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Abstract10

We consider reachability problems for linear dynamical systems. Such a system in dimension d11

is specified by respective semialgebraic sets S, T ⊆ Rd of source and target states and a matrix12

M ∈ Qd×d. The task is to determine whether there is a point in S whose orbit under M intersects13

the target T in at least m distinct points. The case m = 1 (mere reachability) can be reduced to14

mild generalisations of the Skolem and Positivity Problems for linear recurrence sequences, whose15

decidability has been open for many decades. The situation is markedly different for multiple16

reachability, where m can be greater than one. In this paper, we prove that multiple reachability is17

undecidable already in dimension d = 10 with fixed multiplicity m = 9. Since our undecidability18

construction also shows that decision procedures for dimension d ∈ {3, . . . , 9} would entail significant19

new results on effective solutions of Diophantine equations, we subsequently focus on the case d = 2,20

that is, multiple reachability in the plane. Here we obtain two positive results. We show that multiple21

reachability is decidable if the matrix M is a rotation and it is also decidable without restriction on22

M for halfplane targets. The former result relies on a deep theorem in arithmetic geometry, due to23

Bombieri and Zannier, concerning intersections of algebraic subgroups with subvarieties.24
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1 Introduction30

A linear dynamical system in dimension d is specified by respective semialgebraic sets31

(defined by boolean combinations of polynomial inequalities) S, T ⊆ Rd of source and target32

states and a matrix M ∈ Qd×d. We are interested in deciding properties of the orbit33

OM (p) def= {p ·Mn : n ∈ N}, where p ranges over the set S of initial points. Specifically,34

the Multiple Reachability Problem asks, given a linear dynamical system as above and a35

multiplicity m ∈ N, whether there exists p ∈ S such that |OM (p) ∩T| ≥ m.36

The above is best viewed as problem schema that can be specialised in different ways.37

There is an extensive literature treating the case m = 1, the Reachability Problem, which asks38

to determine whether OM (p) ∩T ̸= ∅ for some p ∈ S. A celebrated paper of Kannan and39

Lipton [11] showed that point-to-point reachability (where both the source and target sets are40

singletons) is decidable in polynomial time, but for many variants of the Reachability Problem,41

decidability is open. Notably, point-to-hyperplane reachability (also known as Skolem’s42

Problem) and point-to-halfspace reachability (also known as the Positivity Problem) have43

been studied extensively in relation to linear recurrence sequences, weighted automata, formal44

power series, model checking, and loop termination, but remain unsolved in general. The45
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23:2 Multiple Reachability in Linear Dynamical Systems

current state of the art (see [1]) is that the Reachability Problem is decidable in dimension46

d = 3, Skolem’s Problem is decidable in dimension d = 4, and the Positivity Problem47

is decidable in dimension d = 5. In Theorem 4 we note that the Reachability Problem48

can be reduced to its point-to-polytope variant. This last result suggests that the Skolem49

and Positivity Problems already capture much of the difficulty of the general (set-to-set)50

Reachability Problem.51

In this paper we embark on a study of multiple reachability. Our first result is:52

▶ Theorem 1. The Multiple Reachability Problem is undecidable in general and is already53

undecidable in dimension d = 10 with multiplicity m = 9.54

The proof of Theorem 1 is by reduction from Hilbert’s Tenth Problem (determine whether55

a given multivariate polynomial has an integer root) and uses in an essential way the56

quantification over the set S of source states in the Multiple Reachability Problem. This is57

in stark contrast with the Reachability Problem—no natural variants of which are known to58

be undecidable and which, as remarked above, can be reduced to its point-to-set variant.59

The proof of Theorem 1 shows that decidability of multiple reachability in dimension d60

implies that one can solve Diophantine equations in d− 1 variables—a major open problem61

already for d = 3. Consequently, we focus on the case d = 2 (multiple reachability in the62

plane) where we show:63

▶ Theorem 2. In dimension d = 2 the Multiple Reachability Problem is decidable (i) when64

T is a halfspace (with S and M arbitrary) or (ii) when M is a rotation (with S and T65

arbitrary).66

Theorem 2(i) is proved using Kronecker’s Theorem on Diophantine approximation and67

quantifier-elimination for the first-order theory of real-closed fields. Theorem 2(ii), is the68

main contribution of the present paper. The proof makes crucial use of bounds, due to69

Bombieri and Zannier, on the height of algebraic points in the set of intersections between a70

variety and algebraic subgroups of low dimension. To the best of our knowledge this is the71

first use of such tools in the analysis of linear dynamical systems and it is intriguing that72

they are apparently needed to handle even special cases of multiple reachability in the plane.73

The general case of the Multiple Reachability Problem in the plane remains open.74

▶ Example 3. Consider the program in Figure 1. We ask whether there is some initialisation75

of the variables x, y ∈ R satisfying the equation x3 + xy2 = 2y2 of the cissoid shown on the76

right such that the program terminates, Let us reinterpret this question as follows. First77

we remark that the loop body performs a linear transformation that rotates the vector78

(x, y) clockwise around the origin by the angle θ = − cos−1(4/5). So our problem can be79

reformulated as asking whether there is some point p in the cissoid that can be rotated80

into at least two points on the line y = x − 1. The latter is an instance of the Multiple81

Reachability Problem that falls within the purview of Theorem 2(ii). It so happens that the82

answer is “no” in this case.83

Related Work84

Closely related to multiple reachability is the question of multiplicity in linear recurrence85

sequences. A consequence of the Skolem-Mahler-Lech theorem is that for any integer k, and86

any nondegenerate linear recurrence sequence ⟨un⟩n∈N the set {n ∈ N : un = k} is finite.87

Explicit upper bounds on the cardinality of this set in terms of the order of the recurrence88

are the subject of much study, see [7, Chapter 2.2] and references therein.89
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(x, y) satisfying x3 + xy2 = 2y2

m← 2
while m ̸= 0 do(

x

y

)
←

(
4/5 −3/5
3/5 4/5

) (
x

y

)
if x = y + 1 then

m← m− 1
end if

end while

Figure 1 Instance of the Multiple Reachability Problem

The questions that we consider in this paper are generalisations of the Skolem Problem.90

There is another interesting generalisation in a different direction, which happens to be91

undecidable for nontrivial reasons. Namely, given k linear recurrence sequences over algebraic92

numbers: ⟨u(1)
n ⟩n∈N, ⟨u(2)

n ⟩n∈N, . . . , ⟨u(k)
n ⟩n∈N, we are asked to decide whether there are natural93

numbers n1, . . . , nk such that u
(1)
n1 + u

(2)
n2 + · · ·+ u

(k)
nk = 0. This problem was conjectured to be94

undecidable by Cerlienco, Mignotte, and Piras in [5]. The conjecture was proved by Derksen95

and Masser recently in [6], for k = 557844. Similarly to the present paper, they reduce from96

Hilbert’s Tenth Problem, and their proof requires that the sequences not be diagonalisable.97

2 Undecidability of Multiple Reachability98

A basic semialgebraic subset of Rd is the set of solutions of a system of constraints99

P0(x1, . . . , xd) = 0 ∧
k∧

i=1
Pi(x1, . . . , xd) > 0 , (1)100

where Pi ∈ Z[x1, . . . , xd]. Note that a conjunction of several polynomial equations can be101

rewritten to a single equation since x = 0 ∧ y = 0 if and only if x2 + y2 = 0 for reals x and102

y. Semialgebraic sets are unions of basic semialgebraic sets and are precisely the definable103

sets in first-order logic over the structure ⟨R, 0, 1, +,×⟩, since the latter admits quantifier104

elimination. An algebraic set is the set of zeros of a polynomial with integer coefficients.105

A hyperplane is the set of solutions of a linear equation, while a halfspace is the set of106

solutions of a linear inequality, and a polytope is the intersection of finitely many halfspaces.107

If the polynomials in (1) all have zero constant term, then we say that the constraints are108

homogeneous.109

As noted in the Introduction, our proof of undecidability of the Multiple Reachability110

Problem uses in a critical way the quantification over the set S of source states in the111

problem statement. Before entering into the details, we draw a contrast with the Reachability112

Problem, where we can assume without loss of generality that S is a singleton:113

▶ Theorem 4. The full Reachability Problem reduces to the point-to-polytope variant.114

CVIT 2016



23:4 Multiple Reachability in Linear Dynamical Systems

The full proof of Theorem 4 is in Appendix A; the main idea appears implicitly in the115

proof of [1, Theorem 11].116

The following is a (undecidable) variant of Hilbert’s Tenth Problem (cf. Appendix A).117

▶ Problem 5. Given a polynomial P (x1, . . . , x9) with integer coefficients, determine whether118

there are distinct positive integers n1, n2, . . . , n9 such that P (n1, . . . , n9) = 0.119

We reduce Problem 5 to the Multiple Reachability Problem. A sketch of this reduction has120

already appeared in [12]. The key idea is to construct for each d ∈ N a single “universal” linear121

dynamical system whose orbits are in one-to-one correspondence with integer polynomials of122

degree at most d:123

▶ Lemma 6. Given d ∈ N, write hd := (1, 0, . . . , 0) ∈ Rd+1. Then there is a square matrix124

Md of dimension d + 1 such that for every polynomial P ∈ Z[x] of degree at most d we have125 (
P (1), P (2), . . . , P (d + 1)

)
Mn

d h⊤
d = P (n), for all n ∈ N.126

127

Given an arbitrary polynomial F ∈ Z[y1, . . . , yn], we define a linear dynamical system in128

dimension 2n+1 as follows. The source set S comprises all (x1, . . . , xn+1, y1, . . . , yn) ∈ R2n+1
129

such that130

F (y1, . . . , yn) = 0 ∧
n+1∧
k=1

xk = (k − y1)(k − y2) · · · (k − yn) .131

The matrix M has Mn from Lemma 6 as its top-left (n + 1)× (n + 1) block and all other132

entries 0. The target set T is the hyperplane containing the origin and normal to h := h2n.133

The idea is that the orbit of p := (x1, . . . , xn+1, y1, . . . , yn) ∈ S intersects the target set T in134

n points if and only if the (y1, . . . , yk) is integer valued and thereby an integer root of F :135

▶ Lemma 7. The following two statements are equivalent:136

The polynomial F has a solution in distinct positive integers.137

There is some p := (x1, . . . , xn+1, y1, . . . , yn) ∈ S and distinct positive integers r1, . . . , rn138

such that p Mri h⊤ = 0, for 1 ≤ i ≤ n.139

It follows from Lemma 7 that algebraic-to-hyperplane multiple reachability is undecidable.140

More precisely, we have shown that a procedure to decide algebraic-to-hyperplane multiple141

reachability in dimension 2n + 1 can be used to effectively solve Diophantine equations with142

n variables. By projecting away the coordinates y1, . . . , yn in the definition of S above, we143

obtain a semialgebraic set. Hence a procedure to decide semialgebraic-to-hyperplane multiple144

reachability in dimension n + 1 can be used to effectively solve Diophantine equations with n145

variables. By the undecidability of Problem 5 we have:146

▶ Theorem 8. Algebraic-to-hyperplane multiple reachability is undecidable in dimension 19,147

and semialgebraic-to-hyperplane multiple reachability is undecidable in dimension 10.148

In the above undecidability proof, the matrix M is not diagonalisable. It would be149

interesting to explore the multiple reachability problem for diagonalisable matrices.150

3 Algorithms on the Affine Plane151

This section is devoted to proving Theorem 2, concerning multiple reachability in the plane.152

In this variant, the matrix M has dimension 2 and its eigenvalues are either: (a) a pair of153
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complex conjugates λ, λ ∈ Q, (b) two real algebraic roots ρ1, ρ2 ∈ Q ∩ R, or (c) a repeated154

real root ρ ∈ Q. When the eigenvalues are a pair of complex conjugates and furthermore155

|λ| = 1 we say that the matrix is a rotation. In Case (a) we assume that λ/λ is not a root156

of unity, because this case is essentially the same as the case that the eigenvalues are real.157

Matrices whose ratios of distinct eigenvalues are not roots of unity, we call nondegenerate.158

We begin by noting the first difference between arbitrary dimension and the affine plane,159

as regards the Multiple Reachability Problem: when the target is a homogeneous hyperplane160

(in this case a line passing through the origin), it cannot be reached more than once, unless161

the matrix has a very special form. A consequence of this fact and the work in [1], which162

gives an algorithm for deciding single reachability in dimension 2, is that multiple reachability163

is decidable for such targets. This is not the case in dimension 10 or higher.164

▶ Proposition 9. Let p ∈ R2 be non-zero, h the line containing the origin and orthogonal165

to h ∈ R2, and M ∈ R2×2 a nondegenerate matrix. If there are distinct positive integers166

n, m ∈ N such that both Mn and Mm map p into h, i.e.,167

pMnh⊤ = pMmh⊤ = 0, (2)168

then pMkh⊤ = 0 for all k ∈ N. Moreover, in this case, either one of the eigenvalues of M is169

zero, or M =
(

s 0
0 s

)
, for some s ∈ R.170

In case the target is a line that does not pass through the origin, the above proposition171

fails and multiple reachability becomes more difficult.1 In general, the effect of a linear map172

on a point consists of (a) a dilation (a shrinking or stretching), and (b) a rotation. When173

both these effects are relevant, the multiple reachability problem becomes difficult. The174

positive results that we provide in this section solve decision problems where just one of the175

effects is at play. For example, the proposition above is about a target that passes through176

the origin, so the stretching effect of the linear map is not relevant.177

3.1 Halfplane Targets178

A semialgebraic set S is said to be bounded if there exists a real ρ > 0 such that S is contained179

in the open disk x2 + y2 < ρ. We call the infimum among such ρ the radius of the set S. The180

infimum among ρ ≥ 0 such that the set S intersects the open disk of radius ρ is called the181

distance to the origin. Clearly, boundedness is expressible in first-order logic, and the radius182

and distance to the origin are real algebraic by quantifier elimination.183

We prove Theorem 2(i), by giving an algorithm that decides multiple reachability for184

halfplanes. To this end, let S be the initial semialgebraic set, T the target halfplane, M a185

2× 2 matrix with rational entries and m ∈ N the minimum number of times we wish to enter186

the target. We consider, separately, the case that M has complex conjugate eigenvalues λ, λ,187

and the case that it has real eigenvalues. We begin with the former.188

Let p ∈ R2 have polar coordinates (r, φ), i.e., p = (r cos φ, r sin φ). By putting M into189

Jordan normal form (or similarly by using the polar decomposition), and applying some190

trigonometric identities, we can show that there exist real numbers s, ϑ, ϑ0 such that for all191

n ∈ N the polar coordinates of pMn are192

(sr|λ|n, nϑ + ϑ0 + φ). (3)193

1 There is some work characterising when a line that does not pass through the origin is reached at most
once. For example, if the initial point is in Z2 and the eigenvalue |λ| > 1, then for all but finitely many
such integral initial points the target can be reached at most once [3].

CVIT 2016
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The numbers s, r and |λ| are real algebraic, while ϑ and ϑ0 are logarithms of algebraic194

numbers. We will make use of the following fact from Diophantine approximation (cf. [4,195

Theorem 1 in Page 11]). For x ∈ R, denote by {x}2π the unique real number in [0, 2π) such196

that, for some integer m, x = 2πm + {x}2π.197

▶ Lemma 10. If ϑ is an irrational multiple of 2π, then {{nϑ}2π : n ∈ N} is dense in [0, 2π].198

Proof of Theorem 2(i) for complex eigenvalues. If |λ| > 1, the algorithm answers yes.199

The justification is as follows. When T is a halfplane, there exist positive real numbers200

α0, ϕ1, ϕ2, with ϕ1 < ϕ2, such that for all α > α0 and ϕ1 < ϕ < ϕ2, the point with polar201

coordinates (α, ϕ) is in T. In other words, the halfplane contains a cone minus a bounded202

set.203

The matrix M is assumed to be nondegenerate, which implies that the rotation angle ϑ204

in (3) is an irrational multiple of 2π. Applying Lemma 10, we see that the the set205

{nϑ + ϑ0 + ϕ mod 2π : n ∈ N} (4)206

has infinite intersection with the interval (ϕ1, ϕ2). From |λ| > 1, it follows that the sequence207

of points pMn enters the cone mentioned above, which is a subset of T, infinitely often.208

The case |λ| = 1 is handled in the next subsection, so we proceed to the case |λ| < 1.209

When the halfplane T has distance zero to the origin, or when the source S is unbounded,210

the algorithm answers yes, with justification symmetric to the one above. Assume that T has211

distance δ > 0 to the origin and let S be bounded with radius ρ. Choose some N ∈ N such212

that ρ|λ|N < δ; then for any source point p ∈ S, and all n > N , pMn is not in the target213

T. To decide the multiple reachability problem, consider the semialgebraic sets, defined214

for n ∈ {0, 1, . . . , N} as Sn
def= {p ∈ S : pMn ∈ T} , and decide whether there are m among215

them that have nonempty common intersection. ◀216

We turn our attention now to the case where the eigenvalues of the matrix M are real.217

We spell out the case of distinct positive real eigenvalues ρ1 > ρ2 > 0, relegating the other218

cases (which are based on similar reasoning) to the Appendix. In Jordan normal form the219

matrix M is BDB−1 where D is a diagonal matrix and B is an invertible matrix with real220

algebraic entries. We can replace S by S ·B, and the target set by B−1 ·T. As a consequence221

we can assume that M =
(

ρ1 0
0 ρ2

)
. We will also assume without loss of generality that222

ρ1 > ρ2 > 0. The algorithm rests on the following lemma.223

▶ Lemma 11. Let M be as above, H a halfplane, p ∈ R2 a point, and p0, p1, . . . its orbit224

under M . The orbit can switch from H to R2 \H, or conversely, at most twice. In particular,225

the orbit is either ultimately in H or ultimately in R2 \H.226

From the proof of the lemma we also see that when the halfplane is given by a homogeneous227

inequality, the orbit cannot leave the halfplane and come back.228

The version of Lemma 11 in case M has a repeated eigenvalue ρ follows by an analogous229

argument. In this case, by a change of basis, we can assume that M =
(

ρ 1
0 ρ

)
. Then the230

expression corresponding to (11) is (nxc2ρ−1 + c2y + c1x)ρn + c3, which likewise changes231

sign at most twice.232

Proof of Theorem 2(i) for M with real eigenvalues. Lemma 11 and Appendix A entail,233

via a simple case analysis, that any orbit that enters H at least m times must harbour a234

segment of m visits to H whose gaps between consecutive visits is at most 4. In other words,235
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the orbit of p enters T at least m times if and only if there exist n1, . . . , nm ∈ N such that236

pMni ∈ T and 0 < ni+1 − ni ≤ 4 for all ni. The latter (contiguous) multiple reachability237

question can easily be reduced to a number of reachability queries. Indeed, an orbit contains238

a pattern (of visits and non-visits to H) of length 4m if and only if it reaches a certain239

polytopic subset P of R2; A formula defining P can be constructed by considering the sets240

{x ∈ R2 : xMk ∈ H} and{x ∈ R2 : xMk /∈ H} for 0 ≤ k ≤ 4m. Thus multiple reachability is241

reduced to at most 24m instances of single reachability from S to P, which can be solved by242

invoking the algorithm from [1]. ◀243

3.2 Rotations244

Now we prove Theorem 2(ii), which says that multiple reachability is decidable for rotations245

on the plane. To this end, let S, T ⊆ R2 be the source and target semialgebraic sets, given246

by respective first-order formulas ΦS, ΦT; M a matrix whose eigenvalues are the pair λ, λ247

on the unit circle, that is |λ| = 1, and let m ∈ N. Our goal is to determine whether there248

exists some p ∈ S and distinct positive integers x1, . . . , xm ∈ N such that pMxi ∈ T, for249

each i ∈ {1, 2, . . . , m}.250

We begin our proof by treating an easier problem, namely the question of entering the251

target set infinitely often.252

▶ Proposition 12. For any p ∈ R2, exactly one of the following holds:253

1. There are infinitely many positive integers and infinitely many negative integers x such254

that pMx ∈ T.255

2. There are only finitely many positive integers and finitely many negative integers x such256

that pMx ∈ T.257

Furthermore, we can decide whether there exists some p ∈ S for which the first case holds.258

If the first alternative in the proposition holds for some point in the source set, then259

clearly we have a positive instance of the Multiple Reachability Problem. We therefore260

assume in the rest of this section that from every point in the source set the target can be261

reached only finitely many times. More precisely, we work under:262

▶ Assumption 13. The linear dynamical system is such that for every point p ∈ S there are263

only finitely many integers x such that pMx ∈ T. In other words, the second alternative of264

Proposition 12 holds for all points in the source set.265

We proceed by eliminating the existential quantifier in the decision question. To this266

end, let v = (v1, v2) be a tuple of variables, let V1, . . . , Vm be 2 × 2 matrices of fresh267

variables, and consider the formula: Γ(v, V1, . . . , Vm) def= ΦS(v) ∧
∧m

i=1 ΦT (v Vi) . Then the268

Multiple Reachability Problem asks whether there exist p ∈ R2 and distinct positive integers269

x1, . . . , xm such that270

Γ(p, Mx1 , . . . , Mxm) (5)271

holds. Eliminating the existential quantification over v from Γ, we obtain another formula272

Γ′(V1, . . . , Vm) such that (5) holds for some point p if and only if Γ′(Mx1 , . . . , Mxm) is true.273

Tuples of reals that satisfy Γ′ form a semialgebraic set; which can be written as a finite union274

of sets of the form (1), that is a system of one polynomial equality and a finite number of275

polynomial inequalities. Each set in this union can be treated separately, so let P0, . . . , Pℓ276

be polynomials (with integer coefficients) of one of the sets:277

Ψ(V1, . . . , Vm) def= P0(V1, . . . , Vm) = 0 ∧
ℓ∧

i=1
Pi(V1, . . . , Vm) > 0 .278

CVIT 2016
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Our goal is to decide whether there are distinct positive integers x1, . . . , xm such that279

Ψ(Mx1 , . . . , Mxm) holds. We will call any such tuple (x1, . . . , xm) a solution.280

By diagonalisation there are algebraic numbers c1, . . . , c4 ∈ Q such that for all n ∈ N281

Mn =
(

c1λn + c1λn c2λn + c2λn

c3λn + c3λn c4λn + c4λn

)
.282

It follows that given the polynomials P0, . . . , Pℓ appearing in Φ we can compute polynomials283

Q0, . . . , Qℓ with algebraic coefficients such that284

Pi(Mx1 , . . . , Mxm) = Qi(λx1 , λ−x1 , . . . , λxm , λ−xm),285

for 0 ≤ i ≤ ℓ and all tuples of integers (x1, . . . , xm) ∈ Zm.286

When P0 is identically zero, we will argue that there cannot be any solutions, due287

to Assumption 13. In fact, we prove a more general statement that will be useful later on:288

▶ Lemma 14. Let Λ ⊆ Zm be a non-trivial additive subgroup such that for all (x1, . . . , xm) ∈ Λ289

we have Q0(λx1 , λ−x1 , . . . , λxm , λ−xm) = 0. Then there is no solution in Λ.290

For the case in which P0 (and hence Q0) is identically zero, we take Λ = Zm in the lemma291

above, and conclude that there are no solutions. The idea is to use a general version of292

Kronecker’s theorem in Diophantine approximation to prove that if there is some element293

of the subgroup (x1, . . . , xm) ∈ Λ such that Qi(λx1 , . . . , λ−xm) > 0, then there are infinitely294

many such elements—contradicting Assumption 13; See Appendix A for the proof.295

The rest of this section is devoted to proving the following lemma:296

▶ Lemma 15. There exists an effective bound B ∈ N depending only on Q0, such that if297

there is a solution in Nm, then there is one, call it x, with ∥x∥ def=
∑
|xi| ≤ B.298

Since both λ and the coefficients of the polynomials are algebraic numbers, we can use299

Tarski’s algorithm to check whether each of x, ∥x∥ ≤ B, is a solution. Therefore as a300

consequence of Lemma 15 and Proposition 12, multiple reachability for rotations is decidable,301

i.e., Theorem 2(ii) holds.302

For the proof of Lemma 15, we will use deep results of Zannier, Bombieri, and Schmidt303

concerning the intersection of varieties with algebraic subgroups of dimension 1. In order304

to state these, we need a few definitions. More more details see [15], [14], and especially [2,305

Chapter 3]. We borrow from the latter freely.306

It is convenient in the rest of this section to set n := 2m, where m is the number of307

times we want to enter the target set. A variety Y in affine n-dimensional space Qn is308

defined to be the set of tuples (y1, . . . , yn) which satisfy a system of polynomial equations309

fi(y1, . . . , yn) = 0, where fi is from a family of polynomials with algebraic coefficients. We310

say that a variety is irreducible if it cannot be written as the union of two proper subvarieties.311

We define Gn to be the set of tuples (z1, . . . , zn) of nonzero algebraic numbers. In other312

words it is the subset of Qn satisfying z1 · · · zn ̸= 0. It is a group under component-wise313

multiplication.314

We define the variety X0 ⊆ Gn to be the zero set of the polynomial Q0 and the polynomials315

zjzj+1 − 1, where 1 ≤ j ≤ n is an odd number, to ensure that the conjugate relations hold.316

We assume that X0 is irreducible, for otherwise, we can factorize the polynomials and treat317

the irreducible components in turn. We will effectively find points in the intersection of this318

variety and all algebraic subgroups of dimension 1, which we now define.319
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An algebraic subgroup is a subvariety of Gn that is also a subgroup. As an example, given320

an additive subgroup Λ ⊆ Zn, we can see that it determines an algebraic subgroup321

HΛ
def= {(z1, . . . , zn) ∈ Gn : za1

1 za2
2 · · · zan

n = 1 for all a ∈ Λ} .322

In fact every algebraic subgroup is of this type, [2, Corollary 3.2.15]. Further, if Λ is a323

subgroup of Zn of rank n− r then HΛ is an algebraic subgroup of dimension r. By dimension324

here we mean the dimension of the variety, see for example [8, Definition on Page 5].325

▶ Lemma 16. For all (a1, . . . , ak) ∈ Zk, the point (λa1 , . . . , λak ) belongs to an algebraic326

subgroup of dimension 1.327

We denote by H1(n) the union of all algebraic subgroups of Gn that have dimension 1;328

the parameter n will be omitted when the ambient dimension is understood. We are329

interested in the intersection H1 ∩ X0, as, by the lemma above, this contains all points330

(λx1 , λ−x1 , . . . , λxm , λ−xm) for which Q0(λx1 , λ−x1 , . . . , λxm , λ−xm) = 0, where xi are integers.331

Equipped with these definitions, we next give an overview of the proof of the crucial Lemma 15.332

Overview of the Proof333

The proof is by induction on a certain structure of the set X0, leading to an increasing334

sequence b0 ≤ b1 ≤ · · · ≤ bn = B of bounds, with B the bound appearing in Lemma 15.335

As a first step, the set X0 is partitioned into the disjoint union of two subsets X◦
0 and X•

0 ,336

defined below. The latter is Zariski closed, i.e., it is the solution of a collection of polynomial337

equations. Bombieri and Zannier’s theorem tells us that there are only finitely many points338

in H1 ∩X◦
0 —we call these the short points—and moreover gives an effective upper bound339

on their height, which is immediately translated into a bound b0.340

We call the remaining points in H1 ∩X•
0 the tall points. Fortunately, the set X•

0 also has341

a very pleasant form: it is isomorphic to X1 ×Gr for some r ≥ 1, where X1 is now another342

(smaller) variety. We repeat, by decomposing X1 into disjoint sets X◦
1 and X•

1 . Again, in343

the former set the size of the points intersecting H1 is upper bounded. Going through the344

isomorphism such points define some linear space, in which, by integer programming we345

obtain a new bound b1 ≥ b0. This process eventually terminates because the variety X•
i+1346

lives in an ambient space whose dimension is strictly smaller than that of the ambient space347

of the variety X•
i . ◀348

We proceed with a sequence of definitions and lemmas that form the proof Lemma 15,349

which is concluded in the last subsection. A linear torus is an algebraic subgroup that is350

irreducible. A torus coset is a coset of the form gH where H is a linear torus and g ∈ Gn.351

Given any subvariety X ⊆ Gn we denote by X• the union of all nontrivial torus cosets352

that are contained entirely in X, in other words:353

X• def=
⋃
{gH a torus coset : gH ⊆ X and nontrivial} .354

Define X◦ def= X \X•. We will analyse the points in X•
0 ∩H1 (i.e. (X0)• ∩H1) and X◦

0 ∩H1355

in the next two subsections, calling them respectively the tall points and the short points.356

3.2.1 Tall Points357

Recall that for a ∈ Zn we write za = za1
1 · · · zan

n . Let A be an n × n matrix with integer358

entries, and denote by A1, . . . , An its columns. We denote by φA : Gn → Gn the map359

φA(z) def=
(
zA1 , . . . , zAn

)
. One can show that φAB = φB ◦ φA, and as a consequence for360

CVIT 2016



23:10 Multiple Reachability in Linear Dynamical Systems

matrices A with determinant ±1, φA is an isomorphism2 with inverse φA−1 . Such an361

isomorphism is called a monoidal transformation. Recall that the group of n × n integer362

matrices with determinant ±1 is the special linear group, denoted SL(n,Z).363

We state here some basic results related to the structure of algebraic subgroups. Recall364

that we use the notation ∥a∥ for the ℓ1 norm of a vector a. For a matrrix A, we denote by365

∥A∥ the maximum of the ℓ1 norms of its columns.366

▶ Proposition 17 ([2, Proposition 3.2.10 and Corollary 3.2.9]). Let HΛ be a linear torus,367

where Λ is a subgroup of Zn of rank n − r and suppose that Λ has n − r independent368

vectors of norm at most N . Then there is a matrix A ∈ SL(n,Z) with ∥A∥ ≤ n3Nn−r and369 ∥∥A−1
∥∥ ≤ n2n−1N (n−1)2 , such that φA(1n−r ×Gr) = HΛ, where 1n−r ⊆ Gr is the subgroup370

1n−r = {(1, . . . , 1)}.371

We can effectively compute A given n− r independent vectors of Λ, using the Smith normal372

form.373

Let X ⊆ Gn be a subvariety. We say that an algebraic subgroup H of Gn is maximal in374

X if H ⊆ X and H is not properly contained in any subgroup H ′ ⊆ Gn with H ′ ⊆ X.375

▶ Proposition 18 ([2, Proposition 3.2.14]). Let X ⊆ Gn be a subvariety, defined by polynomial376

equations fi(x) :=
∑

ci,axa = 0, 1 ≤ i ≤ k, and let Ei be the set of exponents appearing in377

the monomials of fi. Let H be a maximal algebraic subgroup of Gn contained in X. Then378

H = HΛ where Λ is generated by vectors of type a′
i − ai, with a′

i, ai ∈ Ei, for i = 1, . . . , k.379

The first proposition says that linear tori of dimension r are isomorphic to Gr, and that380

the isomorphism is given in terms of a monoidal transformation that we can compute. (An381

analogous statement holds also for general algebraic subgroups; however the component 1n−r382

is replaced by a finite subgroup of Gn−r in the general case.) The second proposition tells us383

that maximal algebraic subgroups contained in a variety X are defined by the exponents of384

monomials appearing in the polynomial that define X.385

The two propositions above have the following important consequence. If gH ⊆ X386

is a maximal torus coset (meaning that it is not contained in another torus coset), then387

H is one of the components of a maximal algebraic subgroup H ′ of the variety g−1X.388

Proposition 18 implies that there are finitely many such H ′, that we can effectively compute389

them, and further that they are independent of g—note that only the exponents matter in390

the proposition, not the coefficients. Since it is possible to compute the equations of each391

component of H ′ by factoring in the number field Q(λ), we have:392

▶ Lemma 19. Given a variety X, we can effectively construct a (possibly empty) finite set393

TX of positive-dimensional tori, such that if gH ⊆ X is a maximal torus coset, then H ∈ TX ,394

and for every H ∈ TX there is some torus coset gH ⊆ X which is maximal.395

From this lemma, given a variety X, another way of defining the subset X• is396

X• =
⋃
{gH : g ∈ Gn, H ∈ TX , and gH ⊆ X} .397

Finally we give another way of expressing all torus cosets gH for fixed H that are contained398

in X.399

2 This means that it is a group homomorphism that is also a morphism of algebraic varieties.
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▶ Lemma 20. ([2, Theorem 3.3.9]). Let X ⊆ Gn be a subvariety and H a linear torus of400

dimension r ≥ 1. Then there exists a matrix A ∈ SL(n,Z), which can be computed, such that401 ⋃
gH⊆X

gH = φA(X1 ×Gr),402

where X1 ⊆ Gn−r is a subvariety, whose defining polynomials can be computed.403

The end goal of this subsection was to show that X• is composed of finitely many sets404

which essentially are subvarieties of strictly smaller dimension. Since all the objects are405

effective, this lends itself to a recursive procedure. Before explaining how all of this comes406

together in the proof of Lemma 15, we first discuss the points in X◦.407

3.2.2 Short Points408

The height of a point z in Qn is a central notion in Diophantine geometry. It is used to409

measure the arithmetic complexity of z. For more details the reader should consult, for410

example, Chapter 1 of [2]. For our purposes, it suffices to define the height as follows. Let411

K := Q(λ) be the number field that we work in. There is a way of choosing absolute values412

MK in this field, such that the product formula holds. Writing log+ t := max(0, log t), the413

the (absolute logarithmic Weil) height of a point z = (z1, . . . , zn) ∈ Kn is defined as:414

h(z) def=
∑

v∈MK

max
j

log+ |zj |v.415

We are interested in specific points of the form (λx1 , . . . , λxn), where xi ∈ Z. The height of416

such points has the following properties:417

▶ Lemma 21. Let x ∈ Zn, and denote by M = maxj |xj |. Then418

Mh(λ) ≤ h
(
(λx1 , . . . , λxn)

)
≤ 2Mh(λ).419

The main fact that allows for a procedure to decide multiple reachability for rotations is420

the following theorem on heights of points in X◦ ∩H1, due to Bombieri and Zannier:421

▶ Theorem 22 ([14, Theorem 1, Page 524]). Let X ⊆ Gn be a subvariety. Then there exists422

an effective bound b ∈ N depending only on X such that for all z ∈ Gn, if z ∈ X◦ ∩H1 then423

h(z) ≤ b.424

The theorem cited in [14] does not explicitly state that the bound is effective, but upon a425

closer inspection of the proof one can see that all steps are explicit, with the sole exception426

of points (c∗
1, . . . , c∗

h) ∈ Zh that are chosen to be outside a finite number of linear subspaces427

of Qh with effective descriptions. It is plain that we can effectively construct such points.428

Now we can describe the algorithm that computes the bound of Lemma 15.429

3.2.3 The Algorithm430

Consider vectors x ∈ Zm such that (λx1 , λ−x1 , . . . , λxm , λ−xm) ∈ X0. From Lemma 16 such431

points also belong to H1 ∩X0. From Theorem 22 we compute a bound b0 ∈ N such that if432

∥x∥ > b0 then (λx1 , . . . , λ−xm) does not belong to H1 ∩X◦
0 .433

Next, for points in H1 ∩X•
0 , we use Lemma 19 to construct the set TX0 of tori, which434

have a maximal coset contained in X0. If TX0 is empty, so is the set X•
0 , and we are done435

because the bound b0 suffices. Otherwise let H ∈ TX0 be a linear torus of dimension r ≥ 1.436
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If r = n, using Lemma 20 we can compute a matrix A ∈ SL(n,Z) such that437 ⋃
gH⊆X0

gH = φA(Gn).438

In this case, we take the image of A, Im(A) ⊆ Qn, which is a linear subspace, and intersect it439

with the subspace generated by the equations x1 + x2 = 0, x3 + x4 = 0, up to xn−1 + xn = 0,440

to get linear subspace V of Qm. This is a subspace of Qm, because the odd coordinates441

determine the even ones. The set V ∩Zm is a subgroup of Zm, and it satisfies the conditions442

of Lemma 14, so for all x ∈ Zm, and g ∈ Gn such that (λx1 , λ−x1 , . . . , λxm , λ−xm) ∈ gH, the443

vector x cannot be a solution.444

Now suppose that 0 < r < n. Using Lemma 20, we compute a matrix A ∈ SL(n,Z), and445

the subvariety X1 ⊆ Gn−r, such that446 ⋃
gH⊆X0

gH = φA(X1 ×Gr).447

Since H1, which is the union of all subgroups of dimension 1, is invariant under monoidal448

transformations, we have449

H1 ∩ φA(X1 ×Gr) = φA

(
H1 ∩ (X1 ×Gr)

)
.450

Let b′
1 be the bound we get from Theorem 22 when applied to the intersection451

X◦
1 ∩H1(n− r). (6)452

Let (y1, . . . , yn−r) ∈ Zn−r, and denote by ỹ the maximal value among |y1|, . . . , |yn−r|. Then453

the bound in Lemma 21, implies that if ỹ > b′
1/h(λ), (λy1 , . . . , λyn−r ) does not belong to454

the intersection in (6). We can enumerate the finitely many vectors (y1, . . . , yn−r) ∈ Zn−r
455

such that ỹ ≤ ⌈b′
1/h(λ)⌉, and test for each using Tarski’s algorithm whether (λy1 , . . . , λyn−r )456

belongs to X1, and collect those vectors for which the inclusion holds in a finite set E ⊆ Zn−r.457

If E = ∅ then clearly there are no solutions in φA(X◦
1 ×Gr), otherwise the set (E × Zr) ·A,458

is a finite union of sets of the form V + h where V is a linear subspace of Qn. When we459

intersect these translated subspaces with requirements that odd coordinates must be strictly460

positive and distinct, we get a set of linear (in)equalities, for which an integer solution x can461

be found using a variation of integer linear programming (see, e.g., [9]). If ∥x∥ > b0, then462

set b1 = ⌈∥x∥⌉. In this way we have shown that if there is a point (λy1 , λ−y1 , . . . , λym , λ−ym)463

belonging either to X◦
0 or to φA(X◦

1 × Gr), then there is one with exponents x such that464

∥x∥ ≤ b1.465

We then proceed recursively for X•
1 to construct the set TX1 , and repeat the process.466

Similarly for other tori in TX0 , either by showing that there are no solutions or computing467

bounds b2 < b3 < · · · < B. The procedure terminates because in Lemma 20 the dimension468

of the subvariety X1 is strictly smaller than that of X, and because the set of tori TX469

in Lemma 19 is finite.470

This concludes the proof of Lemma 15, and that of Theorem 2(ii).471

Finally, let us briefly comment about why we are limited to rotations on the plane. If the472

given matrix is not a rotation, then the relevant points do not all belong to H1, but rather473

to H2, in subgroups of dimension 2. Intuitively this is because the matrix changes vectors474

over two dimensions: scaling and rotating. What we lack is an effective bound, akin to475

Theorem 22, for subgroups of dimension 2. There are finiteness results, often as special cases476

of the Mordell-Lang conjecture, see, e.g., [13], but to our knowledge, no effective bounds are477

known.478
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A Missing Proofs514

A linear recurrence sequence is a sequence ⟨un⟩n∈N of rational numbers that satisfies a linear515

recurrence relation un = a1un−1 + · · ·+ adun−d for all n > d, where ai are rational numbers.516

Here d is the order of the recurrence. We consider linear recurrence sequences and linear517

dynamical systems as interchangeable. Indeed if M ∈ Qd×d is a matrix with rational entries,518

and 1 ≤ i, j ≤ d then ⟨(Mn)i,j⟩n∈N satisfies a linear recurrence of order d and conversely every519

sequence satisfying an order-d linear recurrence admits such a matrix-power representation.520

A consequence of this fact is that if ⟨un⟩n∈N and ⟨vn⟩n∈N are two linear recurrence sequences,521

then so is their pointwise sum ⟨un + vn⟩n∈N and pointwise product ⟨un · vn⟩n∈N. The522

characteristic polynomial of the above linear recurrence is xd − a1xd−1 − a2xd−2 − · · · − ad.523

Denote by Λ1, . . . , Λk the distinct roots of this polynomial and by m1, . . . , mk their respective524

multiplicities. A linear recurrence sequence ⟨un⟩n∈N can also be written as a generalized525

power sum un =
∑k

i=1 Pi(n) Λn
i , where Pi ∈ Q[n] are polynomials of degree at most mi − 1526
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with algebraic coefficients. All such generalized power sums satisfy linear recurrence relations527

with algebraic coefficients.528

▶ Theorem 4. The full Reachability Problem reduces to the point-to-polytope variant.529

Proof. Suppose that we are given an instance of the Reachability Problem in dimension530

d ∈ N, with source and target sets S, T ⊆ Rd, and matrix M . Denote by ΦS, ΦT, the formulas531

defining S and T respectively. Write x for the tuple of variables (x1, . . . , xd) and A for the532

d×d matrix of variables (A1,1, . . . , Ad,d), and define the formula: Γ(x, A) def= ΦS(x)∧ΦT(x ·A).533

The Reachability Problem asks whether there exists p ∈ Rd and n ∈ N such that Γ(p, Mn)534

holds. Using quantifier elimination for the first-order theory of reals we obtain a quantifier-535

free formula Γ′(A) that is equivalent to the projection ∃x Γ(x, A). Now the reachability536

problem is equivalent to the question of whether there is some n such that Γ′(Mn) holds.537

Since Γ′ is quantifier-free, it can be written as a disjunction of formulas φ1, . . . , φm, for some538

m ∈ N, such that each φi is of the form (1). For each φi we construct an instance of the539

point-to-polytope reachability problem, with the property that φi(Mn) holds for some n if540

and only if the respective polytope can be reached. To this end, let φ be one of the disjuncts,541

defined as:542

P0(A1,1, . . . , Ad,d) = 0 ∧
k∧

i=1
Pi(A1,1, . . . , Ad,d) > 0 .543

For all i ∈ {0, . . . , k} define the linear recurrence sequence544

ui,n
def= Pi ((Mn)1,1, . . . , (Mn)d,d) , n ∈ N.545

Note that we can effectively construct a matrix Ni such that ui,n = (Ni)1,2.546

Unravelling the definitions, we see that for all n ∈ N, φ(Mn) holds if and only if the547

upper-right corner of Nn
0 is 0, and the upper-right corners of Nn

i , 1 ≤ i ≤ k are strictly548

positive. The latter can be interpreted as a point-to-polytope reachability problem as follows.549

Let D :=
∑

di, and construct a block diagonal matrix whose blocks are N0, . . . , Nk, and550

whose size is D ×D. Then the equivalent instance of the point-to-polytope problem has as551

initial point p0 := (1, . . . , 1) ∈ RD, the matrix is N and the polytope is the intersection of552

the following halfspaces. The closed halfspaces characterised by the normal vectors ∆(d0)553

and −∆(d0) (where by ∆(i) ∈ RD we denote the vector whose components are all zero except554

the component in position i whose value is 1), and the open halfspaces with normal vectors555

∆(d1), . . . , ∆(dk). ◀556

The above proof idea does not appear to extend to Multiple Reachability. The critical557

difference is that after we obtain the projection Γ′. If there are two distinct integers n1, n2558

such that Γ′(Mn1) and Γ′(Mn2) hold, it does not necessarily mean that there is a single p559

for which both Γ(p, Mn1) and Γ(p, Mn2) hold. Indeed, it is unlikely that such a reduction is560

possible for multiple reachability, in light of the result of the next section.561

▶ Lemma 6. Given d ∈ N, write hd := (1, 0, . . . , 0) ∈ Rd+1. Then there is a square matrix562

Md of dimension d + 1 such that for every polynomial P ∈ Z[x] of degree at most d we have563 (
P (1), P (2), . . . , P (d + 1)

)
Mn

d h⊤
d = P (n), for all n ∈ N.564

Proof. Let P be a univariate polynomial of degree d. We claim that the unique sequence565

that satisfies the recurrence566

d+1∑
i=0

(−1)i

(
d + 1

i

)
vn−i = 0, n > d + 1. (7)567
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and whose first d + 1 entries are P (1), P (2), . . . , P (d + 1) is the sequence ⟨P (n)⟩n∈N.568

The proof of the claim is as follows. The characteristic polynomial of the recurrence (7)569

is (x− 1)d+1, as one can see by expanding the latter product using the Binomial theorem.570

In other words, the recurrence has a single characteristic root 1, with multipliciity d + 1.571

It follows from standard results (see, e.g., [7, Section 1.1.6]) that the set of solutions of (7)572

is spanned by the d + 1 sequences ⟨nk⟩∞n=0, where k = 0, . . . , d. Equivalently, a sequence573

⟨vn⟩∞n=0 satisfies (7) if and only if for some polynomial P (x) of degree at most d we have574

vn = P (n) for all n ∈ N. For uniqueness, notice that if one fixes the d + 1 first entries of a575

sequence, the remainder is determined from the recurrence relation of that order.576

We next reformulate the claim in terms of matrix powers. Denote the d + 1 coefficients of577

the recurrence (7) by578

qi
def= (−1)i+1

(
k + 1

i

)
, 1 ≤ i ≤ d + 1.579

Let hd := (1, 0, . . . , 0) ∈ Rd+1 and define the matrix580

Md
def=


0 0 · · · 0 qd+1

1 0 · · · 0 qd

0 1 · · · 0 qd−1
...

...
. . .

...
...

0 0 · · · 1 q1

,581

where the shaded block is the d × d identity matrix. It follows from the discussion above582

that for all univariate polynomials P of degree d, we have583 (
P (1), P (2), . . . , P (d + 1)

)
Mn

d h⊤
d = P (n), for all n ∈ N. (8)584

◀585

▶ Proposition 23. Problem 5 is undecidable.586

Proof. Recall that Hilbert’s Tenth Problem is known to be undecidable even when the587

number of variables is fixed, equal to 9 [10]. In other words, there is no algorithm that588

decides whether a given polynomial with integer coefficients and nine variables has a zero in589

positive integers.590

Now let Q(x1, . . . , x9) be an arbitrary polynomial with integer coefficients. For any591

partition P of {1, . . . , 9}, define QP to be the polynomial that one obtains by taking Q and592

for every A ∈ P, replacing all variables xi, for i ∈ A, by a single fresh variable x. It is593

plain that Q has a zero in positive integers x1, . . . , x9 if and only if one of the polynomials594

QP has a zero in distinct positive integers. We conclude that Problem Proposition 23 is595

undecidable. ◀596

▶ Lemma 7. The following two statements are equivalent:597

The polynomial F has a solution in distinct positive integers.598

There is some p := (x1, . . . , xn+1, y1, . . . , yn) ∈ S and distinct positive integers r1, . . . , rn599

such that p Mri h⊤ = 0, for 1 ≤ i ≤ n.600

Proof. (⇒) Let y1, . . . , yn be distinct positive integers comprising a root of F . Set xi :=601

(i−y1)(i−y2) · · · (i−yn), for all i ∈ {1, . . . , n + 1}. Then p := (x1, . . . , xn+1, y1, . . . , yn) ∈ S602
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by definition. The definition of the matrix M above (that has nonzero entries only in the603

first (n + 1)× (n + 1) block) and (8) imply that for all r ∈ N we have604

pMr h⊤ = (r − y1)(r − y2) · · · (r − yn). (9)605

Hence the second statement of the lemma holds for the distinct positive integers ri = yi.606

(⇐) Let p and distinct positive integers r1, . . . , rn be such that the second statement holds.607

Then (9) implies that the tuple (y1, . . . , yn) is a permutation of the tuple of distinct positive608

integers (r1, . . . , rn). It then follows from the definition of S that the same permutation is609

also a root of F . ◀610

▶ Proposition 9. Let p ∈ R2 be non-zero, h the line containing the origin and orthogonal611

to h ∈ R2, and M ∈ R2×2 a nondegenerate matrix. If there are distinct positive integers612

n, m ∈ N such that both Mn and Mm map p into h, i.e.,613

pMnh⊤ = pMmh⊤ = 0, (2)614

then pMkh⊤ = 0 for all k ∈ N. Moreover, in this case, either one of the eigenvalues of M is615

zero, or M =
(

s 0
0 s

)
, for some s ∈ R.616

Proof. By assumption (2) the point h belongs to the two lines defined by pMn and pMm,617

which pass through the origin. Since h ̸= 0, it follows that there is some r ∈ R, r ̸= 0,618

such that rpMn = pMm. If M is not invertible then one of the eigenvalues is 0, and by619

putting M into Jordan normal form, we can see that (2) cannot hold, unless M is the zero620

matrix, or the other eigenvalue is 1, in which case the conclusion holds. If M is invertible,621

rp = pMm−n, so r is an eigenvalue of Mm−n and by nondegeneracy, the matrix M has622

eigenvalue R := r1/(m−n), which is real. The scaled matrix M̃ = M/R has the property that623

for any k ∈ N, M̃k sends p to the line h if and only if Mk does as well. The matrix M̃624

has 1 as an eigenvalue, and for (2) to hold, M̃ (and also M) has to be a stretching matrix,625

i.e., corresponding to multiplication by a scalar s ∈ R. Consequently, ph⊤ = 0 and hence626

pMkh⊤ = pskh⊤ = 0 for all k ∈ N. ◀627

▶ Lemma 11. Let M be as above, H a halfplane, p ∈ R2 a point, and p0, p1, . . . its orbit628

under M . The orbit can switch from H to R2 \H, or conversely, at most twice. In particular,629

the orbit is either ultimately in H or ultimately in R2 \H.630

Proof. We begin by observing that for all real numbers a1, a2, a3, not all zero, and positive631

reals b1, b2, the function f : R→ R, defined as632

x 7→ a1bx
1 + a2bx

2 + a3, (10)633

has at most two zeros. Indeed, since f is continuous, by Rolle’s theorem, between any two634

zeros of f , f ′ has a zero. As a consequence, if f had more than two zeros, f ′ would have635

more than one zero. But since f ′ has the form α1bx
1 + α2bx

2 for real numbers α1, α2, this is636

impossible.637

Let c1, c2, c3 be real numbers such that the point (x, y) belongs to the halfplane H if and638

only if c1x + c2y + c3 > 0. The orbit of such a point under M is (xρn
1 , yρn

2 ). Consider now639

the expression640

c1xρn
1 + c2yρn

2 + c3. (11)641

From the observation about the zeros of (10) above, this expression as a function of n may642

change sign at most twice, which establishes the lemma. ◀643
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▶ Proposition 12. For any p ∈ R2, exactly one of the following holds:644

1. There are infinitely many positive integers and infinitely many negative integers x such645

that pMx ∈ T.646

2. There are only finitely many positive integers and finitely many negative integers x such647

that pMx ∈ T.648

Furthermore, we can decide whether there exists some p ∈ S for which the first case holds.649

Proof. If the target is of dimension ≤ 1, then by the Skolem-Mahler-Lech theorem for any650

p ∈ S, Mn sends p to T at most finitely many times. If the target has dimension 2, then651

using Tarski’s algorithm we check whether there exists a circle, centered at the origin, of652

radius r such that (1) it intersects S, and (2) writing its points in polar coordinates (r, θ),653

there exists θ1 < θ2 in [0, 2π], such that for all θ in (θ1, θ2), the points (r, θ) are in T.654

If such a circle exists then an argument similar to that in the proof of Theorem 2(i) for655

complex eigenvalues can be used to show that there exists p ∈ S whose orbit enters the656

target T infinitely often.657

If no such circle exists then clearly all circles centered at the origin that intersect S,658

intersect T at finitely many points, and therefore no orbit from S can hit the target infinitely659

often. ◀660

▶ Lemma 14. Let Λ ⊆ Zm be a non-trivial additive subgroup such that for all (x1, . . . , xm) ∈ Λ661

we have Q0(λx1 , λ−x1 , . . . , λxm , λ−xm) = 0. Then there is no solution in Λ.662

Proof. Suppose that the subgroup Λ is given as the integer points in the kernel of a matrix663

A with integer entries, m rows, and m′ ≤ m columns. We have: Λ = {x ∈ Zm : x A = 0}.664

Denote by T the unit circle in the complex plane. We will write z for the vector (z1, . . . , zm)665

and for any vector b = (b1, . . . , bm) of length m, we abbreviate zb = zb1
1 · · · zbm

m . Denote by666

a1, . . . , am′ the columns of A, and define the following semialgebraic sets:667

R def= {z ∈ Tm : zai = 1 for all 1 ≤ i ≤ m′} ,668

R′ def=
{

z ∈ R : Qi(z1, z−1
1 , . . . , zm, z−1

m ) > 0 for all 1 ≤ i ≤ ℓ
}

.669

We are going to prove that R′ is empty. Observe that this is sufficient to prove the lemma,670

for if there were a solution (x1, . . . , xm) ∈ Λ, then (λx1 , . . . , λxm) ∈ R, from the definition of671

the subgroup Λ and R; and moreover, by definition of a solution, (λx1 , . . . , λxm) belongs to672

R′.673

We will prove that R′ = ∅ via the following claim:674

▷ Claim 24. If R′ is non-empty, there are infinitely many elements of (x1, . . . , xm) ∈ Λ, for675

which (λx1 , . . . , λxm) ∈ R′.676

Indeed, if the claim holds, and R′ is non-empty, there are infinitely many (x1, . . . , xm) for677

which (λx1 , . . . , λxm) is a zero of Q0 and satisfies the polynomial inequalities Qi > 0, for678

1 ≤ i ≤ ℓ. This means that for infinitely many (x1, . . . , xm), the formula (5) holds which679

contradicts the assumption made in Assumption 13, namely that there can be only finitely680

many such tuples. It follows that R′ is empty.681

For the proof of the claim we will use the following theorem of Knonecker on Diophantine682

approximation [4, Theorem IV, Page 53]:683

▶ Theorem 25. For 1 ≤ j ≤ m let Lj(y) = Lj(y1, . . . , ym′) be m homogeneous linear forms684

in m′ of variables yi. Then the two following statements about a real vector α = (α1, . . . , αm)685

are equivalent:686
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1. For all ϵ > 0 there is an integral vector a = (a1, . . . , am′) such that simultaneously687

|Lj(a)− αj | < ϵ, 1 ≤ j ≤ m.688

2. If u = (u1, . . . , um) is any integral vector such that: u1L1(y) + · · ·+ umLm(y) has integer689

coefficients, considered as a form in the indeterminates yi, then u1α1 + · · ·+ umαm ∈ Z.690

In order to apply this theorem, we define our linear forms Li as follows. By putting A in691

a row-reduced echelon form, finding a basis and multiplying with a suitable scalar, we can692

compute a set of integral vectors b1, . . . , bm′ that generate Λ. Write λ = exp(ϑ2πi), where693

the angle ϑ is not a rational number, because λ is not a root of 1. For 1 ≤ j ≤ m define:694

Lj(y1, . . . , ym′) def=
m′∑
i=1

ϑ bi,j yi.695

Choose some element of ζ ∈ R′ and write it as:696 (
exp(α12πi), . . . , exp(αm2πi)

)
.697

Let u = (u1, . . . , um) ∈ Zm be an integral vector such that
∑

uiLi(y) has integer coefficients,698

considered as a form in the indeterminates yi. A small computation shows that since α is699

irrational, for such u we must have u B = 0, where B is the matrix that has the vectors700

b1, . . . , bm′ as columns. This means that such vectors u belong to the orthogonal complement701

of the linear subspace V ⊆ Rm, spanned by b1, . . . , bm′ . By virtue of ζ belonging to R′ and702

hence also R, we have that (α1, . . . , αm) belongs to V , and consequently
∑

uiαi = 0. We703

have proved that Statement 2 in the above theorem holds for our real vector α. Applying704

the theorem gives us Statement 1, namely that there are integral vectors a that make Lj(a)705

get arbitrarily close to αj . As a ranges over Zm′ , (L1(a), . . . , Lm(a)) range over ϑΛ, which706

in turn means that707

(λL1(a)/ϑ, . . . , λLm(a)/ϑ) ∈ R, (12)708

and gets arbitrarily close to ζ. Finally, since R′ is an open subset of R, by choosing ϵ small709

enough, we get some a such that the tuple of (12) belongs to the subset R′. The point ζ710

was chosen arbitrarily, so the infinitude of (x1, . . . , xm) ∈ Λ for which (λx1 , . . . , λxm) is in711

R′ follows. This concludes the proof of Claim 24 and that of the lemma. ◀712

▶ Lemma 16. For all (a1, . . . , ak) ∈ Zk, the point (λa1 , . . . , λak ) belongs to an algebraic713

subgroup of dimension 1.714

Proof. If all ai = 0, then the lemma clearly holds, so suppose that there is some j such that715

aj ̸= 0. The tuple (a1, . . . , ak) belongs to the linear subspace that is defined by the linear716

equations:717

aixj − ajxi = 0, i ̸= j, and 1 ≤ i ≤ k.718

These are k − 1 equations, defining a linear subspace V . It follows that Λ := V ∩ Zk is719

generated by a set of k − 1 vectors (and no smaller set). This in turn implies that the point720

in the statement of the lemma belongs to the algebraic subgroup HΛ, which is a subgroup of721

dimension 1. ◀722
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▶ Lemma 20. ([2, Theorem 3.3.9]). Let X ⊆ Gn be a subvariety and H a linear torus of723

dimension r ≥ 1. Then there exists a matrix A ∈ SL(n,Z), which can be computed, such that724 ⋃
gH⊆X

gH = φA(X1 ×Gr),725

where X1 ⊆ Gn−r is a subvariety, whose defining polynomials can be computed.726

Proof. Using Proposition 18 we can conclude that H = HΛ where Λ is a subgroup of Zn of727

rank n−r, and from Proposition 17, we can compute a matrix A, such that H = φA(1n−r×Gr).728

If we define X̃ to be φ−1
A (X), we have729 ⋃

gH⊆X

gH =
⋃

g·(1n−r×Gr)⊆X̃

g · (1n−r ×Gr).730

Note that since A can be computed, so can the polynomials of X̃. Let f1, . . . , fk be these731

defining polynomials of X̃. Then g · (1n−r ×Gr) being a subset of X̃ means that732

fi(g1, . . . , gn−r, yn−r+1, . . . , yn) = 0, 1 ≤ i ≤ k,733

are identically satisfied in yn−r+1, . . . , yn. This is just a set of polynomial equations in734

indeterminates g1, . . . , gn−r, i.e., a subvariety of Gn−r, which we call X1. So if g ∈ X1, then735

g · (1n−r ×Gr) ⊆ X̃, or equivalently φA(g · (1n−r ×Gr)) ⊆ X. The lemma follows. ◀736

▶ Lemma 21. Let x ∈ Zn, and denote by M = maxj |xj |. Then737

Mh(λ) ≤ h
(
(λx1 , . . . , λxn)

)
≤ 2Mh(λ).738

Proof. By the definition of height and absolute value we have:739

h
(
(λx1 , . . . , λxn)

)
=

∑
v∈MK

max
j

log+ |λxj |v =
∑

v∈MK

max
j

log+ |λ|xj
v .740

Since for every absolute value | · |v, |λ|v|λ−1|v = 1, it follows that741 ∑
v∈MK

max
j

log+ |λ|xj
v ≤M(h(λ) + h(λ−1)),742

and since h(α) = h(α−1) for every algebraic number α (see [2, Lemma 1.5.18]), we get the743

upper bound. For the lower bound:744

h
(
(λx1 , . . . , λxn)

)
≥ h(λM ) = Mh(λ).745

◀746

B Missing cases for Theorem 2747

- Diagonalisable M with a single negative eigenvalue.748

Suppose that the matrix M is749

M =
(

ρ1 0
0 ρ2

)
750
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where ρ1 < 0 and ρ2 > 0. (We do not make any assumptions on |ρ1| and |ρ2|.) Consider a751

starting point (x, y) ∈ R2 and a halfplane H defined by c1x + c2y > c3. The orbit of (x, y)752

visits H at time n if753

{
c1x|ρ1|n + c2yρn

2 > c3, n even, (13a)
−c1x|ρ1|n + c2yρn

2 > c3, n odd. (13b)

Depending on the signs of x and y, one of the inequalities implies the other. Without754

loss of generality suppose (13a) implies (13b). By Lemma 11, the set of n satisfying (13a)755

forms an interval subset of N. It follows that the gaps between two consecutive visits from756

(x, y) to H is at most 2.757

- Diagonalisable M with two negative eigenvalues.758

Next, suppose that ρ1 < 0 and ρ2 < 0. Clearly, for all c1, c2, c3 ∈ R with c3 ≤ 0 and c1, c2759

not both zero, the inequality c1ρn
1 + c2ρn

2 > c3 has infinitely many solutions. We thus focus760

on the case that c3 > 0. Here we prove that the gap between two consecutive visits of the761

orbit of (x, y) ∈ R2 to H is at most 3. To this end, let (x, y) ∈ R2, and define the function762

F : R→ R,763

F (t) def= c1x|ρ1|t + c2y|ρ2|t.764

Then we have that for n ∈ N,765

c1xρn
1 + c2yρn

2 =
{

F (n) if n is even,
−F (n) if n is odd.

(14)766

Assuming that c1, c2 and x, y are nonzero (otherwise we would have an even simpler case),767

and ρ1 ̸= ρ2, we see that the function F (t) is bounded for positive reals t if and only if768

|ρ1| ≤ 1 and |ρ2| ≤ 1. If F (t) is unbounded, then from (14) we see that for any (x, y) ∈ R2
769

nonzero, the system enters the halfplane H infinitely many times.770

If on the other hand F (t) is bounded in R+ then the following two inequalities cannot771

hold simultaneously:772

c1xρ1 + c2yρ2 < c3773

c1xρ3
1 + c2yρ3

2 > c3.774

Indeed, the two expressions on the left hand side have the same sign, however the second775

one is smaller in magnitude due to |ρ1| ≤ 1 and |ρ2| ≤ 1. The claim that the gaps between776

two consecutive visits from (x, y) to H is at most 2 follows.777

- Non-diagonalisable M with a repeated eigenvalue.778

A version of Lemma 11 also holds in case M has a repeated eigenvalue ρ. In this case,779

every orbit under M can switch from H to R2 \H, or conversely, at most once. Indeed, by a780

change of basis, we can assume that M has the form781

M =
(

ρ 1
0 ρ

)
782

Then the expression corresponding to (11) is783

(nxc2ρ−1 + c2y + c1x)ρn + c3.784

If ρ > 0, then it is clear that this expression can change sign at most once as n ranges over785

N. If, on the other hand, ρ < 0, we can do a similar analysis as above. If |ρ| > 1 then the786
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halfplane is entered infinitely often. If |ρ| ≤ 1, we can prove, as we did above, that the gaps787

between two consecutive visits in H is at most 2.788

- M with a zero eigenvalue.789

This case is one-dimensional, and it can be shown directly that the orbit can switch from790

H to R2 \H (or vice versa) at most once.791
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