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Abstract
We consider a continuous analogue of (Babai et al. 1996)’s and
(Cai et al. 2000)’s problem of solving multiplicative matrix equa-
tions. Given k + 1 square matrices A1, . . . , Ak, C, all of the same
dimension, whose entries are real algebraic, we examine the prob-
lem of deciding whether there exist non-negative reals t1, . . . , tk
such that

k∏
i=1

exp(Aiti) = C.

We show that this problem is undecidable in general, but decidable
under the assumption that the matrices A1, . . . , Ak commute. Our
results have applications to reachability problems for linear hybrid
automata.

Our decidability proof relies on a number of theorems from
algebraic and transcendental number theory, most notably those of
Baker, Kronecker, Lindemann, and Masser, as well as some useful
geometric and linear-algebraic results, including the Minkowski-
Weyl theorem and a new (to the best of our knowledge) result about
the uniqueness of strictly upper triangular matrix logarithms of
upper unitriangular matrices. On the other hand, our undecidability
result is shown by reduction from Hilbert’s Tenth Problem.

Keywords exponential matrices, matrix reachability, matrix loga-
rithms, commuting matrices, hybrid automata

Categories and Subject Descriptors F.2 [Analysis of Algorithms
and Problem Complexity]: Miscellaneous

1. Introduction
Reachability problems are a fundamental staple of theoretical com-
puter science and verification, one of the best-known examples be-
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ing the Halting Problem for Turing machines. In this paper, our mo-
tivation originates from systems that evolve continuously subject
to linear differential equations; such objects arise in the analysis of
a range of models, including linear hybrid automata, continuous-
time Markov chains, linear dynamical systems and cyber-physical
systems as they are used in the physical sciences and engineering—
see, e.g., (Alur 2015).

More precisely, consider a system consisting of a finite number
of discrete locations (or control states), having the property that the
continuous variables of interest evolve in each location according
to some linear differential equation of the form ẋ = Ax; herex is a
vector of continuous variables, andA is a square ‘rate’ matrix of ap-
propriate dimension. As is well-known, in each location the closed
form solution x(t) to the differential equation admits a matrix-
exponential representation of the form x(t) = exp(At)x(0). Thus
if a system evolves through a series of k locations, each with rate
matrix Ai, and spending time ti ≥ 0 in each location, the overall
effect on the initial continuous configuration is given by the matrix

k∏
i=1

exp(Aiti) ,

viewed as a linear transformation on x(0).1

A particularly interesting situation arises when the matrices Ai
commute; in such cases, one can show that the order in which the
locations are visited (or indeed whether they are visited only once
or several times) is immaterial, the only relevant data being the
total time spent in each location. Natural questions then arise as to
what kinds of linear transformations can thus be achieved by such
systems.

1.1 Related Work
Consider the following problems, which can be seen as discrete
analogues of the question we deal with in this paper.

DEFINITION 1 (Matrix Semigroup Membership Problem). Given
k + 1 square matrices A1, . . . , Ak, C, all of the same dimension,
whose entries are algebraic, does the matrix C belong to the mul-
tiplicative semigroup generated by A1, . . . , Ak?

DEFINITION 2 (Solvability of Multiplicative Matrix Equations).
Given k + 1 square matrices A1, . . . , Ak, C, all of the same di-

1 In this motivating example, we are assuming that there are no discrete
resets of the continuous variables when transitioning between locations.
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mension, whose entries are algebraic, does the equation

k∏
i=1

Ani
i = C

admit any solution n1, . . . , nk ∈ N?

In general, both problems have been shown to be undecid-
able, in (Paterson 1970) and (Bell et al. 2008), by reductions from
Post’s Correspondence Problem and Hilbert’s Tenth Problem, re-
spectively.

When the matrices A1, . . . , Ak commute, these problems are
identical, and known to be decidable, as shown in (Babai et al.
1996), generalising the solution of the matrix powering problem,
shown to be decidable in (Kannan and Lipton 1986), and the case
with two commuting matrices, shown to be decidable in (Cai et al.
2000).

See (Halava 1997) for a relevant survey, and (Choffrut and
Karhumäki 2005) for some interesting related problems.

The following continuous analogue of (Kannan and Lipton
1986)’s Orbit Problem was shown to be decidable in (Hainry 2008):

DEFINITION 3 (Continuous Orbit Problem). Given an n × n ma-
trix A with algebraic entries and two n-dimensional vectors x,y
with algebraic coordinates, does there exist a non-negative real t
such that exp(At)x = y?

The paper (Chen et al. 2015) simplifies the argument of (Hainry
2008) and shows polynomial-time decidability. Moreover, a contin-
uous version of the Skolem-Pisot problem was dealt with in (Bell
et al. 2010), where a decidability result is presented for some in-
stances of the problem.

As mentioned earlier, an important motivation for our work
comes from the analysis of hybrid automata. In addition to (Alur
2015), excellent background references on the topic are (Henzinger
et al. 1995; Henzinger 1996).

1.2 Decision Problems
We start by defining three decision problems that will be the main
object of study in this paper: the Matrix-Exponential Problem,
the Linear-Exponential Problem, and the Algebraic-Logarithmic
Integer Programming problem.

DEFINITION 4. An instance of the Matrix-Exponential Problem
(MEP) consists of square matrices A1, . . . , Ak and C, all of
the same dimension, whose entries are real algebraic numbers.
The problem asks to determine whether there exist real numbers
t1, . . . , tk ≥ 0 such that

k∏
i=1

exp(Aiti) = C . (1)

We will also consider a generalised version of this problem,
called the Generalised MEP, in which the matrices A1, . . . , Ak
and C are allowed to have complex algebraic entries and in which
the input to the problem also mentions a polyhedron P ⊆ R2k that
is specified by linear inequalities with real algebraic coefficients. In
the generalised problem we seek t1, . . . , tk ∈ C that satisfy (1) and
such that the vector (Re(t1), . . . ,Re(tk), Im(t1), . . . , Im(tk))
lies in P .

In the case of commuting matrices, the Generalised Matrix
Exponential Problem can be analysed block-wise, which leads us
to the following problem:

DEFINITION 5. An instance of the Linear-Exponential Problem
(LEP) consists of a system of equations

exp

(∑
i∈I

λ
(j)
i ti

)
= cj exp(dj) (j ∈ J), (2)

where I and J are finite index sets, the λ(j)
i , cj and dj are complex

algebraic constants, and the ti are complex variables, together
with a polyhedron P ⊆ R2k that is specified by a system of
linear inequalities with algebraic coefficients. The problem asks to
determine whether there exist t1, . . . , tk ∈ C that satisfy the system
(2) and such that (Re(t1), . . . ,Re(tk), Im(t1), . . . , Im(tk)) lies
in P .

To establish decidability of the Linear-Exponential Problem, we
reduce it to the following Algebraic-Logarithmic Integer Program-
ming problem. Here a linear form in logarithms of algebraic num-
bers is a number of the form β0 +β1 log(α1)+ · · ·+βm log(αm),
where β0, α1, β1, . . . , αm, βm are algebraic numbers and log de-
notes a fixed branch of the complex logarithm function.

DEFINITION 6. An instance of the Algebraic-Logarithmic Integer
Programming Problem (ALIP) consists of a finite system of equa-
tions of the form

Ax ≤ 1

π
b

where A is an m× n matrix with real algebraic entries and where
the coordinates of b are real linear forms in logarithms of algebraic
numbers. The problem asks to determine whether such a system
admits a solution x ∈ Zn.

1.3 Paper Outline
After introducing the main mathematical techniques that are used
in the paper, we present a reduction from the Generalised Ma-
trix Exponential Problem with commuting matrices to the Linear-
Exponential Problem, as well as a reduction from the Linear-
Exponential Problem to the Algebraic-Logarithmic Integer Pro-
gramming Problem, before finally showing that the Algebraic-
Logarithmic Integer Programming Problem is decidable. By way
of hardness, we will prove that the Matrix Exponential Problem
is undecidable (in the non-commutative case), by reduction from
Hilbert’s Tenth Problem.

2. Mathematical Background
2.1 Number Theory and Diophantine Approximation
A number α ∈ C is said to be algebraic if there exists a non-zero
polynomial p ∈ Q[x] for which p(α) = 0. A complex number that
is not algebraic is said to be transcendental. The monic polynomial
p ∈ Q[x] of smallest degree for which p(α) = 0 is said to
be the minimal polynomial of α. The set of algebraic numbers,
denoted by Q, forms a field. Note that the complex conjugate
of an algebraic number is also algebraic, with the same minimal
polynomial. It is possible to represent and manipulate algebraic
numbers effectively, by storing their minimal polynomial and a
sufficiently precise numerical approximation. An excellent course
(and reference) in computational algebraic number theory can be
found in (Cohen 1993). Efficient algorithms for approximating
algebraic numbers were presented in (Pan 1996).

Given a vector λ ∈ Qm, its group of multiplicative relations is
defined as

L(λ) = {v ∈ Zm : λv = 1}.
Moreover, letting log represent a fixed branch of the complex

logarithm function, note that log(α1), . . . , log(αm) are linearly
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independent over Q if and only if

L(α1, . . . , αm) = {0}.
Being a subgroup of the free abelian group Zm, the group L(λ)

is also free and admits a finite basis.
The following theorem, due to David Masser, allows us to

effectively determine L(λ), and in particular decide whether it is
equal to {0}. This result can be found in (Masser 1988).

THEOREM 1 (Masser). The free abelian group L(λ) has a basis
v1, . . . ,vl ∈ Zm for which

max
1≤i≤l,1≤j≤m

|vi,j | ≤ (D logH)O(m2)

where H and D bound respectively the heights and degrees of all
the λi.

We will need the following results of Baker (Baker 1975). The
first one, together with Masser’s theorem, allows us to eliminate all
algebraic relations in the description of linear forms in logarithms
of algebraic numbers.

THEOREM 2 (Baker). Let α1, . . . , αm ∈ Q \ {0}. If

log(α1), . . . , log(αm)

are linearly independent over Q, then

1, log(α1), . . . , log(αm)

are linearly independent over Q.

The next result essentially implies that one can effectively check
whether a linear form in logarithms of algebraic numbers equals
zero. Noting that the set of linear forms in logarithms of algebraic
numbers is closed under addition and multiplication by algebraic
numbers, it easily follows that one can effectively compare two
linear forms in logarithms of algebraic numbers. It is also closed
under complex conjugation. See (Baker 1975) and (Baker and
Wüstholz 1993).

THEOREM 3 (Baker). Letα1, . . . , αm be non-zero algebraic num-
bers with degrees at most d and heights at most A. Further, let
β0, . . . , βm be algebraic numbers with degrees at most d and
heights at most B, where B ≥ 2. Write

Λ = β0 + β1 log(α1) + · · ·+ βm log(αm).

Then either Λ = 0 or |Λ| > B−C , where C is an effectively
computable number depending only on m, d, A, and the chosen
branch of the complex logarithm.

The theorem below was proved by Ferdinand von Lindemann
in 1882, and later generalised by Karl Weierstrass in what is now
known as the Lindemann-Weierstrass theorem. As a historical note,
this result was behind the first proof of transcendence of π, which
immediately follows from it.

THEOREM 4 (Lindemann). If α ∈ Q \ {0}, then eα is transcen-
dental.

We will also need the following result, due to Leopold Kro-
necker, on simultaneous Diophantine approximation, which gener-
alises Dirichlet’s Approximation Theorem. We denote the group of
additive relations of v by

A(v) = {z ∈ Zd : z · v ∈ Z}.
Throughout this paper, dist refers to the l1 distance.

THEOREM 5 (Kronecker). Let α1, . . . ,αk ∈ Rd and β ∈ Rd.
The following are equivalent:

1. For any ε > 0, there exists n ∈ Nk such that

dist(β +

k∑
i=1

niαi,Zd) ≤ ε.

2. It holds that
k⋂
i=1

A(αi) ⊆ A(β).

Many of these results, or slight variations thereof, can be found
in (Hardy and Wright 1938) and (Cassels 1965).

2.2 Lattices
Consider a matrix K ∈ Qr×d and vector k ∈ Qr . The following
proposition shows how to compute a representation of the affine
lattice {x ∈ Zd : Kx = k}. Further information about lattices
can be found in (Micciancio and Goldwasser 2002) and (Cohen
1993).

PROPOSITION 1. There exist x0 ∈ Zd and M ∈ Zd×s, where
s ≤ r, such that

{x ∈ Zd : Kx = k} = x0 + {My : y ∈ Zs} .

Proof. Let θ denote a primitive element of the number field gen-
erated by the entries of K and k. Let the degree of this extension,
which equals the degree of θ, beD. Then for x ∈ Zd one can write

Kx = k⇔

(
D−1∑
i=0

Niθ
i

)
x =

D−1∑
i=0

kiθ
i

⇔ Nix = ki,∀i ∈ {0, . . . , D − 1},

for some integer matrices N0, . . . , ND−1 ∈ Zr×d and integer vec-
tors k0, . . . ,kD−1 ∈ Zr . The solution of each of these equations
is clearly an affine lattice, and therefore so is their intersection. �

2.3 Matrix exponentials
Given a matrix A ∈ Cn×n, its exponential is defined as

exp(A) =

∞∑
i=0

Ai

i!
.

The series above always converges, and so the exponential of a
matrix is always well defined. The standard way of computing
exp(A) is by finding P ∈ GLn(C) such that J = P−1AP is
in Jordan Canonical Form, and by using the fact that exp(A) =
P exp(J)P−1, where exp(J) is easy to compute. When A ∈
Qn×n, P can be taken to be in GLn(Q); note that

if J =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · λ 1
0 0 · · · 0 λ

 then

exp(Jt) = exp(λt)


1 t t2

2
· · · tk−1

(k−1)!

0 1 t · · · tk−2

(k−2)!

...
...

. . .
. . .

...
0 0 · · · 1 t
0 0 · · · 0 1

 .

Then exp(J) can be obtained by setting t = 1, in particular
exp(J)ij = exp(λ)

(j−i)! if j ≥ i and 0 otherwise.
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When A and B commute, so must exp(A) and exp(B). More-
over, whenA andB have algebraic entries, the converse also holds,
as shown in (Wermuth 1989). Also, when A and B commute, it
holds that exp(A) exp(B) = exp(A+B).

2.4 Matrix logarithms
The matrixB is said to be a logarithm of the matrixA if exp(B) =
A. It is well known that a logarithm of a matrix A exists if and
only if A is invertible. However, matrix logarithms need not be
unique. In fact, there exist matrices admitting uncountably many
logarithms. See, for example, (Culver 1966) and (Helton 1968).

A matrix is said to be unitriangular if it is triangular and all its
diagonal entries equal 1. Crucially, the following uniqueness result
holds:

THEOREM 6. Given an upper unitriangular matrix M ∈ Cn×n,
there exists a unique strictly upper triangular matrix L such that
exp(L) = M . Moreover, the entries of L lie in the number field
Q(Mi,j : 1 ≤ i, j ≤ n).

Proof. Firstly, we show that, for any strictly upper triangular
matrix T and for any 1 < m < n and i < j, the term (Tm)i,j
is polynomial on the elements of the set {Tr,s : s − r < j − i}.
This can be seen by induction on m, as each Tm is strictly upper
triangular, and so

(Tm)i,j =

n∑
l=1

(Tm−1)i,lTl,j =

j−1∑
l=i+1

(Tm−1)i,lTl,j .

Finally, we show, by induction on j − i, that each Li,j is
polynomial on the elements of the set

{Mi,j} ∪ {Mr,s : s− r < j − i}.
If j − i ≤ 0, then Li,j = 0, so the claim holds. When j − i > 0,
as L is nilpotent,

Mi,j = exp(L)i,j = Li,j +

n−1∑
m=2

1

m!
(Lm)i,j

⇒ Li,j = Mi,j −
n−1∑
m=2

1

m!
(Lm)i,j .

The result now follows from the induction hypothesis and from our
previous claim, as this argument can be used to both construct such
a matrix L and to prove that it is uniquely determined. �

2.5 Properties of commuting matrices
We will now present a useful decomposition of Cn induced by the
commuting matrices A1, . . . , Ak ∈ Cn×n. Let σ(Ai) denote the
spectrum of the matrix Ai. In what follows, let

λ = (λ1, . . . , λk) ∈ σ(A1)× · · · × σ(Ak).

We remind the reader that ker(Ai − λi)n corresponds to the gen-
eralised eigenspace of λi of Ai. Moreover, we define the following
subspaces:

Vλ =

k⋂
i=1

ker(Ai − λiI)n.

Also, let Σ = {λ ∈ σ(A1)× · · · × σ(Ak) : Vλ 6= {0}}.

THEOREM 7. For all λ = (λ1, . . . , λk) ∈ Σ and for all i ∈
{1, . . . , k}, the following properties hold:

1. Vλ is invariant under Ai.
2. σ(Ai �Vλ) = {λi}.
3. Cn =

⊕
λ∈Σ

Vλ.

Proof. We show, by induction on k, that the subspaces Vλ satisfy
the properties above.

When k = 1, the result follows from the existence of Jor-
dan Canonical Forms. When k > 1, suppose that σ(Ak) =
{µ1, . . . , µm}, and let Uj = ker(Ak−µjI)n, for j ∈ {1, . . . ,m}.
Again, it follows from the existence of Jordan Canonical Forms that

Cn =

m⊕
j=1

Um.

In what follows, i ∈ {1, . . . , k − 1} and j ∈ {1, . . . ,m}. Now, as
Ak and Ai commute, so do (Ak − µjI) and Ai. Therefore, for all
v ∈ Uj , (Ak − µjI)nAiv = Ai(A− µjI)nv = 0, so Aiv ∈ Uj ,
that is, Uj is invariant under Ai. The result follows from applying
the induction hypothesis to the commuting operators Ai �Uj . �

We will also make use of the following well-known result on
simultaneous triangularisation of commuting matrices. See, for ex-
ample, (Newman 1967).

THEOREM 8. Given k commuting matrices A1, . . . , Ak ∈ Qn×n,
there exists a matrix P ∈ GLn(Q) such that P−1AiP is upper
triangular for all i ∈ {1, . . . , k}.

2.6 Convex Polyhedra and Semi-Algebraic Sets
A convex polyhedron is a subset of Rn of the formP = {x ∈ Rn :
Ax ≤ b}, where A is a d × n matrix and b ∈ Rd. When all the
entries ofA and coordinates of b are algebraic numbers, the convex
polyhedron P is said to have an algebraic description.

A set S ⊆ Rn is said to be semi-algebraic if it is a Boolean
combination of sets of the form {x ∈ Rn : p(x) ≥ 0}, where
p is a polynomial with integer coefficients. Equivalently, the semi-
algebraic sets are those definable by the quantifier-free first-order
formulas over the structure (R, <,+, ·, 0, 1).

If was shown by Alfred Tarski in (Tarski 1951) that the first-
order theory of reals admits quantifier elimination. Therefore, the
semi-algebraic sets are precisely the first-order definable sets.

THEOREM 9 (Tarski). The first-order theory of reals is decidable.

See (Renegar 1992) and (Basu et al. 2006) for more efficient
decision procedures for the first-order theory of reals.

DEFINITION 7 (Hilbert’s Tenth Problem). Given a polynomial p ∈
Z[x1, . . . , xk], decide whether p(x) = 0 admits a solution
x ∈ Nk. Equivalently, given a semi-algebraic set S ⊆ Rk, de-
cide whether it intersects Zk.

The following celebrated theorem, due to Yuri Matiyasevich,
will be used in our undecidability proof; see (Matiyasevich 1993)
for a self-contained proof.

THEOREM 10 (Matiyasevich). Hilbert’s Tenth Problem is unde-
cidable.

On the other hand, our proof of decidability of ALIP makes
use of some techniques present in the proof of the following result,
shown in (Khachiyan and Porkolab 1997):

THEOREM 11 (Khachiyan and Porkolab). It is decidable whether
a given convex semi-algebraic set S ⊆ Rk intersects Zk.

2.7 Fourier-Motzkin Elimination
Fourier-Motzkin elimination is a simple method for solving sys-
tems of inequalities. Historically, it was the first algorithm used in
solving linear programming, before more efficient procedures such
as the simplex algorithm were discovered. The procedure consists
in isolating one variable at a time and matching all its lower and
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upper bounds. Note that this method preserves the set of solutions
on the remaining variables, so a solution of the reduced system can
always be extended to a solution of the original one.

THEOREM 12. By using Fourier-Motzkin elimination, it is decid-
able whether a given convex polyhedron P = {x ∈ Rn : πAx <
b}, where the entries ofA are all real algebraic numbers and those
of b are real linear forms in logarithms of algebraic numbers, is
empty. Moreover, if P is non-empty one can effectively find a ratio-
nal vector q ∈ P .

Proof. When using Fourier-Motzkin elimination, isolate each
term πxi, instead of just isolating the variable xi. Note that the
coefficients of the terms πxi will always be algebraic, and the
loose constants will always be linear forms in logarithms of alge-
braic numbers, which are closed under multiplication by algebraic
numbers, and which can be effectively compared by using Baker’s
Theorem. �

3. Example
Let λ1, λ2 ∈ R ∩ Q̄ such that λ1 > λ2 and consider the following
commuting matrices A1, A2 ∈ (R ∩ Q̄)2×2:

Ai =

(
λi 1
0 λi

)
, i ∈ {1, 2}.

One can easily see that

exp(Aiti) = exp(λitiI) exp(ti(Ai − λiI))

= exp(λiti) exp

(
0 ti
0 0

)
= exp(λiti)

(
1 ti
0 1

)
, i ∈ {1, 2}.

Let c1, c2 ∈ R ∩ Q̄ such that c1, c3 > 0, and let

C =

(
c1 c2
0 c1

)
.

Note that, in this case, we are searching for a solution in an
unbounded polyhedron, which we can do in this particular case,
but not in general.

We would like to determine whether there exists a solution
t1, t2 ∈ R, t1, t2 ≥ 0 to

exp(A1t1) exp(A2t2) = C

This amounts to solving the following system of equations:{
exp(λ1t1 + λ2t2) = c1
(t1 + t2) exp(λ1t1 + λ2t2) = c2

⇔{
exp(t1(λ1 − λ2) + c2

c1
λ2) = c1

t2 = c2
c1
− t1

⇔t1 =
log(c1)− c2

c1
λ2

λ1−λ2

t2 =
c2
c1
λ1−log(c1)

λ1−λ2

Then t1, t2 ≥ 0 holds if and only if

λ2 ≤
c1
c2

log(c1) ≤ λ1.

Whether these inequalities hold can be decided by making use
of Baker’s theorem and taking sufficiently precise finite numerical
approximations of these values.

4. Decidability in the Commutative Case
We start this section by reducing the Generalised MEP with com-
muting matrices to LEP. The intuition behind it is quite simple:
perform a change of basis so that the matrices A1, . . . , Ak, as well
as C, become block-diagonal matrices, with each block being up-
per triangular; we can then separate the problem into several sub-
instances, corresponding to the diagonal blocks, and finally make
use of our uniqueness result concerning strictly upper triangular
logarithms of upper unitriangular matrices.

THEOREM 13. The Generalised MEP with commuting matrices
reduces to LEP.

Proof. Consider an instance of the generalised MEP, as given in
Definition 4, with commuting n×nmatricesA1, . . . , Ak and target
matrix C.

We first show how to define a matrix P such that each matrix
P−1AiP is block diagonal, i = 1, . . . , k, with each block being
moreover upper triangular.

By Theorem 7 we can write Cn as a direct sum of subspaces
Cn = ⊕bj=1Vj such that for every subspace Vj and matrix Ai, Vj
is an invariant subspace of Ai on which Ai has a single eigenvalue
λ

(j)
i .

Define a matrixQ by picking an algebraic basis for each Vj and
successively taking the vectors of each basis to be the columns of
Q. Then, each matrix Q−1AiQ is block-diagonal, where the j-th
block is a matrix B(j)

i that represents Ai � Vj , j = 1, . . . , b.
Fixing j ∈ {1, . . . , b}, note that the matrices B(j)

1 , . . . , B
(j)
k

all commute. Thus we may apply Theorem 8 to obtain an algebraic
matrix Mj such that each matrix M−1

j B
(j)
i Mj is upper triangular,

i = 1, . . . , k. Thus we can write

M−1
j B

(j)
i Mj = λ

(j)
i I +N

(j)
i

for some strictly upper triangular matrix N (j)
i .

We define M to be the block-diagonal matrix with blocks
M1, . . . ,Mb. Letting P = QM , it is then the case that P−1AiP

is block-diagonal, with the j-th block being λ
(j)
i I + N

(j)
i for

j = 1, . . . , b. Now

k∏
i=1

exp(Aiti) = C ⇔
k∏
i=1

exp(P−1AiPti) = P−1CP. (3)

If P−1CP is not block-diagonal, with each block being up-
per triangular and with the same entries along the diagonal, then
Equation (3) has no solution and the problem instance must be
negative. Otherwise, denoting the blocks P−1CP by D(j) for
j ∈ {1, . . . , b}, our problem amounts to simultaneously solving
the system of matrix equations

k∏
i=1

exp
((
λ

(j)
i I +N

(j)
i

)
ti
)

= D(j), j ∈ {1, . . . , b} (4)

with one equation for each block.
For each fixed j, the matrices N (j)

i inherit commutativity from
the matrices B(j)

i , so we have

k∏
i=1

exp((λ
(j)
i I +N

(j)
i )ti) = exp

( k∑
i=1

(λ
(j)
i I +N

(j)
i )ti

)
= exp

( k∑
i=1

λ
(j)
i ti

)
· exp

( k∑
i=1

N
(j)
i ti

)
.
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Hence the system (4) is equivalent to

exp
( k∑
i=1

λ
(j)
i ti

)
· exp

( k∑
i=1

N
(j)
i ti

)
= D(j) (5)

for j = 1, . . . , b.
By assumption, the diagonal entries of each matrix D(j) are

equal to a unique value, say c(j). Since the diagonal entries of
exp

(∑k
i=1 N

(j)ti
)

are all 1, the equation system (5) is equivalent
to:

exp
( k∑
i=1

λ
(j)
i ti

)
= c(j) and exp

( k∑
i=1

N
(j)
i ti

)
=

1

c(j)
D(j)

for j = 1, . . . , b.
Applying Theorem 6, the above system can equivalently be

written

exp
( k∑
i=1

λ
(j)
i ti

)
= c(j) and

k∑
i=1

N
(j)
i ti = S(j)

for some effectively computable matrix S(j) with algebraic entries,
j = 1, . . . , b.

Except for the additional linear equations, this has the form of
an instance of LEP. However we can eliminate the linear equations
by performing a linear change of variables, i.e., by computing the
solution of the system in parametric form. Thus we finally arrive at
an instance of LEP. �

In the following result, we essentially solve the system of equa-
tions 2, reducing it to the simpler problem that really lies at its
heart.

THEOREM 14. LEP reduces to ALIP.

Proof. Consider an instance of LEP, comprising a system of
equations

exp

(
k∑
`=1

λ
(j)
` t`

)
= cj exp(dj) j = 1, . . . , b, (6)

and polyhedron P ⊆ R2k, as described in Definition 5.
Throughout this proof, let log denote a fixed logarithm branch

that is defined on all the numbers cj , exp(dj) appearing above, and
for which log(−1) = iπ. Note that if any cj = 0 for some j then
(6) has no solution. Otherwise, by applying log to each equation in
(6), we get:

k∑
`=1

λ
(j)
` t` = dj + log(cj) + 2iπnj j = 1, . . . , b, (7)

where nj ∈ Z.
The system of equations (7) can be written in matrix form as

At ∈ d+ log(c) + 2iπZb ,

where A is the b × k matrix with Aj,` = λ
(j)
` and log is applied

pointwise to vectors. Now, defining the convex polyhedron Q ⊆
R2b by

Q = {(Re(Ay), Im(Ay)) : y ∈ Ck, (Re(y), Im(y)) ∈ P} ,

it suffices to decide whether the affine lattice d + log(c) + 2iπZb
intersects {x ∈ Cb : (Re(x), Im(x)) ∈ Q}.

Define f : Rb → Cb by f(v) = d+ log(c) + 2iπv, and define
a convex polyhedron T ⊆ Rb by

T = {v ∈ Rb : (Re(f(v)), Im(f(v))) ∈ Q} .
The problem then amounts to deciding whether the convex

polyhedron T intersects contains an integer point. Crucially, the

description of the convex polyhedron T is of the form πBx ≤ b,
for some matrix B and vector b such that the entries of B are
real algebraic and the components of b are real linear forms in
logarithms of algebraic numbers. But this is the form of an instance
of ALIP. �

We are left with the task of showing that ALIP is decidable. The
argument essentially consists of reducing to a lower-dimensional
instance whenever possible, and eventually either using the fact that
the polyhedron is bounded to test whether it intersects the integer
lattice or using Kronecker’s theorem to show that, by a density
argument, it must intersect the integer lattice.

THEOREM 15. ALIP is decidable.

Proof. We are given a convex polyhedron P = {x ∈ Rd :
πAx ≤ b}, where the coordinates b are linear forms in logarithms
of algebraic numbers, and need to decide whether this polyhedron
intersects Zd. Throughout this proof, log denotes the logarithm
branch picked at the beginning of the proof of Theorem 14. We
start by eliminating linear dependencies between the logarithms
appearing therein, using Masser’s Theorem. For example, suppose
that

bi = r0 + r1 log(s1) + · · ·+ rk log(sk), r0, r1, s1, . . . , rk, sk ∈ Q.

Due to Baker’s theorem, there exists a non-trivial linear relation
with algebraic coefficients amongs log(−1), log(s1), . . . , log(sk)
if and only if there is one with integer coefficients. But such rela-
tions can be computed, since

n0 log(−1) + n1 log(s1) + · · ·+ nk log(sk) = 0⇔
(−1)n0sn1

1 · · · s
nk
k = 1

and since the group of multiplicative relations L(−1, s1, . . . , sk)
can be effectively computed. Whenever it contains a non-zero vec-
tor, we use it to eliminate an unnecessary log(si) term, although
never eliminating log(−1). When this process is over, we can see
whether each term bi/π is algebraic or transcendental: it is alge-
braic if bi = α log(−1), α ∈ Q, and transcendental otherwise.

Now, when x ∈ Zd, Ax is a vector with algebraic coefficients,
so whenever bi/π is transcendental we may alter P by replacing≤
by < in the i-th inequality, preserving its intersection with Zd. On
the other hand, whenever bi/π is algebraic, we split our problem
into two: in the first one, P is altered to force equality on the i-th
constraint (that is, replacing ≤ by =), and in the second we force
strict inequality (that is, replacing ≤ by <). We do this for all i, so
that no ≤ is left in any problem instance, leaving us with finitely
many polyhedra, each defined by equations of the form

Kx = k (k ∈ Qd1)

Mx <m (m ∈ Qd2)

Fx < f (f ∈ R \Qd3)

where K,M,F are matrices with algebraic entries. Before pro-
ceeding, we eliminate all such empty polyhedra; note that empti-
ness can be decided via Fourier-Motzkin elimination.

The idea of the next step is to reduce the dimension of all
the problem instances at hand until we are left with a number
of new instances with full-dimensional open convex polyhedra,
of the same form as the original one, apart from the fact that all
inequalities in their definitions will be strict. To do that, we use
the equations Kx = k to eliminate variables: note that, whenever
there is an integer solution,

Kx = k,x ∈ Zd ⇔ x = x0 +Mz,

where M is a matrix with integer entries, x0 is an integer vector
and z ranges over integer vectors over a smaller dimension space,
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wherein we also define the polyhedron

Q = {y : x0 +My ∈ P}.
Having now eliminated all equality constraints, we are left with

a finite set of polyhedra of the form P = {x ∈ Rd : πAx < b}
that are either empty or full-dimensional and open, and wish to de-
cide whether they intersect the integer lattice of the corresponding
space (different instances may lie in spaces of different dimensions,
of course). Note that, when P is non-empty, we can use Fourier-
Motzkin elimination to find a vector q ∈ Qd in its interior, and
ε > 0 such that the l1 closed ball of radius ε and centre q, which
we call B, is contained in P .

The next step is to consider the Minkowski-Weyl decomposition
of P , namely P = H + C, where H is the convex hull of finitely
many points of P (which we need not compute) and C = {x ∈
Rd : Ax ≤ 0} is a cone with an algebraic description. Note that
P is bounded if and only if C = {0}, in which case the problem
at hand is simple: consider the polyhedron Q with an algebraic
description obtained by rounding up each coordinate of b/π, which
has the same conic part as P and which contains P , and therefore
is bounded; finally, compute a bound on Q (such a bound can be
defined in the first-order theory of reals), which is also a bound on
P , and test the integer points within that bound for membership in
P . Otherwise,

C = {λ1c1 + · · ·+ λkck : λ1, . . . , λk ≥ 0},

where c1, . . . , ck ∈ Qd are the extremal rays of C. Note that
q + C ⊆ P and that B + C ⊆ P .

Now we consider a variation of an argument which appears in
(Khachiyan and Porkolab 1997). Consider the computable set

L = C⊥ ∩ Zd =

k⋂
i=1

A(ci),

where A(v) denotes the group of additive relations of v.
If L = {0} then due to Kronecker’s theorem on simultaneous

Diophantine approximation it must be the case that there exists a
vector (n1, . . . , nk) ∈ Nk such that

dist

(
q +

k∑
i=1

nici,Zd
)
≤ ε,

and we know that P ∩ Zd 6= ∅ from the fact that the l1 closed ball
B of radius ε and centre q is contained in P .

On the other hand, if L 6= {0}, let z ∈ L \ {0}. Since H is a
bounded subset of Rn, the set

{zTx : x ∈ P} = {zTx : x ∈ H}
is a bounded subset of R. Therefore there exist a, b ∈ Z such that

∀x ∈ P, a ≤ zTx ≤ b,
so we can reduce our problem to b − a + 1 smaller-dimensional
instances by finding the integer points of {x ∈ P : zTx = i}, for
i ∈ {a, . . . , b}. Note that we have seen earlier in the proof how to
reduce the dimension of the ambient space when the polyhedron P
is contained in an affine hyperplane. �

5. Undecidability of the Non-Commutative Case
In this section we show that the Matrix Exponentials Problem
is undecidable in the case of non-commuting matrices. We show
undecidability for the most fundamental variant of the problem, as
given in Definition 4, in which the matrices have real entries and
the variables ti range over the non-negative reals. Recall that this
problem is decidable in the commutative case by the results of the
previous section.

5.1 Matrix Exponentials Problem with Constraints
The proof of undecidability in the non-commutative case is by
reduction from Hilbert’s Tenth Problem. The reduction proceeds
via several intermediate problems. These problems are obtained by
augmenting MEP with various classes of arithmetic constraints on
the real variables that appear in the statement of the problem.

DEFINITION 8. We consider the following three classes of arith-
metic constraints over real variables t1, t2, . . .:

• EπZ comprises constraints of the form ti ∈ α+ βπZ, where α
and β 6= 0 are real-valued constants such that cos(2αβ−1), β
are both algebraic numbers.
• E+ comprises linear equations of the form α1t1 +. . .+αntn =
α0, for α0, . . . , αn real algebraic constants.
• E× comprises equations of the form t` = titj .

A class of constraints E ⊆ EπZ ∪ E+ ∪ E× induces a generali-
sation of the MEP problem as follows:

DEFINITION 9 (MEP with Constraints). Given a class of con-
straints E ⊆ EπZ ∪ E+ ∪ E×, the problem MEP(E) is as follows.
An instance consists of real algebraic matrices A1, . . . , Ak, C and
a finite set of constraints E ⊆ E on real variables t1, . . . , tk.
The question is whether there exist non-negative real values for
t1, . . . , tk such that

∏k
i=1 e

Aiti = C and the constraints E are all
satisfied.

Note that in the above definition of MEP(E) the set of con-
straints E only mentions real variables t1, . . . , tk appearing in the
matrix equation

∏k
i=1 e

Aiti = C. However, without loss of gen-
erality, we can allow constraints to mention fresh variables ti, for
i > k, since we can always define a corresponding matrix Ai = 0
for such variables for then eAiti = I has no effect on the matrix
product. In other words, we effectively have constraints in E with
existentially quantified variables. In particular, we have the follow-
ing useful observations:

• We can express inequality constraints of the form ti 6= α in
E+ ∪ E× by using fresh variables tj , t`. Indeed ti 6= α is
satisfied whenever there exist values of tj and t` such that
ti = tj + α and tjt` = 1.

• By using fresh variables, E+ ∪ E× can express polynomial
constraints of the form P (t1, . . . , tn) = t for P a polynomial
with integer coefficients.

We illustrate the above two observations in an example.

EXAMPLE 1. Consider the problem, given matricesA1, A2 andC,
to decide whether there exist t1, t2 ≥ 0 such that

eA1t1eA2t2 = C and t21 − 1 = t2, t2 6= 0 .

This is equivalent to the following instance of MEP(E+ ∪ E×):
decide whether there exist t1, . . . , t5 ≥ 0 such that

5∏
i=1

eAiti = C and t1t1 = t3, t3 − 1 = t2, t2t4 = t5, t5 = 1

where A1, A2 and C are as above and A3 = A4 = A5 = 0.

We will make heavy use of the following proposition to combine
several instances of the constrained MEP into a single instance by
combining matrices block-wise.

PROPOSITION 2. Given real algebraic matrices A1, . . . , Ak, C
andA′1, . . . , A

′
k, C

′, there exist real algebraic matricesA′′1 , . . . , A
′′
k , C

′′

such that for all t1, . . . , tk:
k∏
i=1

eA
′′
i ti = C′′ ⇔

k∏
i=1

eAiti = C ∧
k∏
i=1

eA
′
iti = C′.

7 2016/1/20



Proof. Define for any i ∈ {1, . . . , k}:

A′′i =

[
Ai 0
0 A′i

]
, C′′ =

[
C 0
0 C′

]
.

The result follows because the matrix exponential can be computed
block-wise (as is clear from its power series definition):
k∏
i=1

eA
′′
i ti =

k∏
i=1

[
eAiti 0

0 eA
′
iti

]
=

[∏k
i=1 e

Aiti 0

0
∏k
i=1 e

A′iti

]
.

�
We remark that in the statement of Proposition 2 the two ma-

trix equations that are combined are over the same set of variables.
However, we can clearly combine any two matrix equations for
which the common variables appear in the same order in the re-
spective products.

The core of the reduction is to show that the constraints in
EπZ, E+ and E× do not make the MEP problem harder: one can
always encode them using the matrix product equation.

PROPOSITION 3. MEP(EπZ∪E+∪E×) reduces to MEP(E+∪E×).

Proof. Let A1, . . . , Ak, C be real algebraic matrices and E ⊆
EπZ ∪ E+ ∪ E× a finite set of constraints on t1, . . . , tk. Since E is
finite it suffices to show how to eliminate from E each constraint
in EπZ.

Let tj ∈ α+βπZ be a constraint in E. By definition of EπZ we
have that cos(2αβ−1), sin(2αβ−1) and β 6= 0 are real algebraic.
Now define the following extra matrices:

A′j =

[
0 2β−1

−2β−1 0

]
, C′ =

[
cos(2αβ−1) sin(2αβ−1)
− sin(2αβ−1) cos(2αβ−1)

]
.

Our assumptions ensure that A′j and C′ are both real algebraic.
We now have the following chain of equivalences:

eA
′
jtj = C′ ⇔

[
cos(2tjβ

−1) sin(2tjβ
−1)

− sin(2tjβ
−1) cos(2tjβ

−1)

]
= C′

⇔ cos(2tjβ
−1) = cos(2αβ−1)

∧ sin(2tjβ
−1) = sin(2αβ−1)

⇔ 2β−1tj = 2αβ−1 mod 2π

⇔ tj ∈ α+ βπZ.

Thus the additional matrix equation eA
′
jtj = C′ is equivalent to

the constraint tj ∈ α + βπZ. Applying Proposition 2 we can thus
eliminate this constraint. �

PROPOSITION 4. MEP(E+ ∪ E×) reduces to MEP(E+).

Proof. Let A1, . . . , Ak, C be real algebraic matrices and E ⊆
E∪E× a finite set of constraints on variables t1, . . . , tk. We proceed
as above, showing how to remove fromE each constraint from E×.
In so doing we potentially increase the number of matrices and add
new constraints from E+.

Let tl = titj be an equation in E. To eliminate this equation
the first step is to introduce fresh variables x, x′, y, y′, z and add
the constraints

ti = x, tj = y, t` = z,

which are all in E+. We now add a new matrix equation over
the fresh variables x, x′, y, y′, z that is equivalent to the constraint
xy = z. Since this matrix equation involves a new set of variables
we are free to the set the order of the matrix products, which is
crucial to express the desired constraint.

The key gadget is the following matrix product equation, which
holds for any x, x′, y, y′, z > 0:1 0 −z

0 1 0
0 0 1

1 0 0
0 1 −y′
0 0 1

1 x 0
0 1 0
0 0 1


×

1 0 0
0 1 y
0 0 1

1 −x′ 0
0 1 0
0 0 1

 =

1 x− x′ z − xy
0 1 y − y′
0 0 1

 .
Notice that each of the matrices on the left-hand side of the

above equation has a single non-zero off-diagonal entry. Crucially
each matrix of this form can be expressed as an exponential. Indeed
we can write the above equation as a matrix-exponential product

eB1zeB2y
′
eB3xeB4yeB5x

′
=

1 x− x′ z − xy
0 1 y − y′
0 0 1


for matrices

B1 =

0 0 −1
0 0 0
0 0 0

 B2 =

0 0 0
0 0 −1
0 0 0


B3 =

0 1 0
0 0 0
0 0 0

 B4 =

0 0 0
0 0 1
0 0 0


B5 =

0 −1 0
0 0 0
0 0 0


Thus the constraint xy = z can be expressed as

eB1zeB2y
′
eB3xeB4yeB5z

′
= I . (8)

Again, we can apply Proposition 2 to combine the equation (8)
with the matrix equation from the original problem instance and
thus encode the constraint x = yz.

�

PROPOSITION 5. MEP(E+) reduces to MEP.

Proof. Let A1, . . . , Ak, C be real algebraic matrices and E ⊆
E ∪ E+ a set of constraints. We proceed as above, showing how to
eliminate each constraint from E that lies in E+, while preserving
the set of solutions of the instance.

Let β +
∑k
i=1 αiti = 0 be an equation in E. Recall that

β, α1, . . . , αk are real algebraic. Define the extra matricesA′1, . . . , A′k
and C′ as follows:

A′i =

[
0 αi
0 0

]
, C′ =

[
1 −β
0 1

]
.

Our assumptions ensure that A′1, . . . , A′k and C′ are all real alge-
braic. Furthermore, the following extra product equation becomes:

k∏
i=1

eA
′
iti = C ⇔

k∏
i=1

[
1 αiti
0 1

]
=

[
1 −β
0 1

]

⇔
k∑
i=1

αiti = −β .

�
Combining Propositions 3, 4, and 5 we have:

PROPOSITION 6. MEP(EπZ ∪ E+ ∪ E×) reduces to MEP.

5.2 Reduction from Hilbert’s Tenth Problem
THEOREM 16. MEP is undecidable in the non-commutative case.
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Proof. We have seen in the previous section that the problem
MEP(EπZ ∪E+ ∪E×) reduces to MEP without constraints. Thus it
suffices to reduce Hilbert’s Tenth Problem to MEP(EπZ∪E+∪E×).
In fact the matrix equation will not play a role in the target of this
reduction, only the additional constraints.

Let P be an polynomial of total degree d in k variables with
integer coefficients. From P we build a homogeneous polynomial
Q as follows:

Q(x, u, λ) = λdP
(x1

λ
, . . . ,

xk
λ

)
+ λd−1(u− λ)P (0, . . . , 0).

Intuitively, we add an extra variable u for the constant term and we
make the polynomial homogeneous using another extra variable
λ. It is easy to see that Q is homogeneous and still has integer
coefficients. Furthermore, we have the relationship

Q(x, 1, 1) = P (x).

As we have seen previously, it is easy to encode Q with con-
straints, in the sense that we can compute a finite set of constraints
EQ ⊆ E+ ∪ E× mentioning variables t0, . . . , tm, λ, u such that
E is satisfied if and only if t0 = Q(t1, . . . , tk, u, λ). Note that
EQ may need to mention variables other than t1, . . . , tk to do that.
Another finite set of equations EπZ ⊆ EπZ is used to encode that
t1, . . . , tk, λ, u ∈ πZ. Finally, E= ⊆ E+ ∪ E× is used to encode
t0 = 0, λ = u and 1 6 u 6 4. The latter is done by adding the
polynomial equations u = 1 +α2 and u = 4− β2 for some α and
β. Finally we have the following chain of equivalences:

∃t0, . . . , λ, u > 0 s.t. EQ ∪ EπZ ∪ E= is satisfied
⇔ ∃t1, . . . , λ, u > 0 s.t. 0 = Q(t1, . . . , tk, λ, λ)

∧ t1, . . . , tk, λ ∈ πZ ∧ 1 6 λ 6 4

⇔ ∃n1, . . . , nk ∈ N s.t. 0 = Q(πn1, . . . , πnk, π, π)

⇔ ∃n1, . . . , nk ∈ N s.t. 0 = πdQ(n1, . . . , nk, 1, 1)

⇔ ∃n1, . . . , nk ∈ N s.t. 0 = P (n1, . . . , nk).

�

6. Conclusion
We have shown that the Matrix-Exponential Problem is undecid-
able in general, but decidable when the matrices involved commute
with eahc other. This is analogous to what was known for the dis-
crete version of this problem, in which the matrix exponentials eAt

are replaced by matrix powers An.
A natural problem that remains open is as follows:

DEFINITION 10. Given square matrices A1, . . . , Ak and C, all of
the same dimension and all with real algebraic entries, is C a
member of the matrix semigroup generated by

{exp(Aiti) : ti ≥ 0, i = 1, . . . , k}?

When the matrices A1, . . . , Ak all commute, the above problem is
equivalent to the Matrix Exponential Problem. However decidabil-
ity in the non-commutative case is open.

It would also be interesting to look at possibly decidable re-
strictions of the MEP, for example the case where k = 2 with a
non-commuting pair of matrices, which was shown to be decidable
for the discrete analogue of this problem in (Bell et al. 2008).
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