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Abstract
We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems.
We show decidability in the case of one parameter and Skolem-hardness with two or more parameters.

More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in
one or more real variables. Given initial and target vectors u, v ∈ Qd, the parametric point-to-point
orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix
N ∈ Rd×d, and a positive integer n ∈ N, such that Nnu = v.

We show decidability for the case in which M depends only upon a single parameter, and we
exhibit a reduction from the well-known Skolem Problem for linear recurrence sequences, suggesting
intractability in the case of two or more parameters.
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1 Introduction

The Orbit Problem for linear dynamical systems asks to decide, given a square matrix
M ∈ Qd×d and two vectors u, v ∈ Qd, whether there exists a natural number n such that
Mnu = v. The problem was shown decidable (in polynomial time) by Kannan and Lipton [26]
over ten years after Harrison first raised the question of decidability [23]. The current paper is
concerned with a generalisation of the Orbit Problem to parametric linear dynamical systems.
In general, parametric models address a major drawback in quantitative verification, namely
the unrealistic assumption that quantitative data in models are known a priori and can
be specified exactly. In applications of linear dynamical systems to automated verification,
parameters are used to model partially specified systems (e.g., a faulty component with an
unknown failure rate, or when transition probabilities are only known up to some bounded
precision) as well as to model the unknown environment of a system. Interval Markov chains
can also be considered as a type of parametric linear dynamical system.

▶ Problem 1 (Parametric Orbit Problem). Given a (d×d)-matrix M , initial and target vectors
u, v, whose entries are real algebraic functions in ℓ common real variables X = (x1, ..., xℓ),
does there exist s ∈ Rℓ, i.e., values of the parameters giving rise to a concrete matrix,
initial and target M(s) ∈ Rd×d, u(s), u(s) ∈ Rd, and a positive integer n ∈ N, such that
M(s)nu(s) = v(s)?

We prove two main results in this paper. In the case of a single parameter we show that the
Parametric Orbit Problem is decidable. On the other hand, we show that the Parametric
Orbit Problem is at least as hard as the Skolem Problem—a well-known decision problem for
linear recurrence sequences, whose decidability has remained open for many decades. Our
reduction establishes intractability in the case of two or more parameters.

Thus our main decidability result is as follows:

▶ Theorem 2. Problem 1 is decidable when there is a single parameter (i.e., ℓ = 1).

Theorem 2 concerns a reachability problem in which the parameters are existentially
quantified. It would be straightforward to adapt our methods to allow additional constraints
on the parameter, e.g., requiring that s lie in a certain specified interval. In terms of
verification, a negative answer to an instance of the above reachability problem could be seen
as establishing a form of robust safety, i.e., an ‘error state’ is not reachable regardless of the
value of the unknown parameter.

The proof of Theorem 2 follows a case distinction based on properties of the eigenvectors
of the matrix M (whose entries are functions) and the shape of the Jordan normal form J

of M . Our theorem assumes the entries of the matrix, initial and target vectors are real
algebraic functions—in particular encompassing polynomial and rational functions. Note
that even if we were to restrict the entries of M to be polynomials in the parameters, we
would still require (complex) algebraic functions in the Jordan normal form. We assume a
suitable effective representation of algebraic functions that supports evaluation at algebraic
points, computing the range and zeros of the functions, arithmetic operations, and extracting
roots of polynomials whose coefficients are algebraic functions.

The most challenging cases arise when J is diagonal. In this situation we can reformulate
the problem as follows: given algebraic functions λi(x), γi(x) for 1 ≤ i ≤ t, does there exist
(n, s) ∈ N × R such that

λn
i (s) = γi(s) for all i = 1, . . . , t? (1)
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A further key distinction in analysing the problem in Equation (1) involves the rank
of the multiplicative group generated by the functions λ1, . . . , λt. To handle the case that
the group has rank at least two, a central role is played by the results of Bombieri, Masser,
and Zannier (see [8, Theorem 2] and [9]) concerning the intersection of a curve in Cm, with
algebraic subgroups of (C∗)m of dimension at most m − 2. To apply these results we view
the problem in Equation (1) geometrically in terms of whether a curve

C = {(λ1(s), . . . , λt(s), γ1(s), . . . , γt(s)) : s ∈ R} ⊆ C2t

intersects the multiplicative group

Gn = {(α1, . . . , αt, β1, . . . , βt) ∈ (C∗)2t : αn
1 = β1 ∧ · · · ∧ αn

t = βt}

for some n ∈ N. The above-mentioned results of Bombieri, Masser, and Zannier can be used
to derive an upper bound on n such that C ∩ Gn is non-empty under certain conditions on
the set of multiplicative relations holding among λ1, . . . , λt and γ1, . . . , γt.

We provide specialised arguments for a number of cases for which the results of Bombieri,
Masser, and Zannier cannot be applied. In particular, for the case that the multiplicative
group generated by the functions λ1, . . . , λt has rank one, we provide in Section 6 a direct
elementary method to find solutions of Equation (1).

Another main case in the proof is when matrix J has a Jordan block of size at least 2,
i.e., it is not diagonal (see Section 4.2). The key instrument here is the notion of the Weil
height of an algebraic number together with bounds that relate the height of a number to
the height of its image under an algebraic function. Using these bounds we obtain an upper
bound on the n ∈ N such that the equation M(s)nu(s) = v(s) admits a solution s ∈ R.

Related work
Reachability problems in (unparametrized) linear dynamical systems have a rich history.
Answering a question by Harrison [23], Kannan and Lipton [26] showed that the point-to-point
reachability problem in linear dynamical systems is decidable in PTIME. They also noticed
that the problem becomes significantly harder if the target is a linear subspace—a problem
that still remains open, but has been solved for low-dimensional instances [14]. This was
extended to polytope targets in [15], and later further generalized to polytope initial sets
in [2]. Orbit problems have recently been studied in the setting of rounding functions [3]. In
our analysis we will make use of a version of the point-to-point reachability problem that
allows matrix entries to be algebraic numbers. In this case the eigenvalues are again algebraic,
and decidability follows by exactly the same argument as the rational case (although the
algorithm is no longer in PTIME), and is also a special case of the main result of [10].

If the parametric matrix M is the transition matrix of a parametric Markov chain (pMC)
[24, 22, 28], then our approach combines parameter synthesis with the distribution transformer
semantics. Parameter synthesis on pMCs asks whether some (or every) parameter setting
results in a Markov chain satisfying a given specification, expressed, e.g., in PCTL [25]. An
important problem in this direction is to find parameter settings with prescribed properties
[30, 12, 19], which has also been studied in the context of model repair [4, 37]. While all
previous references use the standard path-based semantics of Markov chains, the distribution
transformer semantics [29, 27, 13] studies the transition behaviour on probability distributions.
It has, to the best of our knowledge, never been considered for parametric Markov chains.
Our approach implicitly does this in that it performs parameter synthesis for a reachability
property in the distribution transformer semantics.

CONCUR 2021
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The Skolem Problem asks whether a linear recurrence sequence (un)n has a zero term
(n such that un = 0). Phrased in terms of linear dynamical systems, the Skolem Problem
asks whether a d-dimensional linear dynamical system hits a (d − 1)-dimensional hyperplane,
and decidability in this setting is known for matrices of dimension at most four [34, 39]. A
continuous version of the Skolem Problem was examined in [16]. With the longstanding
intractability of the Skolem Problem in general, it has recently been used as a reference point
for other decision problems [1, 32, 38].

Ostafe and Shparlinski [35] consider the Skolem Problem for parametric families of
simple linear recurrences. More precisely, they consider linear recurrences of the form un =
a1(x)λ1(x)n + · · · + ak(x)λn

k (x) for rational functions a1, . . . , ak, λ1, . . . , λk with coefficients
in a number field. They show that the existence of a zero of the sequence (un) can be decided
for all values of the parameter outside an exceptional set of numbers of bounded height (note
that any value of the parameter such that the sequence un has a zero is necessarily algebraic).

2 Preliminaries

We denote by R,C,Q,Q the real, complex, rational, and algebraic numbers respectively. For a
field K and a finite set X of variables, K[X] and K(X) respectively denote the ring of polyno-
mials and field of rational functions with coefficients in K. A meromorphic function1 f : U →
C where U is some open subset U ⊆ Cℓ is called algebraic, if P (x1, . . . , xℓ, f(x1, . . . , xℓ)) = 0
for some P ∈ Q[x1, . . . , xℓ, y]. We say that f is real algebraic if it is real-valued on real
inputs.

▶ Definition 3. A parametric Linear Dynamical System (pLDS) of dimension d ∈ N is a
tuple M = (X, M, u), where X is a finite set of parameters, M is the parametrized matrix
whose entries are real algebraic functions in parameters X and u is the parametric initial
distribution whose entries are also real algebraic functions in parameters X.

Given s ∈ R|X|, we denote by M(s) the matrix Rd×d obtained from M by evaluating
each function in M at s, provided that this value is well-defined. Likewise we obtain u(s).
We call (M(s), u(s)) the induced linear dynamical system (LDS). The orbit of the LDS
(M(s), u(s)) is the set of vectors obtained by repeatedly applying the matrix M(s) to u(s):
{u(s), M(s)u(s), M(s)2u(s), . . . }. The LDS (M(s), u(s)) reaches a target v(s) if v(s) is in
the orbit, i.e. there exists n ∈ N such that M(s)nu(s) = v(s).

We remark that M(s) is undefined whenever any of the entries of M is undefined. For
any fixed n, the elements of Mn are polynomials in the entries of M , and consequently, Mn

is defined on the same domain as M .
Unless we state that M is a constant function, all matrices should be seen as functions,

with parameters x1, . . . , x|X|, or simply x if there is a single parameter. The notation s is
used for a specific instantiation of x. We often omit x when referring to a function, either the
function is declared constant or when we do not need to make reference to its parameters.

2.1 Computation with algebraic numbers
Throughout this note we employ notions from (computational) algebraic geometry and
algebraic number theory. Our approach relies on transforming the matrices we consider in

1 A ratio of two holomorphic functions, which are complex-valued functions complex differentiable in
some neighbourhood of every point of the domain.
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Jordan normal form. Doing so, the coefficients of the computed matrix are not rational
anymore but algebraic. Next we recall the necessary basics and refer to [17, 40] for more
background on notions utilised throughout the text.

The algebraic numbers Q are the complex numbers which can be defined as some root of
a univariate polynomial in Q[x]. In particular, the rational numbers are algebraic numbers.
For every α ∈ Q there exists a unique monic univariate polynomial Pα ∈ Q[x] of minimum
degree for which Pα(α) = 0. We call Pα the minimal polynomial of α. An algebraic number
α is represented as a tuple (Pα, α∗, ε), where α∗ = a1 + a2i, a1, a2 ∈ Q, is an approximation
of α, and ε ∈ Q is sufficiently small such that α is the unique root of Pα within distance ε

of α∗ (such ε can be computed by the root-separation bound, due to Mignotte [33]). This
is referred to as the standard or canonical representation of an algebraic number. Given
canonical representations of two algebraic numbers α and β, one can compute canonical
representations of α + β, αβ, and α/β, all in polynomial time.

▶ Definition 4 (Weil’s absolute logarithmic height). Given an algebraic number α with
minimal polynomial pα of degree d, consider the polynomial adpα with ad ∈ N minimal
such that for adpα = adxd + · · · + a1x + a0 we have ai ∈ Z and gcd(a1, . . . , ad) = 1. Write
adpα = ad(x − α(1)) · · · (x − α(d)), where α(1) = α. Define the (Weil) height h(α) of α ̸= 0
by h(α) = 1

d

(
log ad +

∑d
i=1 log(max{|α(i)|, 1})

)
. By convention h(0) = 0.

For all α, β ∈ Q and n ∈ Z we have from [40, Chapt. 3]:
1. h(α + β) ≤ h(α) + h(β) + log 2;
2. h(αβ) ≤ h(α) + h(β);
3. h(αn) = |n| · h(α).
In addition, for α ̸= 0 we have h(α) = 0 if and only if α is a root of unity (α is a root of unity
if there exists k ∈ N, k ≥ 1, such that αk = 1). Notice that the set of algebraic numbers with
both height and degree bounded is always finite.

2.2 Univariate algebraic functions
Let K be an algebraic extension of a field L such that the characteristic polynomial of
M ∈ Ld×d splits into linear factors over K. It is well-known that we can factor M over K

as M = C−1JC for some invertible matrix C ∈ Kd×d and block diagonal Jordan matrix
J = ⟨J1, . . . , JN ⟩ ∈ Kd×d. Each block Ji associated with some eigenvalue λi, and Jn

i , have
the following Jordan block form for some k ≥ 1:

Ji =

 λ 1 0 ··· 0
0 λ 1 ··· 0
...

...
...

. . .
...

0 0 0 ··· 1
0 0 0 ··· λ

 and Jn
i =


λn nλn−1 (n

2)λn−2 ··· ( n
k−1)λn−k+1

0 λn nλn−1 ··· ( n
k−2)λn−k+2

...
...

...
. . .

...
0 0 0 ··· nλn−1

0 0 0 ··· λn

 .

Furthermore, each eigenvalue λ of M appears in at least one of the Jordan blocks.
In case L = Q, we may take K to be an algebraic number field. In particular, the

eigenvalues of a rational matrix are algebraic. However, in this paper, the entries of our
matrix are algebraic functions, and so too are the entries in Jordan normal form. We recall
some basics of algebraic geometry and univariate algebraic functions required for the analysis
in the single-parameter setting, and refer the reader to [5, 18] for further information.

Let U ⊆ C be a connected open set and f : U → C a meromorphic function. We say that
f is algebraic over Q(x) if there is a polynomial P (x, y) ∈ Q[x, y] such that P (x, f(x)) = 0
for all x ∈ U where f is defined. Notice that a univariate algebraic function has finitely many

CONCUR 2021
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zeros and poles, and furthermore, these zeros and poles (or zeros at ∞) are algebraic. Indeed,
let P (x, y) = ad(x)yd + · · · + a1(x)y + a0(x), with ai ∈ Q[x], be irreducible. Assuming that
f vanishes at s, we have that a0(s) = 0. There are only finitely many s for which this can
occur. Furthermore, the function 1/f is meromorphic (on a possibly different domain U)
and satisfies ydP (x, 1/y) = ad(x) + . . . + a1(x)yd−1 + a0(x)yd. We conclude that a pole of f

(a zero of 1/f) is a zero of ad(x).
Let P (x, y) =

∑d
i=0 ai(x)yi ∈ Q(x)[y]. We say that c ∈ C is a critical point of P if either

ad(c) = 0 or the resultant Resy(P, ∂P
∂y ) vanishes at c. If P is irreducible, then it has only

finitely many critical points since the resultant is a univariate non-zero polynomial.
Let M be a (d × d)-matrix with univariate real algebraic functions as entries. Let its

characteristic polynomial be P (x, y) := det(Iy − M) and write c1, . . . , cm ∈ C for the critical
points of the irreducible factors of P . Then there exist a connected open subset U ⊆ C such
that R \ {c1, . . . , cm} ⊆ U , and d holomorphic functions λ1, . . . , λd : U → C (not necessarily
distinct) such that the characteristic polynomial P of M factors as

P (x, y) = (y − λ1(x))(y − λ2(x)) · · · (y − λd(x))

for all points x ∈ U (see, e.g., [21, Chapt. 1, Thm. 8.9]).
Let us fix a (d × d)-matrix M and vectors u, v with univariate real algebraic entries. We

thus have M ∈ Ld×d, u, v ∈ Ld, for some finite field extension L of Q(x). Let K be fixed to
an algebraic extension of L such that the characteristic polynomial of M splits into linear
factors over the field K. Then, over the field K we have the factorisation M = C−1JC with
J in Jordan form. The eigenvalues of M , denoted λ1, . . . , λk, appear in the diagonal of J .
Let the set of exceptional points, denoted E , consist of the finite set {c1, . . . , cm}, the poles
of the entries of M, C, C−1, J, u and v, and points where det C(s) = 0 (i.e., C(s) is singular).

Consider now a non-constant univariate algebraic function λ not necessarily real. In our
analysis, we shall need to bound the height h(λ(s)) in terms of h(s), as long as s is not a
zero or a pole of λ. The following lemma shows h(λ(s)) = Θ(h(s)):

▶ Lemma 5. Let λ be a non constant algebraic function in K. Then there exist effective
constants c1, c2, c3, c4 > 0 such that for algebraic s not a zero or pole of λ we have
c1h(s) − c2 ≤ h(λ(s)) ≤ c3h(s) + c4.

2.2.1 Multiplicative relations
Let Y = {λ1, . . . , λt} ⊂ K be a set of univariate algebraic functions.

▶ Definition 6. A tuple (a1, . . . , at) ∈ Zt for which λa1
1 · · · λat

t = 1 identically, is called a
multiplicative relation. A set of multiplicative relations is called independent if it is Z-linearly
independent as a subset of Zt. The set Y is said to be multiplicatively dependent if it satisfies
a non-zero multiplicative relation. Otherwise Y is multiplicatively independent. The rank of
Y , denoted rank Y , is the size of the largest multiplicatively independent subset of Y .

A tuple (a1, . . . , at) ∈ Zt, for which there exists c ∈ Q such that λa1
1 · · · λat

t = c identically,
is called a multiplicative relation modulo constants. We say that Y is multiplicatively
dependent modulo constants if it satisfies a non-zero multiplicative relation modulo constants.
Otherwise Y is multiplicatively independent modulo constants.

In particular, if rank⟨λ1, . . . , λt⟩ = 1, then for each pair λi, λj , we have λb
i = λa

j for
some integers a, b not both zero. In the analysis that follows, we only need to distinguish
between this case and rank⟨λ1, . . . , λt⟩ ≥ 2. We will also need to find multiplicative relations
modulo constants between algebraic functions. These can be algorithmically determined and
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constructed as a consequence of the following proposition. To this end, let L and L′ ⊆ Zt

be the set of multiplicative relations and multiplicative relations modulo constants on Y ,
respectively. Both L and L′ are finitely generated as subgroups of Zt under vector addition.

▶ Proposition 7. Given a set Y = {λ1, . . . , λt} of univariate algebraic functions, one can
compute a generating set for both L and L′.

Proof. This is essentially a special case of a result from [20]. Indeed, in Sect. 3.2, they show
how to find the generators of the group L in case the λi are elements of a finitely generated
field over Q. We apply the result to the field Q(x, λ1, . . . , λt) to obtain the claim for the
set L. For L′, Case 3 of [20, Sect. 3.2] computes a generating set as an intermediate step
in the computation of a basis of L. Specifically, L and L′ are the respective kernels of the
maps φ and φ̃ in [20, Sect. 3.2]. We give an alternative proof sketch specialised to univariate
functions in the full version. ◀

3 The Multi-Parameter Orbit Problem is Skolem-hard

The Skolem Problem asks, given a order-k linear recurrence sequence (un)n, uniquely defined
by a recurrence relation un = a1un−1 + · · · + akun−k for fixed a1, . . . , ak and initial points
u1, . . . , uk, whether there exists an n such that un = 0. The problem is famously not known
to be decidable for orders at least 5, and problems which the Skolem problem reduce to are
said to be Skolem-hard. We will now reduce the Skolem at order 5 to the two-parameter
parametric orbit problem.

It suffices to only consider the instances of Skolem Problem at order 5 of the form
un = aλn

1 + aλn
1 + bλn

2 + bλn
2 + cρn = 0 with |λ1| = |λ2| ≥ |ρ| and a, b, λ1, λ2 ∈ Q,

c, ρ ∈ Q ∩ R, as the instances of the Skolem Problem at order 5 that are not of this form
are known to be decidable [36]. We may assume that c = ρ = 1 by considering the sequence
(un/cρn) if necessary. We can also rewrite un = AReλn

1 + BImλn
1 + CReλn

2 + DImλn
2 + 1 for

A, B, C, D ∈ Q ∩ R.
Let un = aλn

1 + aλn
1 + bλn

2 + bλn
2 + 1 = AReλn

1 + BImλn
1 + CReλn

2 + DImλn
2 + 1 be a

hard instance of the Skolem Problem. Let M = diag
([

Reλ1 −Imλ1
Imλ1 Reλ1

]
,

[
Reλ2 −Imλ2
Imλ2 Reλ2

])
,

that is, the Real Jordan Normal Form of diag(λ1, λ1, λ2, λ2). We set the starting point to be
u = [1 1 1 1]⊤ and show how to define parametrized target vectors v1(s, t), . . . , vk(s, t) such
that for all n, un = 0 if and only if there exist s, t ∈ R such that Mnu = vi(s, t) for some
i. The Skolem Problem at order 5 then reduces to k instances of the two-parameter orbit
problem.

The idea of our reduction is to first construct a semiagebraic set Z ⊆ R4, Z =
⋃k

i=1 Zi such
that un = 0 if and only if (Reλn

1 , Imλn
1 , Reλn

2 , Imλn
2 ) ∈ Z, and each Zi is a semialgebraic subset

of R4 that can be described using two parameters and algebraic functions in two variables.
Observing that Mns = (Reλn

1 − Imλn
1 , Imλn

1 + Reλn
1 , Reλn

2 − Imλn
2 , Imλn

2 + Reλn
2 ), we then

compute vi(s, t) from Zi as follows. Suppose Zi = {(x(s, t), y(s, t), z(s, t), u(s, t) : s, t. ∈ R}.
Then vi(s, t) = (x(s, t) − y(s, t), y(s, t) + x(s, t), u(s, t) − v(s, t), v(s, t) + u(s, t)).

To compute Z, first observe that Imλn
2 = ±

√
(Reλn

1 )2 + (Imλn
1 )2 − (Reλn

2 )2 for all n as
|λ1| = |λ2|. Motivated by this observation, let S+, S− ⊆ R3, S+ = {(x, y, z) : Ax+By +Cz +
D
√

x2 + y2 − z2 + 1 = 0} and S− = {(x, y, z) : Ax + By + Cz − D
√

x2 + y2 − z2 + 1 = 0}.
We will choose Z = {(x, y, z,

√
x2 + y2 − z2) : (x, y, z) ∈ S+} ∪ {(x, y, z, −

√
x2 + y2 − z2) :

(x, y, z) ∈ S−}. It is easy to check that the above definition of Z satisfies the requirement that
un = 0 if and only if (Reλn

1 , Imλn
1 , Reλn

2 , Imλn
2 ) ∈ Z, and it remains to show that both S+

CONCUR 2021



16:8 The Orbit Problem for Parametric Linear Dynamical Systems

and S− can be parametrized using algebraic functions in two variables and two parameters.
To this end, observe that S+ and S− are both semialgebraic subsets of R3, but are also
contained in the algebraic set S = {(x, y, z) : (Ax + By + Cz + 1)2 = D2(x2 + y2 − z2)} ⊆ R3.
Since S ≠ R3 (for example, (0, 0, 0) /∈ S), and it is algebraic, S can have dimension (see [18]
for a definition) at most 2. Hence S+, S− also have semialgebraic dimension at most 2. In
the full version, we show that a semialgebraic subsets of R3 of dimension at most two can
be written as a finite union of sets of the form {v(s, t) : s, t ∈ R}, where v is an algebraic
function. This completes the construction of Z and the description of the reduction.

4 Single Parameter Reachability: Overview of proof

In this section we show how to prove Theorem 2, that is, it is decidable, given a (d×d)-matrix
M , initial and target vectors u, v, whose entries are real algebraic functions all depending on a
single parameter, whether there exist s ∈ R giving rise to a concrete matrix, initial and target
M(s) ∈ Rd×d, u(s), v(s) ∈ Rd, and a positive integer n ∈ N, such that M(s)nu(s) = v(s).

In our case analysis, we often show that either there is a finite set of parameter values for
which the constraints could hold, or place an upper bound on the n for which the constraints
hold. The following proposition shows that the decidability of the problem in these cases is
apparent:

▶ Proposition 8.
Given a finite set S ⊂ R it is decidable if there exists (n, s) ∈ N×S s.t. M(s)nu(s) = v(s).
Given B ∈ N it is decidable if there exists n ≤ B and s ∈ R s.t. M(s)nu(s) = v(s).

Proof. The decidability of the first case is a consequence of the fact that a choice of parameter
leads to a concrete matrix, thus giving an instance of the non-parametric Orbit Problem.

In the second case, for fixed n, one can observe that the matrix Mn is itself a matrix
of real algebraic functions. Hence the equation Mnu = v can be rewritten as equations
Pi(x) = 0 for real algebraic Pi for i = 1, . . . , d. For each equation the function is either
identically zero, or vanishes at only finitely many s which can be determined, and one can
check if there is an s in the intersection of the zero sets as i varies. Repeat for each n ≤ B. ◀

As a consequence, for each n either Mnu = v holds identically (for every s), or there are
at most finitely many s such that M(s)nu(s) = v(s), and all such points are algebraic, as
they must be the roots of the algebraic functions Pi.

Our approach will be to place the problem into Jordan normal form (Section 4.1), where
we will observe that the problem can be handled if the resulting form is not diagonal
(Section 4.2). Here the relation between the Weil height of an algebraic number and its image
under an algebraic function are exploited to bound n (reducing to the second case of the
proceeding proposition).

In the diagonal case the problem can be reformulated for algebraic functions λi, γi for
i = 1 . . . , t, whether there exist (n, s) ∈ N × R \ E such that λn

i (s) = γi(s) for all i = 1, . . . , t,
where E is a finite set of exceptional points. These exceptional points can be handled
separately using the first case of the proceeding proposition.

To show decidability we will distinguish between the case where rank⟨λ1, . . . , λt⟩ is 1 and
when it is greater than 2 (recall Definition 6). As discussed in the introduction, the most
intriguing part of our development will be in the case of rank⟨λ1, . . . , λt⟩ ≥ 2, captured in
the following lemma:
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▶ Lemma 9. Let λ1, . . . , λt be algebraic functions in K and rank⟨λ1, . . . , λt⟩ ≥ 2. Given
algebraic functions γ1, . . . , γt in K, then it is decidable whether there exist (n, s) ∈ N × R \ E
such that

λi(s)n = γi(s) for all i = 1, . . . , t. (2)

The proof of this lemma is shown in Section 5. Here we apply two specialised arguments,
in the case of non-constant λ’s we exploit the results of Bombieri, Masser, and Zannier [8, 9]
to show there is a finite effective set of parameter values. In the case of constant λ’s we
reduce to an instance of Skolem’s problem that we show is decidable, effectively bounding n.

It will then remain to prove a similar lemma for the case where the rank is 1. Here we
will exploit the initial use of real algebraic functions, to ensure the presence of complex
conjugates.

▶ Lemma 10. Let λ1, . . . , λt be algebraic functions in K and rank⟨λ1, . . . , λt⟩ = 1. We
assume that, if λi is complex then λi (the complex conjugate) also appears. Given algebraic
functions γ1, . . . , γt in K, then it is decidable whether there exist (n, s) ∈ N × R \ E such that
λn

i (s) = γi(s) for all i = 1, . . . , t.

The proof of this lemma (in Section 6), reduces the problem to a single equation (t = 1),
for which we provide a specialised analysis on the behaviour of such functions that enable us
to decide the existence of a solution.

In the remainder of this section we will show how to place the problem in the form of
these two lemmas: first placing the matrix into Jordan normal form, eliminating the cases
where the Jordan form is not diagonal and provide some simplifying assumptions for the
proofs of Lemmas 9 and 10.

4.1 The parametric Jordan normal form
For every s ∈ R\E we have M(s) = C−1(s)J(s)C(s) and hence, for every n ∈ N, Mn(s)u(s) =
v(s) if and only if Jn(s)C(s)u(s) = C(s)v(s). On the other hand, deciding whether there
exists s ∈ E with Mn(s)u(s) = v(s) reduces to finitely many instances of the Kannan-Lipton
Orbit Problem, which can be decided separately. We have thus reduced the parametric
point-to-point reachability problem to the following one in case of a single parameter:

▶ Problem 11. Given a matrix J ∈ Kd×d in Jordan normal form, and vectors ũ, ṽ ∈ Kd,
decide whether there exists (n, s) ∈ N × R \ E such that Jn(s)ũ(s) = ṽ(s).

▶ Example 12. Define M =
(

x+ 1
2 0 0

1
2 −x 1−x 0

0 x 1

)
∈ Q(x)3×3. Then the characteristic polynomial of

M is det(yI − M) = (y − 1/2 − x)(y − 1)(y + x − 1). The irreducible factors have no critical

points. Now over K we may write M = C−1JC, where J =
(

1 0 0
0 1−x 0
0 0 x+ 1

2

)
, C =

( 1 1 1
1−2x
4x−1 −1 0

2x
1−4x 0 0

)
,

and C−1 =
(

0 0 1
2x −2

0 −1 1− 1
2x

1 1 1

)
. Notice that J is defined for all x, while C is not defined at 1/4,

and C−1 is not defined at 0 (notice also that C(0) is not invertible). Therefore E = {0, 1/4}.
For s ∈ R\E , all three are defined and we have M(s) = C−1(s)J(s)C(s), with J(s) in Jordan
normal form and C(s) invertible.

Notice, for 1/4 ∈ E , we have M(1/4) = R−1KR, where K =
( 1 0 0

0 3
4 1

0 0 3
4

)
and R =(

1 1 1
−1 −1 0
− 1

4 0 0

)
. Notice here that M(1/4) is non-diagonalisable (over Q), though M is (over K).
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Let u = (u1, u2, u3) ∈ Q(x)3 and v = (v1, v2, v3) ∈ Q(x)3. The problem of whether
there exists (n, s) ∈ N × R for which M(s)nu(s) = v(s) is reduced to checking the problem

at s ∈ E , and to the associated problem Jn(s)ũ(s) = ṽ(s), where ũ =
(

u1+u2+u3
1−2x
4x−1 u1−u2

2x
1−4x u1

)
,

ṽ =
(

v1+v2+v3
1−2x
4x−1 v1−v2

2x
1−4x v1

)
, and Jn =

( 1 0 0
0 (1−x)n 0
0 0 (x+ 1

2 )n

)
.

Let us establish some notation: assume J = ⟨J1, . . . , JN ⟩, corresponding to eigenvalues
λ1, . . . , λN . Assume the dimension of Jordan block Ji is di, and let ũi,1, . . . , ũi,di be the
coordinates of ũ associated with the Jordan block Ji, where index 1 corresponds to the
bottom of the block. Similarly, let ṽi,1, . . . , ṽi,di be the corresponding entries of the target.

Let us define the functions γ1, . . . , γN used in our reduction to Lemma 9 and Lemma 10.
We let γi(s) = ṽi,1(s)/ũi,1(s), for ũi,1(s) ̸= 0. If ũi,1 is not constant zero, then there are
finitely many s where ũi,1(s) = 0, each of which can be handled explicitly. If some ũi,1 is the
constant zero function, then there are two cases. Firstly, if ṽi,1 is also the constant zero then
we are in the degenerate case λn

i · 0 = 0, and the row can be ignored. Secondly if ṽi,1 is not
constant zero, then there are only a finite number of s s.t. 0 = ṽi,1(s). Each of these can be
checked explicitly.

We say that an eigenvalue λ ∈ K (possibly constant) is a generalised root of unity if there
exists an a ∈ N≥1, such that λa(x) is a real-valued and non-negative function. Let order(λ)
of a generalised root of unity λ be the minimal such a. Notice that any real function is a
generalised root of unity with order at most 2. When we say an eigenvalue is a root of unity,
then the eigenvalue is necessarily a constant function.

▶ Lemma 13. To decide Problem 11 it suffices to assume that no λi is identically zero and
that any λi which is a generalised root of unity is real and non-negative (in particular, the
only roots of unity are exactly 1).

Proof. If λi = 0, then Jdi+n
i = 0 for all n ∈ N, hence we only need to check n ≤ di and

the s such that ṽi,1(s) = · · · = ṽi,di
(s) = 0 (unless this holds identically, in which case the

constraints from this Jordan block can be removed).
Take L = lcm{order(λi) | λi is generalised root of unity}. Then the reachability problem

reduces to L problems: (JL)n(Jkũ(x)) = ṽ(x) for every k ∈ {0, . . . , L − 1}. The eigenvalue
λL

i corresponding to (Ji)L is now real and non-negative if it is a generalised root of unity. ◀

4.2 Jordan cells of dimension larger than 1
First, we show decidability of the problem when some Jordan block has dimension at least 2:

▶ Proposition 14. If there exists Ji such that di > 1, then Problem 11 is decidable.

There are three cases not covered by the previous section: λi is not constant, λi is
constant but not a root of unity, and λi = 1.

Let us start with the case where λi ̸= 1, that is λi is a constant but not 1, or λi is not a
constant. Here we can use the bottom two rows from the block to obtain:

λn
i (x)ũi,1(x) = ṽi,1(x) and λn

i (x)ũi,2(x) + nλn−1
i (x)ũi,1(x) = ṽi,2(x),

We reformulate these equations, defining algebraic function θ:

λn
i (x) = γi(x) = ṽi,1(x)/ũi,1(x) and n = θ(x) = λi(x)(ṽi,2(x)/ṽi,1(x)−ũi,2(x)/ũi,1(x))
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Any roots or poles of ũi,1, ũi,2, ṽi,1, ṽi,2, λi can be handled manually (and we already ensured
ũi,1 is not identically zero). We can then apply the following lemma.

▶ Lemma 15. Given algebraic functions λ, γ, θ in parameter x, with λ not a root of unity,
then there is a bound on n ∈ N such that there exists an s ∈ Q with n = θ(s) and λn(s) = γ(s).

Proof sketch. We sketch the case where λ is not a constant function, a similar (but distinct)
approach is used for λ constant. Taking heights on λn(s) = γ(s) we obtain nh(λ(s)) = h(γ(s)),
applying Lemma 5 twice (on both λ and γ) we obtain nh(s) = Θ(h(s)). In particular if
n is large (say n > A) then h(s) is bounded (say h(s) < B). Taking heights on n = θ(s)
we obtain log(n) = h(n) = h(θ(s)) = Θ(h(s)). If n > A then log(n) ≤ BC. Hence
n ≤ max{A, exp(BC)}. ◀

The remaining case where λi = 1 results only in an equation of the form n = θ(s), so
λn

j (s) = γj(s) can be taken from any other Jordan block where λj ̸= 1 and again we apply
Lemma 15 to place a bound on n.

4.3 Further simplifying assumptions for diagonal matrices
Henceforth, we may assume that J is a diagonal matrix resulting in the formulation of
Lemmas 9 and 10: given eigenvalues λ1, . . . , λt and so we want to know if there exists
(n, s) ∈ N × R \ E such that

λn
i (s) = γi(s) for all i = 1, . . . , t (3)

Finally we make some simplifications in Lemma 16:

▶ Lemma 16. To decide Problem 11, it suffices to decide the problem with instances where
the eigenvalues λi are distinct, that none of the λi’s are identically zero, that none of the
constant λi’s are roots of unity, and every constant λi is associated with non-constant γi.

Proof. Consider first the case that λ1 = λ2. If also γ1 = γ2 then the equations λn
1 = γ1 and

λn
2 = γ2 are equivalent and one of them can be removed. Otherwise, if γ1 ̸= γ2, the equations

λn
1 = γ1 and λn

2 = γ2 can only have a common solution for s ∈ R with γ1(s) = γ2(s), i.e., we
can restrict to a finite set of parameters, in which case the problem becomes decidable.

We have already established, in Lemma 13, that none of the λi’s are identically zero, and
that the only constant root of unity is 1. Indeed if λj = 1 then we have 1n = γj(s), which
holds either at finitely many s or γj is the constant 1 and the constraint can be dropped.

If there exists i with constant λi (not a root of unity) and constant γi then there is at
most a single n such that λn

i = γi. This n can be found using the Kannan-Lipton problem on
the single constraint. The remaining constraints can be verified for this n using Proposition 8
to determine if they are simultaneously satisfiable. ◀

4.4 Multiplicative dependencies
To handle cases when the eigenvalues λi’s are multiplicatively dependent, we often argue as
in the following manner. Say λa1

1 = λa2
2 · · · λat

t with a1 ̸= 0. Consider the system

λai
i (s)n = γai

i (s) for all i = 1, . . . , t. (4)

It is clear that the set E of solutions (n, s) to (3) is a subset of the set E′ of solutions to (4).
Furthermore, for (n, s) ∈ E′ we have γa1

1 (s) = λa1n
1 (s) = (λa2

2 · · · λat
t )n(s) = γa2

2 · · · γat
t (s).
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We conclude that if γa1
1 ̸= γa2

2 · · · γat
t , then there can only be finitely many s solving

(4), and thus the original problem, and so the problem becomes decidable. In case γa1
1 =

γa2
2 · · · γat

t , the first equation in (4) is redundant, and we may remove it. By repeating the
process we obtain a system of the form (4) where the λi are multiplicatively independent,
and the solutions to it contain all the solutions to the original system.

Now we face the problem of separating solutions to (3) from the solutions to (4). If either
of the sets {n : (n, s) ∈ E′} or {s : (n, s) ∈ E′} is finite and effectively enumerable, we can
clearly decide whether E is empty or not, utilising either Kannan–Lipton or Proposition 8
finitely many times. This happens in the majority of cases. In the case that both the above
sets are unbounded, we bound the suitable n in case rank{λ1, . . . , λt} ≥ 2 in Section 5. For
the case of rank{λ1, . . . , λt} ≤ 1 we give a separate argument in Section 6.

5 The case of rank⟨λ1, . . . , λt⟩ ≥ 2

In this section we recall and prove the following Lemma 9:

▶ Lemma 9. Let λ1, . . . , λt be algebraic functions in K and rank⟨λ1, . . . , λt⟩ ≥ 2. Given
algebraic functions γ1, . . . , γt in K, then it is decidable whether there exist (n, s) ∈ N × R \ E
such that

λi(s)n = γi(s) for all i = 1, . . . , t. (2)

By Lemma 16 we may assume that none of λi’s are identically zero or a root of unity.

5.1 All λi’s constant
In this section we sketch the proof for the case where λi’s are all constant. We reduce to
a special case of the Skolem problem, but show that this particular instance is decidable.
Since rank ≥ 2, we have at least two constraints and so there are constants λ1 and λ2, not
roots of unity, and multiplicatively independent, with γ1, γ2 not constant.

▶ Lemma 17. Suppose λ1, λ2 are constant, not roots of unity, multiplicatively independent,
and that γ1, γ2 are non-constant functions. Then the system λn

1 = γ1(s), λn
2 = γ2(s) has only

finitely many solutions.

Proof Sketch. Let the minimal polynomials over Q[x, y] of γ1 and γ2 be P1 and P2 with
Pi ∈ Q[x, yi]. The polynomials P1 and P2 have no common factors as elements of Q[x, y1, y2].
Eliminating x from these polynomials we get a non-zero polynomial P ∈ Q[y1, y2] for which
P (α1, α2) = 0 for all α1 = γ1(s) and α2 = γ2(s), s ∈ U . The sequence (un)∞

n=0, with

un = P (λn
1 , λn

2 ) =
∑
k,ℓ

ak,ℓ(λk
1λℓ

2)n,

ak,ℓ ∈ Q, is a linear recurrence sequence over Q, and we wish to characterise those n for
which un = 0. By the famous Skolem–Mahler–Lech theorem (see, e.g., [11]), the set of such
n is the union of a finite set and finitely many arithmetic progressions. Furthermore, it is
decidable whether such a sequence admits infinitely many elements, and all the arithmetic
progressions can be effectively constructed [7]. But, in general, the elements of the finite set
are not known to be effectively enumerable—solving the Skolem problem for arbitrary LRS
essentially reduces to checking whether this finite set is empty. However, the case at hand
can be handled using now standard techniques involving powerful results from transcendental
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number theory, such as Baker’s theorem for linear forms in logarithms, and similar results
on linear forms in p-adic logarithms (see, e.g., [34, 39]). We show there exists an effectively
computable n0 ∈ N such that un ̸= 0 for all n ≥ n0. We give a brief sketch (a detailed proof
appears in the full version):

Assuming first that |λ1| and |λ2| are multiplicatively independent, it is evident that the
modulus of un grows as cαn + o(αn) for some c ∈ R+, where α is the maximal modulus
of the terms λk

1λℓ
2 (there is only one term with this modulus). One can straightforwardly

compute an upper bound on any n for which un = 0.
If the values |λ1| and |λ2| are multiplicatively dependent but neither is of modulus 1, we

may again use an asymptotic argument. For this, we need Baker’s theorem on linear forms
in logarithms to show that a (related) sequence grows in modulus as cαn/nD + o(βn), with
β < α and effectively computable constants c, D. On the other hand, if |λi| = 1 but λ1 is an
algebraic integer (a root of a monic polynomial with coefficients in Z), then it will have a
Galois conjugate (roots of the minimal polynomial of λ1) λ̃1 with |λ̃1| > 1. Hence a suitable
Galois conjugate of the sequence (un) will be of the form considered in the previous case,
and the zeros of (un) and (ũn) coincide. The asymptotic argument can be applied to (ũn).

The final case is when λ1 and λ2 are not algebraic integers. We turn to the theory of
prime ideal decompositions of the numbers λ and argue, employing a version of Baker’s
theorem for p-adic valuations (see, e.g., [41]) to conclude similarly that the n for which
un = 0 are effectively bounded above. ◀

5.2 At least one non-constant
Henceforth, we can assume that at least one λi is non-constant. We may take the λi’s to be
multiplicatively independent with t ≥ 2, otherwise consider a multiplicatively independent
subset of the functions: it always has at least two elements by the assumption on rank, and,
furthermore, at least one of them is not constant. The removal of equations will be done as
described in Section 4.4; here we show that there are only finitely many n giving solutions
(n, s) to the reduced system, so we need not worry about creating too many new solutions.

The following theorems are the main technical results from the literature utilised in the
arguments that follow, formulated in a way to suit our needs. Here C(Q) denotes the set of
algebraic points in Qd on an algebraic set C ⊆ Cd.

▶ Theorem 18 ([8, Theorem 2]). Let C be an absolutely irreducible (irreducible in Q(x)) curve
defined over Q in Cd. Assume that the coordinates of the curve are multiplicatively independent
modulo constants (i.e., the points (x1, . . . , xd) ∈ C(Q) do not satisfy xa1

1 · · · xad

d = c identically
for any (a1, . . . , ad) ∈ Zd \ 0⃗, c ∈ Q). Then the points (x1, . . . , xd) ∈ C(Q) for which x1, . . . ,
xd satisfy at least two independent multiplicative relations form a finite set.

We note that given the curve C, the finite set of points (x1, . . . , xd) on C for which x1, . . . , xd,
satisfy at least two independent multiplicative relations can be effectively constructed. Indeed,
this is explicitly mentioned in the last paragraph of the introduction of [8]: the proof goes by
showing effective bounds on the degree and height of such points.

Theorem 18 holds for curves in Cd for arbitrary d. If one allows the coordinates on the
curve to satisfy a non-trivial multiplicative relation, then there can be infinitely many such
points [8]. On the other hand, in [9] Bombieri, Masser, and Zannier consider relaxing the
assumption of multiplicative independence modulo constants to multiplicative independence
and conjecture that the conclusion of the above theorem still holds [9, Conj. A]. Supporting
the conjecture, [9] proves a theorem which will suffice for us.
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▶ Theorem 19. Let C be an absolutely irreducible curve in Cd defined over Q. Assume that
the the coordinates of the curve are multiplicatively independent, but C is contained in a set
of the form b⃗H, where H is the set of points in Qd satisfying at least d − 3 independent
multiplicative relations2. Then the points (x1, . . . , xd) ∈ C(Q) for which x1, . . . , xd satisfy at
least two independent multiplicative relations form a finite set.

Again the finite set of points can be effectively computed.3
Let us proceed case by case.

▶ Lemma 20. Assume that {λ1, . . . , λt} is multiplicatively dependent modulo constants, but
is multiplicatively independent. Then there exists a computable constant n0 such that system
(2) admits no solutions for n > n0.

We may now focus on sets {λ1, . . . , λt} that are multiplicatively independent modulo
constants. We still might have multiplicative dependencies between the λi and γi. We take
care of these cases in the remainder of this section.

▶ Lemma 21. Assume that {λ1, λ2, γ1, γ2} is multiplicatively independent. Then system (2)
admits only finitely many solutions, all of which can be effectively enumerated.

Proof. We show that the set of s for which the equality can hold is finite and such s can be
computed. We employ the powerful Theorems 18 and 19 of Bombieri, Masser, and Zannier,
from which the claim is immediate. We first prime the situation as follows.

Let that λ1, λ2, γ1, γ2 have minimal polynomials P1 ∈ Q[x, x1], P2 ∈ Q[x, x2], P3 ∈
Q[x, x3], P4 ∈ Q[x, x4], respectively. Eliminating x from P1 and P2 (resp., P3, P4), we
get a polynomial Q1 ∈ Q[x1, x2] (resp., Q2 ∈ Q[x1, x3], Q3 ∈ Q[x1, x4]) for which we have
Q1(λ1(x), λ2(x)) = 0 (resp., Q2(λ1(x), γ1(x)) = 0, Q3(λ1(x), γ2(x)) = 0) for all x. Let C be
the curve defined by C := {(x1, x2, x3, x4) ∈ C4 : Q1(x1, x2) = Q2(x1, x3) = Q3(x1, x4) = 0}
and consider any of its finitely many absolutely irreducible components C′. We are now
interested in the pairs of multiplicative relations (n, 0, −1, 0) and (0, n, 0, −1) (corresponding
to xn

1 = x3, xn
2 = x4), for n ≥ 1, along the curve C′. Indeed, for any fixed n, the two relations

are independent in Q4, i.e., neither is a consequence of the other, as they involve disjoint
sets of coordinates.

First assume that λ1, λ2, γ1, γ2 are multiplicatively independent modulo constants. Then
so are the points on the curve C′, and the result follows from Theorem 18 as the result is
constructive.

Otherwise λ1, λ2, γ1, γ2 are multiplicatively dependent modulo constants but are multi-
plicatively independent. Then C′ is contained in a set of the form b⃗H, where H satisfies at
least one multiplicative relation. Applying Theorem 19 with d = 4, the points on C′ satisfying
xn

1 = x3 and xn
2 = x4 for any n ≥ 1, form an effectively constructable finite set. ◀

To complete the proof of Lemma 9, we need to show the claim holds when λ1, λ2, γ1, γ2
are multiplicatively dependent, while λ1 and λ2 are multiplicatively independent modulo
constants. The proof goes along the same lines as in the above with some extra technicalities.

▶ Lemma 22. Assume that λ1, λ2, γ1, γ2 are multiplicatively dependent, while λ1, λ2 are
multiplicatively independent modulo constants. Then there exists a computable constant n0
such that system (2) admits no solutions for n > n0.

2 With b = (b1, . . . , bk), here b⃗H = {(b1x1, . . . , bdxd) : (x1, . . . , xk) ∈ H} is a coset of a subgroup of
dimension at most 3 in the terminology of [9].

3 In [8, 9] the proof is given for d ≥ 4, and is constructive, while the case of d = 3 is attributed to a
(non-constructive) result of Liardet [31]. A completely effective proof of the case can be found in [6].
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6 The case of rank⟨λ1, . . . , λt⟩ = 1

This section recalls and sketches the proof of Lemma 10.

▶ Lemma 10. Let λ1, . . . , λt be algebraic functions in K and rank⟨λ1, . . . , λt⟩ = 1. We
assume that, if λi is complex then λi (the complex conjugate) also appears. Given algebraic
functions γ1, . . . , γt in K, then it is decidable whether there exist (n, s) ∈ N × R \ E such that
λn

i (s) = γi(s) for all i = 1, . . . , t.

As sketched in Section 4.4, since there is a multiplicative dependence between functions,
we first show that, without loss of generality, there is a single equation λn(s) = γ(s).

▶ Lemma 23. Suppose rank⟨λ1, . . . , λt⟩ = 1, then whether there is a solution (n, s) ∈ N×R\E
to λn

i (s) = γi(s) for all i = 1, . . . , t reduces to instances with t = 1.

We then separate into the case where λ is real and the case where λ is complex. Let us
start by assuming λ is a real function.

▶ Lemma 24. Given real algebraic functions λ and γ, it is decidable whether there exists
(n, s) ∈ N × R \ E such that λn(s) = γ(s).

Proof Sketch. The interesting case occurs on an interval S = (s0, s1) on which 0 <

λ(s), γ(s) < 1 for s ∈ S. Other cases either reduce to this case, or occur for finitely
many s which can be checked independently. The function γ(s) is fixed between s0, s1. Each
point λ(s)n decreases with every n. One can test for each n whether the lines λ(s) and γ(s)
intersect, or one can find some bound n0 after which λ(s)n < γ(s) for all s ∈ S and n > n0,
so one can be sure there is no solution. ◀

Secondly, we consider the case λ takes on complex values. In this case, since λi was a
complex eigenvalue of M , then so too is its conjugate λi, yet λi and λi are multiplicatively
dependent, in which case it turns out that |λ| = 1.

▶ Lemma 25. Let λ and γ be algebraic functions. Assume λ is not real, non-zero, not a root
of unity, and of modulus 1. The equation λ(s)n = γ(s) admits solutions as follows. If γ is not
of modulus 1 constantly, then there are finitely many s. If γ is of modulus 1 identically and
λ is constant, then there are infinitely many solutions and such a solution can be effectively
found. Finally, if λ is not constant, then the equation admits a solution for all n ≥ n0, and
n0 is computable.

Proof Sketch. The interesting case turns outs to be when λ and γ both define arcs on a
unit circle. By taking powers of λ the arc grows, and eventually encompasses the arc defined
by γ. The intermediate value theorem then implies there is an s satisfying λn(s) = γ(s). ◀
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