x = y ⇐⇒ `I(x) = `I(y)

I |= x 6= y ⇐⇒ `I(x) 6= `I(y)

I |= φ1 ∧ φ2 ⇐⇒ I |= φ1 and I |= φ2

I |= x 7→ y ⇐⇒ ∃v, w ∈ V Ib,r.V
I

r = {v}, EIp = {(v, w)}, `I(x) = v, `I(y) = w

I |= ls(x , y) ⇐⇒ ∃n ∈ N.I |= lsn(x , y)

I |= ls0(x , y) ⇐⇒ `I(x) = `I(y) and V Ir = ∅

I |= lsn+1(x , y) ⇐⇒ ∃z /∈ dom(`I), v ∈ V.I[`/`[z 7→ v]] |= x 7→ z ∗ lsn(z, y)

I |= σ1 ∗ σ2 ⇐⇒ ∃I1, I2.I = I1 ∗ I2, I1 |= σ1, I2 |= σ2

I |= (φ;σ) ⇐⇒ I = I1 ∗ I2, I1 |= φ and I1 |= σ, where I |= ε for all I

Table 1. Semantics of the assertion language, where I is an SL interpretation.

An SL interpretation is an SL-graph where El = ∅, Ep is functional and Ed =
{{v, w} : v, w ∈ Vb,r, v 6= w}.

An SL-graph ⊥ indicates an inconsistent SL-graph. The set Vb,r of nodes of
an SL-graph partitions into sets Vb and Vr, where we refer to nodes in Vb as
black nodes and to those in Vr as red nodes. We call Ep the set of pointer edges
(p-edges), El the set of list edges (l-edges), Ed is the set of disequality edges
(d-edges) and ` the variable labelling function. For convenience, Ep,l denotes the

set Ep ∪ El. Given a node v ∈ V , we set vars(v) def= {x ∈ Vars : `(x) = v} and

var(v) def= min(vars(v)). We sometimes wish to alter one component of a graph
and, e.g., write G[Ep/E′p] to denote the graph G′ = (Vb, Vr, E′p, El, Ed, `).

Example 3. Figure 1 shows three examples of SL-graphs. Subsequently, we iden-
tify nodes of an SL-graph with any of the variables they are labelled with. Graph
(a) has an l-edge from the black node x1 to the red node x3, depicted by a dotted
arrow. The latter node has a p-edge to the black node x4, depicted by a solid
arrow. Moreover, there is a d-edge between x5 and x7, depicted by a dashed line.

In the remainder of this paper, we denote an SL interpretation by I and usu-
ally denote the components of an interpretation with superscript I, e.g., we write
V Ib to denote the black nodes of an interpretation I. Given SL interpretations
I, I ′, I ′′, we define I = I ′ ∗I ′′ if, and only if, V Ir = V I

′

r]V I
′′

r , V I
′

b = V Ib ∪V I
′′

r ,
V I

′′

b = V Ib ∪ V I
′

r , EIp = EI
′

p] EI
′′

p , and `I = `I
′

= `I
′′
. The semantics of our

assertion language is presented in Table 1. We call I a model of α if I |= α.

Remark 4. In [2], the semantics of SL-formulae is given in terms of heaps and
stacks. In our setting, we can view the red nodes of an interpretation as the set of
allocated heap cells, EIp as a representative of the contents of heap cells and `I as
the stack. Black nodes then correspond to dangling locations. Moreover, our se-
mantics differs in that we employ the intuitionistic model of separation logic [14]

and that the semantics of lists is imprecise. We will discuss the relationship to
the semantics given in [2] in Section 4.

The decision problems of interest to us are satisfiability and entailment. Given
an assertion α, we say α is satisfiable if there exists a model I such that I |= α.
Given two assertions α1 and α2, we say α1 entails α2 if for any SL interpretation
I, whenever I |= α1 then I |= α2. We write α1 |= α2 if α1 entails α2, and α1 ≡ α2

if α1 |= α2 and α2 |= α1.
Given an SL-graph G, we now define its corresponding assertion α(G). If

G = ⊥ then α(G) def= (x 6= x; ε), i.e., an unsatisfiable SL-formula. Otherwise, the
assertion α(G) corresponding to G is defined as follows, where we use an indexed
separation operator:

φ(G) def=
∧

v∈Vb,r
x,y∈vars(v)

x = y ∧
∧

{v,w}∈Ed

var(v) 6= var(w),

σ(G) def=
(
∗(v,w)∈Ep

var(v) 7→ var(w)
)
∗
(
∗(v,w)∈El

ls(var(v), var(w))
)
,

α(G) def=(φ(G), σ(G)).

We define the size of an SL-graph G as |G| def= |α(G)|.

Example 5. Graph (b) of Figure 1 corresponds to the assertion (x1 = x2 ∧ x2 =
x3 ∧x4 = x6 ∧x1 6= x4 ∧x5 6= x7;x1 7→ x4 ∗ ls(x4, x5) ∗ ls(x4, x7)), where we have
omitted superfluous equalities.

We now give some technical definitions about paths in SL-graphs. Given
a relation E ⊆ V × V , a v-w path in E of length n is a sequence of nodes
π : v1 · · · vn+1 such that v1 = v, vn+1 = w and (vi, vi+1) ∈ E for all 1 ≤
i ≤ n. We write |π| to denote the length of π. The edges traversed by π is
defined as edges(π) def= {(vi, vi+1) : 1 ≤ i ≤ n}. Two paths π1, π2 are distinct if
edges(π1) ∩ edges(π2) = ∅. If v 6= w, we call a v-w path loop-free if vi 6= vj for
all 1 ≤ i 6= j ≤ n + 1. We write v p w, v l w and v p,l w if there exists a
v-w path in Ep, El respectively Ep,l. Moreover, we write v →p w, v →l w and
v →p,l w if (v, w) ∈ Ep, (v, w) ∈ El respectively (v, w) ∈ Ep,l. Given a set of

edges E, V (E) denotes the set V (E) def= {v : ∃w.(v, w) ∈ E or (w, v) ∈ E}. As
usual, E∗ denotes the reflexive and transitive closure of E. For e = (v, w) ∈ E,
we define E∗(e) def= {u : (w, u) ∈ E∗} ∪ {v}.

The challenging aspect in giving a polynomial time algorithm to decide en-
tailment is that our logic is non-convex. As has already been observed in [2],
given α = (y 6= z; ls(x, y) ∗ ls(x, z)), for any model I of α we have I |= (x = y; ε)
or I |= (x = z; ε). However there are models I1, I2 of α such that I1 6|= (x = y; ε)
and I2 6|= (x = z; ε). Non-convexity often makes computing entailment coNP-
hard for logics that contain predicates for describing reachability relations on
graphs, e.g., in fragments of XPath or description logics [13, 10]. However, in our

SL fragment we obtain tractability through the SL-graph normal form we de-
velop in the next section and the fact that variable names only occur at exactly
one node in an SL-graph, which fully determines a graph homomorphism if it
exists.

3 A Normal Form of SL-Graphs

In this section, we show that given an assertion α we can compute in polynomial
time an SL-graph G in a normal form such that α ≡ α(G). This normal form
serves three purposes: First, it makes implicit equalities and disequalities from α
explicit. Second, an SL-graph in normal form has the structural property that if
there is a loop-free path between two distinct vertices then there is exactly one
such path. Third, any SL-graph G 6= ⊥ in normal form can be transformed into
an interpretation I such that I |= α(G), thus showing that satisfiability in our
SL fragment is in polynomial time.

First, we show how given a pure formula φ we can construct a corresponding
graph Gφ such that (φ, ε) ≡ α(Gφ). Let {x1, . . . , xm} ⊆ Vars be the set of all
variables occurring in φ, and let {[e1], . . . , [en]} be the set of all equivalence
classes of variables induced by φ, i.e., x, y ∈ [ei] if, and only if, φ implies x = y.
Let Vb

def= {v1, . . . , vn} ⊆ V ; `(x) def= vi if, and only if, x ∈ [ei]; and Ed
def=

{{vi, vj} : ∃x, y ∈ Vars.x ∈ [ei], y ∈ [xj] and x 6= y occurs in φ}. If there is a

singleton set in Ed then set Gφ
def= ⊥, otherwise Gφ

def= (Vb, ∅, ∅, ∅, Ed, `). The
following lemma can now easily be verified.

Lemma 6. Let φ be a pure formula. There exists a polynomial time computable
SL-graph Gφ such that α(Gφ) ≡ (φ, ε).

Next, we show how to deal with spatial assertions. When processing spatial
assertions and transforming SL-graphs into normal form, we need to manipulate
SL-graphs. The two operations we perform on them are merging nodes and
removing edges. Due to space constraints, we relegate details of the algorithms
that implement these operations to the extended version of this paper [6].

Algorithm Merge(G, v, w) takes an SL-graph G as input and merges the
node w into node v by adding all labels from w to the labels of v and appro-
priately updating El, Ep and Ed. Moreover, the algorithm makes sure that if
either v ∈ Vr or w ∈ Vr then v ∈ Vr in the returned graph. If both v, w ∈ Vr
or {v, w} ∈ Ed then Merge(G, v, w) returns ⊥. Thus, Merge is characterised
as follows: If α(G) = (φ;σ), v, w ∈ Vb,r, x = var(v) and y = var(w) then
α(Merge(G, v, w)) ≡ (φ ∧ x = y;σ).

Algorithm LRemove(G, (v, w)) takes an SL-graph G as input and removes
the l-edge (v, w) from G. Likewise, PRemove(G, (v, w)) removes a p-edge from
G and, if necessary, moves v from Vr to Vb. Both algorithms can be charac-
terised as follows: If α(G) = (φ;σ ∗ ls(x, y)), v, w ∈ Vb,r, x = var(v) and
y = var(w) then α(LRemove(G, (v, w))) ≡ (φ;σ). If α(G) = (φ;σ ∗ x 7→ y))
then α(PRemove(G, (v, w))) ≡ (φ;σ), where v, w, x and y are as before. As an

Algorithm 1 Reduce

Require: G
while G is not reduced do

case split on violated condition at node v
// conditions are as in Table 2
// node names below refer in each case to the corresponding case in Lemma 13
case (i): return ⊥
case (ii): G = LReMerge(G, (v, w′))
case (iii): G = LReMerge(G, (v, w′′))
case (iv): G = Merge(G′, v, w)

end while
return G

abbreviation, we introduce LReMerge(G, (v, w)) and PReMerge(G, (v, w))
which first remove an l- respectively p-edge (v, w) from G and then merge w
into v.

Finally, Algorithm Apply(G, σ) takes an SL-graph G and a single spatial
assertion σ ∈ {x 7→ y, ls(x, y)} as input and outputs an SL-graph G′ such that
if α(G) = (φ;σ′) then α(G′) ≡ (φ;σ′ ∗ σ). Again, the concrete algorithm can be
found in the extended version due to space limitations, but it is not difficult to
construct such an algorithm that runs in polynomial time. Some extra care has
to be taken if an l-edge is added that is already present in G, since (φ;σ∗ls(x, y)∗
ls(x, y)) ≡ (φ ∧ x = y;σ ∗ ls(x, y)). By combining all algorithms considered in
this section, we obtain the following lemma.

Lemma 7. Let α be an SL-graph. Then there exists a polynomial-time algorithm
that computes an SL-graph G such that α ≡ α(G).

We now move towards defining the normal form of an SL-graph and show that
any SL-graph can be transformed into one in normal form such that their cor-
responding assertions are equivalent. A key concept of the normal form is that
of a persistent set of edges.

Definition 8. Let G be an SL-graph, a set of edges E ⊆ Ep,l is persistent if
V (E) ∩ Vr 6= ∅ or there are v, w ∈ V (E) such that {v, w} ∈ Ed.

For example, let e1 be the l-edge from x4 to x5 and e2 the l-edge from x4 to x7

of graph (a) in Figure 1. Neither {e1} nor {e2} is persistent, but {e1, e2} is as
there is a d-edge between x5 and x7. Intuitively, the idea behind the definition
is as follows: Suppose we are given an SL-graph G with (v, w) ∈ El such that
E = E∗p,l(v, w) is persistent. Then in any model I of α(G) for v′ = `I(var(v)), we
have v′ ∈ V Ir since v′ must have an outgoing p-edge as the persistence property
enforces that there is a p-edge in E or that not all variable names occurring in
E are mapped to v′ in I. Moreover, if v has a further outgoing l-edge (v, w′)
then `I(var(w′)) = v since v can only have one outgoing p-edge in I. For graph
(a) in Figure 1, this means that x6 becomes equivalent to x4 in any model of

(i) if v ∈ Vr then |Ep(v)| = 1
(ii) if v →p,l w such that E∗p,l(v, w) is persistent then El(v) ⊆ {w}

(iii) if v →l w1 and v →l w2 such that E∗p,l(v, w1) ∪ E∗p,l(v, w2) is persistent then
El(v) ⊆ {w1, w2}

(iv) there are no distinct loop-free v-w paths π1, π2 in El.

Table 2. Conditions for an SL-graph G to be reduced.

the corresponding SL-formula. Thus persistency allows us to make some implicit
equalities in G explicit.

Definition 9. An SL-graph G is reduced if G = ⊥ or if it fulfils the conditions
in Table 2.

The definition of a reduced SL-graph is the first step towards the normal form
of SL-graphs. Table 2 consists of four conditions, and the idea is that if any of
those conditions is violated by an SL-graph G then we can make some implicit
facts explicit. Clearly, if (i) is violated then α(G) is unsatisfiable as the spatial
part of α(G) consists of a statement of the form x 7→ y ∗ x 7→ z. If (ii) or (iii)
is violated then by the previous reasoning any further outgoing l-edge can be
collapsed into v. Condition (iv) contributes to making sure that between any
two different nodes there is at most one loop-free path, as can be seen by the
following lemma.

Lemma 10. Let G 6= ⊥ be a reduced SL-graph, v, w be distinct nodes in Vb,r
and π : v l,r w a loop-free path. Then π is the unique such loop-free path.

Proof. To the contrary, assume that there are two different loop-free v-w paths
π1, π2. Then there are nodes v′, w′ such that there are distinct v′-w′ paths π′1
and π′2 that are segments of π1 respectively π2, where at least one of π1 or π2 is
of non-zero length. If v′ = w′ then this contradicts to π1 or π2 being loop-free.
Thus, assume v′ 6= w′. If both π′1, π

′
2 are l-paths then this contradicts to G being

reduced, as condition (iv) is violated. Otherwise, if π′1 reaches a red node then
edges(π′1) is persistent and hence v′ has one outgoing edge, contradicting to π′1
and π′2 being distinct. The case when π′2 reaches a red node is symmetric.

It is easy to see that deciding whether a graph G is reduced can be performed
in polynomial time in |G|. In order to transform an arbitrary SL-graph into a
reduced SL-graph, Algorithm Reduce just checks for a given input G if any
condition from Table 2 is violated. If this is the case, the algorithm removes
edges and merges nodes, depending on which condition is violated, until G is
reduced. We will subsequently prove Reduce to be correct. First, we provide
two technical lemmas that will help us to prove correctness. They allow us to
formalise our intuition about persistent sets of edges. Due to space constraints,
we omit the proof of the following lemma.

Lemma 11. Let G be an SL-graph and v, w,w′ ∈ Vb,r such that x = var(v),
y = var(w), v l w, and let I be a model of α(G). Then the following holds:

(i) if `I(y) ∈ V Ir then `I(x) ∈ V Ir ; and
(ii) if v l w

′ and {w,w′} ∈ Ed then `I(x) ∈ V Ir .

Lemma 12. Let α = (φ, σ) and x ∈ Vars be such that for all models I of α,
`I(x) ∈ V Ir . Then for all y ∈ Vars and α′ = (φ, σ ∗ ls(x, y)), α′′ = (φ ∧ x = y, σ),
we have α′ ≡ α′′.

Proof. We clearly have that α′′ |= α′. For the other direction, let I ′ be a model
of α′. By definition, there are I1, I2 such that I ′ = I1 ∗I2, I1 |= (φ;σ) and I2 |=
(φ; ls(x, y)). By assumption, `I1(x) ∈ V I1r and hence `I2(x) /∈ V I2r . Consequently,
`I2(x) = `I2(y). Hence `I

′
(x) = `I

′
(y), which yields I ′ |= (φ ∧ x = y;σ).

We are now prepared to show the correctness of Reduce. Each case in the
lemma below captures a violated condition from Table 2 and shows that the
manipulation performed by Reduce is sound and correct.

Lemma 13. Let G be an SL-graph,

(i) if there is v ∈ Vr such that |Ep(v)| > 1 then α(G) is unsatisfiable;
(ii) if there are v, w,w′ ∈ Vb,r, x, y ∈ Vars such that v →p,l w, v →l w

′,
x = var(v), y = var(w′), E∗p,l(v, w) is persistent and α(G) = (φ, σ∗ls(x, y))
then α(G) ≡ (φ ∧ x = y;σ);

(iii) if there are v, w,w′, w′′ ∈ Vb,r, x, y ∈ Vars such that v →l w, v →l w
′,

v →l w
′′, x = var(v), y = var(w′′), E∗p,l(v, w) ∪ E∗p,l(v, w′) is persistent

and α(G) = (φ, σ ∗ ls(x, y)) then α(G) ≡ (φ ∧ x = y;σ);
(iv) if there are v, w ∈ Vb, x, y ∈ Vars such that x = var(v), y = var(w),

α(G) = (φ, σ) and there are distinct loop-free v-w l-paths π1, π2 in El then
α(G) ≡ (φ ∧ x = y;σ).

Proof. Case (i): Let x = var(v); we have that there are y, z ∈ Vars such that
(φ;σ ∗ x 7→ y ∗ x 7→ z), which clearly is unsatisfiable.

Case (ii): We show that for all models I of α(G), `I(x) ∈ Vr. The statement
then follows from Lemma 12. If there is u ∈ V (E∗p,l(v, w)) ∩ Vr then by Lemma
11(i) we have x ∈ V Ir . Otherwise, if there are u, u′ ∈ V (E∗p,l(v, w)) such that
{u, u′} ∈ Ed then Lemma 11(ii) gives x ∈ V Ir .

Case (iii): Again, we show that for all models I of α(G), `I(x) ∈ Vr. The
statement then follows from Lemma 12. It is sufficient to consider the case in
which there are u, u′ ∈ Vb,r such that w l u, w l u

′ and {u, u′} ∈ Ed as all
other cases are subsumed by (ii). But then, Lemma 11(ii) again yields x ∈ V Ib,r.

Case (iv): Let π1 = vw1 · π′1 and π2 = vw2 · π′2 be v-w paths. Thus, w1 6= w2

and hence m def= |π1| + |π2| ≥ 3. We show the statement by induction on m.
For m = 3, the statement follows from a similar reasoning as in Lemma 12. For
the induction step, let m > 3 and I be model of α(G). Let y1 = var(w1) and
y2 = var(w2), we have that α(G) = (φ;σ ∗ ls(x, y1) ∗ ls(x, y2)) and consequently
I |= σ ∗ lsn1(x, y1)∗ lsn2(x, y2) for some n1, n2 ∈ N. If n1 = 0 then I |= G′, where
G′ = LReMerge(G, (v, w1)) and the induction hypothesis yields `I(x) = `I(y).
The case n2 = 0 follows symmetrically.

Lemma 14. Let G,G′ be SL-graphs such that G′ = Reduce(G). Then G′ is
reduced and α(G) ≡ α(G′). Moreover, Reduce runs in polynomial time on any
input G.

Proof. Clearly, Reduce only returns graphs that are reduced. Moreover, Lemma
13 shows that in every iteration equivalent graphs are generated and hence
α(G) ≡ α(G′). Regarding the complexity, checking if G is reduced can be per-
formed in polynomial time in |G|. Removing edges and merging nodes in the
while body can also be performed in polynomial time. Moreover, the size of G
strictly decreases after each iteration of the while body. Hence the while body
is only executed a polynomial number of times.

A nice property of reduced SL-graphs is that they allow to easily construct
a model of their corresponding SL-formulae.

Lemma 15. Let G 6= ⊥ be a reduced SL-graph and v, w ∈ Vb,r such that v 6= w.
Then α(G) has a model I such that `I(var(v)) 6= `I(var(w)) and for all x, y ∈
Vars, `(x) = `(y) implies `I(x) = `I(y).

Proof. We sketch how G can iteratively be turned into a desired model I. Sup-
pose w is reachable from v and let π be the loop-free path from v to w. First,
we replace any l-edge occurring on π by two consecutive p-edges. For all nodes
v′ 6= w along π that have further outgoing l-edges, we merge all nodes reachable
via l-paths from v′ into v′ and remove the connecting l-edges. If v is reachable
from w via a loop-free path π′, we apply the same procedure to π′. Finally, we
iterate the following procedure: if there is a node u with more than one outgoing
l-edge, we fix an l-edge e and merge all nodes reachable from u via the remaining
l-edges different from e into u and remove the connecting l-edges. We then replace
e with two new consecutive p-edges. Once this procedure has finished, we obtain
an SL-graph containing no l-edges that can be turned into an interpretation I.
It is easily checked that I is a model of α(G) and `I(var(v)) 6= `I(var(w)).

Theorem 16. Satisfiability of SL-formulae is decidable in polynomial time.

Remark 17. When we expand l-edges in the proof of Lemma 15, we replace them
by two consecutive p-edges. When we consider entailment in the next section,
this will make sure that we obtain a model in which ls(x, y) holds, but x 7→ y
does not hold. This corresponds to the observation made in [2] that in order to
find a counter-model of an entailment, each l-edge has to be expanded at most
to length two.

Finally, we can now define our normal form. An SL-graph is in normal form
if it is reduced and if its set of disequalities is maximal. Note that in particular
any interpretation I is an SL-graph in normal form.

Definition 18. Let G be an SL-graph. Then G is in normal form if G is reduced
and for all v, w ∈ Vb,r such that α(G) = (φ;σ), x = var(v) and y = var(w),
whenever (φ ∧ x = y;σ) is unsatisfiable then {v, w} ∈ Ed.

Proposition 19. For any SL-formula α, there exists a polynomial time com-
putable SL-graph G in normal form such that α ≡ α(G).

Proof. Given an assertion α = (φ;σ), by Lemma 7 we can construct an SL-graph
G′ such that α(G′) ≡ α. Applying Reduce to G′ yields a reduced graph G′′

such that α(G′) ≡ α(G′′). In order to bring G′′ into normal form, we check for
each of the polynomially many pairs v, w ∈ Vb,r if Reduce returns ⊥ on input
Merge(G′′, v, w). If this is the case, we add {v, w} to Ed, which finally gives
us the desired graph G. As argued before, all constructions can be performed in
polynomial time.

We close this section with an example. Graph (b) in Figure 1 is in normal
form and obtained from the graph (a) by applying Reduce. Graph (a) violates
condition (iii) as {(`(x4), `(x5)), (`(x4), `(x7)} is persistent, which results in Re-
duce merging x6 into x4. Moreover, the graph also violates condition (iv) since
there are two distinct l-paths from x1 to x3. Hence, Reduce merges x1 and x3

and then removes all newly obtained outgoing l-edges from x3 due to a viola-
tion of condition (ii). Finally, {(`(x3), `(x4))} is added to Ed in order to obtain
graph (b) as merging the nodes x3 and x4 and applying Reduce results in an
inconsistent graph.

4 Computing Entailment via Homomorphisms between
SL-Graphs in Normal Form

In this section, we show that entailment between SL-formulae can be decided by
checking the existence of a graph homomorphism between their corresponding
SL-graphs in normal form. Throughout this section, we will assume that all
SL-formulae considered are satisfiable and all SL-graphs G 6= ⊥, since deciding
entailment becomes trivial otherwise, and checking for satisfiability can be done
in polynomial time.

A homomorphism is a mapping between the nodes of two SL-graphs that,
if it exists, preserves the structure of the source graph in the target graph. In
the definition of a homomorphism, we make use of the property of SL-graphs in
normal form that between any disjoint nodes there is at most one loop-free path
connecting the two nodes. For nodes v 6= w, we denote this path by π(v, w) if it
exists. If v = w then π(v, w) is the zero-length path π(v, w) def= v.

Definition 20. Let G,G′ be SL-graphs in normal form. A mapping h : Vb,r →
V ′b,r is a homomorphism from G to G′ if the homomorphism conditions from
Table 3 are satisfied.

Given a mapping h, it is easy to see that checking whether h is a homomorphism
can be performed in polynomial time in |G| + |G′|. The goal of this section
is to prove the following proposition, which gives us the relationship between
homomorphisms and entailment.

(i) vars(v) ⊆ vars(h(v))
(ii) if {v, w} ∈ Ed then {h(v), h(w)} ∈ E′d

(iii) if v →p w then h(v)→′p h(w))
(iv) if v →l w then h(v) ′p,l h(w)
(v) for all v1 →p,l w1 and v2 →p,l w2 such that (v1, w1) 6= (v2, w2),

edges(π(h(v1), h(w1))) ∩ edges(π(h(v2), h(w2))) = ∅
(vi) if v, w ∈ Vr and v 6= w then h(v) 6= h(w)

Table 3. Conditions for a homomorphism h from G to G′.

Proposition 21. Let G,G′ be SL-graphs in normal form. Then α(G′) |= α(G)
if, and only if, there exists a homomorphism h from G to G′.

Before we begin with formally proving the proposition, let us discuss its validity
on an intuitive level. Suppose there is a homomorphism from G to G′. Condition
(i) makes sure that for any node v of G its image under h is labelled with at
least the same variables. If this were not the case, we could easily construct a
counter-model of α(G′) disproving entailment. Likewise, condition (ii) ensures
that whenever two nodes are required to be not equivalent, the same is true for
the two nodes under the image of h. Since G′ is in normal form, merging the
two nodes in the image of h would otherwise be possible since E′d is maximal.
Condition (iii) requires that whenever there is a p-edge between any two nodes
v, w, such an edge also exists in G′. Again, it is clear that if this were not the
case we could construct a counter-model I of α(G′) such that there is no p-edge
between `I(var(v)) and `I(var(w)). Condition (iv) is of a similar nature, but
here we allow that there is a whole path between h(v) and h(w). In condition
(v), we require that the paths obtained from the image of two disjoint edges do
not share a common edge in G′. If this were the case, we could construct a model
of α(G′) in which separation is violated. Finally, condition (vi) makes sure that
no two different nodes from Vr are mapped to the same node. This condition
is needed to handle p-edges of the form (v, v), which may not be covered by
condition (v). We now proceed with formally proving Proposition 21. First, the
following lemma shows the relationship between models and homomorphisms
and that homomorphisms can be composed.

Lemma 22. Let G,G′, G′′ be SL-graphs in normal form and I an interpreta-
tion. Then the following holds:

(i) let h : Vb,r → V Ib,r be such that for all v ∈ Vb,r, h(v)
def
= `I(var(v)); then

I |= α(G) if, and only if, h is a homomorphism from G to I; and
(ii) given homomorphisms h′, h′′ from G′ to G respectively G′′ to G′; then h

def
=

h′′ ◦ h′ is a homomorphism from G′′ to G.

The proof of the lemma is rather technical but not difficult and deferred to
the extended version of this paper. Proposition 21 now is a consequence of the
following lemma. Note that the homomorphism is fully determined by G and G′.

Lemma 23. Let G,G′ be SL-graphs in normal form and let h : Vb,r → V ′b,r be

defined as h(v)
def
= `′(var(v)) for all v ∈ Vb,r. Then α(G′) |= α(G) if, and only

if, h is a homomorphism from G to G′.

Proof. (“⇐”) Let h be a homomorphism from G to G′ and I be such that
I |= α(G′). By Lemma 22(i), there exists a homomorphism h′ from G′ to I.
By Lemma 22(ii), h′′ def= h′ ◦ h is a homomorphism from G to I. Consequently,
Lemma 22(i) yields I |= α(G).

(“⇒”) Due to space constraints, we defer the full proof of this direction to
the appendix. The direction is shown via the contrapositive by constructing a
counter-model depending on which homomorphism condition from Table 3 is
violated, as discussed earlier in this section.

We can now combine all results of this paper so far. Given satisfiable SL-formulae
α and α′, by Proposition 19 we can compute in polynomial time SL-graphs G and
G′ in normal form such that α ≡ α(G) and α′ ≡ α(G′). Next, we can compute
in polynomial time a mapping h from α(G′) to α(G) and check in polynomial
time whether h is a homomorphism. By the previous lemma, this then is the
case if, and only if, α |= α′.

Theorem 24. Entailment between SL-formulae is decidable in polynomial time.

An example of a homomorphism can be found in Figure 1. The arrows from graph
(c) to graph (b) depict a homomorphism witnessing an entailment between the
corresponding formulae of the graphs.

As promised in Section 2, we are now going to briefly discuss the differences
between the semantic models in [2] and this paper. In [2], I |= α = (φ;σ) if, and
only if, I |= φ and I |= σ, i.e., the semantics is non-intuitionistic. Informally
speaking, in our semantics models can contain more red nodes than actually
required. It is not difficult to see that the concept of SL-graphs in normal form
can be adopted to non-intuitionistic semantics, in fact most proofs carry over
straight forwardly. The homomorphism conditions need however some adjust-
ment. One basically needs to add an extra condition that ensures that when h
is a homomorphism from G to G′, all edges from G′ are covered by h. Some
extra care has to be taken of loops in G′. These extra conditions ensures that
no model of α(G′) can contain extra red nodes that, informally speaking, do not
get used up by α(G). Moreover, some further adjustments have to be made in
order to deal with imprecise list semantics. The details are messy and deferred
to a full version of this paper.

5 Syntactic Extensions Leading to Intractability

As stated in Section 2, due to the non-convexity, it is rather surprising that
entailment in our fragment is decidable in polynomial time. In this section,
we briefly discuss syntactic extensions that render satisfiability or entailment

intractable. It turns out that even small syntactic extensions make computing
entailment intractable.

First, we consider additional Boolean connectives in pure and spatial formu-
lae. Allowing disjunction in pure formulae with the standard semantics makes
entailment coNP-hard, since implication between Boolean formulae is coNP-
hard. Less obviously, allowing conjunction in spatial assertions makes satisfia-
bility NP-hard and thus entailment coNP-hard. To be more precise, suppose
we allow assertions of the form α = (φ;σ1 ∧ σ2), where σ1 and σ2 are spatial
formulae and I |= (φ;σ1 ∧ σ2) if, and only if, I |= (φ;σ1) and I |= (φ;σ2).
We reduce from graph three colourability (3Col), which is known to be NP-
complete [8]. Given an instance G = (V, E) of 3Col with V = {v1, . . . , vn},
we construct an assertion α such that G can be coloured with three colours if,
and only if, α is satisfiable. We set α def= (φ, σ), where φ def=

∧
(vi,vj)∈E xi 6= xj

and σ
def= y1 7→ y2 ∗ y2 7→ y3 ∧

∧
vi∈V ls(y1, xi) ∗ ls(xi, y3). Let us sketch the

correctness of our reduction. The first conjunct of σ ensures that any model of
α contains a list of three nodes that are successively labelled with the variable
names y1, y2 and y3. The remaining conjuncts enforce that for any vi ∈ V, some
yj-node is additionally labelled with the variable name xi. Our intention is that
yj is additionally labelled with xi in a model of α if vi is coloured with colour j
in a three-colouring induced by that model. We use φ to enforce that that two
labels xi, xk are not placed on the node labelled with the same yj if vi and vk
are adjacent in G, i.e., they must have a different colour in the induced three
colouring. Hence G can be three coloured if, and only if, α is satisfiable. The
coNP-hardness of entailment then follows from the fact that α is satisfiable if,
and only if, α 6|= (x 6= x; ε).

Finally, we briefly discuss allowing existentially quantified variables in asser-
tions. An example of such an assertion is α = ∃y.(x 6= y;x 7→ y), where I |= α
if I can be extended to I ′ in which some node of I is labelled with y such that
I ′ |= (x 6= y;x 7→ y). It is easily seen that satisfiability in this extended fragment
is still decidable in polynomial time by just dropping the existential quantifier.
However, it follows from recent results that entailment becomes coNP-hard [9].

6 Conclusion

In this paper, we have studied the complexity of entailment in a fragment of sep-
aration logic that includes pointers and linked lists. Despite the non-convexity
of this logic, we could show that entailment is computable in polynomial time.
To this end, we showed that for any SL-formula we can compute in polyno-
mial time a corresponding SL-graph in a particular normal form which has an
equivalent corresponding SL-formula. Moreover, we showed that deciding entail-
ment between two SL-formulae then reduces to checking for the existence of a
homomorphism between their associated SL-graphs in normal form. A key ad-
vantage was that the homomorphism, if it exists, is uniquely determined by the
SL-graphs, and that checking the homomorphism conditions can be performed

in polynomial time. Moreover, we discussed how minor syntactic extensions to
our fragment lead to intractability of the entailment problem.

Acknowledgements. We would like to thank Nikos Gorogiannis for interesting
and helpful discussions and the anonymous referees for helpful suggestions on
how to improve the presentation of the paper.

References

1. Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter O’Hearn,
Thomas Wies, and Hongseok Yang. Shape analysis for composite data structures.
In CAV’07, pages 178–192. Springer, 2007.

2. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A Decidable Fragment
of Separation Logic. In FSTTCS’04, pages 97–109. Springer, 2004.

3. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In FMCO’05, pages 115–137.
Springer, 2005.

4. Cristiano Calcagno, Dino Distefano, Peter W. OHearn, and Hongseok Yang. Space
invading systems code. In Logic-Based Program Synthesis and Transformation,
pages 1–3. Springer, 2009.

5. Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability
and complexity results for a spatial assertion language for data structures. In
FSTTCS’01, pages 108–119. Springer, 2001.

6. Byron Cook, Christoph Haase, Joël Ouaknine, Matthew Parkinson, and James
Worrell. Tracatable reasoning in a fragment of separation logics (full ver-
sion). Technical report, University of Oxford, 2011. Available on-line:
http://www.cs.ox.ac.uk/people/christoph.haase/sl.pdf.

7. Dino Distefano and Matthew Parkinson. jstar: towards practical verification for
java. In OOPSLA’08, pages 213–226. ACM, 2008.

8. Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990.

9. Nikos Gorogiannis, Max Kanovich, and Peter O’Hearn. The complexity of abduc-
tion for separated heap abstraction. In SAS’11. Springer, 2011. To appear.

10. Christoph Haase and Carsten Lutz. Complexity of subsumption in the EL family
of description logics: Acyclic and cyclic tboxes. In ECAI’08, pages 25–29. IOS
Press, 2008.

11. Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language for mutable
data structures. In POPL’01, pages 14–26. ACM, 2001.

12. Bart Jacobs and Frank Piessens. The VeriFast program verifier. Technical Report
520, Department of Computer Science, Katholieke Universiteit Leuven, 2008.

13. Gerome Miklau and Dan Suciu. Containment and equivalence for an XPath frag-
ment. In PODS’02, pages 65–76. ACM, 2002.

14. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS’02. IEEE Computer Society, 2002.

