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Abstract

The Semialgebraic Orbit Problem is a fundamental reachability question that arises in the analysis
of discrete-time linear dynamical systems such as automata, Markov chains, recurrence sequences,
and linear while loops. An instance of the problem comprises a dimension d ∈ N, a square matrix
A ∈ Qd×d, and semialgebraic source and target sets S, T ⊆ Rd. The question is whether there exists
x ∈ S and n ∈ N such that Anx ∈ T .

The main result of this paper is that the Semialgebraic Orbit Problem is decidable for dimension
d ≤ 3. Our decision procedure relies on separation bounds for algebraic numbers as well as a classical
result of transcendental number theory—Baker’s theorem on linear forms in logarithms of algebraic
numbers. We moreover argue that our main result represents a natural limit to what can be decided
(with respect to reachability) about the orbit of a single matrix. On the one hand, semialgebraic
sets are arguably the largest general class of subsets of Rd for which membership is decidable. On
the other hand, previous work has shown that in dimension d = 4, giving a decision procedure for
the special case of the Orbit Problem with singleton source set S and polytope target set T would
entail major breakthroughs in Diophantine approximation.
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6:2 The Semialgebraic Orbit Problem

1 Introduction

This paper concerns decision problems of the following form: given d ∈ N, a square matrix
A ∈ Qd×d, and respective source and target sets S, T ⊆ Rd, does there exist n ∈ N and
x ∈ S such that Anx ∈ T? One way to categorise such problems is according to the
types of sets allowed for the source and target (e.g., polytopes or semialgebraic sets). We
collectively refer to the various problems that arise in this way as Orbit Problems. Orbit
Problems occur naturally in the reachability analysis of discrete-time linear dynamical
systems, including Markov chains, automata, recurrence sequences, and linear loops in
program analysis (see [5, 11, 9] and references therein).

In order to describe the main result of this paper in relation to existing work, we identify
three successively more general types of Orbit Problems. In the point-to-point version both
the source and target are singletons with rational coordinates; in the Polytopic Orbit Problem
the source and target S and T are polytopes (i.e., sets defined by conjunctions of linear
inequalities with rational coefficients); in the Semialgebraic Orbit Problem S and T are
semialgebraic sets defined with rational parameters.

The question of the decidability of the point-to-point Orbit Problem was raised by
Harrison in 1969 [10]. The problem remained open for ten years until it was finally resolved
in a seminal paper of Kannan and Lipton [11], who in fact gave a polynomial-time decision
procedure.

The Polytopic Orbit Problem is considerably more challenging than the point-to-point
version, and its decidablity seems out of reach for now. Indeed the special case in which S
is a singleton and T is a linear subspace of Rd of dimension d− 1 is a well-known decision
problem in its own right, called the Skolem Problem, whose decidability has been open for
many decades [20]. In contrast to the point-to-point case the only positive decidability
results for the Polytopic Orbit Problem are in the case of fixed dimension d. For the Skolem
Problem, decidability is known for d ≤ 4 [14, 22]. In case S and T are allowed to be arbitrary
polytopes, decidability is known in case d ≤ 3 [1] (see also [4]). While Kannan and Lipton’s
decision procedure in the point-to-point case mainly relied on algebraic number theory (e.g.,
separation bounds between algebraic numbers and prime factorisation of ideals in rings of
algebraic integers), the decision procedures for the Skolem Problem and the Polytopic Orbit
Problem additionally use results about transcendental numbers (specifically Baker’s theorem
about linear forms in logarithms of algebraic numbers). It was shown in [4] that the existence
of a decision procedure for the Polytopic Orbit Problem in dimension d = 4 would entail
computability of the Diophantine approximation types of a general class of transcendental
numbers (a problem considered intractable at present). Not only does this suggest that
the use of transcendental number theory is unavoidable in analysing the Polytopic Orbit
Problem, it also indicates that further progress beyond the case d = 3 is contingent upon
significant advances in the field of Diophantine approximation.

In this paper we remain in dimension d = 3 and consider a generalisation of previous
work by allowing the source and target sets to be semialgebraic, that is, defined by Boolean
combinations of polynomial equalities and inequalities. This allows us to handle three-
dimensional source and target sets in much greater geometrical generality than polytopes. In
applications to program analysis and dynamical systems, semialgebraic sets are indispensable
in formulating sufficiently expressive models (e.g., to describe initial conditions and transition
guards) and in model analysis (e.g., in synthesising invariants and barrier certificates and
approximating sets of reachable states) [15, 12].

The Semialgebraic Orbit Problem could be reduced to the polytopic case in a fairly
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straightforward fashion by increasing the dimension d according to the degree of the polyno-
mials appearing in the semialgebraic constraints. However such a general approach is doomed
to failure in view of the obstacles to obtaining decidability in the polytopic case beyond
dimension 3 and instead we develop specific techniques for the semialgebraic case that are
considerably more challenging than in the Polytopic Problem. As in previous work on the
Skolem Problem and on the Polytopic Orbit Problem, Baker’s Theorem plays a crucial role
in the present development. The main difficulty in generalising from the polytopic case to the
semialgebraic case lies in the delicate analytic arguments that are required to bring Baker’s
Theorem to bear. More precisely: (i) we need to resort to symbolic quantifier elimination
(in lieu of explicit Fourier-Motzkin elimination, which had been used in the Polytopic Orbit
Problem), since we are now dealing with non-linear constraints; (ii) we also need to perform
spectral calculations symbolically, via the use of Vandermonde methods, instead of the
explicit direct approach possible in our earlier work; and (iii) we replace triangulation of
polytopes by cylindrical algebraic decomposition of semialgebraic sets into cells, which again
necessitates a new symbolic treatment along with a substantially refined analysis based on
Taylor approximation of the attendant functions.

In summary, this paper provides a decision procedure for the Orbit Problem in dimension
d = 3 with semialgebraic source and target sets. The latter appear to be a natural limit to
the positive decidability results that can be obtained for this problem, barring major new
advances in Diophantine approximation.

At a technical level, our contributions are twofold: in Section 3 we start by analysing
the case of the Orbit Problem in which S is a singleton and T a semialgebraic set. We
then reduce this problem in Section 3.1 to solving certain systems of polynomial-exponential
equalities and inequalities, and in Section 3.2 we show precisely how to solve such systems.
The second technical contribution consists in handling the general case of the Semialgebraic
Orbit Problem, in Section 4. There, we show how to circumvent problems that arise when
quantifying over the set S, and arrive at a system that can ultimately be solved using the
techniques and results developed in Section 3.2.

2 Mathematical Tools

In this section we introduce the key technical tools used in this paper.

2.1 Algebraic numbers
For p ∈ Z[x] a polynomial with integer coefficients, we denote by ‖p‖ the bit length of its
representation as a list of coefficients encoded in binary. Note that the degree of p, denoted
deg(p) is at most ‖p‖, and the height of p — i.e., the maximum of the absolute values of its
coefficients, denoted H(p) — is at most 2‖p‖.

We begin by summarising some basic facts about the field of algebraic numbers (denoted
A) and (efficient) arithmetic therein. The main references include [3, 6, 19]. A complex
number α is algebraic if it is a root of a single-variable polynomial with integer coefficients.
The defining polynomial of α, denoted pα, is the unique polynomial of least degree, and whose
coefficients do not have common factors, which vanishes at α. The degree and height of α are
respectively those of p, and are denoted deg(α) and H(α). A standard representation1 for
algebraic numbers is to encode α as a tuple comprising its defining polynomial together with

1 Note that this representation is not unique.
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6:4 The Semialgebraic Orbit Problem

rational approximations of its real and imaginary parts of sufficient precision to distinguish α
from the other roots of pα. More precisely, α can be represented by (pα, a, b, r) ∈ Z[x]×Q3

provided that α is the unique root of pα inside the circle in C of radius r centred at a+ bi. A
separation bound due to Mignotte [13] asserts that for roots α 6= β of a polynomial p ∈ Z[x],
we have

|α− β| >
√

6
d(d+1)/2Hd−1 (1)

where d = deg(p) and H = H(p). Thus if r is required to be less than a quarter of the
root-separation bound, the representation is well-defined and allows for equality checking.
Given a polynomial p ∈ Z[x], it is well-known how to compute standard representations of
each of its roots in time polynomial in ‖p‖ [3, 6, 17]. Thus given an algebraic number α for
which we have (or wish to compute) a standard representation, we write ‖α‖ to denote the
bit length of this representation. From now on, when referring to computations on algebraic
numbers, we always implicitly refer to their standard representations.

Note that Equation (1) can be used more generally to separate arbitrary algebraic
numbers: indeed, two algebraic numbers α and β are always roots of the polynomial pαpβ of
degree at most deg(α) + deg(β), and of height at most H(α)H(β). Given algebraic numbers
α and β, one can compute α+ β, αβ, 1/α (for α 6= 0), α, and |α|, all of which are algebraic,
in time polynomial in ‖α‖ + ‖β‖. Likewise, it is straightforward to check whether α = β.
Moreover, if α ∈ R, deciding whether α > 0 can be done in time polynomial in ‖α‖. Efficient
algorithms for all these tasks can be found in [3, 6].

2.2 First-order theory of the reals
Let ~x = x1, . . . , xm be a list of m real-valued variables, and let σ(~x) be a Boolean combination
of atomic predicates of the form g(~x) ∼ 0, where each g(~x) ∈ Z[x] is a polynomial with
integer coefficients over these variables, and ∼ ∈ {>,=}. A formula of the first-order theory
of the reals is of the form Q1x1Q2x2 · · ·Qmxmσ(~x), where each Qi is one of the quantifiers ∃
or ∀. Let us denote the above formula by τ , and write ‖τ‖ to denote the bit length of its
syntactic representation. Tarski famously showed that the first-order theory of the reals is
decidable [21]. His procedure, however, has non-elementary complexity. Many substantial
improvements followed over the years, starting with Collins’s technique of cylindrical algebraic
decomposition [7], and culminating with the fine-grained analysis of Renegar [19]. In this
paper, we will use the following theorems [18, 19].

I Theorem 1 (Renegar [18]). The problem of deciding whether a closed formula τ of the form
above holds over the reals is in 2EXP, and in PSPACE if τ has only existential quantifiers.

I Theorem 2 (Renegar [19]). There is an algorithm that, given a formula τ(x1, . . . , xm)
where x1, . . . , xm are free variables, computes an equivalent quantifier-free formula in dis-
junctive normal form (DNF) Φ(x1, . . . , xm) =

∨
I

∧
J RI,J(x1, . . . , xm) ∼I,J 0 where RI,J is

a polynomial 2 and ∼I,J∈ {>,=}. Moreover, the algorithm runs in time 22O(‖τ‖) , and in
particular, ‖Φ‖ = 22O(‖τ‖) .

A set S ⊆ Rd is semialgebraic if there exists a formula Φ(x1, . . . , xd) in the first-order the-
ory of the reals with free variables x1, . . . , xd such that S = {(c1, . . . , cd) : Φ(c1, . . . , cd) is true}.

2 Technically, the indices should be I, JI , but we omit the dependency of J on I for simplicity.
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We remark that algebraic constants can also be incorporated as coefficients in the first-
order theory of the reals (and in particular, in the definition of semialgebraic sets), as follows.
Consider a polynomial g(x1, . . . , xm) with algebraic coefficients c1, . . . , ck. We replace every
cj with a new, existentially-quantified variable yj , and add to the sentence the predicates
pcj (yj) = 0 and (yj − (a+ bi))2 < r2, where (pcj , a, b, r) is the representation of cj . Then, in
any evaluation of this formula to True, it must hold that yj is assigned value cj .

3 Almost Self-Conjugate Systems of Inequalities

In this section we lay the groundwork for solving the Semialgebraic Orbit Problem. We do
so by initially treating the case where the set S of initial points is a singleton.

3.1 Analysis of the Point-to-Semialgebraic Orbit Problem
The point-to-semialgebraic Orbit Problem is to decide, given a matrix A ∈ Q3×3, an initial
point s ∈ Q3 and a semialgebraic target T ⊆ R3, whether there exists n ∈ N such that
Ans ∈ T .

By Theorem 2, we can compute a quantifier-free representation of T . That is, we can
write T = {(x, y, z) :

∨
I

∧
J RI,J(x, y, z) ∼I,J 0} where RI,J are polynomials with integer

coefficients, and ∼I,J∈ {>,=}. For the purpose of solving the point-to-semialgebraic Orbit
Problem, we note that it is enough to consider each disjunct separately. Thus, we can assume
T = {(x, y, z) :

∧
J RJ(x, y, z) ∼J 0}, and it remains to decide whether there exists n ∈ N

such that
∧
J RJ(Ans) ∼J 0.

Note that, as per Theorem 2, we have that ‖RJ‖ = 22O(‖T‖) . Moreover, the number of
terms in the DNF formula above can itself be doubly-exponential in ‖T‖. Complexity wise,
this is the most expensive part of our algorithm.

Consider the eigenvalues of A. Since A is a 3 × 3 matrix, then either it has only real
eigenvalues, or it has one real eigenvalue and two conjugate complex eigenvalues. In particular,
if A has complex eigenvalues, then it is diagonalisable.

The case where A has only real eigenvalues is treated in Appendix A for the general case
of the Semialgebraic Orbit Problem, and is considerably simpler.

Henceforth, we assume A has complex eigenvalues, so that A = PDP−1 with D =λ 0 0
0 λ 0
0 0 ρ

, where λ is a complex eigenvalue, ρ ∈ R, and P an invertible matrix.

Observe that An = PDnP−1. By carefully analysing the structure of P , it is not hard to

show that Ans =

a1λ
n + a1λ

n + b1ρ
n

a2λ
n + a2λ

n + b2ρ
n

a3λ
n + a3λ

n + b3ρ
n

 where the ai and bi are algebraic and the bi are

also real (see Appendix E for a detailed analysis).
Thus, we want to decide whether there exists n ∈ N such that RJ(a1λ

n + a1λ
n +

b1ρ
n, a2λ

n + a2λ
n + b2ρ

n, a3λ
n + a3λ

n + b3ρ
n) ∼J 0 for every J . Since RJ is a polynomial,

then by aggregating coefficients we can write

RJ(Ans) =
∑

0≤p1,p2,p3≤k

αp1,p2,p3λ
np1λ

np2
ρnp3 + αp1,p2,p3λ

np1
λnp2ρnp3 (2)

for some k ∈ N. Note that we treat the (real) coefficients of ρ as a sum of complex conjugate
coefficients, but this can easily be achieved by writing e.g., cρnp = c

2ρ
np + c

2ρ
np.

STACS 2019



6:6 The Semialgebraic Orbit Problem

We notice that for every J , the polynomial RJ(Ans), consists of conjugate summands.
More precisely, RJ(Ans), when viewed as a polynomial in λn, λn, and ρn, has the following
property.

B Property 3 (Almost Self-Conjugate Polynomial). A complex polynomial Q(z1, z2, z3) over
C3 is almost self-conjugate if

Q(z1, z2, z3) =
∑

0≤t1,t2,t3≤`
δt1,t2,t3z

t1
1 z

t2
2 z

t3
3 + δt1,t2,t3z

t1
2 z

t2
1 z

t3
3 .

That is, if z2 = z1 and z3 is a real variable, then the monomials in Q appear in conjugate
pairs with conjugate coefficients.

We refer to the conjunction
∧
J RJ(Ans) ∼J 0 as an almost self-conjugate system. It

remains to show that we can decide whether there exists n ∈ N that solves the system.

3.2 Solving Almost Self-Conjugate Systems
Our starting point is now an almost self-conjugate system as described above. In the following,
we will consider a single conjunct RJ(Ans) ∼J 0.

We start by normalising the expression RJ (Ans) ∼J 0 in the form of (2), as follows. Let
Λ = max

{
|λp1λ

p2
ρp3 | : αp1,p2,p3 6= ∅

}
, we divide the expression in (2) by Λn, and get that

RJ(Ans) ∼J 0 iff

k∑
m=0

βmγ
nm + βmγ

nm + r(n) ∼J 0 (3)

where the βm are algebraic coefficients, γ = λ
|λ| satisfies |γ| = 1 and r(n) =

∑k′

l=1 χlµ
n
l +χlµln

with χl being algebraic coefficients, and |µl| < 1 for every 1 ≤ l ≤ k′. Moreover, every µl is a
quotient of two elements of the form λp1λ

p2
ρp3 , and thus, by Section 2.1, deg(µl) = ‖RJ‖O(1)

and H(µl) = 2‖RJ‖O(1) . Note that for simplicity, we reuse the number k, although it may
differ from k in (2). We refer to Equation (3) as the normalised expression.

In the following, we assume that at least one of the βj is nonzero for j ≥ 1. Indeed,
otherwise we can recast our analysis on r(n), which is of lower order.

We now split our analysis according to whether or not γ is a root of unity. That is,
whether γd = 1 for some d ∈ N.

3.2.1 The case where γ is a root of unity
Suppose that γ is a root of unity. Then, the set {γn : n ∈ N} is a finite set

{
γ0, . . . , γd−1}.

Thus, by splitting the analysis of Ans according to n mod d, we can reduce the problem to d
instances which involve only real numbers. In Appendix B we detail how to handle this case,
and comment on its complexity.

3.2.2 The case where γ is not a root of unity
When γ is not a root of unity, the set {γn : n ∈ N} is dense in the unit circle. With this
motivation in mind, we define, for a normalised expression, its dominant function f : C→ R
as f(z) =

∑k
m=0 βmz

m + βmz
m. Observe that (3) is now equivalent to f(γn) + r(n) ∼J 0.

Our main technical tool in handling (3) is the following lemma.
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I Lemma 4. Consider a normalised expression as in (3). Let ‖I‖ be its encoding length,
and let f be its dominant function. Then there exists N ∈ N computable in polynomial time
in ‖I‖ with N = 2‖I‖O(1) such that for every n > N it holds that
1. f(γn) 6= 0,
2. f(γn) > 0 iff f(γn) + r(n) > 0,
3. f(γn) < 0 iff f(γn) + r(n) < 0.
In particular, the lemma implies that if f(γn) + r(n) = 0, then n ≤ N . That is, if ∼J is “=”,
then there is a bound on n that solves the system.

I Remark 5. In the formulation of Lemma 4, we measure the complexity with respect to ‖I‖.
However, recall that when the input is T , we actually have ‖I‖ = 22O(‖T‖) . The analysis in
Lemma 4 thus allows us to separate the blowup required for analysing the semialgebraic target
from our algorithmic contribution. In particular, when the target has bounded description
length, we can obtain better complexity bounds.

We prove Lemma 4 in the remainder of this section.
Since {γn : n ∈ N} is dense on the unit circle, our interest in f is also about the unit

circle. By identifying C with R2, we can think of f as a function of two real variables. In
this view, f(x, y) is a polynomial with algebraic coefficients, and we can therefore compute
a description of the algebraic set Zf =

{
(x, y) : f(x, y) = 0 ∧ x2 + y2 = 1

}
. We start by

showing that this set is finite. Define g : (−π, π] → R by g(x) = f(eix). Explicitly, we
have g(x) =

∑k
m=0 2|βm| cos(mx+ θm) where θm = arg(βm). Clearly there is a one-to-one

correspondence between Zf and the roots of g.
We present the following proposition, which will be reused later in the proof.

I Proposition 6. For every x ∈ (−π, π] there exists 1 ≤ i ≤ 4k such that g(i)(x) 6= 0, where
g(i) is the i-th derivative of g.

Proof. Assume by way of contradiction that g′(x) = . . . = g4k(x) = 0. For every 1 ≤ i ≤ 4k
we have that

g(i)(x) =



∑k
m=1 m

i2|βm| cos(mx+ θm) i ≡4 0∑k
m=1−mi2|βm| sin(mx+ θm) i ≡4 1∑k
m=1−mi2|βm| cos(mx+ θm) i ≡4 2∑k
m=1 m

i2|βm| sin(mx+ θm) i ≡4 3

(note that the summand that corresponds to m = 0 is dropped out in the derivative, as it is
constant).

Splitting according i mod 4, we rewrite the equations g(i)(x) = 0 in matrix form as
follows.3

for i ≡4 0 :


14 24 · · · k4

18 28 · · · k8

...
...

...
...

14k 24k · · · k4k




2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =


0
0
...
0



3 By splitting modulo 2, we could actually improve the bound in the proposition from 4k to 2k, but this
further complicates the proof.
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6:8 The Semialgebraic Orbit Problem

for i ≡4 1 :


−11 −21 · · · −k1

−15 −25 · · · −k5

...
...

...
...

−14k−3 −24k−3 · · · −k4k−3




2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =


0
0
...
0



for i ≡4 2 :


−12 −22 · · · −k2

−16 −26 · · · −k6

...
...

...
...

−14k−2 −24k−2 · · · −k4k−2




2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =


0
0
...
0



for i ≡4 3 :


13 23 · · · k3

17 27 · · · k7

...
...

...
...

14k−1 24k−1 · · · k4k−1




2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =


0
0
...
0


Observe that the matrices we obtain are minors of Vandermonde Matrices (up to their

sign), and as such are non-singular [8]. It follows that
2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =


0
0
...
0

 and


2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =


0
0
...
0


Recall that we assume at least one βj is nonzero for some 1 ≤ j ≤ k, so we have cos(jx+θj) =
sin(jx+ θj) = 0, which is clearly a contradiction. We thus conclude the proof. J

By Proposition 6, it follows that g is not constant, and therefore f(x, y) is not constant on
the curve x2 +y2 = 1. By Bezout’s Theorem, we have that Zf is finite, and consists of at most
4k points. Moreover, f is a semialgebraic function (that is, its graph {(x, y, f(x, y)) : x, y ∈ R}
is semialgebraic set in R3). Thus, the points in Zf have semialgebraic coordinates, and we
can compute them. By identifying R2 with C, denote Zf = {z1, . . . , z4k}.
I Remark 7. Since the polynomial f has algebraic coefficients, it is not immediately clear how
the degree and height of the points in Zf relate to ‖f‖. However, recall that the algebraic
coefficients in f are polynomials in the entries of Ans, which are, in turn, algebraic numbers
of degree at most 3 whose description is polynomial in that of A and s.

Thus, we can define Zf with a formula in the first-order theory of the reals with a fixed
number of variables. Using results of Renegar [19], we show in Appendix F that the points
in Zf have semialgebraic coordinates with description length polynomial in ‖f‖.

We now employ the following lemma from [16], which is itself a consequence of the
Baker-Wüstholz Theorem [2].

I Lemma 8 ([16]). There exists D ∈ N such that for all algebraic numbers ζ, ξ of modulus
1, and for every n ≥ 2, if ζn 6= ξ, then |ζn − ξ| > 1

n(‖ζ‖+‖ξ‖)D .

Since γ is not a root of unity, it holds that γn1 6= γn2 for every n1 6= n2 ∈ N. Thus, there
exists a computable N1 ∈ N such that γn /∈ Zf for every n > N1. Moreover, by [5, Lemma
D.1], we have that N1 = ‖f‖O(1). By Lemma 8, there exists a constant D ∈ N such that for
every n ≥ N1 and 1 ≤ j ≤ 4k we have that |γn − zj | > 1

n(‖f‖D) (since ‖zj‖+ ‖γ‖ = O(‖f‖)).
Intuitively, for n > N1 we have that γn does not get close to any zi “too quickly” as a
function of n. In particular, for n > N1 we have f(γn) 6= 0. It thus remains to show that for
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large enough n, r(n) does not affect the sign of f(γn) + r(n). Intuitively, this is the case
because r(n) decreases exponentially, while |f(γn)| is bounded from below by an inverse
polynomial.

For every zj ∈ Zf , let ϕj = arg zj , so that f(z) = 0 iff g(ϕj) = 0. We assume w.l.o.g.
that ϕj ∈ (−π, π) for every 1 ≤ j ≤ 4k. Indeed, if ϕj = π for some j, then we can shift the
domain of g slightly so that all zeros are in the interior.

For every 1 ≤ j ≤ 4k, let Tj be the Taylor polynomial of g around ϕj such that the degree
dj of Tj is minimal and Tj is not identically 0. Thus, we have Tj(x) = g(dj)(ϕj)

dj ! (x− ϕj)dj .
By Proposition 6 we have that dj ≤ 4k for every j. In addition, the description of Tj is
computable from that of ‖f‖.

By Taylor’s inequality, we have that for every x ∈ [−π, π] it holds that |g(x)− Tj(x)| ≤
Mj |x−ϕj |dj+1

(dj+1)! where Mj = maxx∈[−π,π]
{
g(dj+1)(x)

}
(where g is extended naturally to the

domain [−π, π]). By our description of g(dj+1)(x), we see that Mj is bounded by M =
4kmax1≤i≤k {|βi|} k4k+1.

Let ε1 > 0 be such that the following conditions hold for every 1 ≤ j ≤ 4k.
1. sign(g′(x)) does not change in (ϕj , ϕj + ε1) nor in (ϕj − ε1, ϕj).
2. |g(x)− Tj(x)| ≤ 1

2 |Tj(x)| for every x ∈ (ϕj − ε1, ϕj + ε1).
3. sign(g′(x)) = sign(T ′j(x)) for every x ∈ (ϕj − ε1, ϕj + ε1).
Note that we can assume (ϕj − ε1, ϕj + ε1) ⊆ (−π, π), since by our assumption ϕj ∈ (−π, π)
for all 1 ≤ j ≤ 4k.

An ε1 as above exists due to the following properties (see Figure 1 for an illustration):
There are only finitely many points where g′(x) = 0,
Tj(x) is of degree dj , whereas |g(x)− Tj(x)| is upper-bounded by a polynomial of degree
dj + 1, and
T ′j(x) is the Taylor polynomial of degree dj − 1 of g′(x) around ϕj , so by bounding the
distance |g′(x)− T ′j(x)| we can conclude the third requirement.

φ1 φ2

g

T1

T2

Figure 1 g(x) and two Taylor polynomials: T1(x) around ϕ1 and T2(x) around ϕ2. The shaded
regions show where requirements (1)–(3) hold, which determine ε1. Observe that for T1, the most
restrictive requirement is |g(x)− T1(x)| ≤ 1

2T1(x), whereas for T2 the restriction is the requirement
that T2(x) is monotone.

In order to establish Lemma 4, we must be able to effectively compute ε1. We thus
proceed with the following lemma.

I Lemma 9. ε1 can be computed in polynomial time in ‖f‖, and 1
ε1

= 2‖f‖O(1) .

Proof. We compute δ1, δ2, δ3 that satisfy requirements 1,2, and 3, respectively. Then, taking
ε1 = min {δ1, δ2, δ3} will conclude the proof.

STACS 2019



6:10 The Semialgebraic Orbit Problem

Condition 1: We compute δ1 > 0 such that sign(g′(x)) does not change in (ϕj − δ1, ϕj) nor
in (ϕj , ϕj+δ1). This is done as follows. Recall that g(x) = f(eix) =

∑k
m=0 βme

imx+βmeimx.
It is not hard to check that g′(x) =

∑k
m=0 imβme

imx + imβmeimx. Let f̂(z) : C→ R be the
function f̂(z) =

∑k
m=0 imβmz + imβmz, then g′(x) = f̂(eix) and

∥∥∥f̂∥∥∥ = O(‖f‖).

Consider the algebraic set F =
{
z : |z| = 1 ∧ f̂(z) = 0

}
, then {x : g′(x) = 0} = {arg(z) : z ∈ F}.

By similar arguments as those by which we found the roots of f on the unit circle, namely
by adapting Proposition 6 to f̂ , we can conclude that F contains at most 4k points. Thus, it
is enough to set δ1 such that

(⋃4k
j=1(ϕj − δ1, ϕj) ∪ (ϕj , ϕj + δ1)

)
∩ F = ∅.

By Equation (1), we have that for z 6= z′ ∈ F it holds that |z − z′| >
√

6
d
d+1

2 ·Hd−1
where

d and H are the degree and height of the roots of f̂(z) (see Remark 7). Thus, 1/|z − z′| is
2‖f‖O(1) , and has a polynomial description. Since | arg(z)−arg(z′)| > |z−z′|, we conclude that
by setting δ1 = min {|z − z′| : z 6= z′ ∈ F} /3, it holds that 1

δ1
has a polynomial description

in ‖f‖, and δ1 satisfies the required condition.

Condition 2: Next, we compute δ2 > 0 such that |g(x) − Tj(x)| ≤ 1
2 |Tj(x)| for every

x ∈ (ϕj − δ2, ϕj + δ2). Recall that Tj(x) = g(dj)(ϕj)
dj ! (x− ϕj)dj . Note that this case is more

challenging than Condition 1, as unlike g(x) = f(eix), the polynomial Tj(x) has potentially
transcendental coefficients (namely ϕj). For clarity, we omit the index j in the following.
Thus, we write T, d, ϕ instead of Tj , dj , ϕj , etc.

In order to ignore the absolute value, assume T (x) ≥ g(x) > 0 in an interval (ϕ,ϕ+ ξ)
for some ξ > 0 (the other cases are treated similarly). Then, the inequality above becomes
g(x) − 1

2T (x) ≥ 0. Since the degree of T is d, then by the definition of T , the first
d − 1 derivatives of g in ϕ vanish. Define h(x) = g(x) − 1

2T (x), then we have h(ϕ) = 0,
h′(ϕ) = 0, . . . , h(d−1)(ϕ) = 0 and h(d)(ϕ) = g(d)(ϕ)− 1

2g
(d)(ϕ) = 1

2g
(d)(ϕ). By our assumption,

T (x) ≥ 1
2T (x) for x ∈ (ϕ,ϕ + ξ), so h(d)(ϕ) > 0. In addition, recall that |h(d+1)(x)| =

|g(d+1)(x)| ≤ M for every x ∈ [−π, π]. Thus, by writing the d-th Taylor expansion of h(x)
around ϕ, we have that h(x) = h(d)(ϕ)

d! (x− ϕ)d +E(x) where |E(x)| ≤ M
(d+1)! (x− ϕ)d+1. We

now have that

h(x) ≥ 1
2
g(d)(ϕ)
d! (x− ϕ)d − M

(d+ 1)! (x− ϕ)d+1.

Taking x ∈ (ϕ,ϕ + g(d)(ϕ)(d+1)
2M ), it is easy to check that h(x) ≥ 0. We can now set

δ2 = g(d)(ϕ)(d+1)
2M , which satisfies the required condition.

Condition 3: Finally, we compute δ3 > 0 such that sign(g′(x)) = sign(T ′j(x)) for every
x ∈ (ϕj − δ3, ϕj + δ3). Observe that T ′j(x) is the dj − 1-th Taylor polynomial of g′(x)
around ϕj . Thus, by following the reasoning used to find δ2, we can find δ3 such that
|g′(x) − T ′j(x)| ≤ 1

2 |T
′
j(x)| for every x ∈ (ϕ − δ3, ϕ + δ3), and in particular it holds that

sign(g′(x)) = sign(T ′j(x)) for every x ∈ (ϕj − δ3, ϕj + δ3).
As mentioned above, by setting ε1 = min {δ1, δ2, δ3}, we conclude the proof. J

Conditions 1,2, and 3 above imply that within the intervals (ϕj − ε1, ϕj + ε1) we have
that |g(x)| ≥ 1

2 |Tj(x)|, that g(x) and Tj(x) have the same sign, and that they are both
decreasing/increasing together.

We now claim that there exists a polynomial p(n) and a number N2 ∈ N such that for
every n > N2 it holds that |g(arg(γn))| > 1

p(n) . In order to compute p(n), we compute
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separate polynomials for the domain
⋃4k
j=1(ϕj − ε1, ϕj + ε1) and for its complement. Then,

taking their minimum and bounding it from below by another polynomial yields p(n).
We start by considering the case where arg(γn) ∈

⋃4k
j=1(ϕj−ε1, ϕj+ε1). Recall that since

γ is not a root of unity, then for every n > N1 it holds that γn /∈ Zf = {z1, . . . , z4k}. Then, by
Lemma 8, for every 1 ≤ j ≤ 4k and every n ≥ N2 = max {N1, 2} we have |γn− zj | > 1

n(‖f‖D) .
In addition, |γn−zj | ≤ | arg(γn)−ϕj | (since the LHS is the Euclidean distance and the RHS is
the spherical distance). Therefore, | arg(γn)−ϕj | > 1

n(‖f‖D) , so either arg(γn) > ϕj + 1
n(‖f‖D)

or arg(γn) < ϕj − 1
n(‖f‖D) . Next, we have that if arg(γn) ∈ (ϕj − ε1, ϕj + ε1) for some 1 ≤

j ≤ 4k, then |g(arg(γn))| ≥ 1
2 |Tj(arg(γn))| ≥ 1

2 min
{
|Tj(ϕj + 1

n(‖f‖D) )|, |Tj(ϕj − 1
n(‖f‖D) )|

}
,

where the last inequality follows from condition 3 above, which implies that Tj is monotone
with the same tendency as g.

Observe that Tj(ϕj − 1
n(‖f‖D) ) = g(dj)(ϕ)

dj !
1

n(‖f‖D) and that similarly Tj(ϕj + 1
n(‖f‖D) ) =

− g
(dj)(ϕ)
dj !

1
n(‖f‖D) are both inverse polynomials (in n). Thus, |g(arg(γn))| is bounded from

below by an inverse polynomial. Moreover, these polynomials can be easily computed in
time polynomial in ‖f‖.

Finally, we note that for x /∈
⋃4k
j=1(ϕj − ε1, ϕj + ε1) we can compute in polynomial time

a bound B > 0 such that |g(x)| > B. Indeed, B = min{|g(x)| : x ∈ [−π, π] \
⋃4k
j=1(ϕj −

ε1, ϕj + ε1)} (where g(−π) is defined naturally by extending the domain), and we have that
|B| > 0 since we assumed non of the ϕj are exactly at π (in which case we would have had
g(−π) = 0). In particular, we can combine the two domains and compute a polynomial p as
required. We remark that we can compute ‖B‖ in polynomial time, since it is either at least
1
2 |Tj(ϕj ± ε1)| for some 1 ≤ j ≤ 4k (and by Lemma 9, ‖ε1‖ can be computed in polynomial
time), or it is the value of one of the extrema of g, and the latter can be computed by finding
the extrema of the (algebraic) function f on the unit circle.

To recap, for every n > N2 it holds that |g(arg(γn))| > 1
p(n) for a non-negative polynomial

p, and both N2 and p can be computed in polynomial time in the description of the input.
Next, we wish to find N3 ∈ N such that for every n > N3 it holds that r(n) < 1

p(n) .
Recall that r(n) =

∑k′

l=1 χlµ
n
l +χlµl

n where for every 1 ≤ l ≤ k′ we have that µl is algebraic
with deg(µl) = ‖f‖O(1) and H(µl) = 2‖f‖O(1) . Observe that 1 − |µl| is also an algebraic
number. Indeed, 1− |µl| = 1−

√
µlµl. Moreover, we get that deg(1− |µl|) ≤ deg(µl)4, as it

is the root of a polynomial of degree at most deg(µl)4, and that H(1− |µl|) is polynomial in
H(µl). Since |µl| < 1, by applying Equation (1), we get 1−|µl| = |1−|µl|| >

√
6

d(d+1)/2H(µl)d−1

where d = deg(µl)O(1) and H(µl) = 2‖I‖O(1) . It follows that we can compute δ ∈ (0, 1) with
1
δ = 2‖I‖O(1) such that 1− |µl| > δ, and hence |µ|n < 1− δ. Thus,

|r(n)| ≤
k′∑
l=1

2|χl||µl|mn ≤
k′∑
l=1

2|χl|(1− δ)mn ≤ 2k′ max
1≤l≤k′

|χl|(1− δ)n

We can now compute ε ∈ (0, 1) and N3 ∈ N such that:
1. 1

ε = 2‖I‖O(1)

2. N3 = 2‖I‖O(1)

3. For every n > N3 it holds that |r(n)| < (1− ε)n

Finally, by taking N4 ∈ N such that (1− ε)n < 1
p(n) (which satisfies N4 = 2‖I‖O(1)) for

all n > N4, we can now conclude that for every n > max {N2, N3, N4}, the following hold.
1. f(γn) = g(arg(γn)) 6= 0.
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6:12 The Semialgebraic Orbit Problem

2. If f(γn) > 0, then g(arg(γn)) > 0, so g(arg(γn)) > 1
p(n) . Since |r(n)| < 1

p(n) , it follows
that f(γn)+r(n) = g(arg(γn))+r(n) > 1

p(n)−|r(n)| > 0. Conversely, if f(γn)+r(n) > 0,
then g(arg(γn)) + r(n) > 0, but since |g(arg(γn))| > 1

p(n) and |r(n)| < 1
p(n) , then it must

hold that g(arg(γn)) > 0, so f(γn) > 0.
3. If f(γn) < 0, then g(arg(γn)) < 0, so g(arg(γn)) < − 1

p(n) . Since |r(n)| < 1
p(n) , it follows

that f(γn)+r(n) = g(arg(γn))+r(n) < − 1
p(n) +|r(n)| < 0. Conversely, if f(γn)+r(n) < 0,

then g(arg(γn)) + r(n) < 0, but since |g(arg(γn))| > 1
p(n) and |r(n)| < 1

p(n) , then it must
hold that g(arg(γn)) < 0, so f(γn) < 0.

This concludes the proof of Lemma 4. J
We are now ready to use Lemma 4 in order to solve the systems.

I Theorem 10. The problem of deciding whether an almost self-conjugate system has a
solution is decidable.

Proof. Consider an almost self-conjugate system of the form
∧
J RJ(Ans) ∼J 0. For each

expression RJ(Ans) ∼J 0, let f be the corresponding dominant function, as per Lemma 4,
and compute its respective bound N . If ∼J is “=”, then by Lemma 4, if the equation is
satisfiable for n ∈ N, then n < N .

If all the ∼J are “>”, then for each such inequality compute {z : f(z) > 0}, which is a
semialgebraic set. If the intersection of these sets is empty, then if n is a solution for the
system, it must hold that n < N . If the intersection is non-empty, then it is an open set.
Since γ is not a root of unity, then {γn : n ∈ N} is dense in the unit circle. Thus, there exists
n > N such that γn is in the above intersection, so the system has a solution. Checking the
emptiness of the intersection can be done using Theorem 1.

Thus, it remains to check whether there exists a solution n < N , which is clearly
decidable. J

Observe that from Theorem 10, combined with Section 3.1, we can conclude the decidab-
ility of the point-to-semialgebraic Orbit Problem. However, as it turns out, we can reuse
Theorem 10 to obtain a much stronger result, namely the decidability of the Semialgebraic
Orbit Problem.

4 The Semialgebraic Orbit Problem

In [1], we proved that the following problem is decidable: given two polytopes S, T ⊆ R3

and a matrix A ∈ Q3×3, does there exist n ∈ N such that AnS ∩ T 6= ∅. We now show that
the techniques developed here can be used as an alternative solution for this problem, and in
fact solve a much stronger variant, where S and T are replaced by semialgebraic sets. That
is, given two semialgebraic sets S, T ⊆ R3 and a matrix A ∈ Q3×3, does there exist n ∈ N
such that AnS ∩ T 6= ∅.

I Theorem 11. The Semialgebraic Orbit Problem is decidable.

Proof. Consider semialgebraic sets S, T ⊆ R3 and a matrix A ∈ Q3×3, as described above.
Recall that we can write S = {~x :

∨
I

∧
J RI,J(~x) ∼I,J 0} and similarly for T . Since we want

to decide whether some point in S hits T , we can consider each disjunct in the description of
S separately. Thus, we henceforth assume S = {~x :

∧
J RJ(~x) ∼J 0}.

We now turn to characterise the set AnS for every n ∈ N. For this purpose, we assume
A is invertible. The case where A is not invertible can be reduced to analysis in a lower
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dimension, and is handled in Appendix D. For every n ∈ N, we now have

AnS =
{
An~x :

∧
J

RJ(~x) ∼J 0
}

=
{
~x :
∧
J

RJ((A−1)n~x) ∼J 0
}
.

We further assume that A has a complex eigenvalue. As in Section 3, the case where
all eigenvalues are real is simpler (even if A is not diagonalisable), and is handled in

Appendix A. We can now write A = PDP−1 with D =

λ 0 0
0 λ 0
0 0 ρ

, where λ is a complex

eigenvalue, ρ ∈ R, and P an invertible matrix. We thus have A−1 = PD−1P−1 where

D−1 =

 λ
|λ|2 0 0
0 λ

|λ|2 0
0 0 ρ−1

. We denote ζ = λ
|λ|2 and η = ρ−1, so D−1 =

ζ 0 0
0 ζ 0
0 0 η

. As

in Section 3, by analysing the structure of P and P−1, we have that for ~x = (x1, x2, x3),
(A−1)n(~x)i =

∑3
j=1(ai,jζn + ai,jζ

n + bi,jη
n)xj with ai,j ∈ A and bi,j ∈ A∩R. That is, each

coordinate 1 ≤ i ≤ 3, is a linear combination of x1, x2, x3 where the coefficients are of the
form above. In particular, the coefficient of every xj is an almost self-conjugate polynomial
(see Appendix E for a complete analysis).

Consider a monomial of the form xs1
1 x

s2
2 x

s3
3 in RJ(~x). Replacing ~x with (A−1)n~x,

the monomial then becomes Q(ζn, ζn, ηn)xs1
1 x

s2
2 x

s3
3 , where Q(z1, z2, z3) is an almost self-

conjugate polynomial. Indeed, this follows since the coordinates of (A−1)n~x above are
almost self-conjugate, and products of almost self-conjugate polynomials remain almost
self-conjugate.

Recall that the polynomials RJ in the description of S have integer (and in particular,
real) coefficients. By lifting the discussion about monomials to RJ , we can write

RJ((A−1)n(~x)) =
∑

0≤s1,s2,s3≤k

QJs1,s2,s3
(ζn, ζn, ηn)xs1

1 x
s2
2 x

s3
3

where k ∈ N and the coefficients QJs1,s2,s3
are almost self-conjugate.

Observe that now, there exists n ∈ N such that AnS ∩ T 6= ∅ iff there exists n ∈ N and
~x ∈ R3 such that ~x ∈ T and∧

J

∑
0≤s1,s2,s3≤k

QJs1,s2,s3
(ζn, ζn, ηn)xs1

1 x
s2
2 x

s3
3 ∼J 0. (4)

Intuitively, we now want to eliminate the quantifiers on ~x in the expression above. However,
we cannot readily do so, as the expression is also quantified by n ∈ N. Nonetheless, in the
following we manage to circumvent this problem by increasing the dimension of the problem.

Let K be the number of polynomials QJs1,s2,s3
that appear in the conjunction (4) above,

indexed by J, s1, s2, s3. Consider the set

U =
{

(y1, . . . , yK) ∈ RK : ∃~x ∈ R
3, x ∈ T∧∧

J

∑
0≤s1,s2,s3≤k y

J
s1,s2,s3

xs1
1 x

s2
2 x

s3
3 ∼J 0

}
That is, U is obtained by replacing each polynomial QJs1,s2,s3

with a “placeholder” real
variable yJs1,s2,s3

. U is clearly a semialgebraic set, so by Theorem 2, we can eliminate the
quantifier on ~x, and write

U =
{

(y1, . . . , yK) ∈ RK :
∧
J

SJ(y1, . . . , yK) ∼J 0
}
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6:14 The Semialgebraic Orbit Problem

where SJ are polynomials with integer coefficients. It is now the case that there exists n ∈ N
such that AnS∩T 6= ∅ iff there exists n ∈ N such that (Q1(ζn, ζn, ηn), . . . , QK(ζn, ζn, ηn)) ∈
U . That is, we need to decide whether there exists n ∈ N such that SJ(Q1(ζn, ζn, ηn), . . . ,
QK(ζn, ζn, ηn)) ∼J 0 for every J .

It is easy to see that since the polynomials Qi are almost self-conjugate, then so is
SJ(Q1(ζn, ζn, ηn), . . . , QK(ζn, ζn, ηn)), (when viewed as a polynomial in ζn, ζn, ηn).

Thus, the conjunction∧
J

SJ(Q1(ζn, ζn, ηn), . . . , QK(ζn, ζn, ηn))

is an almost self-conjugate system, and by Theorem 10, it is decidable whether it has a
solution. This concludes the proof. J

5 Discussion

This paper establishes the decidability of the Semialgebraic Orbit Problem in dimension at
most three. The class of semialgebraic sets is arguably the largest natural class for which
membership is decidable. Thus, our results reach the limit of what can be decided about
the orbit of a single matrix. Moreover, our techniques shed light on the decidability (or
hardness) of orbit problems in higher dimensions: the techniques we develop for analysing
orbits can be applied to any matrix (in any dimension) whose eigenvalues have arguments
that are pairwise linearly dependent over Q (i.e., the arguments of all the eigenvalues are
rational multiples of some angle θ). Indeed, it is easy to see that the orbits generated by
such matrices can be reduced to solving almost self-conjugate systems (see Section 3). This
can be put in contrast to known hardness results [4] in dimension d ≥ 4, which require a
single pair of eigenvalues whose arguments do not satisfy the above property. Thus, we
significantly sharpen the border of known decidability, and allow future research to focus on
hard instances.

Technically, our contribution uncovers two interesting tools. First, the identification of
almost self-conjugate polynomials, and their amenability to analysis (Section 3), and second,
the ability to abstract away integral exponents in order to perform quantifier elimination, by
increasing the dimension (Section 4). The former arises naturally in the context of matrix
exponentiation, while the latter is an obstacle that is often encountered when quantifying
over semialgebraic sets in the presence of a discrete operator (e.g., matrix exponentiation).
In the future, we plan to further investigate the applications of these directions.
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6:16 The Semialgebraic Orbit Problem

A The case of only real eigenvalues

In this section we consider the Semialgebraic Orbit Problem in the case where the matrix A
has only real eigenvalues, denoted ρ1, ρ2, ρ3. In this case, by converting A to Jordan normal
form, there exists an invertible matrix B ∈ (A ∩R)3×3 such that one of the following holds:

1. A = B−1

ρ1 0 0
0 ρ2 0
0 0 ρ3

B, in which case An = B−1

ρn1 0 0
0 ρn2 0
0 0 ρn3

B.

2. A = B−1

ρ1 1 0
0 ρ2 0
0 0 ρ3

B with ρ1 = ρ2, in which case An = B−1

ρn1 nρn−1
1 0

0 ρn1 0
0 0 ρn3

B.

3. A = B−1

ρ1 1 0
0 ρ2 1
0 0 ρ3

B with ρ1 = ρ2 = ρ3, in which case An = B−1

ρn1 nρn−1
1

1
2n(n− 1)ρn−2

1
0 ρn1 nρn−1

1
0 0 ρn1

B.

In any of the forms above, we can write

Ans =

A1(n)ρn1 +B1(n)ρn2 + C1(n)ρn3
A2(n)ρn1 +B2(n)ρn2 + C2(n)ρn3
A3(n)ρn1 +B3(n)ρn2 + C3(n)ρn3


where the Ai, Bi, and Ci are polynomials whose degree is less than the multiplicity of their
corresponding eigenvalue.

In Sections 3 and 4, we reduce the problem to finding a solution to an almost self-conjugate
system. In the case of real eigenvalues, the notion of almost self-conjugate is meaningless, as
there are no complex numbers involved. Thus, following the analysis thereof, and plugging
the entries of Ans, we reduce the problem to solving a system of expressions of the form∧
J RJ(Ans) ∼J 0, where

RJ(Ans) =
∑

0≤p1,p2,p3≤k

αJp1,p2,p3
(n)ρp1n

1 ρp2n
2 ρp3n

3 (5)

for some k ∈ N, and αJp1,p2,p3
(n) are polynomials.

Assuming ρ1, ρ2, ρ3 > 0 (otherwise we can split according to odd and even n), for each
such expression we can compute a bound N ∈ N based on the rate of growth of the summands,
such that either for every n > N the equation holds, or for every n > N it does not hold.

B The case where γ is a root of unity

We assume that γ = λ
|λ| is a root of unity. That is, there exists d ∈ N such that γd = 1, so

we have that {γn : n ∈ N} =
{
γ0, . . . , γd−1}.

Let n ∈ N and write m = (n mod d). We can now write

Ans =

a1|λ|nγm + a1|λ|nγm + b1ρ
n

a2|λ|nγm + a2|λ|nγm + b2ρ
n

a3|λ|nγm + a3|λ|nγm + b3ρ
n

 =

2Re(a1γ
m)|λ|n + b1ρ

n

2Re(a2γ
m)|λ|n + b2ρ

n

2Re(a3γ
m)|λ|n + b3ρ

n
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Observe that there exists n ∈ N such that Ans ∈ T iff there exists 0 ≤ m ≤ d − 1
and r ∈ N ∪ {0} such that Ard+ms ∈ T . We can thus split our analysis according to
m ∈ {0, . . . , d− 1}. For every such m, we need to decide whether there exists r ∈ N ∪ {0}

such that

2Re(a1γ
m)|λ|m(|λ|d)r + b1ρ

m(ρd)r
2Re(a2γ

m)|λ|m(|λ|d)r + b2ρ
m(ρd)r

2Re(a3γ
m)|λ|m(|λ|d)r + b3ρ

m(ρd)r

 Note that γm, |λ|m and ρm are constants.

Therefore, these expressions contain only realalgebraic constants, the system can be viewed
as a case handled in the setting of all real eigenvalues. We can thus proceed with the analysis
in Section A.

Finally, we remark that d ≤ deg(γ)2. The proof appears in [11], and we bring it here for
completeness. Since γ is a primitive root of unity of order d, then the defining polynomial pγ
of γ is the d-th Cyclotomic polynomial, so deg(γ) = Φ(d), where Φ is Euler’s totient function.
Since Φ(d) ≥

√
d, we get that d ≤ deg(γ)2. Therefore, the number of cases we consider is

polynomial in the original input, and does not involve a blowup in the complexity.

C Matrix Forms in Proposition 6

Recall that we have

g(i)(x) =



∑k
m=1 m

i2|βm| cos(mx+ θm) i ≡4 0∑k
m=1−mi2|βm| sin(mx+ θm) i ≡4 1∑k
m=1−mi2|βm| cos(mx+ θm) i ≡4 2∑k
m=1 m

i2|βm| sin(mx+ θm) i ≡4 3

Writing this in matrix form, split by i mod 4, we have the following.

for i ≡4 0 :


14 24 · · · k4

18 28 · · · k8

...
...

...
...

14k 24k · · · k4k




2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =


0
0
...
0



for i ≡4 1 :


−11 −21 · · · −k1

−15 −25 · · · −k5

...
...

...
...

−14k−3 −24k−3 · · · −k4k−3




2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =


0
0
...
0



for i ≡4 2 :


−12 −22 · · · −k2

−16 −26 · · · −k6

...
...

...
...

−14k−2 −24k−2 · · · −k4k−2




2|β1| cos(x+ θ1)
2|β2| cos(2x+ θ2)

...
2|βk| cos(kx+ θk)

 =


0
0
...
0



for i ≡4 3 :


13 23 · · · k3

17 27 · · · k7

...
...

...
...

14k−1 24k−1 · · · k4k−1




2|β1| sin(x+ θ1)
2|β2| sin(2x+ θ2)

...
2|βk| sin(kx+ θk)

 =


0
0
...
0
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6:18 The Semialgebraic Orbit Problem

D The Case where A is Singular

In this section, we reduce the Semialgebraic Orbit Problem in the case where A is a singular
matrix to the case where A is non-singular. Intuitively, we simply cast our analysis to a
lower dimension by projecting A on its nonzero eigenvalues.

In this case, we are given semialgebraic sets S, T ⊆ R3 and a matrix A ∈ Q3×3, where 0
is an eigenvalue of A.

We start with the case where the multiplicity of the eigenvalue 0 is 1. Then, we can write

A = P

(
0 0
0 B

)
P−1 where P and B are invertible matrices with rational entries. Indeed,

since 0 ∈ Q, then we can decompose Q3 as a direct sum Q3 = V0 ⊕ V ⊥0 where V0 has
dimension 1 and V ⊥0 has dimension 2. Let u ∈ Q3 be an eigenvector corresponding to 0,
so that span(u) = V0, and let v, w ∈ Q3 such that span(v, w) = V ⊥0 . We now have that
Av,Aw ∈ V ⊥0 , so we can write Av = c1v+c2w and Aw = d1v+d2w for some c1, c2, d1, d2 ∈ Q.

Let P = (u, v, w) and B =
(
c1 d1
c2 d2

)
, then it is easy to verify that P and B are invertible,

and that AP = P

(
0 0
0 B

)
, so A = P

(
0 0
0 B

)
P−1, as we wanted.

We now observe the following:

∃n ∈ N ∃x ∈ S : Anx ∈ T ⇐⇒

∃n ∈ N ∃x ∈ S : P
(

0 0
0 B

)
P−1x ∈ T ⇐⇒

∃n ∈ N ∃x′ ∈ P−1S : P
(

0 0
0 B

)
x′ ∈ P−1T

Denote S′ = P−1S and T ′ = P−1T , we proceed4:

∃n ∈ N ∃x′ ∈ S′ :
(

0 0
0 B

)
x′ ∈ T ′ ⇐⇒

∃n ∈ N ∃x′ ∈ S′ :
(

0 0
0 Bn−1

)(
0 0
0 B

)
x′ ∈ T ′ ⇐⇒

∃n ∈ N ∃x′′ ∈
(

0 0
0 B

)
S′ :

(
0 0
0 Bn−1

)
x′′ ∈ T ′ ⇐⇒ (6)

Denote S′′ =
(

0 0
0 B

)
S′, and observe that

S′′ =


(

0 0
0 B

)y1
y2
y3

 :

y1
y2
y3

 ∈ S′
 =


 0

B

(
y2
y3

) :

 0
y2
y3

 ∈ S′
 =


 0
z2
z3

 :

 0

B−1
(
z2
z3

) ∈ S′


Thus, the vectors in S′′ have 0 in their first coordinate. For such vectors, we have the

4 In the following we ignore the case where n = 0, as this can be checked initially by deciding whether
S ∩ T 6= ∅.
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following:

(
0 0
0 Bn−1

) 0
z2
z3

 ∈ T ′ ⇐⇒ Bn−1
(
z2
z3

)
∈


(
x2
x3

)
:

 0
x2
x3

 ∈ T ′


Let S′′2 =


(
z2
z3

)
:

 0
z2
z3

 ∈ S′′
 and T ′2 =


(
z2
z3

)
:

 0
z2
z3

 ∈ T ′
, then the condition

in (6) holds iff

∃n ∈ N ∃
(
z2
z3

)
∈ S′′2 : Bn−1

(
z2
z3

)
∈ T ′2

Since S′′2 and T ′2 are semialgebraic (and are in fact easily computable from S and T ), we
conclude that we can reduce the dimension of the problem.

Next, if the multiplicity of 0 is 2, then we can write A = P

0 1 0
0 0 0
0 0 ρ

P−1 where ρ is a

real eigenvalue. Then An = P

0 0 0
0 0 0
0 0 ρn

P−1 for every n ≥ 2, and the same approach as

above can be taken.
Finally, if the multiplicity of 0 is 3, then A3 = 0, so the problem becomes trivial.

E Change of Basis Matrices in the 3× 3 case

In this section we consider a diagonalisable matrix A ∈ Q3×3 with complex eigenvalues.
Thus, we can write A = PDP−1 with D = diag(λ, λ, ρ) with λ ∈ A and ρ ∈ A ∩R.

Note that the columns of the matrix P are eigenvectors of A, and moreover, conjugate
eigenvalues have conjugate eigenvectors and real eigenvalues have real eigenvectors. We can
therefore assume

P =

a a d

b b e

c c f


for a, b, c ∈ A and d, e, f ∈ R ∩A.

I Lemma 12. Let E = diag(δ1, δ2, δ3) be a diagonal matrix, then every coordinate of PEP−1

is of the form αδ1 + αδ2 + βδ3, where α ∈ A and β ∈ A ∩R.

Proof. The proof is straightforward: we compute the matrix P−1, and then the product
PEP−1.

We leave it to the reader to verify the following: first, the determinant of P is pure-
imaginary, i.e., det(P ) = mi for m ∈ R ∩A. Second, we have

P−1 = 1
mi

fb− ec dc− fa ea− db
ce− bf af − cd bd− ae
bc− cb ca− ac ab− ba


Finally, it is very easy (yet tedious) to verify that PEP−1 satisfies the claim. We

demonstrate by computing the coordinate (PEP−1)1,2.
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6:20 The Semialgebraic Orbit Problem

We have that the first row of PE is (aδ1, aδ2, dδ3), and hence

(PEP−1)1,2 = (PE)1,1P
−1
1,2 + (PE)1,2P

−1
2,2 + (PE)1,3P

−1
3,2

= 1
mi

(aδ1(dc− fa) + aδ2(af − cd) + dδ3(ca− ac))

= 1
m

(−iδ1(adc− afa) + iδ2(acd− afa)− iδ3(dca− dac))

It is now easy to see that the coefficients of δ1 and δ2 are conjugates, and the coefficient of
δ3 is real, as desired. J

F Bounds on the Description Size of Points in Zf

We complete the analysis of Remark 7.
Recall that f(z) =

∑k
m=0 βmz

m + βmz
m, and Zf = {z : f(z) = 0 ∧ |z| = 1}. Further

recall that for every 0 ≤ m ≤ k, βm is a polynomial in a1, a2, a3, a1, a2, a3, b1, b2, b3, where
all the latter are linear combinations of roots of the characteristic polynomial of A, and are
therefore algebraic numbers of degree at most 3 and description polynomial in ‖A‖+ ‖s‖.

We can now express the condition f(z) = 0 using a quantified formula in the first
order theory of the reals by replacing each of the constants above (i.e. a1, etc.) by their
corresponding description, as per Section 2.2. It follows that in this description, there are at
most 9 variables. We now employ the following result due to Renegar [19].

I Theorem 13 (Renegar). Let M ∈ N be fixed. Let τ(y) be a formula of the first order
theory of the reals. Assume that the number of (free and bound) variables in τ(y) is bounded
by M . Denote the degree of τ(y) by d and the number of atomic predicates in τ(y) by n.

There is a polynomial time (polynomial in ‖τ(y)‖) procedure which computes an equivalent
quantifier-free formula

χ(y) =
I∨
i=1

Ji∧
j=1

hi,j(y) ∼i,j 0

where each ∼i,j is either > or =, with the following properties:
1. Each of I and Ji (for 1 ≤ i ≤ I) is bounded by (n+ d)O(1).
2. The degree of χ(y) is bounded by (n+ d)O(1).
3. The height of χ(y) is bounded by 2‖τ(y)‖(n+d)O(1) .

We apply this theorem to the description of Zf given above, where we identify C with
R2 so that f is indeed a polynomial. Then, we obtain in polynomial time a description of
Zf . Moreover, the degrees of the entries is bounded by ‖f‖O(1) and their height is bounded
by 2‖f‖O(1) .
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