
Inapproximability in Weighted Timed Games
Quentin Guilmant #Ñ

Max Planck Institute for Software Systems, Saarland Informatics Campus, Germany

Joël Ouaknine #Ñ

Max Planck Institute for Software Systems, Saarland Informatics Campus, Germany

Abstract
We consider two-player, turn-based weighted timed games played on timed automata equipped with
(positive and negative) integer weights, in which one player seeks to reach a goal location whilst
minimising the cumulative weight of the underlying path. Although the value problem for such
games (is the value of the game below a given threshold?) is known to be undecidable, the question
of whether one can approximate this value has remained a longstanding open problem. In this
paper, we resolve this question by showing that approximating arbitrarily closely the value of a
given weighted timed game is computationally unsolvable.

2012 ACM Subject Classification D.2.4

Keywords and phrases Weighted timed games, undecidability, approximation

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Weighted timed games are zero-sum games played by two players on a timed automaton
equipped with weights, where one player seeks to reach a goal location whilst minimising the
cumulative weight. Such games have been extensively studied for over two decades; we refer
the reader to the recent and comprehensive article [10] for a thorough overview of the state
of the art.

As noted in [10, Sec. 12], a longstanding open problem is the approximation of weighted
timed games, i.e., whether one can compute an arbitrarily close approximation of the value
of a given game.

Our main result is the following:

▶ Theorem 1. Given a two-player, turn-based, weighted timed game with integer weights,
the problem of approximating its value arbitrarily closely is computationally unsolvable.

An important open question is whether this result can be extended to timed games in
which only non-negative integer weights are allowed.

2 Weighted Timed Games

Let X be a finite set of clocks. Clock constraints over X are expressions of the form
x ∼ n or x − y ∼ n, where x, y ∈ X are clocks, ∼ ∈ {<, ≤, =, ≥, >} is a comparison symbol,
and n ∈ N is a natural number. We write C to denote the set of all clock constraints over X .
A valuation on X is a function ν : X → R≥0. For d ∈ R≥0 we denote by ν + d the valuation
such that, for all clocks x ∈ X , (ν + d)(x) = ν(x) + d. Let X ⊆ X be a subset of all clocks.
We write ν[X := 0] for the valuation such that, for all clocks x ∈ X, ν[X := 0](x) = 0, and
ν[X := 0](y) = ν(y) for all other clocks y /∈ X. For C ⊆ C a set of clock constraints over X ,
we say that the valuation ν satisfies C, denoted ν |= C, if and only if all the comparisons in
C hold when replacing each clock x by its corresponding value ν(x).

▶ Definition 2. A (turn-based) weighted timed game G is a tuple G =
(LMin, LMax, G, X , T, w), where:

© Quentin Guilmant and Joël Ouaknine;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:quentin.guilmant@mpi-sws.org
https://quentin.guilmant.fr
https://orcid.org/0009-0004-7097-0595
mailto:joel@mpi-sws.org
https://people.mpi-sws.org/~joel/
https://orcid.org/0000-0003-0031-9356
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Inapproximability in Weighted Timed Games

LMin and LMax are the (disjoint) sets of locations belonging to Players Min and Max
respectively; we let L = LMin ∪ LMax denote the set of all locations. (In drawings, locations
belonging to Min are depicted by blue circles, and those belonging to Max are depicted by
red squares.)
G ⊆ LMin are the goal locations.
X is a set of clocks.
T ⊆ (L \ G) × 2C × 2X × L is a set of (discrete) transitions. A transition ℓ

C,X−−−→ ℓ′

enables moving from location ℓ to location ℓ′, provided all clock constraints in C are
satisfied, and afterwards resetting all clocks in X to zero.
w : (L \ G) ∪ T → Z is a weight function.

In the above, we assume that all data (set of locations, set of clocks, set of transitions, set of
clock constraints) are finite.

▶ Remark 3. The weight function w associates integer weights to each discrete transition
and each non-goal location. It is worth pointing out that in our proof of inapproximability
(Thm. 1), only transitions may carry negative weights; all locations have weights in N.

Let G = (LMin, LMax, G, X , T, w) be a weighted timed game. A configuration over G
is a pair (ℓ, ν), where ℓ ∈ L and ν is a valuation on X . Let d ∈ R≥0 be a delay and
t = ℓ

C,X−−−→ ℓ′ ∈ T be a discrete transition. One then has a delayed transition (or
simply a transition if the context is clear) (ℓ, ν) d,t−−→ (ℓ′, ν′) provided that ν + d |= C and
ν′ = (ν + d)[X := 0]. Intuitively, control remains in location ℓ for d time units, after which it
transitions to location ℓ′, resetting all the clocks in X to zero in the process. The weight of
such a delayed transition is d · w(ℓ) + w(t), taking account both of the time spent in ℓ as
well as the weight of the discrete transition t.

As noted in [10], without loss of generality on can assume that no configuration (other
than those associated with goal locations) is deadlocked; in other words, for any location
ℓ ∈ L\G and valuation ν ∈ RX

≥0, there exists d ∈ R≥0 and t ∈ T such that (ℓ, ν) d,t−−→ (ℓ′, ν′).1
Let k ∈ N. A run ρ of length k over G from a given configuration (ℓ0, ν0) is a sequence

of matching delayed transitions, as follows:

ρ = (ℓ0, ν0) d0,t0−−−→ (ℓ1, ν1) d1,t1−−−→ · · · dk−1,tk−1−−−−−−→ (ℓk, νk) .

The weight of ρ is the cumulative weight of the underlying delayed transitions:

weight(ρ) =
k−1∑
i=0

(di · w(ℓi) + w(ti)) .

An infinite run ρ is defined in the obvious way; however, since no goal location is ever reached,
its weight is defined to be infinite: weight(ρ) = +∞.

A run is maximal if it is either infinite or cannot be extended further. Thanks to our
deadlock-freedom assumption, finite maximal runs must end in a goal location. We refer to
maximal runs as plays.

1 The authors of [10] point out that this assumption can be enforced by examining the region graph
of the timed game G, and adding new transitions towards sink locations as required. In the pictorial
representations of timed game fragments that appear later in this paper, in the interest of clarity we
omit such extraneous transitions and locations; we merely assume instead that neither player allows
him- or herself to end up in a deadlocked situation, unless a goal location has been reached.

Q. Guilmant and J. Ouaknine 23:3

We now define the notion of strategy. Recall that locations of G are partitioned into sets
LMin and LMax, belonging respectively to Players Min and Max. Let Player P ∈ {Min, Max},
and write FRP

G to denote the collection of all non-maximal finite runs of G ending in a
location belonging to Player P. A strategy for Player P is a mapping σP : FRP

G → R≥0 × T

such that for all finite runs ρ ∈ FRP
G ending in configuration (ℓ, ν) with ℓ ∈ LP, the delayed

transition (ℓ, ν) d,t−−→ (ℓ′, ν′) is valid, where σP(ρ) = (d, t) and (ℓ′, ν′) is some configuration
(uniquely determined by σP(ρ) and ν).

Let us fix a starting configuration (ℓ0, ν0), and let σMin and σMax be strategies for Players
Min and Max respectively (one speaks of a strategy profile). We write playG((ℓ0, ν0), σMin, σMax)
to denote the unique maximal run starting from configuration (ℓ0, ν0) and unfolding ac-
cording to the strategy profile (σMin, σMax): in other words, for every strict finite prefix
ρ of playG((ℓ0, ν0), σMin, σMax) in FRP

G , the delayed transition immediately following ρ in
playG((ℓ0, ν0), σMin, σMax) is labelled with σP(ρ).

Recall that the objective of Player Min is to reach a goal location through a play whose
weight is as small possible. Player Max has an opposite objective, trying to avoid goal
locations, and, if not possible, to maximise the cumulative weight of any attendant play.
This gives rise to the following two symmetrical definitions:

ValG(ℓ0, ν0) = inf
σMin

{
sup
σMax

{
weight(playG((ℓ0, ν0), σMin, σMax))

}}
and

ValG(ℓ0, ν0) = sup
σMax

{
inf
σMin

{
weight(playG((ℓ0, ν0), σMin, σMax))

}}
.

ValG(ℓ0, ν0) represents the smallest possible weight that Player Min can possibly achieve,
starting from configuration (ℓ0, ν0), against best play from Player Max, and conversely for
ValG(ℓ0, ν0): the latter represents the largest possible weight that Player Max can enforce,
against best play from Player Min.2 As noted in [10], turned-based weighted timed games are
determined, and therefore ValG(ℓ0, ν0) = ValG(ℓ0, ν0) for any starting configuration (ℓ0, ν0);
we denote this common value by ValG(ℓ0, ν0).

▶ Remark 4. Note that ValG(ℓ0, ν0) can take on real numbers, or either of the values −∞ and
+∞. Our proof of inapproximability, however, only makes use of games having finite values.

3 Inapproximability

3.1 Probabilistic Finite Automata
We establish value inapproximability for weighted timed games by reducing from an unsolvable
approximation problem for probabilistic automata. We start with some definitions.

▶ Definition 5 (PFA). A (two-letter) probabilistic automaton is a tuple A =
(Q, q1, F, Aa, Ab), where:

Q = {q1, . . . , qℓ} is a finite set of states.
q1 ∈ Q is the initial state.
F ⊆ Q are the accepting states.

2 Technically speaking, these values may not be literally achievable; however given any ε > 0, both players
are guaranteed to have strategies that can take them to within ε of the optimal value.

CVIT 2016

23:4 Inapproximability in Weighted Timed Games

Aa, Ab ∈ ([0, 1] ∩ Q)ℓ×ℓ are left stochastic transition matrices corresponding to letters
a and b respectively.3

Given such a probabilistic automaton A, any word w ∈ {a, b}∗ induces a probability
distribution on Q, as follows. For the empty word λ, we let the distribution D(λ) =
(1, 0, . . . , 0)T , i.e., initially all the probability mass lies in the initial state q1. Suppose
now that the distribution on Q upon reading word w is D(w), i.e., the probability Pw(qi)
of being in state qi after reading w is precisely the ith component of D(w). We then let
D(wa) = AaD(w) and D(wb) = AbD(w).

Finally, for any word w ∈ {a, b}∗, we write A(w) = Pw(F) =
∑

q∈F Pw(q) to denote the
probability that the automaton A accepts word w.

The key result we need (the main ingredient of which is due to Condon and Lipton [11])
is the following [15, Thm. 3.3]:

▶ Theorem 6. There exists an algorithm which takes a Turing machine TM as input and
outputs a two-letter probabilistic automaton A satisfying the following:

if TM does not accept the empty string, then A accepts no word with probability exceeding
1/10, and
if TM does accept the empty string, then A accepts some word with probability at least
1/2.

Theorem 6 states, in effect, that the maximum probability with which a given probabilistic
automaton accepts some word cannot in general be approximated.4 In the remainder of this
section, we show how to exploit this fact to establish that the value of a given weighted time
game is, in turn, also not approximable in general.

3.2 Reduction Overview
Let probabilistic automaton A = (Q, q1, F, Aa, Ab), with Q = {q1, . . . , qℓ}, be fixed for the rest
of this paper. Without loss of generality, we may assume that all non-zero probabilistic trans-
itions have weight 1/M , for some constant M ∈ N.5 In other words, Aa, Ab ∈ {0, 1/M}ℓ×ℓ.

Players Min and Max will play a weighted timed game G representing the evolution of A
as it reads a word w ∈ {a, b}∗. Min will choose the letters of w, and will simulate running
this word through A, seeking to minimise the cumulative weight of the underlying path in G.
As long as Min faithfully simulates the behaviour of A, the cumulative weight will remain
constant. Any error or ‘cheating’ by Min, however, will be ‘punishable’ by Max in the form of
an increase in the cumulative weight, the size of which will be proportional to the magnitude
of the error. Naturally, as Max seeks to maximise the cumulative weight of the path, the
dominant strategy for him will always be to seek to extract as large a cost as possible.

To this end, the game G will be equipped with two sets of clocks:
Z = {z1, . . . , zℓ} ∪ {zF }; intuitively, for i ∈ {1, . . . , ℓ}, zi is intended to store the current
value of the probability of being in state qi, and zF is intended to store the probability of
being in one of the accepting states in F .
XMin = {µ1, . . . , µℓ} ∪ {µF }; intuitively, for i ∈ {1, . . . , ℓ}, µi is Min’s guess of the value
to which to update clock zi next, and likewise for µF and zF .

3 Left stochasticity means that each colum of the matrix sums to 1.
4 Technically speaking, we should speak of a supremum.
5 This can straightforwardly be achieved via an increase in the number of states of A.

Q. Guilmant and J. Ouaknine 23:5

In addition, G has use of an auxiliary clock t to ensure proper synchronisation, etc.
The game unfolds through a cycle of modules, as follows (see also Fig. 5):

1. Min chooses a letter (a or b) to append to the word that has been played so far.
2. Min compiles her guesses as to how the resulting probabilities of being in each state (q1

to qℓ) should then be updated, and stores the corresponding values in clocks µ1, . . . , µℓ

(and in µF for the collection of states in F). In so doing, the game infrastructure ensures
that clocks z1, . . . , zℓ and zF remain untouched (their values at the beginning and at the
end of the relevant module are the same).

3. Max extracts a cost (an increase to the cumulative weight) for every gap between the
values guessed by Min and the actual freshly computed values of the clocks in Z, according
to the transition matrices of A.

4. The aforementioned gaps are then erased, by updating each of the clocks in Z to assume
the value of its counterpart in XMin.

5. Finally, before looping back, Min is given the opportunity to reach the goal location of G;
this transition is however only available if zF ≥ 1/2.

▶ Remark 7. Note in the above that G contains a transition in which a clock is compared to
1/2 (rather than an integer). This is clearly easily circumvented by considering an equivalent
weighted timed game in which all constants have been multiplied by 2. We opted for the
present half-integer formulation as this enables clock values directly to represent probabilities,
rather than twice the corresponding probabilities.

Assuming that A does accept some word w with probability at least 1/2, Min need
not make any error; she only has to guess correctly each letter of w in turn, along with
the corresponding exact distribution updates, and eventually zF will rise to 1/2 or above,
allowing her to reach the goal location at zero cumulative cost.

On the other hand, if no word is accepted by A with probability exceeding 1/10, then
Min will be forced to make errors in order to enable µF , and thus in turn zF , to reach 1/2.
Such errors will be punished by Max, extracting a cost of at least 0.4M . Since approximating
the value of G to within 0.1M would enable, thanks to Thm. 6, to decide whether the Turing
machine TM corresponding to A halts or not, one concludes that weighted timed game values
cannot in general be approximated, since otherwise one could solve the Halting Problem.

3.3 Modules and Widgets
We now describe a number of modules enabling us to implement the high-level protocol
described in the previous section. In what follows, recall our assumption from Sec. 2, made
without loss of generality, to the effect that neither player allows him- or herself to be
deadlocked; in particular, if a clock constraint on a given transition requires the transition to
be taken at a certain specific time, or within a certain time interval, for otherwise the run
would deadlock (either immediately or shortly afterwards), then we assume the transition in
question is indeed taken at the correct time.

We begin with the modules Guess(x, Y) and Guesses, depicted in Fig. 1, which enable
Min to set the clocks in XMin to arbitrary values of her choosing in [0, 1]. Here x stands for
an arbitrary clock, and Y for an arbitrary set of clocks not containing x.

The correctness of the following two statements is clear upon inspection; we therefore
omit the proofs.

▶ Lemma 8. Provided x /∈ Y and the initial values of all clocks in Y upon entering
Guess(x, Y) lie in [0, 2), then upon exiting Guess(x, Y) all clocks in Y have their respective
initial values, x has value in [0, 1], and the cumulative weight is unchanged.

CVIT 2016

23:6 Inapproximability in Weighted Timed Games

Guesses

Guess
(
µ1, (XMin ∪ Z) \ {µ1}

)
· · · Guess

(
µℓ, (XMin ∪ Z) \ {µℓ}

)
Guess

(
µF , (XMin ∪ Z) \ {µF }

)

Guess(x, Y)

0 0
t := 0

⋃
y∈Y

(y = 2, y := 0)

t ≥ 1, x := 0

⋃
y∈Y

(y = 2, y := 0)

t = 2
∧

y∈Y

y < 2

Figure 1 The guessing modules, enabling Min to set clocks µ1, . . . , µℓ and µF to arbitrary values
of her choosing in [0, 1], whilst leaving the values of clocks in Z unchanged. Recall that blue circles
depict locations belonging to Player Min. The value 0 inside these circles, in module Guess(x, Y),
represents the weight of these locations (i.e., the rate at which the cumulative weight changes when
control is in one of these locations). The notation ∪y∈Y (y = 2; y := 0) represents a collection
of transitions, one for each y ∈ Y . Note that any such transition, when enabled (i.e., upon the
corresponding clock y ∈ Y reaching value 2), must instantly be taken, otherwise the guard on the
transition exiting module Guess(x, Y) could never be satisfied, and deadlock would ensue.

Add−r (x, Y)

r 0
t := 0

⋃
y∈Y

(y = 2, y := 0)

x = 2∧
y∈Y

y < 2

x := 0

⋃
y∈Y

y = 2, y := 0

t = 2

−2r
∧

y∈Y

y < 2

Add+r (x, Y)

0 r
t := 0

⋃
y∈Y

(y = 2, y := 0)

x = 2∧
y∈Y

y < 2

x := 0

⋃
y∈Y

y = 2, y := 0

t = 2
∧

y∈Y

y < 2

Figure 2 Modules Add−
r (x, Y) and Add+

r (x, Y) enable to alter the cumulative weight by −rx̃

and rx̃ respectively, where x̃ denotes the value of clock x upon entering the module and r ∈ N is a
positive weight. Upon exiting the module, x as well as all clocks in Y have recovered their initial
values. Note the negative weight of −2r on the transition exiting module Add−

r (x, Y); this is the
only place in our weighted timed game G in which a negative weight is used.

▶ Corollary 9. Provided all clocks in XMin and Z have values in [0, 2) upon entering module
Guesses, then upon exit the values of clocks in Z are unchanged, all clocks in XMin have
values in [0, 1], and the cumulative weight is unchanged.

We now introduce modules Add−
r (x, Y) and Add+

r (x, Y), depicted in Fig. 2. Here r ∈ N
stands for a positive weight, x is a clock, and Y is a set of clocks not containing x. The role
of these two modules is to alter the cumulative weight, as follows:

▶ Lemma 10. Assume x /∈ Y and all clocks in {x} ∪ Y have values in [0, 2) upon entering
either Add−

r (x, Y) or Add+
r (x, Y). Let x̃ denote the initial value of clock x. Then upon

exiting Add−
r (x, Y), the cumulative weight has changed by −rx̃ (a decrease), whereas upon

exiting Add+
r (x, Y), the cumulative weight has changed by rx̃ (an increase). Moreover, all

clocks in {x} ∪ Y have recovered their initial values upon exiting either module.

Once again, the statements are clear upon inspection.
We now turn to the payment modules, depicted in Fig. 3, which enable Player Max

Q. Guilmant and J. Ouaknine 23:7

ControlM (x, Y1,Λ, Y2)
where Y1 = {y1, . . . , yk}

0

Add+M (x, Y1 ∪ Y2)

Add−M (x, Y1 ∪ Y2)

Add−Λ(y1)
(y1, (Y1 \ {y1}) ∪ {x} ∪ Y2) · · · Add−Λ(yk)

(yk, (Y1 \ {yk}) ∪ {x} ∪ Y2)

Add+Λ(y1)
(y1, (Y1 \ {y1}) ∪ {x} ∪ Y2) · · · Add+Λ(yk)

(yk, (Y1 \ {yk}) ∪ {x} ∪ Y2)

t := 0

t = 0

t = 0

Paya
where {q1, . . . , qℓ} is the set of states of A

ControlM

(
µ1, clock(ina(q1)),1, (XMin ∪ Z) \ (clock(ina(q1)) ∪ {µ1})

)

· · ·

ControlM

(
µℓ, clock(ina(qℓ)),1, (XMin ∪ Z) \ (clock(ina(qℓ)) ∪ {µℓ})

)

ControlM

(
µF , clock(ina(F)),Λa, (XMin ∪ Z) \ (clock(ina(F)) ∪ {µF })

)

Figure 3 The payment modules, enabling Max to charge Min for guessing errors. x is a clock,
and Y1 and Y2 are disjoint sets of clocks, neither of which contains x. Only Paya is depicted here;
Payb is defined in entirely symmetrical fashion. The submodule ControlM (x, Y1, Λ, Y2) is entered via
a location represented as a red square, and hence belonging to Max, who can then choose between
the upper and lower paths, whichever increases the cumulative weight (the two paths carry weights
of equal magnitude but opposite signs). Note however that Max must act instantly upon entering
submodule ControlM (x, Y1, Y2), as the clock guard t = 0 would otherwise create a deadlock.
The function Λa : Z → N is defined as follows: Λa(z) = #(outa(clock−1(z)) ∩ F); in other words, Λa

retrieves the state of A corresponding to clock z (call it q), and counts how many non-null a-labelled
transitions into F originate from q in A. This is required in order to properly calculate the total
probability of being in F upon reading letter a.
The function 1 simply returns the value 1 on all inputs.

to extract a cost for guessing errors committed by Min. We first need to introduce some
auxiliary definitions.

Given a state qi ∈ Q, let ina(qi) denote the set of all states qj ∈ Q such that there is an
a-labelled non-null transition from qj to qi in A (and recall, as noted in Sec. 3.2, that all such
transitions have weight 1/M). Formally, ina(qi) = {qj ∈ Q | (Aa)i,j = 1/M}. Overloading
notation, write ina(F) = ∪q∈F ina(q). We define inb(qi) and inb(F) in similar fashion.

We also define outa(qi) symetrically, representing the set of states qj such that there is
an a-labelled non-null transition from qi to qj , and similarly for outb(qi).

For qi ∈ Q, let clock(qi) = zi, and extend the clock function to sets of states in the
obvious way: clock(S) = ∪q∈Sclock(q).

We also consider the inverse function clock−1, which associates to clock zi ∈ Z the state
qi ∈ Q.

▶ Lemma 11. Let x̃ and ỹ1, . . . , ỹk denote the initial values of clocks x and y1, . . . , yk

respectively. Provided that all clocks in {x} ∪ Y1 ∪ Y2 have values in [0, 2) upon entering
ControlM (x, Y1, Y2), the cumulative weight of this submodule is

∣∣∣Mx̃ −
∑k

i=1 ỹi

∣∣∣. Moreover,
upon exiting, all clocks (aside from t) have recovered their initial values.

CVIT 2016

23:8 Inapproximability in Weighted Timed Games

Update(x, x′, Y)

0 0
t := 0

⋃
y∈Y

(y = 2, y := 0)

x = 2, x := 0, x′ := 0

⋃
y∈Y

(y = 2, y := 0)

t = 2
∧

y∈Y

y < 2

Updates

Update
(
µ1, z1, (XMin ∪ Z) \ {µ1, z1}

)
· · · Update

(
µℓ, zℓ, (XMin ∪ Z) \ {µℓ, zℓ}

)
Update

(
µF , zF , (XMin ∪ Z) \ {µF , zF }

)

Figure 4 The Updates module resets the value of each clock in Z to its counterpart in XMin.

▶ Corollary 12. For µ ∈ XMin and z ∈ Z, let µ̃ and z̃ respectively denote the initial values
of clocks µ and z upon entering module Paya. Assuming all clocks in XMin ∪ Z have initial
values in [0, 2) upon entering Paya, then all clocks have recovered their initial values upon
exiting Paya, and the cumulative weight has increased by

ℓ∑
j=1

∣∣∣∣∣∣Mµ̃j −
∑

i|qi∈ina(qj)

z̃i

∣∣∣∣∣∣ +

∣∣∣∣∣∣Mµ̃F −
∑

i|qi∈F

∑
j|qj∈ina(qi)

z̃j

∣∣∣∣∣∣ .

By symmetry, an entirely similar assertion holds for module Payb.

Both statements follow by inspection, making use of the previous assertions laid out in
this section.

Our last module updates the values of clocks in Z to agree with their counterparts in
XMin, thereby erasing any gaps created by errors in Min’s guesses, and setting the stage for a
fresh cycle to play out; see Fig. 4.

The following is immediate:

▶ Lemma 13. Provided that all initial values of clocks in {x} ∪ Y lie in [0, 2) upon entering
module Update(x, x′, Y), upon exiting all variables in {x} ∪ Y have recovered their initial
values, x′ agrees with x, and the cumulative weight remains unchanged.

Likewise, assuming all initial values of clocks in XMin ∪ Z lie in [0, 2), module Updates
preserves the values of all clocks in XMin, does not alter the cumulative weight, and ensures
that every clock in Z has the same value as its counterpart in XMin upon exit.

3.4 The Reduction
Recall that we are given a probabilistic automaton A = (Q, q1, F, Aa, Ab) with set of states
Q = {q1, . . . , qℓ}, over alphabet {a, b}, with the property that every non-zero state transition
carries probability exactly 1/M for some M ∈ N. We are moreover promised that either
A accepts some word with probability at least 1/2, or A accepts no word with probability
exceeding 1/10.

Our corresponding weighted timed game G is depicted in Fig. 5. As noted earlier, the
convenient use of the half-integral constant 1/2 in one of the clock constraints is easily
circumvented if desired.

Q. Guilmant and J. Ouaknine 23:9

0

0

G

Guesses

0

Updates

Paya Payb

1

2

z1 = 1zF := 0 if q1 /∈ F
ℓ∧

i=2

zi := 0

t := 0
t = 0

zF ≥ 1
2

t = 0

t := 0

t = 0 t = 0

t := 0

Figure 5 The weighted timed game G. The start location sits at the top, and all clocks have
value 0 in the initial configuration. All three blue circles have null weight (or rate), and likewise all
transitions appearing in the drawing carry null weight. The clock constraint t = 0 on edges forces
an immediate transition to the next location. The goal state (in green, bottom left) is designated by
the letter G. In order to reach it, clock zf must have value at least 1/2 in the preceding location.

▶ Proposition 14. Let A and G be as above. Then:

If there is a word w ∈ {a, b}∗ such that A(w) ≥ 1/2, then the value of G is exactly 0.

If, for all words w ∈ {a, b}∗, A(w) ≤ 1/10, then the value of G is at least 0.4M .

Proof. Consider a run of G in which word w = w1 . . . wn ∈ {a, b}∗ has been played. Let
k ∈ {1, . . . , n}, and for i ∈ {1, . . . , ℓ}, let z̃i,k and z̃F,k be the respective values of clocks zi

and zF upon exiting location
1

for the kth time, and let µ̃i,k and µ̃F,k be the respective

values of clocks µi and µF upon exiting module
2

for the kth time.

By the lemmas and corollaries from the previous section, we have, for all i and k,

µ̃i,k = z̃i,k+1, and likewise µ̃F,k = z̃F,k+1. (∗)

Let us also introduce the following expressions:

Ei,k = z̃i,k − Pw1...wk−1(qi) and EF,k = z̃F,k − Pw1...wk−1(F) ,

εi,k = µ̃i,k −
∑

j|qj∈inwk
(qi)

z̃j,k

M
and εF,k = µ̃F,k −

∑
i|qi∈F

∑
j|qj∈inwk

(qi)

z̃j,k

M
.

Intuitively, Ei,k is the absolute (compound) error on the probability of being in state qi after
k − 1 iterations, and εi,k is the marginal error on this probability upon reading letter wk.
Finally, we let costk be the maximum cumulative weight that Player Max can achieve upon

exiting state
1

for the kth time. For k ∈ {1, . . . , n} and i ∈ {1, . . . , ℓ}, we have:

CVIT 2016

23:10 Inapproximability in Weighted Timed Games

Ei,k+1 = z̃i,k+1 − Pw1...wk (qi)
= µ̃i,k − Pw1...wk (qi) (by (∗))

= εi,k +
∑

j|qj ∈inwk
(qi)

z̃j,k

M
− Pw1...wk (qi)

= εi,k +
∑

j|qj ∈inwk
(qi)

z̃j,k

M
−

∑
j|qj ∈inwk

(qi)
Pw1...wk−1 (qj)(Awk)i,j

= εi,k +
∑

j|qj ∈inwk
(qi)

z̃j,k

M
−

∑
j|qj ∈inwk

(qi)

Pw1...wk−1 (qj)
M

Ei,k+1 = εi,k + 1
M

∑
j|qj ∈inwk

(qi)
Ej,k . (†)

Similarly: EF,k+1 = εF,k + 1
M

∑
qi∈F

∑
j|qj∈inwk

(qi)
Ej,k . (⋆)

Let us now consider the following properties for k ∈ {1, . . . , n + 1}:

P(k) :
ℓ∑

i=1
|Ei,k| ≤

ℓ∑
i=1

k−1∑
m=1

|εi,m|

Q(k) : costk = M
ℓ∑

i=1

k−1∑
m=1

|εi,m| + M
k−1∑
m=1

|εF,m| .

We prove both properties by induction.

The base case is k = 1. Since only the start location and location
1

have been visited,
we have z̃1,1 = 1, z̃i,1 = 0 for 2 ≤ i ≤ ℓ, and z̃F,1 = 1 if q1 ∈ F , and z̃F,1 = 0 otherwise.
On the other hand, Pλ(q1) = 1, Pλ(qi) = 0 for 2 ≤ i ≤ ℓ, and Pλ(F) = 1 if q1 ∈ F , and
Pλ(F) = 0 otherwise.
Therefore Ei,1 = 0 for 1 ≤ i ≤ ℓ and EF,1 = 0. Likewise, cost1 = 0, whence P(1) and
Q(1) hold.
Let k ∈ {1, . . . , n}, and assume that both P(k) and Q(k) hold. Thanks to Cor. 12, we
have:

costk+1 = costk +
ℓ∑

j=1

∣∣∣∣∣Mµ̃j,k −
∑

i|qi∈inwk
(qj)

z̃i,k

∣∣∣∣∣ +

∣∣∣∣∣Mµ̃F,k −
∑

i|qi∈F

∑
j|qj ∈inwk

(qi)
z̃j,k

∣∣∣∣∣
= costk + M(

ℓ∑
i=1

|εi,k| + |εF,k|)

= M
ℓ∑

i=1

k∑
m=1

|εi,m| + M
k∑

m=1
|εF,m| , as required.

Also
ℓ∑

i=1
|Ei,k+1| ≤

ℓ∑
i=1

|εi,k| + 1
M

ℓ∑
i=1

∑
j|qj ∈inwk

(qi)
|Ej,k| (by (†))

≤
ℓ∑

i=1
|εi,k| + 1

M

∑
i,j|(Awk

)i,j =1/M

|Ej,k|

ℓ∑
i=1

|Ei,k+1| ≤
ℓ∑

i=1
|εi,k| + 1

M

ℓ∑
i=1

∑
j|qj ∈outwk

(qi)
|Ei,k| .

By our assumption on A, each state has exactly M non-null outgoing transitions for each
letter. Therefore

ℓ∑
i=1

|Ei,k+1| ≤
ℓ∑

i=1
|εi,k| + 1

M

ℓ∑
i=1

M |Ei,k| .

Applying P(k),
ℓ∑

i=1
|Ei,k+1| ≤

ℓ∑
i=1

|εi,k| +
ℓ∑

i=1

k−1∑
m=1

|εi,m| =
ℓ∑

i=1

k∑
m=1

|εi,m| ,

and therefore P(k + 1) holds, concluding the induction step.

Q. Guilmant and J. Ouaknine 23:11

Now if w is such that A(w) = Pw1...wk
(F) ≥ 1/2, Player Min need only correctly set

each clock µi to its expected value in every iteration, so that, for all i ∈ {1, . . . , ℓ} and all
k ∈ {1, . . . , n + 1}, we have εi,k = 0 and εF,k = 0. By Q(n + 1), the value of G is at most 0.
Since it is easily seen that the value of G cannot be negative, it must indeed be precisely 0.

If, on the other hand, A(w) ≤ 1/10, then in order for Min to reach the goal state after
playing w, it is necessary to have EF,n+1 ≥ 1/2 − 1/10 = 0.4. Using (⋆),

0.4 ≤ εF,n+1 + 1
M

∑
qi∈F

∑
j|qj ∈inwn (qi)

Ej,n+1

≤ |εF,n+1| + 1
M

∑
qi∈F

∑
j|qj ∈inwn (qi)

|Ej,n+1|

≤ |εF,n+1| + 1
M

∑
i,j|(Awn)i,j =1/M∧qi∈F

|Ej,n+1| .

Recall that each state of A has exactly M non-null outgoing transitions for each letter,
and thus at most M wn-labelled outgoing transitions to a final state. We then get

0.4 ≤ |εF,n+1| +
ℓ∑

j=1
|Ej,n+1| .

Using P(n + 1), 0.4 ≤ |εF,n+1| +
ℓ∑

i=1

n∑
m=1

|εi,m| ≤
ℓ∑

i=1

n∑
m=1

|εi,m| +
n∑

m=1
|εF,m| ,

whence, using Q(n + 1), 0.4M ≤ costn+1 .

This is true for any word played. Therefore if no word is accepted by A with probability
exceeding 0.1, the value of G must be at least 0.4M , as claimed. ◀

Our main result now immediately follows:

▶ Theorem 1. Given a two-player, turn-based, weighted timed game with integer weights,
the problem of approximating its value arbitrarily closely is computationally unsolvable.

References
1 Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for weighted

timed games. In Proceedings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP’04), pages 122–133, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

2 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Sci-
ence, 126(2):183–235, 1994. URL: https://www.sciencedirect.com/science/article/pii/
0304397594900108, doi:10.1016/0304-3975(94)90010-8.

3 Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted
timed automata. Theoretical Computer Science, 318(3):297–322, 2004. URL: https://www.
sciencedirect.com/science/article/pii/S0304397503005838, doi:10.1016/j.tcs.2003.
10.038.

4 Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson, Judi Romijn,
and Frits Vaandrager. Minimum-cost reachability for priced time automata. In HSCC01:
Hybrid Systems: Computation and Control, pages 147–161, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

5 Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability res-
ults on weighted timed automata. Information Processing Letters, 98(5):188–194,
2006. URL: https://www.sciencedirect.com/science/article/pii/S0020019006000652,
doi:10.1016/j.ipl.2006.01.012.

6 Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies
in priced timed game automata. In FSTTCS 2004: Foundations of Software Technology

CVIT 2016

https://www.sciencedirect.com/science/article/pii/0304397594900108
https://www.sciencedirect.com/science/article/pii/0304397594900108
https://doi.org/10.1016/0304-3975(94)90010-8
https://www.sciencedirect.com/science/article/pii/S0304397503005838
https://www.sciencedirect.com/science/article/pii/S0304397503005838
https://doi.org/10.1016/j.tcs.2003.10.038
https://doi.org/10.1016/j.tcs.2003.10.038
https://www.sciencedirect.com/science/article/pii/S0020019006000652
https://doi.org/10.1016/j.ipl.2006.01.012

23:12 Inapproximability in Weighted Timed Games

and Theoretical Computer Science, pages 148–160, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

7 Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the Value Problem in Weighted Timed
Games. In Luca Aceto and David de Frutos Escrig, editors, Proceeding of the 26th International
Conference on Concurrency Theory (CONCUR 2015), volume 42 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 311–324, Dagstuhl, Germany, 2015. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/
10.4230/LIPIcs.CONCUR.2015.311, doi:10.4230/LIPIcs.CONCUR.2015.311.

8 Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed strategies.
In Formal Modeling and Analysis of Timed Systems, pages 49–64, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

9 Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Symbolic Approxim-
ation of Weighted Timed Games. In Sumit Ganguly and Paritosh Pandya, editors, Proceeding
of the 38th IARCS Annual Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS 2018), volume 122 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 28:1–28:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.FSTTCS.2018.28, doi:10.4230/LIPIcs.FSTTCS.2018.28.

10 Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Optimal controller
synthesis for timed systems. Log. Methods Comput. Sci., 19(1), 2023.

11 A. Condon and R.J. Lipton. On the complexity of space bounded interactive proofs. In
30th Annual Symposium on Foundations of Computer Science, pages 462–467, 1989. doi:
10.1109/SFCS.1989.63519.

12 Nathanaël Fijalkow. Undecidability results for probabilistic automata. ACM SIGLOG News,
4(4):10–17, nov 2017. doi:10.1145/3157831.3157833.

13 Marcin Jurdziński and Ashutosh Trivedi. Reachability-time games on timed automata. In
Proceedings of the 34th International Colloquium on Automata, Languages and Programming
(ICALP’07), pages 838–849, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

14 Salvatore La Torre, Supratik Mukhopadhyay, and Aniello Murano. Optimal-Reachability and
Control for Acyclic Weighted Timed Automata, pages 485–497. Springer US, Boston, MA,
2002. doi:10.1007/978-0-387-35608-2_40.

15 Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems. Artificial Intelligence, 147(1):5–34, 2003.
Planning with Uncertainty and Incomplete Information. URL: https://www.sciencedirect.
com/science/article/pii/S0004370202003788, doi:10.1016/S0004-3702(02)00378-8.

16 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall Series in
Automatic Computation. Prentice-Hall, 1967.

17 Günter Rote. Probabilistic finite automaton emptiness is undecidable. https://page.mi.
fu-berlin.de/rote/Kram/PFA-undecidable.pdf, 2023. Accessed: 2024-02-20.

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2015.311
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2015.311
https://doi.org/10.4230/LIPIcs.CONCUR.2015.311
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.28
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.28
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.28
https://doi.org/10.1109/SFCS.1989.63519
https://doi.org/10.1109/SFCS.1989.63519
https://doi.org/10.1145/3157831.3157833
https://doi.org/10.1007/978-0-387-35608-2_40
https://www.sciencedirect.com/science/article/pii/S0004370202003788
https://www.sciencedirect.com/science/article/pii/S0004370202003788
https://doi.org/10.1016/S0004-3702(02)00378-8
https://page.mi.fu-berlin.de/rote/Kram/PFA-undecidable.pdf
https://page.mi.fu-berlin.de/rote/Kram/PFA-undecidable.pdf

	1 Introduction
	2 Weighted Timed Games
	3 Inapproximability
	3.1 Probabilistic Finite Automata
	3.2 Reduction Overview
	3.3 Modules and Widgets
	3.4 The Reduction

