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Abstract
We introduce the notion of porous invariants for multipath affine loops over the integers. 
These are invariants definable in (fragments of) Presburger arithmetic and, as such, lack 
certain tame geometrical properties, such a convexity and connectedness. Nevertheless, we 
show that in many cases such invariants can be automatically synthesised, and moreover 
can be used to settle reachability questions for various non-trivial classes of affine loops 
and target sets. For the class of ℤ-linear invariants (those defined as conjunctions of linear 
equations with integer coefficients), we show that a strongest such invariant can be com-
puted in polynomial time. For the more general class of ℕ-semi-linear invariants (those 
defined as Boolean combinations of linear inequalities with integer coefficients), such 
a strongest invariant need not exist. Here we show that for point targets the existence of 
a separating invariant is undecidable in general. However we show that such separating 
invariants can be computed either by restricting the number of program variables or by 
restricting from multipath to single-path loops. Additionally, we consider porous targets, 
represented as ℤ-semi-linear sets (those defined as Boolean combinations of equations with 
integer coefficients). We show that an invariant can be computed providing the target spans 
the whole space. We present our tool porous, which computes porous invariants.

Keywords  Linear dynamical systems · Linear loops · Invariants · Reachability · Presburger 
arithmetic

1  Introduction

We consider the reachability problem for multipath (or branching) affine loops over the 
integers, or equivalently for nondeterministic integer linear dynamical systems. A (deter-
ministic) integer linear dynamical system consists of an update matrix M ∈ ℤd×d together 
with an initial point x(0) ∈ ℤd . We associate to such a system its infinite orbit (x(i))i∈ℕ 
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consisting of the sequence of reachable points defined by the rule x(i+1) = Mx(i) . The reach-
ability question then asks, given a target set Y, whether the orbit ever meets Y, i.e., whether 
there exists some time i ∈ ℕ such that x(i) ∈ Y  . The nondeterministic reachability question 
allows the linear update map to be chosen at each step from a fixed finite collection of 
matrices.

When the orbit does eventually hit the target, one can easily substantiate this by exhibit-
ing the relevant finite prefix. However, establishing non-reachability is intrinsically more 
difficult, since the orbit consists of an infinite sequence of points. Here one requires a fini-
tary certificate, which must be a relatively simple object that can be inspected and which 
provides a proof that the set Y is indeed unreachable. Typically, such a certificate will con-
sist of an over-approximation I of the set R of reachable points, in such a manner that one 
can check both that Y ∩ I = � and R ⊆ I ; such a set I is called an invariant.

Formally we study the following problem for inductive invariants:
The meta problem. Consider a system defined by an initial vector x and a set of 

updates, represented by matrices M1,… ,Mn . A set I is an inductive invariant of this sys-
tem if x(0) ∈ I and MiI ⊆ I for all i ∈ {1,… , n} . Given a target Y, determine whether there 
exists an inductive invariant I that separates the reachable points of the system from Y, i.e., 
such that Y ∩ I = �.

The meta problem is parametrised by the type of invariants and targets that are consid-
ered; that is, what are the classes of allowable invariant sets I and target sets Y, or equiva-
lently how are such sets allowed to be expressed?

Fixing particular invariant and target domains, a reachability query encounters three 
possible scenarios: (1) the instance is reachable, (2) the instance is unreachable and a sepa-
rating invariant from the domain exists, or (3) the instance is unreachable but no separat-
ing invariant exists. Ideally, one would wish to provide a sufficiently expressive invariant 
domain so that the latter case does not occur, whilst keeping the resulting invariants as sim-
ple as possible and computable. Unfortunately, it is known that distinguishing reachability 
(1) from unreachability (2,3) is undecidable in general; and for some invariant domains, 
within unreachable instances, determining whether a separating invariant exists (i.e., dis-
tinguishing (2) from (3)) is undecidable.

We note that the existence of strongest inductive invariants is a desirable property for 
an invariant domain. Given two invariants I and I′ , we say that I is stronger than I′ if and 
only if I ⊆ I′ ; thus strongest invariants correspond to smallest invariant sets. When strong-
est invariants exist (and can be computed), separating (2) from (1,3) is easy: compute the 
strongest invariant, and check whether it excludes the target or not; if so, we are done, 
and if not, no other invariant (from that class) can possibly work either. However, unless 
(3) is excluded, computability of the strongest invariant does not necessarily imply that 
reachability is decidable. Alas, strongest invariants are not always guaranteed to exist for a 
particular invariant domain, although some separating inductive invariant may still exist for 
every target (or indeed may not).

In prior work from the literature, typical classes of invariants are usually convex, or 
finite unions of convex sets. In this paper we consider certain classes of invariants that 
can have infinitely many ‘holes’ (albeit in a structured and regular way); we call such 
sets porous invariants. These invariants can be represented via Presburger arithmetic.1 
We shall work instead with the equivalent formulation of semi-linear sets, generalising 
ultimately periodic sets to higher dimensions, as finite unions of linear sets of the form 

1  Presburger arithmetic is a decidable theory over the natural numbers, comprising Boolean operations, 
first-order quantification, and addition (but not multiplication).
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(
b + p1ℕ +⋯ + pmℕ

)
 (by which we mean 

{
b + a1p1 +⋯ + ampm ∣ a1,… , am ∈ ℕ

}
 , see 

Definition 3).
Let us first consider a motivating example:

Example 1  (Hofstadter’s MU Puzzle [1]) Consider the following term-rewriting puzzle over 
alphabet {M,U, I} . Start with the word MI, and by applying the following grammar rules 
(where y and z stand for arbitrary words over our alphabet), we ask whether the word MU 
can ever be reached.

The answer is no. One way to establish this is to keep track of the number of occurrences 
of the letter ‘I’ in the words that can be produced, and observe that this number (call it x) 
will always be congruent to either 1 or 2 modulo 3. In other words, it is not possible to 
reach the set {x ∣ x ≡ 0 mod 3} . Indeed, Rules 2 and 3 are the only rules that affect the 
number of I’s, and can be described by the system dynamics x ↦ 2x and x ↦ x − 3 . Hence 
the MU Puzzle can be viewed as a one-dimensional system with two affine updates,2 or a 
two-dimensional system with two linear updates.3 The set (1 + 3ℤ) ∪ (2 + 3ℤ) is an induc-
tive invariant4, and we wish to automatically synthesise it.

The problem can be rephrased as a safety property of the following multipath loop, veri-
fying that the ‘bad’ state x = 0 is never reached, or equivalently that the loop below can 
never halt, regardless of the nondeterministic choices made.

x  ∶= 1

while x  ≠ 0

x  ∶= 2x ∣∣ x ∶= x−3       (where ∣∣ represents nondeterministic branching)
The MU Puzzle was presented as a challenge for algorithmic verification in [2]; the 

tools considered in that paper (and elsewhere, to the best of our knowledge) rely upon the 
manual provision of an abstract invariant template. Our approach is to find the invariant 
fully automatically (although one must still abstract from the MU Puzzle the correct for-
mulation as the program x ↦ 2x ∣∣ x ↦ x − 3).

Our focus is on the automatic generation of porous invariants for multipath affine loops 
over the integers, or equivalently nondeterministic integer linear dynamical systems. When 
we consider affine loops as as linear dynamical systems they do not have loop guards as 
such. Rather we consider the loop guard as the target of the reachability questions we 
consider.

•	 We first consider targets consisting of a single vector (or ‘point targets’), and present 
the classes of invariants and systems for which invariants can and cannot be automati-
cally computed for the reachability question. A summary of the results for linear and 
semi-linear invariants for these targets is given in Table 1. For completeness we also 

yI → yIU ∣ My → Myy ∣ yIIIz → yUz ∣ yUUz → yz

2  One-dimensional affine updates are functions of the form f (x) = ax + b.

3 
(
a b

0 1

)(
x

1

)
=

(
ax + b

1

)
 models affine functions using a matrix representation, holding one of the entries 

fixed to 1.
4  The stability of this set under our two affine functions is easily checked: both components are 
invariant under x ↦ x − 3 , and (1 + 3ℤ) ↦ (2 + 6ℤ) ⊆ (2 + 3ℤ) under x ↦ 2x , and similarly 
(2 + 3ℤ) ↦ (4 + 6ℤ) ⊆ (1 + 3ℤ).
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consider ℝ,ℝ+-(semi)-linear sets, where we enhance the picture from prior work by 
showing that strongest ℝ-semi-linear invariants are computable.

–	 We establish the existence of strongest ℤ-linear invariants, and show that they can 
be found algorithmically in polynomial time (Theorem 10).

–	 If a ℤ-linear invariant is not separating, we may instead look for an ℕ-semi-linear 
invariant (a class that generalises both ℤ-semi-linear and ℕ-linear invariants), and 
we show that such an invariant can always be found for any unreachable point target 
when dealing with deterministic integer linear dynamical systems (Theorem 19).

–	 However, for nondeterministic integer linear dynamical systems, computing separat-
ing ℕ-semi-linear invariants is an undecidable problem in arbitrary dimension (The-
orem  21). Nevertheless we show how such invariants can be computed in a low-
dimensional setting, in particular for affine updates in one dimension (Theorem 22). 
As an immediate consequence, this establishes that the multipath loop associated 
with the MU Puzzle belongs to a class of programs for which we can automatically 
synthesise ℕ-semi-linear invariants.

•	 We consider the reachability problem for porous targets. That is, where the target is a 
linear or semi-linear set.

–	 For full-dimensional5 ℤ-linear targets we show that reachability is decidable, and, in 
the case of unreachability that a ℤ-semi-linear invariant can always be exhibited as 
a certificate (Theorem 37). If the target is not full-dimensional then the reachabil-
ity problem is Skolem-hard and undecidable for deterministic and nondeterministic 
systems respectively.

Table 1   Results for integer linear dynamical systems for a point target

Det/Non refers to deterministic or nondeterministic LDS. “Subsumed by ...” means that sufficient invariants 
can be generated, but of a more general type

Dom D/N Linear Semi-linear (SL)

ℤ Det Strongest computable (Theorem 10) No strongest (Section 4.2)
Subsumed by ℕ-SL

ℤ Non Strongest computable (Theorem 10) No strongest (Section 4.2)
ℕ Det No strongest (Section 4.2) No strongest (Section 4.2)

Subsumed by ℕ-SL But sufficient computable (Theorem 19)
ℕ Non No strongest (Section 4.2) 1d-affine decidable (Theorem 22)

Undec. in general (Theorem 21)
ℝ Det Strongest: affine relations by Karr [4] Strongest: affine closure on

Zariski closure (Theorem 8)
ℝ Non Strongest: affine relations by Karr [4] Strongest: affine closure on

Zariski closure (Theorem 8)
ℝ

+
Det No strongest (Section 4.2) No strongest, but sufficient

Subsumed by ℝ
+
-SL Computable [5]

ℝ
+

Non No strongest (Section 4.2) Undecidable [5]

5  The affine span covers the entire space.
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–	 Secondly, we also show that the reachability problem for low-dimensional semi-
linear sets is decidable for deterministic LDS (Theorem 40). Note that the Skolem 
problem is decidable at low orders, so it does not present a barrier in this setting.

•	 In Sect. 7 we present our tool porous which handles one-dimensional affine systems for 
both point and ℤ-linear targets, solving both the reachability problem and producing 
invariants. Inter alia, this allows one to handle the multipath loop derived from the MU 
Puzzle in fully automated manner.

The present paper extends and strengthens the results of [3]. Firstly, we show that strongest 
ℤ-semi-linear invariants can be found in polynomial time, whereas [3] merely established 
decidability. Secondly, we improve the results for porous targets, and in particular consider 
low-dimensional semi-linear targets. Finally, we present all proofs in full.

1.1 � Related work

The reachability problem (in arbitrary dimension) for loops with a single affine update, or 
equivalently for deterministic linear dynamical systems, is decidable in polynomial time 
for point targets (that is Y = {y} ), as shown by Kannan and Lipton [6]. However for nonde-
terministic systems (where the update matrix is chosen nondeterministically from a finite 
set at each time step), reachability was proven undecidable by reduction from the matrix 
semigroup membership problem [7].

In particular this entails that for unreachable nondeterministic instances we cannot hope 
to always be able to compute a separating invariant. In some cases we may compute the 
strongest invariant (which may suffice if this invariant happens to be separating for the 
given reachability query), or we may compute an invariant in sub-cases for which reach-
ability is decidable (for example in low dimensions). For some classes of invariants, it is 
also undecidable whether an invariant exists (e.g., invariants which are unions of polyhedra 
[5]).

Various types of invariants have been studied for linear dynamical systems, including 
polyhedral [5, 8], algebraic [9], and o-minimal [10] invariants. For certain classes of invari-
ants (e.g., algebraic [9]), it is decidable whether a separating invariant exists, notwithstand-
ing the reachability problem being undecidable. Other works (e.g., [11]) use heuristic 
approaches to generate invariants, without aiming for any sort of completeness.

Kincaid, Breck, Cyphert and Reps [12] study loops with linear updates, examining 
the closed forms for the variables to prove safety and termination properties. Such closed 
forms, when expressible in certain arithmetic theories, can be interpreted as another type 
of invariant and can be used to over-approximate the reachable sets. The work is restricted 
to a single update function (deterministic loops) and places additional constraints on the 
updates to bring the closed forms into appropriate theories.

Bozga, Iosif and Konecný’s FLATA tool [13] considers affine functions in arbitrary 
dimension. However, it is restricted to affine functions with finite monoids; in our one-
dimensional case this would correspond to limiting oneself to counter-like functions of the 
form f (x) = x + b.

Finkel, Göller and Haase [14], extending Fremont [15], show that reachability in a sin-
gle dimension is PSPACE-complete for polynomial update functions (and allowing states 
which can be used to control the sequences of updates that can be applied). The affine 



	 Formal Methods in System Design

1 3

functions (and single-state restriction) we consider are a special case, but we focus on pro-
ducing invariants to disprove reachability.

The reachability problem asks whether there exists a sequence of transitions that reach a 
given condition. The termination problem asks whether a given condition eventually holds 
along every possible sequence of transitions. Tools such as AProVE [16] and Büchi Aut-
omizer [17] may (dis-)prove reachability in the termination setting, i.e., on all branches, 
but are not suited to asking if a condition can be reached on some branch (reachability). 
Restrictions on the number of switches between the update function can also be consid-
ered; [18] shows that reachability is decidable only for a small number of switches.

Inductive invariants specified in Presburger arithmetic have been used to disprove reach-
ability in vector addition systems [19]. A generalisation, the class of ‘almost semi-linear 
sets’ [20], also features non-convexity and moreover can capture exactly the reachable 
points of vector addition systems. Our nondeterministic linear dynamical systems can be 
seen as vector addition systems over ℤ extended with affine updates (rather than only addi-
tive updates).

2 � Preliminaries

We denote by ℤ the set of integers and ℕ the set of non-negative integers. We say that 
x, y ∈ ℤ are congruent modulo d ∈ ℕ , denoted x ≡ y mod d , if d divides x − y . Given 
an integer x and natural d we write (x mod d) for the number y ∈ {0,… , d − 1} such that 
y ≡ x mod d.

Definition 2  (Integer Linear Dynamical Systems) A d-dimensional integer linear dynami-
cal system (LDS) (x(0), {M1,… ,Mk}) is defined by an initial point x(0) ∈ ℤd and a set 
of integer matrices M1,… ,Mk ∈ ℤd×d . An LDS is deterministic if it comprises a single 
matrix ( k = 1 ) and is otherwise nondeterministic.

A point y is reachable if there exists m ∈ ℕ and B1,… ,Bm such that B1 ⋯Bmx
(0) = y 

and Bi ∈
{
M1,… ,Mk

}
 for all 1 ≤ i ≤ m.

The reachability set O ⊆ ℤd of an LDS is the set of reachable points.

The following definition is parameterised by a semiring � , which stands either for 
ℕ,ℤ,ℝ or ℝ+.

Definition 3  (� -semi-linear sets) A linear set L is defined by a base vector b ∈ ℤd and 
period vectors p1,… , pk ∈ ℤd such that

For convenience we often write 
(
b + p1� +⋯ + pk�

)
 for L. A set is semi-linear if it is a 

finite union of linear sets.

ℕ-semi-linear sets are precisely those definable in Presburger arithmetic(FO(ℤ,+,≤) ) 
[21]. Likewise, ℤ-semi-linear sets are those definable in FO(ℤ,+) . We also consider their 
real counterparts, in which the coefficient semiring is either ℝ or ℝ+ . Note that regard-
less of the semiring � , the period vectors pi all lie in ℤd . We say a vector v ∈ ℤd is an 

L =
{
b + a1p1 +⋯ + akpk ∣ a1,… , ak ∈ �

}
.
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admissible direction of a linear set L if adding any �-multiple of v to a point in L is also in 
L, in particular L =

(
b + p1� +⋯ + pk�

)
=
(
b + p1� +⋯ + pk� + v�

)
.

An invariant is simply an overapproximation of the reachability set ( O ⊆ I ). Typically, 
we are interested in finding an invariant I that is disjoint from a target, i.e., I ∩ Y = � , to 
show that the orbit O does not meet Y. We moreover require that the property of being 
an invariant set be easy to verify. The principal way to do this is to consider inductive 
invariants:

Definition 4  Given an integer linear dynamical system (x(0), {M1,… ,Mk}) , a set I is an 
inductive invariant if

•	 x(0) ∈ I , and
•	 {Mix ∣ x ∈ I} ⊆ I for all i ∈ {1,… , k}.

We are interested in the following problem:

Definition 5  (Invariant Synthesis Problem) Given an invariant domain D , an integer linear 
dynamical system (x(0), {M1,… ,Mk}) , and a target Y, does there exist an inductive invari-
ant I in D disjoint from Y?

We foucs on classes D of inductive invariants that are linear, or semi-linear. When a 
separating inductive invariant I exists, we also wish to compute it. Since (semi)-linear 
invariants are enumerable, the computation of invariants can in theory be reduced to the 
question of their existence; however all of our proofs are constructive.

We also consider the notion of strongest invariants, where a strongest invariant is the 
smallest invariant set I in the prescribed domain that contains O . Such invariants are com-
pelling because they can be used to analyse reachability of any target set in the following 
sense—either the strongest invariant is separating from the given target, or no invariant in 
the given domain is separating. Note that strongest invariants do not always exist.

We only consider inductive invariants in the remainder of this paper, and we note when 
the inductive invariant we compute is also a strongest invariant.

3 � ℝ invariants: ℝ‑linear and ℝ‑semi‑linear

Before delving into porous invariants, let us consider invariants over the real numbers, i.e., 
ℝ-(semi)-linear sets.

We observe that a strongest ℝ-linear invariant is nothing but the affine hull of the reach-
ability set, which can be computed using Karr’s algorithm [4]. Furthermore we show that 
strongest ℝ-semi-linear invariants also exist and can be computed by combining techniques 
for computing algebraic invariants [9] and ℝ-linear invariants.
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3.1 � ℝ‑linear invariants

Recall that a set L is ℝ-linear if L =
(
v0 + v1ℝ +⋯ + vtℝ

)
 for some v0,… , vt ∈ ℤd that 

can be assumed to be linearly independent6 without loss of generality (and thus t ≤ d ). 
Given two distinct points of L, every point on the infinite line connecting them must also 
be in L. Generalising this idea to higher dimensions, given a set S ⊆ ℝd , let the affine hull 
be

We say the vectors v0,… , vm are ℚ-affinely independent if v1 − v0,… , vm − v0 are ℚ-lin-
early independent.

Fix an LDS (x(0), {M1,… ,Mk}) and consider its reachability set O = {
Mim

⋯Mi1
x(0) ∣ m ∈ ℕ, i1,… , im ∈ {1,… , k}

}
 . Then Aff(O) is precisely the strongest ℝ

-linear invariant. Karr’s algorithm [4, 22] can be used to compute this strongest invariant in 
polynomial time. The next lemma follows from Theorem 3.1 of [22].

Lemma 6  Given an LDS (x(0),
{
M1,… ,Mk

}
) of dimension d, we can compute in time poly-

nomial in d, k, and log� (where 𝜇 > 0 is an upper bound on the absolute values of the 
integers appearing in x(0) and M1,… ,Mk ), a ℚ-affinely independent set of integer vectors 
R0 ⊆ O such that: 

1.	 x(0) ∈ R0,
2.	 the affine span of R0 and the affine span of O are the same ( Aff(R0) = Aff(O)),
3.	 the entries of the vectors in R0 have absolute value at most �0 ∶= �(d�)d.

We highlight that Lemma 6 shows computability of the set R0 which is a subset of the 
reachability set (in particular the elements are integer points). This fact will prove useful 
later in our development of strongest ℤ-linear invariants in Sect. 4.

Before proving Lemma 6, let us first state a small technical proposition on the growth of 
matrix powers required in the proof.

Proposition 7  Let M be a d-dimensional square matrix and x be a vector. Let the maximum 
entry of M, x have absolute value at most � . Then the maximal absolute value of an entry of 
Mkx is at most dk�k+1.

Proof  Without loss of generality, assume that the matrix M and vector x consists only of � . 
We proceed by induction on k. The base case holds by the assumption that entries of x have 
absolute value at most � . The inductive case is as follows:

Aff(S) =

{
k∑

i=1

�ixi ∣ k ∈ ℕ, xi ∈ S, �i ∈ ℝ,

k∑
i=1

�i = 1

}
.

6  v0,… , vm are ℚ-linearly independent if there does not exist a0,… , am ∈ ℚ , not all 0, such that 
a0v0 +⋯ + amvm = 0.
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	�  ◻

Proof of Lemma 6  The result of [22, Theorem 3.1] proceeds by finding new points in the 
reachability set and adding them to a set of points if the new point is linearly independent 
from the other points of the set. Whilst the result of [22] refers to linear independence, this 
can be converted to affine independence by increasing the dimension by one.

The procedure works via a pruned version breadth-first search, with nodes only 
expanded if their children are linearly independent from the current set. Hence, the first 
point found in the tree is the initial point x(0) , and therefore this point is included. The 
maximum depth of the tree that needs to be explored is d, and so every point included 
is reached with at most d applications of matrices to x(0) . Hence, by Proposition 7, if the 
largest absolute value of a point or matrix entry is � , after d iterations, the largest absolute 
value is �(d�)d.

The algorithm of [22] runs in polynomial time in the number of arithmetic operations, 
and we observe that this is also polynomial time in the bit size. The independence check-
ing in the algorithm involves verifying linear independence of at most d vectors all having 
bit size at most log(�(d�)d) = d log(d) + (d + 1) log(�) , which can be done in polynomial 
time in the bit size (for example by the Bareiss algorithm for calculating the determinant). 	
� ◻

Let R0 =
{
x(0), r1,… , rd�

}
 be obtained as per Lemma 6, with d′ ≤ d . The ℝ-linear 

invariant of the LDS is the affine span Aff(R0) , which can be written as the ℝ-linear set 
L0 =

(
x(0) + (r1 − x(0))ℝ +⋯ + (rd� − x(0))ℝ

)
.

3.2 � ℝ‑semi‑linear invariants

Let us now generalise this approach to ℝ-semi-linear sets, an invari-
ant domain first introduced in [23]. The collection of ℝ-semi-linear sets, �⋃m

i=1
Li ∣ m ∈ ℕ, L1,… , Lm are ℝ-linear sets

�
 , is closed under finite unions and arbitrary 

intersections.7 Thus for any given set X, the smallest ℝ-semi-linear set containing X is sim-
ply the intersection of all ℝ-semi-linear sets containing X. Let us denote by SLin(X) the 
smallest ℝ-semi-linear set that contains X. We are interested in computing SLin(O):

Theorem  8  The strongest ℝ-semi-linear invariant SLin(O) of O is computable and is 
inductive.

First, let us consider the richer class of algebraic sets. Algebraic sets are those that are 
definable as finite unions and intersections of the zero sets of polynomials. For example, 
{(x, y) ∣ xy = 0} describes the union of the lines x = 0 and y = 0 . The (real) Zariski closure 
Zar(X) of a set X ⊆ ℝd is the smallest algebraic subset of ℝd containing X. The Zariski 

⎛
⎜⎜⎝

� … �
⋱

� … �

⎞
⎟⎟⎠

⎛
⎜⎜⎝

dk−1�k

⋮

dk−1�k

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

d�(dk−1�k)

⋮

d�(dk−1�k)

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

dk�(k+1)

⋮

dk�(k+1)

⎞
⎟⎟⎠

7  When intersecting a linear set with a semi-linear set, either the latter does not change, or one obtains a 
finite union of elements of smaller dimension. Thus, in an infinite intersection, only a finite number of inter-
sections affect the original set.
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closure of the set of reachable points, Zar(O) , can be computed algorithmically and yields 
an inductive invariant [9].

An algebraic set A is irreducible if whenever A ⊆ B ∪ C , where B and C are algebraic 
sets, then we have A ⊆ B or A ⊆ C . Any algebraic set can be written effectively as a finite 
union of irreducible algebraic sets [24].

Proposition 9  Suppose Zar(X) = A1 ∪⋯ ∪ Ak , with Ai ’s irreducible algebraic sets. Then 
SLin(X) = Aff(A1) ∪⋯ ∪ Aff(Ak).

Proof  Since semi-linear sets are algebraic we have that X ⊆ Zar(X) ⊆ SLin(X) and 
hence SLin(X) ⊆ SLin(Zar(X)) ⊆ SLin(SLin(X)) = SLin(X) . We conclude that 
SLin(X) = SLin(Zar(X)).

Now we have SLin(X) ⊆ Aff(A1) ∪⋯ ∪ Aff(Ak) since the latter is a semi-linear set 
that contains X. It remains to prove that Aff(A1) ∪⋯ ∪ Aff(Ak) ⊆ SLin(X) . For this, write 
SLin(X) = L1 ∪⋯ ∪ Ls , with the Lj being linear sets. Since each Ai is irreducible and each 
Lj is algebraic we have that for all i there exists j with Ai ⊆ Lj and hence Aff(Ai) ⊆ Lj . This 
immediately yields the required inclusion. 	�  ◻

From Proposition 9 we see that SLin(O) can be obtained by computing Aff(Ai) for each 
set Ai arising from the decomposition Zar(O) = A1 ∪⋯ ∪ Ak of the Zariski closure of the 
orbit into irreducible components.8

Moreover, the set SLin(O) is inductive. Indeed, given a matrix M of the LDS and i ≤ k , 
for all j, we define the consider set Aj

i
= {x ∈ Ai ∣ Mx ∈ Aj} , which is clearly algebraic. We 

have by inductiveness of Zar(O) that Ai =
⋃

j A
j

i
 . As Ai is irreducible, one of those sets can-

not be a proper subset of Ai . Thus there exists j such that Ai = A
j

i
 and thus MAi ⊆ Aj . There-

fore M(SLin(Ai)) = MAff(Ai) = Aff(MAi) ⊆ Aff(Aj) ⊆ SLin(O) , proving inductiveness.
To complete the proof of Theorem 8 it remains to confirm that affine hulls of algebraic 

sets can be computed algorithmically. Let us fix an algebraic set A, and let W denote a 
set variable. Proceed as follows. Start with W ← {x} for some point x ∈ A , and repeatedly 
make the assignment W ← Aff(W ∪ {y}) , where y ∈ A⧵W . Such a point y can always be 
found using quantifier elimination in the theory of the reals. Each step necessarily increases 
the dimension, which can occur at most d times, ensuring termination, at which point one 
has Aff(A) = W.

4 � Strongest ℤ‑linear invariants

Recall that a ℤ-linear set 
(
q + p1ℤ +⋯ + pnℤ

)
 is defined by a base vector q ∈ ℤd and 

period vectors p1,… , pn ∈ ℤd . Equivalently, a ℤ-linear set describes a lattice, i.e., (
p1ℤ +⋯ + pnℤ

)
 , in d-dimensional space, translated to start from q rather than 0⃗.

We start by showing that the strongest ℤ-linear invariant can be computed.

8  While it is convenient to rely on the results of [9], we believe that it is possible and would be more com-
putationally efficient to a give a direct computation of the semi-linear closure that does not go via the Zar-
iski closure.
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4.1 � Computing the strongest ℤ‑linear invariants

Theorem  10  Given a d-dimensional dynamical system (x(0),
{
M1,… ,Mk

}
) , the strongest 

ℤ-linear inductive invariant containing the reachability set O exists and can be computed 
algorithmically in time polynomial in d, k, and log� (where 𝜇 > 0 is an upper bound on 
the absolute values of the integers appearing in x(0) and M1,… ,Mk).

We claim that Algorithm 1 computes the requisite invariant according to Theorem 10. 
Let us first establish some technical results before proving termination and correctness 
of the algorithm.

Algorithm 1   Strongest ℤ-linear invariant for LDS (x(0),M1,… ,M
k
)

Input (0), 1 k

Compute 0 = (0)
1 d according to Lemma 6

0 = (0) + ( 1
(0)) + + ( d

(0))
Updated = True

While(Updated):

Updated = False

for each 1 k :

for each i:

=
if i:

i+1 = i

i+1 = (0) + r Ri+1
( (0))

= + 1
Updated = True

return i

The following proposition asserts that when two points are in a ℤ-linear set, the 
direction between these two points can be applied from any point of the set, and hence 
this direction can be included as a period without altering the set.

Proposition 11  Let L =
(
q + p1ℤ +⋯ + pnℤ

)
 be a ℤ-linear set. If x, y ∈ L then 

for all z ∈ L and all a� ∈ ℤ we have z + (y − x)a� ∈ L . In particular, we have 
L =

(
q + p1ℤ +⋯ + pnℤ + (y − x)ℤ

)
.

Proof  If x = q + a1p1 +⋯ + anpn and y = q + b1p1 +⋯ + bnpn then 
y − x = q + b1p1 +⋯ + bnpn − (q + a1p1 +⋯ + anpn) = (b1 − a1)p1 +⋯ + (bn − an)pn.

Then for any z = q + c1p1 +⋯ + cnpn , we have 
z + a′(y − x) = q + c1p1 +⋯ + cnpn + a′((b1 − a1)p1 +⋯ + (bn − an)pn)
= q + (c1 + a′(b1 − a1))p1 +⋯ + (cn + a′(bn − an))pn) where (ci + a�(bi − ai)) ∈ ℤ , so 
z + a�(y − x) ∈ L . 	� ◻
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As a sub-procedure, Algorithm 1 must efficiently decide whether a given point lies in 
the current candidate invariant Li.

Proposition 12  Let x ∈ ℤd and L =
(
x(0) + p1ℤ +⋯ + pnℤ

)
 . Suppose � is an upper bound 

for the largest absolute value appearing in x and the largest absolute value appearing in 
all pi . Then deciding if x ∈ Li is in polynomial time in �, n, d.

A d-dimensional lattice can always be defined by at most d period vectors. However, our 
procedure may return a representation containing more than d period vectors.

Example 13  Consider the lattice ((2, 2)ℤ + (0, 6)ℤ + (2, 6)ℤ) , specified with three vec-
tors, which is equivalent to the lattice ((2, 0)ℤ + (0, 2)ℤ) . Note that one may not sim-
ply pick an independent subset of the periods, as none of the following sets are equal: 
((2, 2)ℤ + (0, 6)ℤ) , ((2, 2)ℤ + (2, 6)ℤ) , ((0, 6)ℤ + (2, 6)ℤ) , and ((2, 2)ℤ + (0, 6)ℤ + (2, 6)ℤ)

.

The Hermite normal form can be used to obtain a basis of the vectors that define the 
lattice. Consider a lattice Li =

(
p1ℤ +⋯ + pdℤ

)
 . The lattice remains the same if pi is 

swapped with pj , if pi is replaced by −pi , or if pi is replaced by pi + �pj where � is any 
fixed integer.9

The above are the unimodular operations. The Hermite normal form of a matrix M is a 
matrix H such that M = UH , where U is a unimodular matrix (formed by unimodular col-
umn operations) and H is lower triangular, non-negative and each row has a unique maxi-
mum entry which is on the main diagonal. Such a matrix H always exists and its columns 
form a basis of the lattice spanned by the columns of M, because they differ up to uni-
modular (lattice-preserving) operations. There are many texts on the subject; we refer the 
reader to the lecture notes of Shmonin [25] for more detailed explanations.

The non-zero columns of a matrix in Hermite normal form constitute a basis of the lat-
tice generated by the columns of the original matrix. Hence a basis of the lattice spanned 
by a collection of vectors can be obtained by computing the Hermite normal form of the 
matrix formed by placing the vectors as columns. The Hermite normal form can be com-
puted in polynomial time [26], which we now use to prove Proposition 12.

Proof of Proposition 12  It is equivalent to ask whether x − x(0) ∈
(
p1ℤ +⋯ + pnℤ

)
 . Recall 

that we can place the lattice into Hermite normal form in polynomial time. That is, deter-
mine d� ≤ d, p1,… , pd� such that p�

1
ℤ +⋯ + p�

d�
ℤ = p1ℤ +⋯ + pnℤ.

As the lattice is in Hermite normal form, there exists a unique choice of �1,… , �d� such 
that 

∑d�

i=1
�ipi = x − x(0) , which can be determined by Gaussian elimination. Then we have 

x ∈ Li if and only if the choices of �1,… , �d� are integer. 	�  ◻

We now prove the main theorem of this section:

Proof of Theorem 10  We claim that Algorithm 1 returns the strongest ℤ-linear invariant I 
in polynomial time. Let us first explain the idea of the algorithm, which proceeds in two 
phases:

9  The last replacement is valid, since if x = y + �pi ∈ L then x = y + �(pi + �pj) − ��pj is in the new lat-
tice.
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•	 First compute a subset L0 ⊆ I of the invariant that has the same dimension as I.
	   Recall the set R0 =

{
x(0), r1,… , rd�

}
⊆ O , with d′ ≤ d , from Lemma 6. The result-

ing ℤ-linear set L0 =
(
x(0) + (r1 − x(0))ℤ +⋯ + (rd� − x(0))ℤ

)
 is then a d′-dimensional 

porous subset of the d′-dimensional affine hull of the orbit ( L0 ⊆ Aff(O) ). Applying 
M1,… ,Mk can only increase the density, but not the dimension. As each ri and x(0) 
are in O , by Proposition 11 we can assume that each of the directions (ri − x(0)) must 
be represented in any ℤ-linear set containing O , and we therefore have that L0 ⊆ I.

•	 In the second phase, we ‘fill in’ the lattice as required to cover the whole of O . We 
compute a growing sequence L0 ⊊ L1 ⊊ ⋯ ⊊ Lm−1 = Lm = I , where at each step the 
algorithm merely increases the density of the attendant sets in order to ‘fill in’ miss-
ing points of the invariant.

	   To do this we repeatedly find new points which are not yet covered by Li . Suppos-
ing we find x� ∈ O ⧵ I , we then use Proposition 11 to argue that we can add the vec-
tor x� − x(0).

	�  ◻

Claim 14  (Termination) Algorithm 1 terminates.

Proof of claim  The vectors p1 = (r1 − x(0)),… , pd� = (rd� − x(0)) form a parallelepiped 
(hyper-parallelogram) that repeats regularly. There are a finite number of integral points 
inside this parallelepiped. If new points are added in some step, they are added to every 
parallelepiped. Thus we can add new points finitely many times before saturating or Li 
becomes fixed. 	�  ◻

Claim 15  (I is an inductive invariant) Let M ∈ {M1,… ,Mk} and let x ∈ I . Then Mx ∈ I.

Proof of claim  It is clear that x(0) ∈ I as x(0) ∈ R0.
Let R =

{
r0,… , rm

}
 be as in the last iteration of the algorithm, with r0 = x(0) ∈ R , and 

so I =
�
r0 +

∑m

i=1
(ri − r0)ℤ

�
.

Given a vector y ∈ ℤd , we denote by 
(
y

1

)
 the vector in ℤd+1 formed by y in the first d 

dimensions and 1 in the final dimension. We first show that for any y ∈ ℤd:

Let y =
�
r0 +

∑m

i=1
(ri − r0)ai

�
∈ I , then y =

�
r0(1 −

∑
ri
ai) +

∑m

i=1
riai

�
 . Then we have �

y

1

�
=

�
r0
1

�
(1 −

∑
ri
ai) +

∑m

i=1

�
ri
1

�
ai ∈

∑
r∈R

�
r

1

�
ℤ . Conversely, let 

�
y

1

�
∈
∑m

i=0

�
ri
1

�
ai , since 

∑m

i=0
ai = 1 then a0 = 1 −

∑m

i=1
ai and we have 

�
y

1

�
=

�
r0
1

�
+
∑m

i=1

��
ri
1

�
−

�
r0
1

��
ai , thus in particular, y = r0 +

∑m

i=1
(ri − r0)ai ∈ I.

By termination of the algorithm we have Mri ∈ I for all ri ∈ R (otherwise Algorithm 1 

would add Mri to R) and thus 
�
Mri
1

�
∈
∑

rj∈R

�
rj
1

�
ℤ for all ri ∈ R . Let a0,i,… , an,i ∈ ℤ be 

such that 
�
Mri
1

�
=
∑

rj∈R

�
rj
1

�
aj,i.

(1)y ∈ I ⟺

(
y

1

)
∈
∑
r∈R

(
r

1

)
ℤ.
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By x ∈ I and Eq. (1) we have 
�
x

1

�
=
∑

ri∈R

�
ri
1

�
bi for some b0,… , bn ∈ ℤ.

Let us now establish that Mx ∈ I . We have 
�
Mx

1

�
=
∑

ri∈R

�
Mri
1

�
bi . Therefore we 

have 
�
Mx

1

�
=
∑

ri∈R

∑
rj∈R

�
rj
1

�
aj,ibi . Thus 

�
Mx

1

�
∈
∑

ri∈R

�
ri
1

�
ℤ , entailing Mx ∈ I 

(again by Eq. 1). 	�  ◻

Claim 16  (I is the strongest invariant) For every invariant J, we have I ⊆ J.

Proof of claim  By induction, let us prove that every invariant J must contain Li . Clearly this 
is the case for L0 because all points of R0 ⊆ O must be in J and every period vector in L0 
can be present, without loss of generality, thanks to Proposition 11. Assume Li ⊆ J . Then 
it must be the case that J contains every Mj(x) for x ∈ Li , as otherwise it would not be an 
invariant. It therefore follows that J must contain Li+1 , since the latter is the minimal ℤ-lin-
ear set containing Li and Mj(x) for some j ≤ k . Finally, since I is itself one of the Li’s, we 
have I ⊆ J as required. 	�  ◻

Claim 17  (Polynomial time) The algorithm runs in polynomial time in d, k and log(�).

Proof of claim  Let x ∈ ℤd . We denote by ‖x‖∞ the largest absolute value of an entry of x, 
and by ‖x‖2 the Euclidean norm of the vector.

Recall the parallelepiped from the claim of termination. The volume of the parallelepi-
ped is bounded above by ‖‖p1‖‖2 ⋯ ‖‖pd′‖‖2 . The volume of the parallelepiped must at least 
halve at every step in which a vector is added to the invariant; a new vector either leaves 
the parallelepiped unchanged, or partitions it into at least two pieces, in which case, one 
of the two pieces has volume at most half of the original. The volume at step t is therefore 
volt ≤

‖‖p1‖‖2 ⋯ ‖‖pd�‖‖2∕2t . The procedure must saturate at, or before, the volume becomes 
1, which occurs after at most log(‖‖p1‖‖2 ⋯ ‖‖pd�‖‖2) steps.

Using Lemma 6 we obtain that each ri ∈ R0 is the result of at most d matrix multi-
plication operations; thus using Proposition 7 we have ‖‖ri‖‖∞ ≤ dd�d+1 . Using the triangle 
inequality, we have pi = ri − x(0) we have ‖‖pi‖‖∞ ≤ dd�d+1 + � ≤ (d�)d+1 (for d ≥ 2).

Using ‖‖pi‖‖2 ≤
√

d‖‖pi‖‖∞ , we obtain ��pi��2 ≤
√
d(d�)d+1 . Taking liberal simplifications 

we obtain ‖‖pi‖‖2 ≤ (d�)2d . Hence ‖‖p1‖‖2 ⋯ ‖‖pd�‖‖2 ≤ ((d�)2d)d . Hence the number of update 
steps where a vector is added is at most log((d�)2d2 ) = (2d2) log(d�).

Since the number of vectors is at most (2d2) log(d�) , the number of steps between add-
ing a vector is at most k(2d2) log(d�) (a new vector is added at least once across all itera-
tions in the inner for loops, otherwise the procedure terminates). Hence, the total number 
of steps (counting a matrix multiplication, and verifying x ∈ Li as a single step) is at most 
O(k((2d2) log(d�))2).

It remains to verify that the bit size of the vectors is polynomial. This will imply that the 
running time of the matrix multiplications is polynomial as well.

Let (Ri) be the increasing sequence of sets built in  Algorithm  1. As there are at 
most (2d2) log(d�) vectors added in those sets and at least one vector is added at 
each step, this sequence becomes stationary after at most (2d2) log(d�) steps. Given 
i ≤ (2d2) log(d�) , we have that each vector x� ∈ Ri is the result of M�x for some 
x ∈ Ri−1 and � ∈ {1,… , k} . Hence, each element x ∈ Ri is the result of at most i matrix 
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multiplications. By Proposition 7, after v matrix applications, the size of the number is at 
most dv�v+1 . Hence ‖x‖∞ ≤ �(d�)(2d

2) log(d�) , thus the bit size of such numbers are at most 
(2d2) log2(d�) + log(�) , which is polynomial in d and log(�) . 	�  ◻

Claims 14 to 17 conclude that Algorithm 1 computes the strongest inductive invari-
ant I, terminating in polynomial time, as required. 	�  ◻

Remark 18  Considering again the MU puzzle, we note that both 1 and 2 are in the reacha-
bility set, hence (1 + 1ℤ) = ℤ is the strongest ℤ-linear invariant. Thus the class of ℤ-linear 
sets is not useful for certifying non-reachability in this case.

4.2 � Extensions of ℤ‑linear sets without strongest invariants

In this section we show that several generalisations of the class of ℤ-linear sets fail to 
admit strongest invariants.

ℤ-semi-linear sets are unions of ℤ-linear sets, and therefore all finite sets are ℤ-semi-
linear. Consider the deterministic dynamical system starting from point 1 and doubling 
at each step M = (1, (x ↦ 2x)) . This system has reachability set O =

{
2k ∣ k ∈ ℕ

}
 . For 

this LDS we can construct the invariant 
{
2, 4, 8, ..., 2k

}
∪
{
2k+1p1 ∣ p1 ∈ ℤ

}
 for each k. 

For any proposed strongest ℤ-semi-linear invariant, one can find a k for which the cor-
responding invariant is strictly smaller.

ℕ-linear sets generalise ℤ-linear sets (observe that ℤ-linear sets are a proper sub-
class, since 

(
x + piℤ

)
 can be expressed as 

(
x + (−pi)ℕ + piℕ

)
 , but 

(
x + piℕ

)
 is clearly 

not ℤ-linear). Consider the LDS 
(
(x1, x2),

(
0 1

1 0

))
 , with a reachability set consisting of 

just two points x = (x1, x2) and y = (x2, x1) . There are two incomparable candidates for 
the minimal ℕ-linear invariant: (x + (y − x)ℕ) and (y + (x − y)ℕ) . Similarly for ℝ+-linear 
invariants, the sets 

(
y + (x − y)ℝ+

)
 and 

(
x + (y − x)ℝ+

)
 are incomparable half-lines.

5 � ℕ‑semi‑linear invariants

We turn now to ℕ-semi-linear invariants, the most general class of invariants that we 
consider. ℕ-semi-linear invariants gain expressivity thanks to the ‘directions’ provided 
by the period vectors. For example, the only possible ℤ-semi-linear invariant for the 
LDS (0, (x ↦ x + 1)) is ℤ , yet the reachability set, namely ℕ , is ℕ-linear.

In Sect. 5.1 we show that a separating ℕ-semi-linear inductive invariant can always 
be found for unreachable instances of deterministic integer LDS, although the com-
puted invariant will depend on the target (strongest invariants do not always exist 
here). However, in Sect.  5.2 we show that finding invariants is undecidable for non-
deterministic systems, at least in high dimension. Nevertheless, we show in Sect. 5.3 
decidability for the low-dimensional setting of the MU Puzzle—one dimension with 
affine updates.
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5.1 � Existence of sufficient (but non‑minimal) ℕ‑semi‑linear invariants for point 
reachability in deterministic LDS

Kannan and Lipton showed decidability of reachability of a point target for determinis-
tic LDS [6]. In this subsection, we establish the following result to provide a separating 
invariant in unreachable instances.

Theorem 19  Given a deterministic LDS (x(0),M) together with a point target y, if the tar-
get is unreachable then a separating ℕ-semi-linear inductive invariant can be provided 
effectively.

To do so, we will invoke the results from [5] to compute an ℝ+-semi-linear inductive 
invariant, and then extract from it an ℕ-semi-linear inductive invariant. More precisely, 
the authors of [5] show how to build polytopic inductive invariants for certain deter-
ministic LDS. Such polytopes are either bounded or are ℝ+-semi-linear sets. In the first 
case, the polytope contains only finitely many integral points, which can directly be 
represented via an ℕ-semi-linear set. In the second case, we build an ℕ-semi-linear set 
containing exactly the set of integral points included in the ℝ+-semi-linear invariant, 
thanks to the following lemma.

Lemma 20  Given an ℝ+-linear set S =
�
x +

∑
i piℝ+

�
 , where the vectors pi have rational 

coefficients and x is an integer vector, one can build an ℕ-semi-linear set N comprising 
precisely all of the integral points of S.

Proof  Let S =
�
x +

∑
i piℝ+

�
 be a ℝ+-linear set where the vectors pi have rational coeffi-

cients and x is an integer vector. Let k ∈ ℕ be an integer so that the vectors kpi have integer 
coefficients. We denote by vj the integer vectors of the form 

∑
i �ikpi where 0 ≤ �i ≤ 1 . 

Then the set T =
�
x +

∑
j vjℕ

�
 contains exactly the integer vectors contained in S.

Indeed, first T only contains integer vectors since both x and the vectors vj are integer 
vectors. Secondly, all the vectors in T are included in S as the period vectors of T lie in the 
cone defined by the vectors of S. Finally, given an integer vector y in S, y can be rewritten 
as y = x + v +

∑
i mikpi where for all i,mi ∈ ℕ and v is of the form 

∑
i �ikpi with 0 ≤ �i ≤ 1 

Therefore there exists j such that vj = v and as for all i, kpi is a period vector of T, y ∈ T  . 	
� ◻

Proof of Theorem  19  We note that every inductive invariant produced in [5] has rational 
period vectors, as the vectors are given by the difference of successive points in the orbit 
of the system, and thus Lemma 20 can be applied. This produces an inductive invariant 
as their invariant is inductive, the LDS only reaches integer vectors and the invariant pro-
duced through Lemma 20 contains all the integer points appearing within their invariant.

The authors of [5] build an inductive invariant in all cases except those for which every 
eigenvalue of the matrix governing the evolution of the LDS is either 0 or of absolute value 
1 and at least one of the latter is not a root of unity. This situation however cannot occur in 
our setting. Indeed, the eigenvalues of an integer matrix are algebraic integers, and an old 
result of Kronecker [27] asserts that unless all of the eigenvalues are roots of unity, one of 
them must have absolute value strictly greater than 1 (the case in which all eigenvalues are 
0 being of course trivial). 	�  ◻
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5.2 � Undecidability of ℕ‑semi‑linear invariants for nondeterministic LDS

If the enhanced expressivity of ℕ-semi-linear sets allows us to always find an invariant 
for deterministic LDS, it contributes in turn to making the invariant-synthesis problem 
undecidable when the LDS is not deterministic.

We establish this through a reduction from the infinite Post correspondence prob-
lem ( �-PCP), which can be defined in the following way: given m pairs of non-empty 
words {(u1, v1),… , (um, vm)} over a binary alphabet, does there exist an infinite word 
w = w1w2 … over alphabet {1,… ,m} such that uw1uw2 … = vw1vw2 … . This problem is 
known to be undecidable when m is at least 8 [28, 29].

Theorem 21  The invariant synthesis problem for ℕ-semi-linear sets and linear dynamical 
systems with 13 matrices of dimension 7, or two matrices of dimension 91, is undecidable.

Proof  This proof follows in part the structure of the argument showing the undecidabil-
ity of the invariant synthesis problem for ℝ+-semi-linear invariants presented in [5]. Some 
non-trivial changes and new ideas have to be added here due to the restriction to integer 
values.

We will transform an instance of �-PCP with m tiles to an instance of the invariant syn-
thesis problem for m + 5 matrices of size 7. This can then be converted in routine fashion 
to an instance of two matrices of size 7m + 35 (see Theorem 9 of [5] for instance).

The main idea of this proof is to encode a pair of words on alphabet {1, 2} correspond-
ing to each sequence of tiles as an integer in base 4. An important property of our encoding 
is that the operation of appending a new tile to an existing pair of words can be achieved by 
matrix multiplication.

Recall that if the instance of �-PCP is negative, then every generated pair of words 
will differ at some point. Our reduction is such that a difference of letters creates a differ-
ence in their numerical encodings that can be identified through an ℕ-semi-linear invariant. 
Conversely, when the �-PCP instance has a positive answer, there can be no ℕ-semi-linear 
invariant.

�Short simplifying lemma

In order to simplify the main part of the proof, let us first show that one can enforce an 
order between the matrices using affine transformations on one dimension. Let us denote 
by p this dimension; it is initially equal to 1 and its target value is 0. Consider the three 
following affine transformations: f1(p) = 2p − 1 , f2(p) = 2p − 2 and f3(p) = 2p . The only 
sequences of transformations allowing to reach the target are of the form f ∗

3
f2f

∗
1
 . Indeed, 

let I = {p ∣ p ≥ 2 ∨ p ≤ −1} , we have (1) if p ∈ I  , then for all i ∈ {1, 2, 3} , fi(p) ∈ I  , (2) 
f1(1) = 1 and f1(0) ∈ I  , (3) f2(1) = 0 and f2(0) ∈ I  and (4) f3(1) ∈ I  and f3(0) = 0 . As 
a consequence, the inductive invariant I  ensures that any sequence of transformations that 
do not have the desired order cannot reach the target. In the following, we will call type 1, 2 
or 3 the transformations we define, depending on whether they implicitly contain the func-
tion f1 , f2 or f3.
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�Description of the reduction

We reduce an instance {(u1, v1),… , (um, vm)} of the �-PCP problem over binary alphabet 
{1, 2} to the invariant synthesis problem. Given a finite or infinite word w, we denote by 
|w| the length of the word w and given an integer i ≤ |w| , we write wi for the i-th letter 
of w. Given a finite or infinite word w on alphabet {1,… ,m} we denote by uw and vw the 
words on alphabet {1, 2} such that uw = uw1uw2 … and vw = vw1vw2 … . Given a finite word 
w on alphabet {1, 2} , denote by [w] =

∑�w�
i=1

wi4
�w�−i the quaternary encoding of w. It is clear 

that it satisfies [ww�] = 4|w�|[w] + [w�] . For all i ≤ m , we denote by ni = 4|ui| , mi = 4|vi| and 
���i = max(ni,mi).

We work with five dimensions, (s, c, d, n, k), and define the following transformations:

•	 For i ≤ m , the type 1 transformation ��������i on (s, c, d, n, k) encodes the action of 
reading the pair (ui, vi) and increases the counters n and k: it simultaneously applies 
s ← 𝗆𝖺𝗑is + c[ui]

𝗆𝖺𝗑i

ni
− d[vi]

𝗆𝖺𝗑i

mi

 , c ← 𝗆𝖺𝗑i

ni
c , d ←

𝗆𝖺𝗑i

mi

d , n ← n + k and k ← k + 1.
•	 The type 2 transformation �������� on (s, c, d, n, k) gathers some of the values in order 

to compare them and resets d: s ← s − c − d , c ← −s − c − d and d ← 0.
•	 The type 3 transformation ���

�
 increments s: s ← s + 1.

•	 The type 3 transformation ���
�
 increments c: c ← c + 1.

•	 The type 3 transformation ��� decreases k and n: n ← n − k , k ← k − 1.
•	 The type 3 transformation ���

�
 decrements k: k ← k − 1.

These m + 5 transformations operate over seven dimensions in total: the five above (namely 
(s, c, d, n, k)), one (namely p) for ordering the transformations, and one last dimension con-
stantly equal to 1, required to implement affine transformations.

We will show that there is a solution to the given instance of the �-PCP prob-
lem iff there does not exist an ℕ-semi-linear invariant for the system with initial point 
x = (0, 1, 1, 0, 0, 1, 1) , target y = (0, 0, 0, 1, 0, 0, 1) , and using the matrices inducing the 
transformations defined above.

�Evolution of the system

Let w = w1 …wj be a finite word over {1,… ,m}∗ . Consider (s, c, d, n, k, p, a) = ��������wx 
where ��������w represents the transformation ��������wj

… ��������w2
��������w1

 . We have

•	 s = c[uw] − d[vw],
•	 n =

j(j−1)

2
 and k = j,

•	 p = a = 1.

Indeed, let us prove the first item (the only non-trivial one) by induction on the length of w. 
If |w| = 0 , then [uw] = [vw] = 0 which is compatible as the first component of x is 0. Other-
wise, w is of the form zi with i ∈ {1,… ,m} . By the induction hypothesis, denoting 
(s, c, d, n, k, p, a) = ��������wx and (s�, c�, d�, n�, k�, p�, a�) = ��������zx , we have that 
s� = c�[uz] − d�[vz] . Applying ��������i , we obtain that s = ���is

� + c�[ui]
���i

ni
− d�[vi]

���i

ni
 , 

c =
���i

ni
c� and d =

���i

mi

d� . Thus
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which concludes the induction.

�Only if case: !‑PCP solution implies no invariant

Assume that there is a solution w to the �-PCP instance. Consider the sequence of points 
(xn) obtained as follows: for all j ∈ ℕ , denoting w≤j the prefix of w of length j, 
xj = (sj, cj, 0, nj, kj, 0, 1) = �������� ��������w≤j

x.
Let (s, c, d) be the three first components of ��������w≤j

x . Assuming without loss of gen-
erality that |uw≤j | ≤ |vw≤j | we have that

The first equality was proven in the previous paragraph. The second equality is obtained by 
grouping the terms corresponding to the same power of 4 and noting that, by construction, 
c4|u

w≤j | = d4|v
w≤j | . The third equality comes from the fact that w≤j is a prefix of a solution 

to the �-PCP instance and thus that letters on the same level are the same. Finally, the last 
inequality is obtained by bounding every vw≤j

i
 by 2 and extending the sum to infinity.

From this inequality, we immediately have that |s| − c − d is negative, and thus both 
sj = s − c − d and cj = −s − c − d are negative.

Due to the above, by applying to the points xj a number of times the transformations ���
�
 

and ���
�
 , we obtain the sequence of points (yj)j∈ℕ where yj = (0, 0, 0, nj, kj, 0, 1) . We claim 

that any semi-linear invariant containing all the points yj also contains a point of the form 
(0, 0, 0, nj + d, kj, 0, 1) , where d is a positive integer. This will imply the result as from such 
a point, one can reach the target by d − 1 applications of ���

�
 and kj applications of ��� 

and thus there is no semi-linear invariant of the system that does not intersect the target.
Let us now prove the above claim. Let I  be a semi-linear set containing every vector 

yj (which we will see as two-dimensional objects by projecting on the 4th and 5th dimen-
sion). Then there exists a linear set I′ ⊆ I  that contains infinitely many vectors of (yj)j∈ℕ . 
This set I′ is defined by an initial vector, and a set of period vectors. As I′ contains infi-
nitely many vectors of (yj)j∈ℕ where the ratios between the first and second component is 
increasing, one of the period vectors is of the form (d, 0) where d is a strictly positive inte-
ger. Let j be such that yj ∈ I

� , then (nj + d, kj) ∈ I
� which implies the claim.

As a consequence, every inductive ℕ-semi-linear invariant of the LDS intersects with 
the target.

s =���i(c
�[uz] − d�[vz]) + c�[ui]

���i

ni
− d�[vi]

���i

mi

=c�(���i[u
z] + [ui]

���i

ni
) − d�(���i[v

z] + [vi]
���i

mi

)

=c(ni[u
z] + [ui]) − d(mi[v

z] + [vi])

=c[uw] − d[vw]

|s| = |c[uw≤j ] − d[vw≤j ]|

=

|uw≤j |∑
i=1

|uw≤j

i
− v

w≤j

i
|c4|uw≤j |−i +

|vw≤j |∑
i=|uw≤j |+1

v
w≤j

i
c4|u

w≤j |−i

=

|vw≤j |∑
i=|uw≤j |+1

v
w≤j

i
c4|u

w≤j |−i

< c .
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�If case: no !‑PCP solution implies an invariant

Assume that there is no solution to the �-PCP instance. There exists n0 ∈ ℕ such that for 
every infinite word w on alphabet {0,… ,m} there exists n ≤ n0 such that uw

n
≠ vw

n
 . Indeed, 

consider the tree whose root is labelled by (�, �) and, given a node (u, v) of the tree, if for 
all n ≤ min(|u|, |v|) we have un = vn , then this node has m children: the nodes (uui, vvi) for 
i ∈ {1,… ,m} . This tree is finitely branching and does not contain any infinite path (which 
would induce a solution to the �-PCP instance). Thus, according to König’s lemma, it is 
finite. We can therefore choose the height of this tree as our n0.

We define the invariant I = I1 ∪ I2 ∪ I3 where

and

By definition, I  is an ℕ-semi-linear set, contains x and does not contain y. The difficulty is 
to show stability under the transformations.

   ⋄    Let z = ��������w(x) ∈ I1 , for some w ∈ {1,… ,m}∗ with |w| ≤ n0 + 1 . By order-
ing if we apply a transformation outside �������� or a ��������i for some i, we reach I3.

   ∙   For i ∈ {1,… ,m} , if |w| ≤ n0 , then ��������iz ∈ I1.
Else, ��������iz = ��������wix = (s, c, d, n, k, p, 1) with |w| = n0 + 1 . But then, there 
exists n1 ⩽ n0 such that uwi

n1
≠ vwi

n1
 . Let n2 be the smallest such number, then assume 

without loss of generality that c ≥ d , we have 

 since uwi
j
= vwi

j
 for j < n2 . Thus, 

 As c ≥ d , this shows that ��������iz ∈ I3.
   ∙   ��������z ∈ I2.

   ⋄    Let z ∈ I2 and f be one of the transformations, then f (z) ∈ I2 if f increased (resp. 
decreased) a negative (resp. positive) component. Otherwise f (z) ∈ I3.

I1 =
{
��������w(x) ∣ w ∈ {1,… ,m}∗ ∧ |w| ≤ n0 + 1

}
,

I2 =
{
z = (s, c, 0, n, k, 0, 1) ∣ z = (���

�
)∗(���

�
)∗(���)∗(���

�
)∗�������� ��������w(x)

∧ w ∈ {1,… ,m}∗ ∧ |w| ≤ n0 + 1 ∧ s, t, n, k ∈ ℕ
}

I3 =
{
(s, c, d, n, k, p, 1) ∣ (|s| − c − d ≥ 1 ∧ c ≥ 0 ∧ d ≥ 0 ∧ p = 1)

∨ ((s ≥ 1 ∨ c ≥ 1 ∨ n ≤ −1 ∨ k ≤ −1) ∧ p = 0) ∨ p ≤ −1 ∨ p ≥ 2}.
}

s = c[uwi] − d[vwi]

= (uwi
n2
− vwi

n2
)c4|uwi|−n2 +

max(|uwi|,|vwi|)∑
j=n2+1

(uwi
j
− vwi

j
)c4|uwi|−j

|s| ⩾ c4|uwi|−n2 − 2c

3
4|uwi|−n2 since |uwi

n2
− vwi

n2
| = 1

and for n ≥ n2, |uwin − vwi
n
| ≤ 2

⩾
1

3
c4|uwi|−n2

⩾ 2c + 1 since n2 ⩽ n0 and |uwi| ⩾ n0 + 2.
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      ⋄       Let z = (s, c, d, n, k, p, 1) ∈ I3 , f be one of the transformations and 
f (z) = (s�, c�, d�, n�, k�, p�, 1).

      ∙      if p = 0 , then either p� ≤ −1 and f (z) ∈ I3 or z satis-
fies (s ≥ 1 ∨ c ≥ 1 ∨ n ≤ −1 ∨ k ≤ −1) and then f(z) satisfies 
(s� ≥ 1 ∨ c� ≥ 1 ∨ n� ≤ −1 ∨ k� ≤ −1) , thus f (z) ∈ I3.
   ∙   if p = 1 , then |s| − c − d ≥ 1, c ≥ 0 and d ≥ 0 . There are three possibilities (1) 
p� = 2 and thus f (z) ∈ I3 , (2) f = �������� then p� = 0 and either s′ ≥ 1 or c′ ≥ 1 
and thus f (z) ∈ I3 or (3) f = ��������i for i ≤ m . In the latter case without loss of 
generality, assume that d′ ⩾ c′ . We have that 

 since ���ic ≥ c′ , ���id∕3 ≥ d� (as mi ≥ 4 ) and ���i ⩾ 4 . This shows that f (z) ∈ I3.
Therefore I  is inductive and thus a ℕ-semi-linear invariant of the system. This concludes 
the reduction. 	�  ◻

5.3 � Nondeterministic one‑dimensional affine updates

The previous section shows that point reachability for nondeterministic LDS is undecid-
able once there are sufficiently many dimensions, motivating an analysis at lower dimen-
sions. The MU Puzzle requires a single dimension with affine updates (or equivalently two 
dimensions in matrix representation, with the coordinate along the second dimension kept 
constant). We consider this one-dimensional affine-update case, and therefore, rather than 
taking matrices as input, we directly work with affine functions of the form fi(x) = aix + bi.

Theorem  22  Given x(0), y ∈ ℤ , along with a finite set of functions 
{
f1,… , fk

}
 where 

fi(x) = aix + bi , ai, bi ∈ ℤ for 1 ≤ i ≤ k , it is decidable whether y is reachable from x(0) . 
Moreover, when y is unreachable, an ℕ-semi-linear separating inductive invariant can be 
algorithmically computed in pseudo-polynomial time.

We note that decidability of reachability is already known [14, 15]. We refine this result 
by exhibiting an inductive invariant which can be used to certify non-reachability. In fact 
our procedure will produce an ℕ-semi-linear set which can be used to decide reachability, 
and which, in instances of non-reachability, will be a separating inductive invariant. We 
have implemented this algorithm into our tool porous, enabling us to efficiently tackle the 
MU Puzzle as well as its generalisation to arbitrary collections of one-dimensional affine 
functions. We report on our experiments in Sect. 7.

We build a case distinction depending on the type of functions that appear:

Definition 23  Consider an affine function f (x) = ax + b . We say:

||s�|| = |���is + c�[ui] − d�[vi]| by applying ��������i

⩾ ���i|s| − d� max([ui], [vi])

⩾ ���i(c + d + 1) − d� max([ui], [vi]) by assumption on |s|
⩾ ���i(c + d + 1) −

2

3
d���i since [ui] ∈ [0,

2ni

3
]

= ���i(c + d∕3) +���i

⩾ c� + d� + 1
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•	 f is redundant if f (x) = b , (including possibly b = 0 ), or if f (x) = x.
•	 f is a counter if f (x) = x + b , b ≠ 0 . Two counters f (x) = x + b and g(x) = x + c are 

opposing if bc < 0 . Otherwise they are called codirectional.
•	 f is growing if f (x) = ax + b and |a| ≥ 2 . We say a growing function is inverting if 

a ≤ −2.
•	 f is pure inverting if f (x) = −x + b (including possibly b = 0).

5.3.1 � Simplifying assumptions

Lemma 24  We can reduce the computation of an invariant for a system having redundant 
functions to finitely many invariant computations for systems having no such functions.

Proof  Clearly the identity function has no impact on the reachability set, and so can be 
removed outright. For any other redundant function, its impact on the reachability set does 
not depend on when the function is used, and we may therefore assume that it was used in 
the first step, or equivalently, using an alternative starting point. Hence the invariant-com-
putation problem can be reduced to finitely many instances of the problem over different 
starting points, with redundant functions removed. Finally, taking the union of the resulting 
invariants yields an invariant for the original system. 	�  ◻

Lemma 25  Without loss of generality, x(0) ≥ 0.

Proof  Suppose x(0) < 0 , we construct a new system, where each transition f (x) = ax + b 
is replaced by f (x) = ax − b . Then x(0) reaches y in the original system if and only if 
−x(0) reaches −y in the new system. To see this, observe that if f (x) = ax + b , then 
f (−x) = −ax − b = −f (x) . 	�  ◻

Lemma 26  Suppose there are at least two distinct pure inverting functions (and possibly 
other types of functions). Then without loss of generality there are two opposing counters.

Proof  Consider f (x) = −x + b , and g(x) = −x + c . Then 
f (g(x)) = −(−x + c) + b = x + b − c and g(f (x)) = −(−x + b) + c = x + c − b . Since 
b − c = −(c − b) and b ≠ c (as f ≠ g ) these two functions are opposing. 	�  ◻

5.3.2 � Two opposing counters

Let us first observe that when there are two opposing counters, we can essentially move in 
either direction by some fixed amount. This will entail that only ℤ-(semi)-linear invariants 
need be produced, rather than proper ℕ-(semi)-linear invariants.

Lemma 27  Suppose there are two opposing counters, f (x) = x + b , and g(x) = x − c . Then 
for any reachable x we have (x + dℤ) ⊆ I for d = gcd(b, c).
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Lemma 28  For �, k coprime, the sequence an = (n� mod k) for n ∈ ℕ cycles through every 
residue class {0,… , k − 1}.

Proof  Any path longer than k visits some class twice, and if the shortest cycle is k, then it 
visits every class.

Suppose there is a cycle of length less than k; then n� = c + mk and (n + i)� = c + m�k 
and hence i� = (m� − m)k , with i < k . Since � is an integer i divides (m� − m)k then i = pr 
for p, r ∈ ℕ such that m

�−m

p
 is integer and k

r
 is integer. Observe that since r ≤ i < k we have 

k

r
> 1 . But this implies that k

r
 divides k and � , contradicting gcd(k,�) = 1 . 	�  ◻

Proof of Lemma 27  Let b = kd, c = �d , where k,� are co-prime.
We show there exists m, n ≥ 0 such that mb − cn = d . We have 

mb − cn = d ⟺ mkd − n�d = d ⟺ mk − n� = 1 . Then choose m =
1+n�

k
 . By Lemma 

28 n can be chosen such that n� ≡ k mod d for any k ∈ {0,… , d − 1} . Then n can be cho-
sen such that 1 + n� ≡ 0 mod d and so k divides 1 + n� for some n.

Hence for x ∈ O , the set (x + dℕ) is included in the reachability set: we obtain x + jd , 
j > 0 by gnj◦f mj(x) , hence x + jd ∈ O and thus x + dℕ ⊆ I . Similarly, we can find 
m′, n′ ≥ 0 such that m�b − cn� = −d and thus (x + dℤ) is also within the reachability set. 	
� ◻

Therefore, starting with 
(
x(0) + dℤ

)
⊆ I we can ‘saturate’ the invariant under construc-

tion using the following lemma:

Lemma 29  Let h(x) = x + d be chosen as a reference counter amongst the counters. If 
(x + dℤ) ⊆ I , then (f (x) + dℤ) ⊆ I for every function f.

Proof of Lemma 29  Consider the function f (x) = ax + b . If x + dk ∈ I for k ∈ ℤ , then 
f (x + dk) = a(x + dk) + b = ax + adk + b = f (x) + adk ∈ I.

Now applying the counter h(x) = x + d an arbitrary number m of times, we have 
hm◦f (x + dk) = f (x) + adk + dm ∈ I for k ∈ ℤ and m ∈ ℕ . Thus f (x) + dn ∈ I for any 
choice of n ∈ ℤ by suitable choice of k (possibly negative) and m (non-negative). 	�  ◻

Without loss of generality if (x + dℤ) is in the invariant, then 0 ≤ x < d . We then repeat-
edly use Lemma 29 to find the required elements of the invariant. Since there are only 
finitely many residue classes (modulo d), every reachable residue class 

(
c1,… , cn

)
 can be 

found by saturation (in at most d steps), yielding invariant 
(
c1 + dℤ

)
∪⋯ ∪

(
cn + dℤ

)
.

Thanks to Lemma 26, in all remaining cases there is without loss of generality at most 
one pure inverter.

5.3.3 � Only pure inverters

If there is exactly one pure inverter f (x) = −x + b (and no other functions of any type), 
then f (x(0)) = −x(0) + b and f (−x(0) + b) = x(0) − b + b = x(0) , thus the reachability set is 
{x(0),−x(0) + b} , which is itself a finite inductive invariant.
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5.3.4 � No counters

If we are not in the preceding case and there are no counters, then there must be growing 
functions and by Lemma 26, without loss of generality at most one pure inverter. We show 
that all growing functions increase the absolute value outside of some bounded region.

Lemma 30  For every M ≥ 0 and every growing function f (x) = ax + b , |a| ≥ 2 , there 
exists CM

f
≥ 0 such that if |x| ≥ CM

f
 then |f (x)| ≥ |x| +M.

Proof  By the triangle inequality we have: |f (x)| = |ax + b| ≥ |a||x| − |b| . Thus 
|x| ≥ |b|+|M|

|a|−1 ⟹ |a||x| − |b| ≥ |x| + |M| ⟹ |f (x)| ≥ |x| +M . 	�  ◻

This is the only situation in which the invariant is not exactly the reachability set, and 
requires us to take an overapproximation.

Let C = max
{
C0
f1
,… ,C0

fk
, |y| + 1

}
 , for f1,… , fk growing functions and y the target 

point. If there are no pure inverters then (−C − ℕ) ∪ (C + ℕ) is inductive. However, as it 
may not yet contain x(0) , it does not yet contain the whole of O . From this we can build the 
inductive invariant (−C − ℕ) ∪ (C + ℕ) ∪ (O ∩ (−C,C)) . The set O ∩ (−C,C) is finite and 
can be elicited by exhaustive search, noting that once an element of the orbit reaches abso-
lute value at least C, the remainder of the corresponding trajectory remains forever outside 
of (−C,C).

If there is one pure inverter g(x) = −x + d then observe that −C is mapped to C + d and 
C + d is mapped to −C . Thus intuitively we want to use the interval (−C,C + d) . However 
two problems may occur: (a) since d could be less than 0 then C + d may no longer be 
growing (under the application of the growing functions), and (b) an inverting growing 
function only ensures that −C is mapped to a value greater than or equal to C, rather than 
C + d . Hence, we choose C′ to ensure that C� ± d is still growing by at least |d| (under the 
application of our growing functions). Let C� = max

{
C
|d|
f1
,… ,C

|d|
fk
, |y| + 1

}
+ |d| . Then 

the invariant is 
(
−C� − ℕ

)
∪
(
C� + d + ℕ

)
∪ (O ∩ (−C�,C� + d)).

5.3.5 � Codirectional counters

The only remaining possibility (if there do not exist two opposing counters, and not all 
functions are growing or pure inverters), is that there are counter functions, but they are all 
codirectional. There may also be a single pure inverter, and any number of growing func-
tions. Throughout this section we assume the growing functions are growing outside of the 
interval [−B,C].

We pick a counter h(x) = x + d amongst the codirectional counters to be the refer-
ence counter; the choice is arbitrary, but it is convenient to pick a counter with minimal 
|d| . For each residue r modulo d, we will have either a set (r + dℤ) , a set 

(
xr + dℕ

)
 for 

xr ≡ r mod d , or ∅ . We will define a saturation procedure on these sets. To start, clearly 
we have 

(
x(0) + dℕ

)
⊆ I.

As in the case of two opposing counters, by Lemma 29, ℤ-linear sets will induce new 
ℤ-linear sets. We now observe that using inverters ℕ-linear sets may induce ℤ-linear sets:
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Lemma 31  If there is an inverter g(x) = −ax + b , with a > 0, b ∈ ℤ , and we have 
(x + dℕ) ⊆ I then (g(x) + dℤ) ⊆ I.

Proof  Let r = g(x) + dm for m ∈ ℤ . We show r ∈ I . Consider x + dn for n ∈ ℕ , then 
g(x + dn) = −a(x + dn) + b = −ax + b − adn = g(x) − adn . Hence g(x) − adn + dk , 
n, k ∈ ℕ , is reachable by applying k times the function h(x). Then we have for any m ∈ ℤ 
there exists k, n ∈ ℕ such that k − na = m , so that r is indeed reachable. 	�  ◻

Lemma 32  Let f be a non-inverting function and suppose h(x) = x + d is a counter. If the ℕ
-linear set {xr + dℕ} is in the invariant, then the set {f (xr) + dℕ} is in the invariant.

There are finitely many ℤ-linear sets, thus a saturation procedure applied to these sets 
will terminate. However, repeated application of Lemma 32 will not necessarily saturate. If 
the application of f to xr ‘moves’ in the same direction as the counters then saturation will 
occur. However, when the function f moves in the opposite direction, we may generate infi-
nitely many such classes. Note that all the counters are assumed to move in same direction 
as the reference counter (as we do not have opposing counters). However, the direction of a 
growing function depends on the sign of the input.

Example 33  Consider the reference counter h(x) = x + 4 , with initial point 5. 
This yields an initial set (5 + 4ℕ) ⊆ O , where 5 is the initial point and 4ℕ is 
derived from the counter increment. Now when applying x ↦ 2x + 6 to (5 + 4ℕ) 
we obtain (10 + 6 + 8ℕ + 4ℕ) = (16 + 4ℕ) , then (38 + 4ℕ) , and then (82 + 4ℕ) . 
However (82 + 4ℕ) ⊆ (38 + 4ℕ) and we can therefore stop with the invariant 
(5 + 4ℕ) ∪ (16 + 4ℕ) ∪ (38 + 4ℕ).

However, if the initial sequence is not moving in the direction of the reference coun-
ter, this saturation does not occur. Consider (5 + 4ℕ) with the function x ↦ 2x − 6 . Then 
(5 + 4ℕ) maps to (10 − 6 + 8ℕ + 4ℕ) = (4 + 4ℕ) , which maps to (2 + 4ℕ) , (−2 + 4ℕ) , 
(−10 + 4ℕ) , (−26 + 4ℕ) , and so on. However −2 and −10 are both 2 modulo 4 (and so is 
−26 as well). This means in the negative direction we can obtain arbitrarily large negative 
values congruent to 2 modulo 4 and then use the reference counter h(x) = x + 4 to obtain 
any value of (2 + 4ℤ).

Finally, we will use the following lemma to induce a ℤ-linear set when an infinite 
sequence of ℕ-linear sets occur. Since inverting induces ℤ-linear sets, in the following 
lemma we can assume all functions are non-inverting.

Lemma 34  Assume the reference counter has the form h(x) = x + d . Suppose all growing 
functions are growing outside of [−B,C].

If d ≥ 0 and there exist xr < −B and a sequence of functions h1, h2,… , hm ∈ {f1,… , fk} 
such that

then for all M ≤ xr , there exist h�
1
, h�

2
,… , h�

m� such that

hj◦… ◦h1(xr) < xr ≤ −B for all j ≤ m and hm◦… ◦h1(xr) ≡ xr mod d,

(2)xM = h�
m�◦… ◦h�

1
(xr) ≤ M and xM ≡ xr mod d.
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Furthermore, if xr ∈ I , then 
(
xr + dℤ

)
⊆ I.

Symmetrically, if d < 0 and there exist xr > C and h1, h2,… , hm ∈ {f1,… , fk} such that

then for all M ≥ xr , there exist h�
1
, h�

2
,… , h�

m�

Furthermore, if xr ∈ I , then 
(
xr + dℤ

)
⊆ I.

Proof  We show that (hm◦… ◦h1)
n satisfies Eq. (2) for some n. Firstly, observe that the re-

application of hm◦… ◦h1 results in the same residue class by modulo arithmetic. Now to 
show that xM ≤ M , consider Δj(xr) =

|||hj◦… ◦h1(xr) − hj−1◦… ◦h1(xr)
|||.

•	 If hj is a counter, Δj is constant, regardless of xr.
•	 If hj is a growing function outside of [−B,C] , then Δj(x

�
r
) ≥ Δj(xr) if x�r < xr < −B.

Thus, by induction, since hj◦… ◦h1(xr) < xr , we have

Since xr induces x′
r
≤ M for any M, repeated application of h induce 

(
x�
r
+ dℕ

)
 , for arbitrar-

ily small x′
r
≡ xr . Hence if xr ∈ I then 

(
xr + dℤ

)
⊆ I.

The second part, when d < 0 , holds by symmetry: inequalities are reversed and C is 
used in place of −B . 	�  ◻

We now show how to detect whether such sequences exist:

Lemma 35  Let f1,… , f� be non-inverting growing functions and g1,… , g�� be codirec-
tional counters with � + �� = k , and let h(x) = x + d be the reference counter amongst the 
gi . Given xr ∉ [−B,C] it can be decided in time O(d(d + k)) whether there exists a sequence 
of functions h1, h2,… , hm such that x�

r
≡ xr mod d , where x�

r
= hm◦… ◦h1(xr) , and

•	 hj◦… ◦h1(xr) < xr ≤ −B for all j ∈ {1,… , n} if d > 0 , or
•	 hj◦… ◦h1(xr) > xr ≥ C for all j ∈ {1,… , n} if d < 0.

Proof  First, we restrict the form of the sequence we must search for. Suppose there 
exists a sequence in which there exists i < j such that hi is growing and hj is a coun-
ter, we first show that there exists another sequence satisfying the property without this 
occurring. That is there is a sequence h1,… , hm� where h1,… , h� ∈ {f1,… , f�} and 
h�+1,… , hm ∈ {g1,… , g�� } for some �.

To see this, consider a growing function f (x) = ax + b 
applied on top of a counter g(x) = x + c ; we have 
f (g(x)) = a(x + c) + b = ax + ac + b > g(a mod d)(f (x)) = ax + (a mod d)c + b , as 
(a mod d) ≤ d . Observe that f (g(x)) ≡ g(a mod d)(f (x)) mod d.

As a consequence, each of the counters need only be applied at the end and each at most 
d times as this is sufficient to access all attainable residue classes.

hj◦… ◦h1(xr) > xr ≥ C for all j ≤ m and hm◦… ◦h1(xr) ≡ xr mod d,

xM = h�
m�◦… ◦h�

1
(xr) ≥ M and xM ≡ xr mod d.

hj◦… ◦h1◦(hm◦… ◦h1)
n(xr) < hj◦… ◦h1◦(hm◦… ◦h1)

n−1(xr).
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We now consider the graph on nodes {|0|,… , |d − 1|, |0|�,… , |d − 1|�} , such that:

•	 i → j if f (i) ≡ j mod d for some non-inverting growing function f.
•	 i → j′ if i + a1b1 +⋯ + a��b�� ≡ j mod d , for some ai ∈ {0,… , d − 1} , where the 

counting functions are gi(x) = x + bi for 1 ≤ i ≤ �′.
•	 i → i′ for all i ∈ {0,… , d − 1}.

In this graph we ask if there exists an infinite family of sequences from i to i′ , such that 
(x + dℕ) ⊆ I with x ≤ −B and i ≡ x mod d . That is a sequence from i to i′ in which a cycle 
is accessible. Note that there are only cycles over nodes in {0,… , d − 1} , not in the primed 
variants. Let i

∗
�����→ j denote that there exists a path from i to j. This can be decided in poly-

nomial time, using, for example depth-first search; we ask for every j whether i
∗
�����→ j , j

∗
�����→ j 

and j
∗
�����→ i�.

The graph is of size O(d2) and can be built in O(d(d + k)) . Indeed, the most costly oper-
ation in constructing this graph is the second test. Moreover, given a state i1 , one can com-
pute an array of size d representing the set of j′ such that i1 → j′ following this second test 
in O(dk). To build this set for another state i2 , one only needs to shift the values by i2 − i1 , 
which can be done in O(d). We thus need O(dk) to build the first array and O(d2) to build 
all the others.

As the graph is of size O(d2) , precomputing each j such that i
∗
�����→ j for each i simultane-

ously takes linear time in the size of the graph O(d2) . The same is true for precomputing j 
such that j

∗
�����→ i� for i ≡ xr mod d . After precomputation, we can answer for every j in con-

stant time whether i
∗
�����→ j, j

∗
�����→ j, j

∗
�����→ i� and there exists (xr + dℤ) ⊆ I with xr ≡ i mod d and 

xr ∉ [−C,C + d] . The total time spent is dominated by the graph construction, thus giving 
an algorithm in O(d(d + k)) . 	�  ◻

We now summarise the procedure in the case that all counters have the same direction, 
and that h(x) = x + d is a chosen reference counter.

The procedure continues by applying Lemma 29, Lemma 31, and Lemma 32 using the 
available functions. We continue until either: 

1.	 no set is updated, or
2.	 the only updates induced are ℕ-linear sets of the form (x + dℕ) with x ≤ −B (or x > C 

if d < 0).

In the first case, the invariant is inductive and nothing further is required. In the second 
case, we must decide if we have a sequence of the type described in Lemma 34, using 
Lemma 35 for each most general xr ∉ [−B,C] such that (xr + dℕ) ⊆ I.

Whenever such a sequence exists, then a new ℤ-linear set is induced, and that can take 
place at most d times. Further applications of Lemma 29 must then occur on the new ℤ-lin-
ear sets until saturation amongst the ℤ-linear sets occurs.

Once no such sequence exists (possibly immediately), then we continue inducing new 
ℕ-linear sets using Lemma 32. This is now guaranteed to terminate, as otherwise there 
would exist a sequence of the type described in Lemma 34.
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5.3.6 � Reachability

The above procedure is sufficient to decide reachability. In all cases apart from those in 
which there are no counters, the invariants produced coincide precisely with the reachabil-
ity sets. A reachability query therefore reduces to asking whether the target belongs to the 
invariant.

In the remaining cases, the invariant obtained is parametrised by the target via the bound 
C′ . The target lies within the region (−C�,C� + d) , within which we can compute all reach-
able points. Thus once again, the target is reachable precisely if it belongs to the invariant. 
However, for a new target of larger absolute value, a different invariant would need to be 
built.

5.3.7 � Complexity

Finally we show that the invariant of Theorem 22 can be computed in pseudo-polynomial 
time. More precisely, we prove the following lemma:

Lemma 36  Let k be the number of functions, and let � bound the largest absolute value 
occurring in the input. Then the invariant can be computed in time O(�3 ⋅ k2) , that is poly-
nomial in � and k.

Proof  Recall that the input comprises the starting point x, target point y and functions 
fi(x) = aix + bi for i ∈ {1,… , k} . We have |x| ≤ � , |y| ≤ � , ||ai|| ≤ � and ||bi|| ≤ � for all 
i ∈ {1,… , k}.

In the no-counter case, by Lemma 30, we compute the interval [−C,C + d] , where 
C ≥ |y| + 1 and C ≥

|b|+|M|
|a|−1  , for |M| ≤ |bi| for some i ∈ {1,… , k} . We have C ≤ 2� and 

d ≤ � , therefore the size of the interval [−C,C + d] is at most 5� . It remains to compute the 
reachability set in [−C,C + d] , which is found by breadth-first search over [−C,C + d] with 
k outgoing edges for each element, thus taking time O(� ⋅ k).

In the case of two opposing counters, we have that all components of the invariant are 
of the form x + dℤ for d ≤ 2� . Thus there are at most 2� rounds, each round taking time at 
most O(� ⋅ k) . The procedure runs in time at most O(�2 ⋅ k).

Finally, we consider the case of codirectional counters. There are three main phases:

•	 Firstly we saturate using Lemma 29, Lemma 31, and Lemma 32; here counters take 
the form x + dℤ or x + dℕ , where d ≤ � and x ∈ [−B,C] for B ≤ 2�,C ≤ 3� . Observe 
that there are at most 5� sets of the form (x + dℕ) and � sets of the form (x + dℤ) . Thus 
there are at most 6� sets that can be considered in this process. Hence, using breadth-
first search, this phase takes time O(� ⋅ k).

•	 Secondly, checking for a sequence of the form in Lemma 34 requires at most � applica-
tions of Lemma 35, each taking O(�(� + k)) time. The newly found ℤ-linear sets are 
saturated using Lemma 29, taking time at most O(� ⋅ k).

•	 Thirdly, the final saturation of ℕ-linear sets can be done in time O(�2 ⋅ k2) . Specifically, 
we proceed in rounds: in each round we consider each set of the form (x + dℕ) , and add 
the sets (f (x) + dℕ) whenever this is more general than a set already in I. In each round, 
up to d ⋅ k new ℕ-linear sets are considered; however, at the end of the round, there are 
only d most general sets to expand into the next round. In Lemma 34 we note that the 
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length of any cycle-free path outside of [−B,C] is bounded by at most d(k + 1) , thus at 
most d(k + 1) rounds of exploration are required.

Summing the time spent in the three phases, we require time O(�2(� + k) + � ⋅ k + �2 ⋅ k2) , 
which is bounded by O(�3 ⋅ k2) . 	�  ◻

Lemma 36 essentially asserts that the procedure is in polynomial time assuming that 
descriptions of the starting point, target point and the functions are given in unary. With-
out the unary assumption, the invariant could have exponential size, and hence require at 
least exponential time to compute. That is because the invariant we construct could include 
every value in an interval [−C,C + d] , where C is of size polynomial in the largest absolute 
value.

As shown in [15], the reachability problem is at least NP-hard in binary, because one 
can encode the integer Knapsack problem (which allows an object to be picked multiple 
times rather at most once). Moreover the Knapsack problem is efficiently solvable in 
pseudo-polynomial time via dynamic programming; that is, polynomial time assuming 
the input is in unary, matching the complexity of our procedure.

6 � Porous targets

So far we have only considered invariants for point targets. We now study the reachabil-
ity question for porous (or ‘lattice-like’) targets. First, we consider targets that are full 
dimensional, that is, targets that span the whole space. Here we show decidability of the 
reachability problem and synthesise suitable invariants.

Lower-dimensional targets are problematic. For nondeterministic systems reachabil-
ity is undecidable for non-full-dimensional targets (in particular point targets) [7]. How-
ever, even for deterministic systems, when ℤ-linear targets are not full-dimensional the 
reachability problem becomes as hard as the Skolem problem (see, e.g. [30]). Denote by 
ei the i-th standard basis vector where ei ∈ {0, 1}d with (ei)i = 1 and (ei)j = 0 for j ≠ i . 
Then the Skolem problem corresponds to having {
(0, x2,… , xd) ∣ x2,… , xd ∈ ℤ

}
=
(
0⃗ + e2ℤ +⋯ + edℤ

)
 as the target set. Similarly full-

dimensional ℕ-linear targets encode the Positivity problem, that is, reaching (
−e1ℕ + e2ℤ +⋯ + edℤ

)
.

However, for low-dimensional hyperplanes the Skolem problem is decidable, lifting 
this barrier. Thus, in cases where the Skolem problem is decidable, we show decidabil-
ity of hitting an ℕ-semi-linear set in Sect. 6.2.

6.1 � ℤ‑linear targets

First, let us consider targets specified as full-dimensional ℤ-linear sets.

Theorem  37  It is decidable whether a given LDS (x(0),
{
M1,… ,Mk

}
) reaches a full-

dimensional ℤ-linear target Y =
(
x + p1ℤ +⋯ + pdℤ

)
 , with x, pi ∈ ℤd . Furthermore, for 

unreachable instances, a ℤ-semi-linear inductive invariant can be provided.
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Towards proving Theorem 37, we first show that full-dimensional linear sets can be 
expressed as ‘square’ hybrid-linear sets. Hybrid-linear sets are semi-linear sets in which 
all the components share the same period vectors, and thus differ only in starting posi-
tion (whereas semi-linear sets allow each component to have distinct period vectors). 
Given a set of base vectors B and a lattice L = p1ℤ +⋯ + pdℤ , we write B + L to denote 
the semi-linear set 

⋃
b∈B

�
b + p1ℤ +⋯ + pdℤ

�
 . By square, we mean that all period vec-

tors are the same multiple of standard basis vectors (recall from page 31 that these are 
denoted e1,… , ed).

Lemma 38  Let Y =
(
x + p1ℤ +⋯ + pdℤ

)
 be a full-dimensional ℤ-linear set. Then there 

exist m ∈ ℕ and a finite set B ⊆ [0,m − 1]d such that Y = B +
(
me1ℤ +⋯ + medℤ

)
.

Proof  Let p1,… , pd span a d-dimensional vector space and write P =

⎛⎜⎜⎝

p1
⋮

pd

⎞⎟⎟⎠
 for the matrix 

with rows p1,… , pd . Since P has full row rank it is invertible, hence there exists a rational 
matrix P−1 such that ei = p1P

−1
i,1

+⋯ + pdP
−1
i,d

 . In particular let mi be such that P−1
i,j
mi is 

integral for all j. Then there is an integral combination of p1,… , pd such that miei is an 
admissible direction in Y.

Let m = lcm
{
m1,… ,md

}
 . Then mei is an admissible direction in Y. Hence by Proposi-

tion 11, Y is equivalent to 
(
x + p1ℤ +⋯ + pdℤ + me1ℤ +⋯ + medℤ

)
 . By the presence of 

me1ℤ +⋯ + medℤ we have that x ∈ Y  if and only x� ∈ Y  where x�
i
= (xi mod m).

We conclude that Y can be rewritten as B +
(
me1ℤ +⋯ + medℤ

)
 , where 

B = [0,m − 1]d ∩ Y  . 	�  ◻

We now prove Theorem 37.

Proof of Theorem  37  Choose m and B as in Lemma 38, so that Y is of the 
form 

⋃
b∈B

�
b + me1ℤ +⋯ + medℤ

�
 . We build an invariant I of the form ⋃

b∈B�

�
b + me1ℤ +⋯ + medℤ

�
 for some B� ⊆ [0,m − 1]d.

We initialise the set I0 =
(
x + me1ℤ +⋯ + medℤ

)
 , where x ∈ [0,m − 1]d is such that 

xj = (x
(0)

j
mod m) . We then build the set I1 by adding to I0 the sets 

(
y + me1ℤ +⋯ + medℤ

)
 

where for each choice of Mi , y ∈ [0,m − 1]d is formed by yj = ((Mix)j mod m) for some 
x ∈ I0 . We iterate this construction until it stabilises in an inductive invariant I. Termi-
nation follows from the finiteness of [0,m − 1]d (noting in particular that if termination 
occurs with B� = [0,m − 1]d , then I = ℤd which is indeed an inductive invariant).

If there exists y ∈ B ∩ I then we return Reachable. This is because the same sequence 
of matrices applied to x(0) to produce y ∈ I would, thanks to the modulo step, end up inside 
the set 

(
y + me1ℤ +⋯ + medℤ

)
 , which is a part of the target.

Otherwise, we return Unreachable and I as invariant. By construction, I is indeed an 
inductive invariant disjoint from the target set. 	� ◻

Remark 39  By the same argument, Theorem  37 extends to a restricted class of ℤ-semi-
linear targets: the finite union of full-dimensional ℤ-linear sets.
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6.2 � Deterministic LDS and low dimension ℕ‑semi‑linear targets

While reachability of a point is well known to be decidable, extending this result to higher 
dimensional targets is difficult. In particular, reaching a hyperplane is equivalent to the 
Skolem problem, a longstanding open question. Some results have however been achieved 
for low-dimensional systems (see e.g. [31–33]).

In this subsection, we rely on those results to establish decidability of the reachability 
problem for low-dimensional ℕ-semi-linear targets.

Theorem 40  Given a deterministic LDS together with an ℕ-semi-linear target, the reach-
ability problem is decidable if either the target has dimension at most 2 or both the target 
and ambient space have dimension 3.

Proof  This result is achieved through a succession of refinements of the target we consider: 
(1) we first identify the subspace in which the target lies and detect when this subspace is 
hit by the LDS, (2) then, when restricted to the times where the subspace of the target is 
hit, we detect when the modulo constraints of the target are hit as well, (3) finally, we only 
have to detect when the ‘direction’ provided by the period vectors is hit as well.

Given an LDS (x(0),M) and an ℕ-semi-linear target Y which is either of dimension 2 or 
of dimension 3 if the ambient dimension is 3, note first that Y can be decomposed into sev-
eral ℕ-linear targets and reachability of Y is directly deduced from the reachability of each 
new target. As such, we assume the target Y =

�
y +

∑
i piℕ

�
 is ℕ-linear in the following.

We denote by RY =
�
y +

∑
i piℝ

�
 the ℝ-linear extension of Y. The subspace RY is 

either of dimension 2 or of dimension 3 if the ambient dimension is 3 as well by defini-
tion of Y. By the Skolem-Mahler-Lech theorem [34], the set SY = {n ∈ ℕ ∣ Mnx(0) ∈ RY} 
has the form SY = F ∪ A for a finite set F and semi-linear set A =

⋃
i

�
ai + bℕ

�
 where 

ai ∈ {0,… , b − 1} for all i. Moreover, thanks to RY being of low dimension the sets F and 
A can be computed [31, 32].

We now focus on the times where RY is hit by the LDS. Letting Nmax be the greatest 
occurrence within F, one can preprocess the first Nmax steps of the system before consider-
ing the LDS (MNmax+1x(0),M) . As such, we can assume without loss of generality that F is 
empty.

Similarly, by considering the family of LDS (Mix(0),Mb) for i < b , we can assume that A 
is either empty, or it is ℕ . In the first case, Y cannot be reached by the LDS.

In the second case, we refine the target by considering the ℤ-linear extension of Y, 
ZY =

�
y +

∑
i piℤ

�
 . As the orbit of the LDS is included in RY , ZY is full-dimensional. Thus, 

reachability of ZY (and invariant synthesis in the negative case) can be obtained with The-
orem  37. Since Theorem  37 shows the behaviour is eventually periodic, one can find a 
period c ∈ ℕ such that, potentially after an initial shift d, the family of LDS (Mi+dx(0),Mc) 
for i ∈ {0,… , c − 1} , either never hit ZY (and thus never hit Y), or hits ZY in every step.

Let us assume we are in the latter case. Then reachability of Y is equivalent to reachabil-
ity of the ℝ+-linear extension of the target LY =

�
y +

∑
i piℝ+

�
 as Y = LY ∩ ZY . Moreover, 

reachability of LY can be tested through the results of [33] thanks to the low dimension of 
the target, which concludes the proof. 	�  ◻
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Remark 41  Theorem 40 is focused on reachability. It is possible to synthesise an invariant 
for negative instances, but in some cases the kind of certificates that can be generated go 
beyond the scope of this paper. In particular, the authors of [32] provide a form of certifi-
cate, but it is not a porous invariant, and can be expensive to verify.

Remark 42  Progress to extend decidability of the Skolem problem to cover broader classes 
would immediately extend the scope of Theorem 40 to the same classes. For example [35] 
recently shows that the Skolem problem is conditionally decidable for simple linear recur-
rence sequences, corresponding to linear dynamical systems whose matrix is diagonal-
isable. Thus reachability of ℤ-semi-linear targets on such system is decidable subject to 
number-theoretic conjectures discussed in [35].

7 � The POROUS tool

Our invariant-synthesis tool porous10 computes ℕ-semi-linear invariants for point and ℤ
-linear targets on systems defined by one-dimensional affine functions. porous includes 
implementations of the procedures of Theorem 37 restricted to one-dimensional affine sys-
tems and Theorem 22. The tool is built in Python and can be used either by command-line 
file input, a web interface, or by directly invoking the Python packages.

porous takes as input an instance (a starting point, a target, and a collection of func-
tions) and returns the generated invariant. Additionally it provides a proof that this set is 
indeed an inductive invariant: the invariant is a union of ℕ-linear sets, so for each linear 
set and each function, porous illustrates the application of that function to the linear set 
and shows for which other linear set in the invariant this is a subset. Using this invariant, 
porous can decide reachability; if the specific target is reachable the invariant is not in itself 
a proof of reachability (since the invariant will often be an overapproximation of the global 
reachability set).

Rather, equipped with the guarantee of reachability, porous searches for a direct proof 
of reachability: a sequence of functions from start to target (a process which would not oth-
erwise be guaranteed to terminate).

Example 43  The tool’s output, when, applied to the MU Puzzle is the invariant 
(1 + 3ℤ) ∪ (2 + 3ℤ) of Example 1:

10  Tool: porous.​mpi-​sws.​org. Code: github.​com/​david​jpurs​er/​porous-​tool. Artifact: [36].

http://porous.mpi-sws.org
https://github.com/davidjpurser/porous-tool
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-----------------

Interpretation of input

start: 1 target: {0} functions : [f(x) = x - 3, f(x) = 2x]

-----------------

invariant : (2 +3Z) (1 +3Z)

-----------------

reachability : unreachable

target {0} disjoint from invariant

-----------------

Proof of invariance

Set under gives within

�

------- ------------ ------- -- --------

(2 +3Z) f(x) = x - 3 (2 +3Z) � (2 +3Z)

(2 +3Z) f(x) = 2x (4 +6Z) � (1 +3Z)

(1 +3Z) f(x) = x - 3 (1 +3Z) � (1 +3Z)

(1 +3Z) f(x) = 2x (2 +6Z) � (2 +3Z)

-----------------

7.1 � Experimentation

porous was tested on all 27 − 1 possible combinations of the following function types, 
with a ≥ 2, b ≥ 1 : positive counters ( x ↦ x + b ), negative counters ( x ↦ x − b ), grow-
ing ( x ↦ ax ± b ), inverting and growing ( x ↦ −ax ± b ), inverters with positive coun-
ters ( x ↦ −x + b ), inverters with negative counters ( x ↦ −x − b ) and the pure inverter 
( x ↦ −x ). For each such combination a random instance was generated, with a size 
parameter to control the maximum absolute value of a and b, ranging between 8 and 
2048. The starting point was between 1 and the size parameter and the target was 
between 1 and 4 times the size parameter. Twelve instances were tested for each size 
parameter and each of the 27 − 1 combinations, with between 1 and 9 functions of each 
type (with a bias for one of each function type). Both the code and the datasets gener-
ated and analysed during the current study are available in the Zenodo repository [36].

Our analysis, summarised in Table 2, illustrates the effect of the size parameter. The 
time to produce the proof of invariant is separated from the process of building the 
invariant I, since producing the proof of invariant can become slower as |I| becomes 
larger; it requires finding Lk ∈ I such that fi(Lj) ⊆ Lk for every linear set Lj ∈ I and 
every affine function fi . In every case porous successfully built the invariant, and hence 
decided reachability very quickly (on average well below 1  s) and also produced the 
proof of invariance in around half a second on average. To demonstrate correctness in 
instances for which the target is reachable porous also attempts to produce a proof of 
reachability (a sequence of functions from start to target). Since our paper is focused 
on invariants as certificates of non-reachability, our proof-of-reachability procedure was 
implemented crudely as a simple breadth-first search without any heuristics, and hence 
a timeout of 60 s was used for this part of the experiment only.

Our experimental methodology was partially limited due to the high prevalence of reachable 
instances. A random instance will likely exhibit a large (often universal) reachability set. When 



	 Formal Methods in System Design

1 3

Ta
bl

e 
2  

R
es

ul
ts

 v
ar

yi
ng

 b
y 

si
ze

 p
ar

am
et

er
 (l

as
t r

ow
 in

cl
ud

es
 a

ll 
in

st
an

ce
s t

es
te

d)

Ti
m

es
 a

re
 g

iv
en

 in
 se

co
nd

s, 
w

ith
 th

e 
av

er
ag

e 
an

d 
m

ax
im

um
 sh

ow
n 

(e
xc

ep
t r

ea
ch

ab
ili

ty
 p

ro
of

 ti
m

e,
 w

hi
ch

 a
re

 a
ll 

ap
pr

ox
im

at
el

y 
60

 s 
du

e 
to

 in
st

an
ce

s t
ha

t t
er

m
in

at
e 

ju
st 

be
fo

re
 

th
e 

tim
eo

ut
)

Si
ze

In
va

ria
nt

 B
ui

ld
 T

im
e

U
nr

ea
ch

ab
le

 In
st

an
ce

s
In

va
ria

nt
 p

ro
of

 ti
m

e
Re

ac
ha

bl
e 

in
st

an
ce

s
Re

ac
ha

bl
e 

w
ith

 p
ro

of
s

Re
ac

ha
bi

l-
ity

 p
ro

of
 

tim
e

av
g

m
ax

av
g

m
ax

w
ith

in
 ≈
6
0
s

av
g

8
0.

00
1

0.
00

9
15

6 
(1

0.
2%

)
0.

00
4

0.
14

3
13

68
 (8

9.
8%

)
13

62
 (9

9.
6%

)
0.

00
1

16
0.

00
1

0.
00

9
19

5 
(1

2.
8%

)
0.

00
6

0.
12

1
13

29
 (8

7.
2%

)
13

13
 (9

8.
8%

)
0.

12
9

32
0.

00
1

0.
02

1
20

1 
(1

3.
2%

)
0.

01
0

0.
26

7
13

23
 (8

6.
8%

)
12

61
 (9

5.
3%

)
0.

13
0

64
0.

00
2

0.
03

8
25

0 
(1

6.
4%

)
0.

01
9

0.
98

0
12

74
 (8

3.
6%

)
11

37
 (8

9.
2%

)
0.

35
5

12
8

0.
00

6
0.

48
5

23
4 

(1
5.

4%
)

0.
04

1
1.

56
7

12
90

 (8
4.

6%
)

10
87

 (8
4.

3%
)

0.
46

4
25

6
0.

02
5

13
.4

45
24

3 
(1

5.
9%

)
0.

10
2

2.
87

4
12

81
 (8

4.
1%

)
98

9 
(7

7.
2%

)
0.

89
5

51
2

0.
07

3
2.

70
8

23
2 

(1
5.

2%
)

0.
29

9
6.

95
1

12
92

 (8
4.

8%
)

87
5 

(6
7.

7%
)

1.
27

2
10

24
0.

56
2

22
4.

72
9

23
2 

(1
5.

2%
)

0.
91

6
23

.8
36

12
92

 (8
4.

8%
)

78
9 

(6
1.

1%
)

1.
45

2
20

48
2.

84
6

21
51

.2
66

24
8 

(1
6.

3%
)

2.
93

4
10

9.
21

9
12

76
 (8

3.
7%

)
66

6 
(5

2.
2%

)
2.

12
7

A
ll

0.
39

0
21

51
.2

66
19

91
 (1

4.
5%

)
0.

48
1

10
9.

21
9

11
72

5 
(8

5.
5%

)
94

79
 (8

0.
8%

)
0.

61
2



Formal Methods in System Design	

1 3

two random counters are included, the chance that gcd(b1, b2) = 1 (whence the whole space is 
covered) is around 60.8% and higher if more counters are chosen.

Overall around 86% of instances were reachable (of which 81% produced a proof 
within 60 s). Of the 14% of unreachable instances, all produced a proof, with the invari-
ant taking around 0.4 s to build and 0.5 s to produce the proof. The 60-second timeout 
when demonstrating reachability directly is several orders of magnitudes longer than 
answering the reachability query via our invariant-building method.

The timing and analysis was conducted using a Dell PowerEdge M620 with 2x Intel 
Xeon E5-2667 v2 CPUs and 256GB RAM.

8 � Conclusions and open directions

We have introduced the notion of porous invariants, which are not necessarily convex and 
can in fact exhibit infinitely many ‘holes’, and studied these in the context of multipath (or 
branching/nondeterministic) affine loops over the integers, or equivalently nondeterministic 
integer linear dynamical systems. We have focused on reachability questions. The potential 
applicability of porous invariants to larger classes of systems (such as programs involving 
nested loops) or more complex specifications remains largely unexplored.

Our focus is on the boundary between decidability and undecidability, leaving pre-
cise complexity questions open. Indeed, the complexity of synthesising invariants 
could conceivably be quite high, except where we have highlighted polynomial-time (or 
pseudo-polynomial-time) results. On the other hand, the invariants produced should be 
easy to understand and manipulate, from both a human and machine perspective.

On a more technical level, in our setting the most general class of invariants that we 
consider are ℕ-semi-linear. There remains at present a large gap between decidability for 
one-dimensional affine functions, and undecidability for linear updates in dimension 91 
and above. It would be interesting to investigate whether decidability can be extended fur-
ther, for example to dimensions 2 and 3.
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