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RANKO LAZIĆ, University of Warwick
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Metric temporal logic (MTL) is one of the most prominent specification formalisms for real-time systems.
Over infinite timed words, full MTL is undecidable, but satisfiability for a syntactially defined safety frag-
ment, called safety MTL, was proved decidable several years ago. Satisfiability for safety MTL is also known
to be equivalent to a fair termination problem for a class of channel machines with insertion errors. How-
ever, hitherto its precise computational complexity has remained elusive, with only a non-elementary lower
bound.

Via another equivalent problem, namely termination for a class of rational relations, we show that satis-
fiability for safety MTL is Ackermann-complete, i.e., among the easiest non-primitive recursive problems.
This is surprising since decidability was originally established using Higman’s Lemma, suggesting a much
higher non-multiply recursive complexity.
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1. INTRODUCTION

Metric temporal logic (MTL) is one of the most popular approaches for extending tem-
poral logic to the real-time setting. MTL extends linear temporal logic by constrain-
ing the temporal operators with intervals of real numbers. For example, the formula
♦[3,4]ϕ means that ϕ will hold within 3 to 4 time units in the future. There are two main
semantic paradigms for MTL: continuous (state-based) and pointwise (event-based)—
cf. [Alur and Henzinger 1992; Henzinger 1998]. In the former, an execution of a system
is modelled by a flow which maps each point in time to the state propositions that are
true at that moment. In the latter, one records only a countable sequence of events,
corresponding to instantaneous changes in the state of the system. In this paper we
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interpret MTL over the pointwise semantics1 and assume that time is dense (arbitrar-
ily many events can happen in a single time unit) but non-Zeno (only finitely many
events can occur in a single time unit).
Over the past few years, the theory of well-structured transition systems has been

used to obtain decidability results for MTL. Well-structured transition systems are a
general class of infinite-state systems for which certain verification problems, such as
reachability and termination, are decidable; see [Finkel and Schnoebelen 2001] for a
comprehensive survey. In [Ouaknine and Worrell 2007] satisfiability and model check-
ing for MTL were shown to be decidable by reduction to the reachability problem for a
class of well-structured transition systems. Likewise, for a syntactically defined frag-
ment of MTL that expresses safety properties, called safety MTL, model checking and
satisfiability were shown decidable over infinite timed words by reduction to the termi-
nation problem on well-structured transition systems [Ouaknine and Worrell 2006b].
Extracting well-structured systems from MTL formulas relies on Higman’s Lemma,

which states that over a finite alphabet the subword order is a well-quasi order. Analy-
sis of termination arguments that use Higman’s Lemma has been applied to bound the
complexity of reachability in lossy channel systems and insertion (or gainy) channel
systems: two classes of well-structured systems that arise naturally in the modelling
of communication over faulty media. For the reachability and termination problem in
lossy channel systems, an upper bound in level Fωω of the fast-growing hierarchy was
obtained in [Chambart and Schnoebelen 2008]. (Recall that F<ω comprises the primi-
tive recursive functions, Ackermann’s function lies in Fω, while Fωω contains the first
non-multiply recursive function.) The same paper also shows that neither problem lies
in a lower level of the hierarchy and observes that both lower and upper bounds carry
over to MTL satisfiability over finite words and to reachability in insertion channel
systems, among many other problems.2 An upper bound in Fωω for safety MTL satisfi-
ability has also been sketched in [Schmitz 2012] using related techniques.
Meanwhile, complexity lower bounds for safety MTL have been obtained utilis-

ing a correspondence with the termination problem for insertion channel systems.
In [Bouyer et al. 2012] it is shown that termination for insertion channel machines
with emptiness tests is primitive recursive, though non-elementary.3 This result is
used to give a non-elementary lower bound in F3 for the satisfiability problem for safety
MTL. An improved lower bound in F4 is given in [Jenkins 2012], again via insertion
channel machines, but still leaving a considerable gap with the above-mentioned Fωω

upper bound. This gap was highlighted recently in [Karandikar and Schmitz 2013].
The key to determining the precise complexity of satisfiability for safety MTL is to

study a refined version of the termination problem for channel machines—namely the
fair termination problem. Roughly speaking, an infinite computation of an insertion
channel machine is fair if every message that is written to the channel is eventually
consumed—and not continuously preempted by insertion errors. (In the translation be-
tween channel machines and MTL, fairness corresponds in a precise sense to the non-
Zenoness assumption.) We obtain lower and upper complexity bounds for this problem
that are Ackermannian, i.e., that lie in level Fω of the fast-growing hierarchy. These

1Note that it follows from the thesis work of Henzinger [1991] that MTL satisfiability, even when restricted
to the safety fragment, is undecidable over the continuous semantics.
2Incidentally, themodel-checking problem over infinite timed words for safety MTL against timed automata
can also be shown to have complexity precisely in Fω

ω , following arguments presented in [Ouaknine and
Worrell 2007] together with the results of [Chambart and Schnoebelen 2008]. Also, since safety does not
decrease expressiveness over finite words, the same complexity classification applies to safety MTL satisfi-
ability in that setting.
3In the presence of insertion errors, read-transitions can always be taken, so the channel is redundant
unless there is an extra hypothesis, such as emptiness tests (cf. [Cécé et al. 1996]).
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bounds also apply to safety MTL satisfiability, finally closing the above-mentioned com-
plexity gap. More precisely, we establish that both problems are complete for ACKER-
MANN: the class of all decision problems whose complexity is bounded by the Acker-
mann function, closed under primitive recursive reductions [Schmitz 2013]. In partic-
ular, satisfiability for safety MTL over infinite words has lower computational com-
plexity than satisfiability for MTL over finite words.
Unlike [Bouyer et al. 2012], we consider channel machines with a single channel.

In [Bouyer et al. 2012], without the hypothesis of fairness, the termination problem
was shown to be non-elementary in the number of channels. On the other hand, fair
termination is already undecidable if there are two channels. But with a single chan-
nel fair termination is non-primitive recursive in the size of the channel alphabet. In
commonwith [Bouyer et al. 2012] we find that termination for insertion channels has a
lower complexity than termination for lossy channel systems or reachability for either
type of system, neither of which is multiply recursive.
Our technical development is carried out in a slightly more abstract framework than

insertion channel systems. Following [Karandikar and Schmitz 2013], we study the
termination problem for well-structured transition systems whose states are words
over a given alphabet, and whose transition relation is a rational relation that is
(downwards) compatible with the subword order. (This is similar to the basic frame-
work of regular model checking [Abdulla et al. 2004b], but with the additional hypoth-
esis of monotonicity.)
To obtain membership of ACKERMANN, we associate a Hydra battle with each fi-

nite computation of such a system. For our purposes, a Hydra battle is a sequence
of ‘flat’ regular expressions that express assertions about states in the computation.
Each regular expression can be seen as arising from its predecessor by a process of
truncation (by the sword of Hercules) and regeneration. Our Hydra correspond to the
classical tree Hydra of Kirby and Paris [1982] via a natural correspondence between
flat regular expressions and trees of height 2.
The basic pattern for proving our lower bound result is a standard one, namely to

reduce from the halting problem for Ackermann-bounded Turing machines by simulat-
ing their computations. However, in contrast to the common approach in the literature,
in which a large function and its inverse are computed weakly before and after the
simulation respectively (cf., e.g., [Chambart and Schnoebelen 2008; Schnoebelen 2010;
Karandikar and Schmitz 2013]), we bootstrap a counter that can count accurately to an
Ackermann bound even in the presence of insertion errors. The bootstrapping involves
extending Stockmeyer’s yardstick construction, which reaches beyond the elementary
functions, to surpass all primitive recursive ones.

2. PRELIMINARIES

2.1. Fast Growing Hierarchy

We define an initial segment of the fast growing hierarchy [Löb and Wainer 1970] of
computable functions by following the presentation of Figueira et al. [2011].
For each k ∈ N, class Fk is the closure under substitution and limited recursion

of constant, sum and projection functions, and Fn functions for n ≤ k. The latter are
defined so that F0 is the successor function, and each Fn+1 is computed by iterating Fn:

F0(x) = x + 1 Fn+1(x) = (Fn)x+1(x)

The following are a few simple observations:

— F0 = F1 contains all linear functions, like λx.x + 3 or λx.2x;
— F2 contains all elementary functions, like λx.22x

;
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— F3 contains all tetration functions, like λx. 22
. . .

2

︸ ︷︷ ︸
x

.

The hierarchy is strict for k ≥ 1, i.e., Fk ( Fk+1, because Fk+1 /∈ Fk. Also, for each
k ≥ 1 and f ∈ Fk, there exists p ≥ 1 such that (Fk)p majorises f , i.e., f(x1, . . . , xn) <
(Fk)p(max(x1, . . . , xn)) for all x1, . . . , xn [Löb and Wainer 1970, Theorem 2.10].
The union

⋃
k Fk is the class of all primitive recursive functions, while Fω defined by

Fω(x) = Fx(x) is an Ackermann-like non-primitive recursive function. Defining class
Fω from the functions Fα for α ≤ ω as above, we call Ackermannian the functions that
lie in Fω \

⋃
k Fk.

We remark that, following this pattern for successor and limit ordinals, the hierar-
chy can be continued up to level ωω. The union

⋃
α<ωω Fα is the class of all multiply

recursive functions, and the non-multiply recursive functions in Fωω have been called
‘hyper-Ackermannian’.4

The hierarchy gives rise to the following classes of decision problems [Schmitz 2013].
At any level α, their complexity is bounded by Fα composed with any function in⋃

β<α Fβ:

Fα =
⋃

{DTIME(Fα(g(n))) : ∃β < α. g ∈ Fβ}

In particular, the class ACKERMANN = Fω consists of all decision problems whose
complexity is bounded by Fω(g(n)) for primitive recursive g, and such a problem is
complete if and only if there exist primitive recursive reductions to it from all problems
in ACKERMANN.

2.2. Finite Transducers

We work with normalised transducers with ǫ-transitions, whose input and output al-
phabets are the same. They are tuples of the form 〈Q, Σ, δ, I, F 〉, where Q is a finite set
of states, Σ is a finite alphabet, δ ⊆ Q× (Σ∪{ǫ})× (Σ∪{ǫ})×Q is a transition relation,
and I, F ⊆ Q are sets of initial and final states respectively. We write transitions as

q
a|a′

−−→ q′, which can be thought of as reading a from the input word (if a ∈ Σ) and
writing a′ to the output word (if a′ ∈ Σ).
For a transducer T as above, we say that τ is a transduction if and only if it is a path

q0
a1|a

′
1−−−→ q1 · · ·

an|a′
n−−−−→ qn where q0 is initial and qn is final, and we write In(τ) and Out(τ)

for the words a1 . . . an and a′
1 . . . a′

n respectively. In that case, we also write q0
τ
−→ qn.

The relation of T is then

R(T ) = {〈In(τ), Out(τ)〉 : τ is a transduction of T }.

These transducers recognise exactly the rational relations between Σ∗ and Σ∗ (cf.,
e.g., [Sakarovitch 2009, Chapter IV]).
A computation of a transducer T from a word w1 is a finite or infinite sequence of

words w1, w2, . . . such that w1 R(T ) w2 R(T ) · · · .
If q and q′ are states of a transducer T , we write T (q, q′) for the transducer obtained

from T by making q the only initial state and q′ the only final state.

2.3. Composing Transducers

We write # for relational composition, as well as for its counterpart in terms of trans-
ducers. Recalling a standard definition of the latter operation, given two transducers

4Cf. the discussion in Section 1 of the complexity of MTL satisfiability over finite words.
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T1 = 〈Q1, Σ, δ1, I1, F1〉 and T2 = 〈Q2, Σ, δ2, I2, F2〉, the transition relation of their compo-
sition T1 # T2 = 〈Q1 ×Q2, Σ, δ, I1 × I2, F1 ×F2〉 is defined so that every output of T1 must
be consumed by an input of T2:

〈q1, q2〉
a|a′

−−→ 〈q′1, q
′
2〉 iff





q1
a|ǫ
−−→ q′1 and a′ = ǫ and q2 = q′2, or

q1
a|a′′

−−−→ q′1 and q2
a′′|a′

−−−→ q′2 for some a′′ ∈ Σ, or

q1 = q′1 and a = ǫ and q2
ǫ|a′

−−→ q′2.

We then have R(T1 # T2) = R(T1) # R(T2).

2.4. Downwards Monotone Transducers

Given an alphabet Σ, we write ⊑ for the subword ordering on Σ∗, i.e., w ⊑ w′ if and
only if w′ can be obtained from w by a number of insertions of letters. The downward
closure of a subset L of Σ∗, i.e., {w : ∃w′. w ⊑ w′ ∧ w′ ∈ L}, is denoted by ↓L.
We say that a relation R on Σ∗ is downwards monotone if and only if, whenever

w1 R w2, every replacement of w1 by a subword w′
1 can be matched on the right-hand

side of R, i.e.,

∀w1, w2, w
′
1. w1 R w2 ∧ w′

1 ⊑ w1 ⇒ ∃w′
2. w

′
1 R w′

2 ∧ w′
2 ⊑ w2.

Note that this is the same notion as downward compatibility of R with respect to ⊑ in
the theory of well-structured transition systems [Finkel and Schnoebelen 2001].
A transducer T is said to be downwards monotone if and only if R(T ) has the prop-

erty.

PROPOSITION 2.1. Composing transducers preserves downward monotonicity.

We leave open the decidability of whether a given transducer is downwards mono-
tone. We note however that this problem is at least as hard as the regular Post embed-
ding problem (PEPreg) [Chambart and Schnoebelen 2007], and therefore not multiply
recursive [Chambart and Schnoebelen 2008]. Recall that PEPreg asks, given two mor-
phisms f, g : Σ∗ → Γ∗ and a regular language L ⊆ Σ∗, whether f(x) ⊑ g(x) for some
x ∈ L. Given an instance of PEPreg, as above, it is straightforward to compute a trans-
ducer T that recognises the relation

{〈%x, f(y)〉 : x ∈ Σ∗, y ∈ L, x ⊑ y} ∪ {〈x, u〉 : x ∈ Σ∗, u ∈ Γ∗, u 6⊑ g(x)},

where % is a fresh symbol. One can check that T is downwards monotone if and only
if f, g, L is a negative instance of PEPreg.

2.5. Downward Rational Termination

The principal problem we study is whether a given downwards monotone transducer
terminates from a given word:

Given a downwardsmonotone transducer T and a word w1 over its alphabet,
is every computation of T from w1 finite?

We remark that the standard rational termination problem, i.e., without the as-
sumption of downward monotonicity, is undecidable. Indeed, it is straightforward to
compute a transducer that recognises the one-step relation between configurations of
a given Turing machine.
Another closely related problem is gainy rational termination (also called increasing

rational termination [Karandikar and Schmitz 2013]):

Given a transducer T and a word w1 over its alphabet, is every computation
of T⊑ from w1 finite?
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Here T⊑ = ⊑#T #⊑, where⊑ on the right-hand side denotes a transducer whose relation
is the subword ordering over the alphabet Σ of T :

0
a|a

for all a ∈ Σ
ǫ|a

for all a ∈ Σ

Thus, T⊑ can be thought of as a ‘faulty’ version of T that may gain arbitrary letters in
both input and output words, i.e., suffers from ‘insertion errors’.
By observing that T⊑ is downwards monotone for every transducer T , gainy rational

termination reduces to downward rational termination. Conversely, for a downwards
monotone transducer T , it is easy to see that T has an infinite computation from w1 if
and only if the same is true of T⊑.
For technical convenience, to establish ACKERMANN-completeness of both problems,

we work with downward rational termination for membership (Section 3), and with
gainy rational termination for hardness (Section 4).

3. UPPER BOUND

We obtain that downward rational termination is in the complexity class ACKERMANN

by proving that, given an instance T , w1 of the problem, there is a positive integer
N(T , w1) such that (i) if T terminates from w1 then all its computations from w1 have
lengths bounded by N(T , w1) and (ii) as a function of the length of T and w1, N(T , w1)
is dominated by Fω composed with a primitive recursive function.
At the heart of the proof, there is an analysis of computations of T from w1 in terms

of how frequently they contain words that belong to certain regular languages. A triv-
ial case is when the regular language consists of all words over the alphabet of T , for
which the frequency is 1. More interestingly, our central lemma (Lemma 3.6) shows
that, assuming that the frequency of the language of a regular expression E in a com-
putation of length N is 1/u and that N is sufficiently large in terms of u, either some
segment of the computation can be pumped to produce an infinite computation, or
E can be refined to some E′ whose language’s frequency is some smaller 1/u′. The
notion of refinement of the regular expressions is such that only finitely many suc-
cessive refinements are ever possible, and so if T terminates from w1 then repeated
applications of the lemma must stop because N is not sufficiently large. Moreover, the
refinements of the regular expressions and the decreases in their frequencies observe
certain bounds (that depend on T , but not on w1 or N ), which together with the preced-
ing reasoning enables us to obtain a global bound on the lengths of all the computations
(provided that T terminates from w1).
Before the central lemma, we have two lemmas (Section 3.2) that are about pumpa-

bility of computation segments, and its connection with the regular expressions and
their refinements. Leading to the main result, we have another two lemmas (Sec-
tion 3.4), which are concerned with bounding the sequences of regular expressions
and frequencies that can arise from repeated applications of the central lemma, and
consequences of those bounds for the lengths of computations. However, we first intro-
duce the class of regular expressions used and the notion of refinement, as well as a
useful class of auxiliary transducers.

3.1. Flat Regular Expressions (FRE)

A prominent role in the sequel is played by the following subclass of the simple reg-
ular expressions of Abdulla et al. [2004a]: we say that a regular expression over an
alphabet Σ is flat if and only if it is of the form ∆∗

1d1∆
∗
2d2 · · ·∆

∗
K−1dK−1∆

∗
K with K ≥ 1,

∆1, . . . , ∆K ⊆ Σ and d1, . . . , dK−1 ∈ Σ ∪ {ǫ}.
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For such a regular expression E, let:

— the length of E be K;
— the height of E be maxK

i=1 |∆i|.

If l ∈ N+, let us say that E is l-refined by E′ if and only if E′ can be obtained from E by
replacing some ∆∗

i with an FRE E† over ∆i such that:

— the length of E† is at most l, and
— the height of E† is strictly less than |∆i|, i.e., each set in E† is strictly contained in ∆i.

In that case, E′ is also an FRE over Σ, of length at most K + l− 1. When each set in E†

has size |∆i| − 1, we call the refinementmaximal.
For E still as above, let IE denote an identity transducer on the downward closure

of L(E) (the language of E) as follows:

1

a|a
for all a ∈ ∆1

2
d1|d1

ǫ|ǫ

a|a
for all a ∈ ∆2

· · ·
d2|d2

ǫ|ǫ

K

a|a
for all a ∈ ∆K

Indeed, R(IE) = {〈w, w〉 : w ∈ ↓L(E)}, so IE is downwards monotone.

3.2. Pumpable Transductions

Since finite sequences of consecutive transductions can be seen as single transductions
of composite transducers, it suffices to consider pumpability of transductions instead of
considering it for computation segments. The notion we define applies to transductions
between words in the language of an FRE E = ∆∗

1d1 · · ·∆
∗
K−1dK−1∆

∗
K , and essentially

requires that, for all i, while reading the portion of the input word in ∆∗
i , the trans-

duction visits a part of the transducer that is able to consume any word in ∆∗
i . The

composition with the identity transducer is a technical tool to ensure that traversing
different paths in the state-transition graph still produces words that conform to E.

Definition 3.1. If T is a downwards monotone transducer and E is an FRE of the
form ∆∗

1d1 · · ·∆
∗
K−1dK−1∆

∗
K over an alphabet Σ, and τ is a transduction of composite

transducer T # IE such that In(τ) ∈ L(E), let us say that τ is pumpable if and only if it
can be factored as

s1
τ1−→ s′1

d1|e1

−−−→ s2
τ2−→ s′2

d2|e2

−−−→ · · · sK
τK−−→ s′K ,

such that, for each i ∈ {1, . . . , K}, ∆∗
i ⊆ ↓dom(R((T # IE)(si, s

′
i))).

We remark that there is an unexpected analogy between this pumpability condition
and the θ condition that is central to the proof of Kosaraju [1982] that the reachability
problem for vector addition systems is decidable. Indeed, the flat regular expressions
are in fact representations of ideals of words over Σ with respect to the subword or-
dering [Jullien 1969], whereas the structures employed in Kosaraju’s θ condition have
recently been shown to correspond to ideals of runs of vector addition systems [Leroux
and Schmitz 2015].
Our first lemma confirms that pumpable transductions yield infinite computations.
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LEMMA 3.2. If T is downwards monotone, and T # IE has a transduction τ such
that In(τ) ∈ L(E) and which is pumpable, then T has an infinite computation from any
word in ↓L(E).

PROOF. Consider w ∈ ↓L(E). It suffices to show that w R(T # IE) w′ for some w′.

Let s1
τ1−→ s′1

d1|e1

−−−→ · · · sK
τK−−→ s′K be a factoring of τ which demonstrates its pumpa-

bility, where E = ∆∗
1d1 · · ·∆

∗
K−1dK−1∆

∗
K . Let us also write w as w1d

′
1w2d

′
2 · · ·wK , where

wi ∈ ∆∗
i for all i ∈ {1, . . . , K}, and d′i ∈ {di, ǫ} for all i ∈ {1, . . . , K − 1}. Now, for each i,

we have that

wi ∈ ↓dom(R((T # IE)(si, s
′
i))),

so there exists a transduction τ ′
i of (T # IE)(si, s

′
i) such that wi ⊑ In(τ ′

i ). Hence

τ ′ = s1
τ ′
1−→ s′1

d1|e1

−−−→ · · · sK

τ ′
K−−→ s′K ,

is a transduction of T # IE from a superword of w. But T # IE is downwards monotone
(recall Proposition 2.1), so it must also have a transduction from w, which completes
the proof.

The following is a ‘pumping lemma’: roughly, if a transduction from E to E is such
that its input word is not in the language of any ‘short’ refinement of E, then it is
pumpable. Here ‘short’ amounts to a bound which is the product of the length of E and
the size of the transducer’s state space.

LEMMA 3.3. Suppose that:

— T is a downwards monotone transducer with set of states Q and alphabet Σ;
—E is an FRE over Σ, of length K;
— τ is a transduction of T # IE such that In(τ) ∈ L(E).

Then either τ is pumpable, or In(τ) ∈ L(E′) for some K|Q|-refinement E′ of E.

In the proof that follows, we show that pumpability is equivalent to the transduction
visiting, for each ∆∗ in E, a strongly connected component of the state-transition graph
that, for every word in ∆∗, is able to consume some superword. The next definition
plays a key role.

Definition 3.4. For a strongly connected component C of a transducer T over Σ, and
a subset ∆ of Σ, let us say that C is ∆-total if and only if, for each a ∈ ∆, there is an
input of a in C (i.e., a transition labelled by 〈a|a′〉 for some a′, whose source and target
states are in C).

PROOF. Let E = ∆∗
1d1 · · ·∆

∗
K−1dK−1∆

∗
K . Since In(τ) ∈ L(E), we can factor τ as

s1
τ1−→ s′1

d1|e1

−−−→ · · · sK
τK−−→ s′K , where In(τi) ∈ ∆∗

i for all i.
Assume that τ is not pumpable. Then, for some i, ∆∗

i is not contained in the down-
ward closure of the domain of transducer (T # IE)(si, s

′
i). The key observation is:

(∗) No state in τi can belong to a ∆i-total strongly connected component of T # IE .

Indeed, we would otherwise have that τi is of the form si

τ ′
i−→ s′′i

τ ′′
i−−→ s′i, where s′′i belongs

to a ∆i-total strongly connected component, which would mean that

∆∗
i ⊆ ↓dom(R((T # IE)(s′′i , s′′i ))) ⊆ ↓dom(R((T # IE)(si, s

′
i))).

Now, from (∗) and since In(τi) ∈ ∆∗
i , we have that In(τi) must belong to the language

of some FRE E† = (∆†
1)

∗d†1 · · · (∆
†
K†−1

)∗d†
K†−1

(∆†
K†)

∗ over ∆i such that:
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—K† is the number of strongly connected components that are visited by τi;

— for each j ∈ {1, . . . , K†}, ∆†
j is a strict subset of ∆i.

Hence, letting E′ be obtained from E by replacing ∆∗
i with E†, we have that

In(τ) = In(τ1)d1 · · · In(τi)di · · · In(τK) ∈ L(E′)

and that E′ is a K†-refinement of E. It remains to observe that K† is at most K|Q|, the
number of states of T # IE .

3.3. Sword of Hercules

Our central lemma, assuming that γ is a computation of length N from w1 of a down-
wards monotone T which terminates from w1, can be applied repeatedly to γ to yield
some sequence 〈E0, u0〉, 〈E1, u1〉, . . . of pairs of FREs and positive integers, as long as
N is sufficiently large. For each h, there are at least ⌊N/uh⌋ occurrences in γ of words
from the language of Eh. Moreover, each Eh+1 refines Eh, and the length of Eh+1 as
well as uh+1 are bounded by elementary functions of: the number of states of T , the
length and height of Eh, and uh.
Recalling the notion of refinement, each application of the lemma can be thought of

as a strike of Hercules on the FRE Eh, after which the latter has a Hydra-like response:
although some component of the form ∆∗

h is removed from Eh, it is replaced in Eh+1 by

some FRE E†
h. The height of E†

h, however, must be strictly smaller than the size of ∆h,
but the bound on its length grows with every strike.

Definition 3.5. For α ∈ (0, 1], let us say that a regular expression E is α-frequent in
a sequence of words w1, . . . , wN if and only if there exists J ⊆ {1, . . . , N} of size ⌊Nα⌋
such that wj ∈ L(E) for all j ∈ J .

LEMMA 3.6. Suppose that γ = w1, . . . , wN is a computation of a downwards mono-
tone transducer T with set of states Q and alphabet Σ, and that T terminates from w1.
If an FRE E over Σ and u ∈ N+ are such that N ≥ 16u2 and E is 1/u-frequent in γ,
then there exists a K|Q|4u-refinement E′ of E which is 1/u′-frequent in γ, where K is the

length of E, H is the height of E, and u′ = 16u2K(H + 1)2K|Q|4u

.

PROOF. Let J ⊆ {1, . . . , N} of size ⌊N/u⌋ be such that wj ∈ L(E) for all j ∈ J .
Thinking of N as ‘large’ and u as ‘small’, we first observe that J contains many disjoint
pairs of indices such that the differenceswithin them are small and equal. Consider the
set J as a sequence j1 < j2 < · · · . The sequence of adjacent differences j2−j1, j4−j3, . . .
has length ⌊|J |/2⌋ = ⌊N/2u⌋ and its sum is at most N . Hence, at least ⌊N/4u⌋ of the
adjacent differences are not greater than 4u. Let D ≤ 4u be a value that occurs most
often in that subsequence of at least ⌊N/4u⌋ adjacent differences, which means that it
occurs at least ⌊⌊N/4u⌋/4u⌋ = ⌊N/16u2⌋ times. We therefore have a subset J† of J of
size ⌊N/16u2⌋, such that j + D ∈ J for all j ∈ J†.
Let T D be the transducer obtained by D times iterating T :

T D = T # · · · # T︸ ︷︷ ︸
D

.

Consider j ∈ J†. Since wj R(T D) wj+D and wj , wj+D ∈ L(E), the composite trans-
ducer T D # IE has a transduction τj such that In(τj) = wj ∈ L(E). Also, T D is down-
wards monotone because T is (cf. Proposition 2.1), and it terminates from wj as other-
wise T would not terminate from w1. Therefore, τj is not pumpable by Lemma 3.2, so
Lemma 3.3 gives us that wj belongs to the language of some K|Q|D-refinement E′

j of
E, which we can assume is maximal.
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To complete the proof, let E′ be a regular expression which occurs most often in the
sequence of regular expressions E′

j as j enumerates J†. Since D ≤ 4u, we have that

E′ is indeed a K|Q|4u-refinement of E. Also, the cardinality of the set of all E′
j is at

most K(H + 1)2K|Q|D and |J†| = ⌊N/16u2⌋, so we can let J ′ be a subset of J† of size
⌊N/u′⌋ such that E′ = E′

j for all j ∈ J ′. It remains to recall that, for each j ∈ J ′,
wj ∈ L(E′

j) = L(E′).

3.4. Slaying the Hydra

The next two lemmas show that every sequence of pairs of FREs and positive integers
that can arise from repeated applications of Lemma 3.6 is finite, i.e., Hercules always
defeats the Hydra eventually, and that if N ≥ 16u2 for every u in such a sequence
and T terminates from w1, then T cannot have a computation from w1 of length N .
Moreover, from the single-step bounds in Lemma 3.6, we establish a bound for each
pair in terms of |Q|, |Σ| and the distance from the initial pair 〈Σ∗, 1〉, where Q and Σ
are the state space and the alphabet of T .
We first define a directed graph which contains every sequence that Lemma 3.6

can yield. To show that every path that starts from 〈Σ∗, 1〉 is finite, we also introduce
a measure on FREs E over Σ in terms of |Σ|-tuples of natural numbers. The latter
records, for each s ∈ {1, . . . , |Σ|}, how many sets of size s occur in E.
We say that a sequence y0, y1, . . . of tuples in some Nk is bad if and only if there do

not exist i < j such that yi ≤ yj , where ≤ is the pointwise ordering. We recall that,
by Dickson’s Lemma, ≤ is a well-quasi ordering on Nk, i.e., there is no infinite bad
sequence. Hence, the finiteness of every path from 〈Σ∗, 1〉 follows once we show that
every corresponding sequence of measures in N|Σ| is bad.

Definition 3.7. Given a set of states Q and an alphabet Σ, let ΥQ,Σ be the graph:

— the vertices are pairs 〈E, u〉 where E is an FRE over Σ and u ∈ N+;
— there is an edge from 〈E, u〉 to 〈E′, u′〉 if and only if E′ is a K|Q|4u-refinement of E

and u′ = 16u2K(H + 1)2K|Q|4u

, where K is the length of E and H is the height of E.

Definition 3.8. For E = ∆∗
1d1 · · ·∆

∗
K−1dK−1∆

∗
K an FRE over Σ and s ∈ {0, . . . , |Σ|},

let Ys(E) = |{i : i ∈ {1, . . . , K} and |∆i| = s}|.

LEMMA 3.9. Suppose that Q is a set of states, Σ is an alphabet, and 〈E0, u0〉 →
〈E1, u1〉 → . . . is a path from 〈Σ∗, 1〉 in ΥQ,Σ. Then

〈Y1(E0), . . . , Y|Σ|(E0)〉, 〈Y1(E1), . . . , Y|Σ|(E1)〉, . . .

is a bad sequence, and letting f(u) = 16u3+2u1+4u

, we have
∑|Σ|

s=0 Ys(Eh), uh <

fh+max(|Q|,|Σ|)(2) for all h.

PROOF. To show that the sequence in N|Σ| is bad, consider two indices i < j. By
the definition of the graph ΥQ,Σ, for each h ∈ {i, . . . , j − 1}, we have that Eh+1 can be

obtained from Eh by replacing some ∆∗
h with an FRE E†

h whose height is strictly less
than |∆h|. Hence:

Y|∆h|(Eh+1) = Y|∆h|(Eh) − 1

Ys(Eh+1) = Ys(Eh) for all s ∈ {|∆h| + 1, . . . , |Σ|},

so letting Si,j be the largest such |∆h|, we conclude that YSi,j
(Ej) < YSi,j

(Ei). Thus, as
required,

〈Y1(Ei), . . . , Y|Σ|(Ei)〉 6≤ 〈Y1(Ej), . . . , Y|Σ|(Ej)〉.
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We prove
∑|Σ|

s=0 Ys(Eh), uh < fh+max(|Q|,|Σ|)(2) by induction on h.

We have E0 = Σ∗ so
∑|Σ|

s=0 Ys(E0) = 1, and also u0 = 1. Observing that

fmax(|Q|,|Σ|)(2) ≥ 2, the base case is done.
Consider an edge in the path 〈Eh, uh〉 → 〈Eh+1, uh+1〉. Writing U for fh+max(|Q|,|Σ|)(2),

assume that
∑|Σ|

s=0 Ys(Eh) and uh are strictly less than U . Since the lengths of Eh and

E†
h are, respectively, equal to

∑|Σ|
s=0 Ys(Eh) and at most

(∑|Σ|
s=0 Ys(Eh)

)
|Q|4uh , and since

U > |Q|, we have:

∑|Σ|
s=0 Ys(Eh+1) ≤

∑|Σ|
s=0 Ys(Eh) +

(∑|Σ|
s=0 Ys(Eh)

)
|Q|4uh − 1 <

U
(
1 + |Q|4U

)
< U1+4U < f(U).

Similarly, since also U > |Σ|, we have:

uh+1 ≤ 16u2
h

(∑|Σ|
s=0 Ys(Eh)

)
(|Σ| + 1)

2
“

P|Σ|
s=0

Ys(Eh)
”

|Q|4uh

<

16U3(|Σ| + 1)2U|Q|4U

< 16U3U2U1+4U

= f(U).

But f(U) = f (h+1)+max(|Q|,|Σ|)(2), so the induction is complete.

LEMMA 3.10. Suppose that:

— T is a downwards monotone transducer with set of states Q and alphabet Σ;
— T terminates from w1;
—N ≥ 16u2 for all vertices 〈E, u〉 that are reachable from 〈Σ∗, 1〉 in ΥQ,Σ.

Then T does not have a computation from w1 of length N .

PROOF. For a contradiction, assume γ is a computation of T from w1 of length N .
Trivially,Σ∗ is 1-frequent in γ. By applying Lemma 3.6 repeatedly, we obtain an infinite
path 〈E0, u0〉 → 〈E1, u1〉 → . . . from 〈Σ∗, 1〉 in ΥQ,Σ, which is nonsense by Lemma 3.9
because of Dickson’s Lemma.

3.5. Main Result

Given the preceding lemmas, it remains to do two things. The first is to show that, in
every graph ΥQ,Σ, the positive integers in all vertices that are reachable from 〈Σ∗, 1〉
are bounded by an Ackermann-like function of |Q| and |Σ|. Although the vertices and
edges of ΥQ,Σ can be encoded using the classical Hydra trees of Kirby and Paris [1982],
we do not require the full generality of the latter, but are able to obtain an Ackermann
bound using Lemma 3.9 and recent results of Figueira et al. [2011] on lengths of bad
sequences of tuples of natural numbers.
Writing N(|Q|, |Σ|) for the obtained bound, it then remains to argue that a compu-

tation of T from w1 can be non-deterministically guessed and checked in Ackermann
time or space, but that can be done by a straightforward non-deterministic algorithm
that explores the state-transition graph of the iterated transducer T N(|Q|,|Σ|)−1 on the
fly.

THEOREM 3.11. Termination for a downwards monotone transducer T with set of
states Q and alphabet Σ, from a word w1 over Σ, is in ACKERMANN. For fixed |Σ|, the
problem is in F|Σ|+3.

PROOF. From Lemma 3.9, for every path 〈E0, u0〉 → 〈E1, u1〉 → . . . from vertex
〈Σ∗, 1〉 in ΥQ,Σ, the sequence

〈Y1(E0), . . . , Y|Σ|(E0)〉, 〈Y1(E1), . . . , Y|Σ|(E1)〉, . . .
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in N|Σ| is bad, and for all h, max(Y1(Eh), . . . , Y|Σ|(Eh)) < fh+max(|Q|,|Σ|)(2), i.e., in the
terminology of Figueira et al. [2011], the sequence is max(|Q|, |Σ|)-controlled by the
function g(h) = fh(2). Since f is in class F2 of the fast growing hierarchy, we have
that g belongs to F3. Also, g is monotone and satisfies g(h) ≥ max(1, h) for all h, and
we can assume that |Σ| ≥ 1. Hence, [Figueira et al. 2011, Proposition 5.2] applies and
gives us a function Ms(t) such that Ms is in Fs+2 for each s ≥ 1, and the length of
〈Y1(E0), . . . , Y|Σ|(E0)〉, 〈Y1(E1), . . . , Y|Σ|(E1)〉, . . . is at most M|Σ|(max(|Q|, |Σ|)).
Since the distance of each 〈E, u〉 that is reachable from 〈Σ∗, 1〉 in ΥQ,Σ is at most

M|Σ|(max(|Q|, |Σ|)) − 1, we have by Lemma 3.9 that N(|Q|, |Σ|) ≥ 16u2, where

N(k, s) = 16(g(Ms(max(k, s)) − 1 + max(k, s)))2.

Therefore, by Lemma 3.10, T terminates from w1 if and only if it does not have a
computation from w1 of length N(|Q|, |Σ|).
We conclude that termination of T from w1 is decidable by guessing and checking

an N(|Q|, |Σ|)-long computation of T from w1, which is equivalent to guessing and
checking a transduction of the iterated transducer T N(|Q|,|Σ|)−1 from w1. From the
definition of composition, states of T N(|Q|,|Σ|)−1 are (N(|Q|, |Σ|) − 1)-tuples of states of
T , and its transitions are

〈q1, . . . , qN(|Q|,|Σ|)−1〉
a|a′

−−→ 〈q′1, . . . , q
′
N(|Q|,|Σ|)−1〉

such that, for some 1 ≤ i ≤ i′ ≤ N(|Q|, |Σ|) − 1, we have:

— qj = q′j for all 1 ≤ j < i;
— there exist transitions

qi

ai|a
′
i−−−→ q′i, . . . , qi′

ai′ |a
′
i′−−−−→ q′i′

with a′
j = aj+1 ∈ Σ for all i ≤ j < i′;

— qj = q′j for all i′ < j ≤ N(|Q|, |Σ|) − 1;
— a = ai, and if 1 < i then a = ǫ;
— a′

i′ = a′, and if i′ < N(|Q|, |Σ|) − 1 then a′ = ǫ.

Observe also that it suffices to consider transductions of T N(|Q|,|Σ|)−1 whose segments
between successive reads from w1 are of length at most |Q|N(|Q|,|Σ|)−1, because oth-
erwise they would contain redundant loops. Since the guessing and checking can be
performed without computing the entire iterated transducer and without remember-
ing an entire transduction, but by storing at most one transition of T N(|Q|,|Σ|)−1 at
a time together with a fixed number of pointers to T and w1, and a counter up to
|Q|N(|Q|,|Σ|)−1, we have that space

O(N(|Q|, |Σ|) × (log |Q| + log |Σ|) + log |w1|)

is sufficient for a non-deterministic algorithm.
Recalling that M|Σ| is in F|Σ|+2 and that g is in F3 ⊆ F|Σ|+2, we have that N(|Q|, |Σ|)

as a function of |Q| is also in F|Σ|+2. Therefore, as a function of the combined size of
T and w1, the non-deterministic space bound is in F|Σ|+2 when |Σ| is fixed, and in
general dominated by Fω composed with a primitive recursive function. The respective
memberships of F|Σ|+3 and ACKERMANN follow by the robustness of those classes with
respect to changes in the model of computation [Schmitz 2013, Section 4.2.1].

We remark that, from the bound obtained in the proof, the downward rational ter-
mination problem for fixed T is decidable non-deterministically in space logarithmic
in |w1|.
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4. LOWER BOUND

We use the following variant of the fast growing functions Fk, which give rise to the
Ackermann hierarchy (cf. e.g. [Friedman 2001]):

A1(x) = 2x Ak+1(x) = (Ak)x(1), for k ≥ 1.

For example, A2 is exactly exponentiation of 2, and A3 is exactly tetration of 2.
One can check that, for all k, p ≥ 1, there exists xk,p ≥ 0 such that, for all x ≥ xk,p,

we have Ak(x) > (Fk−1)
p(x); hence Ak /∈ Fk−1 if k ≥ 2 by [Löb and Wainer 1970,

Theorem 2.10]. Conversely, Ak(x) ≤ Fk(x) for all k ≥ 1 and x ≥ 0, so Ak ∈ Fk.
Moreover, each of the complexity classes Fk is equal [Schmitz 2013, Theorem 4.1] to

⋃

k′<k, g∈Fk′

DTIME(Ak(g(n))).

To obtain our lower bound result, we provide a construction of ‘dependent counter
programs’ D1, D2, . . . such that each Dk+1 is computable from Dk in logarithmic space.
For every k, Dk consists of routines for basic counter operations (increment, decrement,
zero test, maximum test), and is dependent in the sense that it may call as subroutines
the operations of another (non-dependent) counter program, where the latter remains
to be specified and composed with Dk. Moreover,Dk is closely related to the Ak function
above: provided C is a counter program that reliably implements a counter bounded
by N (in the sense that transducers that correspond to its routines compute correctly,
even if insertion errors are possible), then the composition Dk[C] reliably implements a
counter bounded by Ak(N). Given a Turing machine of size K, we then use DK [C] with
C reliable up to K to build a transducer that reliably simulates AK(K) steps of the
machine (in the presence of insertion errors), and diverges if and only if the machine
halts.
To facilitate formulating the construction of the routines that make up the depen-

dent counter programs Dk, we introduce a few notions and notations for programming
with transducers. We begin with the most basic and general (Section 4.1): forming
sequential routines from transducers and non-deterministic jumps. Such a routine is
itself compiled to a transducer, whose alphabet includes the routine’s line labels. We
then introduce a mechanism for calls to and returns from subroutines (Section 4.2),
albeit with bounded stack heights which suffice for our purpose. The final and most in-
tricate construct is a star operator (Section 4.3). The latter is a program transformer,
and is able to produce programs that reliably implement counters up to successively
larger bounds.
Along the way, we specialise from routines with arbitrary alphabets to those that

aim to implement the four operations on bounded counters: increment, decrement,
zero test and maximum test. The initial generality, however, is not excessive: our later
constructions build transducers that implement the counter operations by sequences
of transductions over carefully defined alphabets. The initial and final words in those
computations are appropriate encodings of counter values. The latter can be thought of
as sophisticated representations of natural numbers with large upper bounds, that en-
able the four operations to be performed correctly by small transducers in the presence
of insertion errors.
Before reading the technical material that follows, the reader may want to glance

forwards at the definitions of:

— the program Enum(N) (Section 4.1) that implements a counter up to N using an
alphabet of size N , so that each value is encoded by a single letter;
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—the dependent program Double (Section 4.2) that implements a counter up to 2N
using a single binary digit, assuming a library of routines that implements an N -
bounded counter, for any N .

4.1. Basic Counter Programs

For a finite set of labels Λ and a finite alphabet Σ which are disjoint, a Λ-labelled
Σ-transducing routine is a sequence of labelled commands

l1 : c1, . . . , lK : cK ,

where l1, . . . , lK ∈ Λ are pairwise distinct, for each i < K we have that

— either ci is a transducer with alphabet Σ
—or ci is of the form goto G for a non-empty subset G of {l1, . . . , lK},

and cK is return.
Given a Λ-labelled Σ-transducing routine P as above, let T (P ) be a transducer with

alphabet Λ ∪ Σ and the following properties:

— if the input word is of the form liw with ci a transducer and w ∈ Σ∗, the possible
output words are all li+1w

′ where w′ is an output of ci from input w;
— if the input word is of the form liw with ci = goto G and w ∈ Σ∗, the possible output

words are li′w where li′ ∈ G;
— for all other inputs, there are no outputs.

We omit the straightforward details of T (P ), but note that it is computable from P in
logarithmic space.
Recall the notion of a computation of a finite transducer in Section 2.2.

Definition 4.1. For P still as above, and a relation R on Σ∗, we say that P reliably
computes R if and only if

{〈w, w′〉 ∈ (Σ∗)2 : T (P )⊑ has a computation from l1w to lKw′} = R⊑

and all computations of T (P )⊑ are finite, where T (P )⊑ is the gainy version of the
transducer of P (cf. Section 2.5) and R⊑ = ⊑#R#⊑ is the gainy version of the relation R.

Note that the requirements for computing reliably are strong. In particular, if
started from l1w where w is not a subword of a valid input for R, then P is required to
stop before reaching return. When w is a valid input (or a subword), P must be able to
produce (upon successful termination) all corresponding outputs of R; however, P may
also have other computations that stop before reaching return, for example because a
wrong guess was made along the way, or because insertion errors have been detected
that would make the output invalid.
We now formalise when a collection of routines is regarded to simulate reliably the

four basic operations on a bounded counter, using words as encodings of counter values.
By a Λ-labelled Σ-transducing counter program C, we mean a collection of Λ-labelled
Σ-transducing routines C.inc, C.dec, C.iszero and C.ismax . We then say that C is N -
reliable if and only if there exist words

ν(0), ν(1), . . . , ν(N − 1) ∈ Σ∗

such that:

— for all distinct n and n′, we have ν(n) 6⊑ ν(n′);
—C.inc reliably computes {〈ν(n), ν(n + 1)〉 : n < N − 1};
—C.dec reliably computes {〈ν(n), ν(n − 1)〉 : n > 0};
—C.iszero reliably computes {〈ν(0), ν(0)〉};
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—C.ismax reliably computes {〈ν(N − 1), ν(N − 1)〉}.

Observe that, when C is N -reliable, the gainy transducers of its routines behave as
expected: for example, running T (C.iszero)⊑ checks that the initial word is a subword
of ν(0) (i.e., T (C.iszero)⊑ stops otherwise) and produces a superwordw0 of ν(0); running
T (C.inc)⊑ from w0 checks that w0 in fact equals ν(0) and produces a superword w1 of
ν(1); similarly, for any n < N , running T (C.inc)⊑ from w1 a further n− 1 times checks
that all intermediate words are correct and produces a superword wn of ν(n); running
T (C.ismax )⊑ from wn checks that wn equals ν(N − 1) (in which case n is maximal) and
produces a superword w′

n of ν(n); etc.
For a positive integer N , we define Enum(N) to be a counter program with alphabet

{a0, a1, . . . , aN−1} as follows:

—Enum(N).inc and Enum(N).dec are two-line routines. Their first commands are
transducers that input only one-letter words of the form an, where n < N − 1 or
n > 0 respectively, and output an+1 or an−1 respectively. Their second commands are
return.

— Similarly, Enum(N).iszero and Enum(N).ismax are two-line routines with transduc-
ers that input only one-letter words a0 or aN−1 respectively, and output them un-
changed.

Skipping the straightforward details, we note that Enum(N) is computable in space
logarithmic in N .

LEMMA 4.2. For every N , the counter program Enum(N) is N -reliable.

PROOF. The encodings of counter values are the one-letter words a0, a1, . . . , aN−1,
which are certainly incomparable with respect to the subword ordering.
Consider the routine Enum(N).inc, and let l1 and l2 be the labels of its two lines. By

the definition of T (Enum(N).inc), its only transductions are from words of the form
l1an to words of the form l2an+1. Hence, the only non-trivial computations of its gainy
version T (Enum(N).inc)⊑ are of the form w, w′, where w ⊑ l1an and l2an+1 ⊑ w′. We
conclude that Enum(N).inc reliably computes {〈an, an+1〉 : n < N − 1}.
The arguments for the remaining routines of Enum(N) are analogous.

4.2. Dependent Counter Programs

Let Λ-labelled Σ-transducing dependent routines be defined by generalising the notion
of routine to allow commands of the form call op, where

op ∈ {inc, dec, iszero, ismax}.

To complete such a dependent routine P , it needs to be composed with a Λ′-labelled Σ′-
transducing counter program C. Any subroutine invocation call op in P then performs
the counter operation C.op.
For such P and C, their composition is defined as a routine denoted P [C] in Figure 1.

Its alphabet is the union of Λ, Σ, Λ′, Σ′, and two fresh symbols: $ and #. For readability,
only some line labels of P [C] are displayed, but as standard for routines, they are all
assumed to be disjoint from P [C]’s alphabet. We note that P [C] is computable from P
and C in logarithmic space.
The basic idea behind the definition of P [C] is simple: configurations of P and C are

both kept on the tape (i.e., in the word that P [C] transduces repeatedly), separated
by a special symbol; all transducers in the code of P [C] check that a separator occurs
at most once, hence catching errors that insert spurious special symbols. The counter-
encoding output by each call of a subroutine of C is used as input for any next such call.
Moreover, the initial tape when P [C] is called may, in addition to an input for P , contain
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transduce w#w′ to lw#w′ where w ∈ Σ∗, w′ ∈ Σ′∗, l is the first label in P

loop : goto {trans$, trans#, goto$, goto#, call#, return$, return#}

trans$ : transduce lw$l′w′ to lw$l′>w′
> where the command at l in P is call op,

w ∈ Σ∗, the command at l′ in C.op is a transducer T ,
l′> is the next label, w′ R(T ) w′

>; goto {loop}

trans# : transduce lw#w′ to l>w>#w′ where the command at l in P is a transducer T ,
l> is the next label, w R(T ) w>, w′ ∈ Σ′∗; goto {loop}

goto$ : transduce lw$l′w′ to lw$l′>w′ where the command at l in P is call op,
w ∈ Σ∗, the command at l′ in C.op is goto G,
l′> ∈ G, w′ ∈ Σ′∗; goto {loop}

goto# : transduce lw#w′ to l>w#w′ where the command at l in P is goto G,
l> ∈ G, w ∈ Σ∗, w′ ∈ Σ′∗; goto {loop}

call# : transduce lw#w′ to lw$l′w′ where the command at l in P is call op,
w ∈ Σ∗, l′ is the first label in C.op, w′ ∈ Σ′∗; goto {loop}

return$ : transduce lw$l′w′ to l>w#w′ where the command at l in P is call op,
l> is the next label, w ∈ Σ∗, the command at l′ in C.op is return,
w′ ∈ Σ′∗; goto {loop}

return# : transduce lw#w′ to w#w′ where the command at l in P is return,
w ∈ Σ∗, w′ ∈ Σ′∗; return

Fig. 1. Composing dependent routines with counter programs

a counter encoding which is to be used as input for the first call of a subroutine of C.
The latter feature enables one or more dependent routines that use a common counter
program to be performed in succession and possibly multiple times, while operating on
the same counter.
The transducers in the loop of P [C] consume words that conform to one of the fol-

lowing two disjoint regular expressions:

ΛΣ∗$Λ′Σ′∗. Such a tape contains configurations of both P and C. The next step in the
composition is a step of C. Moreover, the current line of P contains a call
to the subroutine of C that is currently being executed.

ΛΣ∗#Σ′∗. Here, the tape contains a configuration of P and the latest output of a
subroutine of C. The next step in the composition is a step of P .

The type of the current tape, as well as the kind of operation that the current line of P
or C (as appropriate) specifies, are guessed non-deterministically in line labelled loop.
If such a guess is incorrect, the subsequent verification fails and P [C] stops without
terminating successfully. Otherwise, P [C] updates the tape by performing the required
operation and repeats the loop, unless the operation was P ’s return in which case P [C]
also returns.

Definition 4.3. Extending the notion of dependence to counter programs, for a de-
pendent counter program D and a counter program C, we write D[C] for the counter
program whose routines D[C].op are defined as (D.op)[C].

Definition 4.4. For a dependent counter program D and a function f : N+ → N+,
we say that D is f -reliable if and only if, for all N -reliable counter programs C, D[C] is
f(N)-reliable.
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l1 : goto {l2, l5}

l2 : transduce 0 to 0, or transduce 1 to 1

l3 : call inc; goto {l11}

l5 : call ismax ; transduce 0 to 1

l7 : goto {l8, l10}

l8 : call dec; goto {l7}

l10 : call iszero

l11 : return

Fig. 2. Incrementing a double dependent counter

We now define a dependent counter program which is λx.2x-reliable. When com-
posed with an N -reliable counter program C, the former keeps track by a single 0 or 1
whether its value n is in the interval [0, N) or [N, 2N) (respectively), and employs C to
maintain the value n or n − N (respectively).
Let Double be a dependent counter program with alphabet {0, 1} as follows:

—Double.inc is shown in Figure 2, with some lines merged for readability. In the first
line, a guess is made whether the increment preserves the leading binary digit or
not. In the former case, the routine just increments the auxiliary counter (i.e., calls
inc); but in the latter, the auxiliary counter is checked for maximality, then the digit
is changed from 0 to 1, and finally the auxiliary counter is repeatedly decremented
until zero (lines l7–l10). Double.dec is defined analogously.

—Double.iszero and Double.ismax have three lines each: check that the digit is 0 (respec-
tively, 1), check that the auxiliary counter is zero (respectively, maximal), return.

LEMMA 4.5. The dependent counter program Double is λx.2x-reliable.

PROOF. Suppose C is an N -reliable counter program which uses ν(0), . . . , ν(N − 1)
as encodings of counter values. We claim that words

0#ν(0), . . . , 0#ν(N − 1), 1#ν(0), . . . , 1#ν(N − 1)

work as encodings of 0, . . . , 2N − 1. Firstly, they are incomparable with respect to the
subword ordering, since ν(0), . . . , ν(N − 1) are and since # is not in the alphabet of C.
To show that Double[C].inc reliably computes

R = {〈0#ν(n), 0#ν(n + 1)〉 : n < N − 1} ∪

{〈0#ν(N − 1), 1#ν(0)〉} ∪

{〈1#ν(n), 1#ν(n + 1)〉 : n < N − 1},

the non-trivial direction is to establish that, for every computation γ of the gainy trans-
ducer T ((Double.inc)[C])⊑ from a word of the form l†w to a word of the form l‡w′, where
l† and l‡ are the first and last labels (respectively) in the routine (Double.inc)[C], and
where w and w′ are words over its alphabet, we have w R⊑ w′.
Consider such γ, w and w′. By the definitions of composition, and of the trans-

ducer of a routine, removing leading labels and top-level jump-steps from γ yields a
sequence of words ζ which is from w to w′, and in which all intermediate words are of
the form either ΛΣ∗$Λ′Σ′∗ or ΛΣ∗#Σ′∗, where Λ, Σ and Λ′, Σ′ are the labels-alphabet
pairs of Double.inc and C (respectively). By the definitions of composition again, and of
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Double.inc, and by the N -reliability of C, the most involved case is ζ being of the form

w ⊑ u0#u′
0, l1u1#u′

1, l5u2#u′
2, l5u3$l′1u

′
3, . . . , l5u4$l′2u

′
4, l6u5#u′

5, l7u6#u′
6,

...

l8u7+5i#u′
7+5i, l8u8+5i$l′3u

′
8+5i, . . . , l8u9+5i$l′4u

′
9+5i,

l9u10+5i#u′
10+5i, l7u11+5i#u′

11+5i,

...

l10u7+5k#u′
7+5k, l10u8+5k$l′5u

′
8+5k, . . . , l10u9+5k$l′6u

′
9+5k,

l10u10+5k#u′
10+5k, u11+5k#u′

11+5k ⊑ w′,

where:

— l1, . . . , l11 are the labels of Double.inc as in Figure 2;
— u0 ⊑ · · · ⊑ u5 ⊑ 0 and 1 ⊑ u6 ⊑ · · · ⊑ u11+5k;
— l′1 and l′2 are the first and last labels (respectively) in C.ismax , and we have u′

0 ⊑ · · · ⊑
u′

3 ⊑ ν(N − 1) and ν(N − 1) ⊑ u′
4 ⊑ · · · ⊑ u′

7;
— l′3 and l′4 are the first and last labels (respectively) in C.dec, and for each 0 ≤ i < k,

we have u′
7+5i ⊑ u′

8+5i ⊑ ν(ni) and ν(ni − 1) ⊑ u′
9+5i ⊑ · · · ⊑ u′

7+5(i+1) for some ni > 0;

— l′5 and l′6 are the first and last labels (respectively) in C.iszero, and we have u′
7+5k ⊑

· · · ⊑ u′
8+5k ⊑ ν(0) and ν(0) ⊑ u′

9+5k ⊑ · · · ⊑ u′
11+5k.

It follows that k = N − 1 and ni = N − 1 − i for all i. We also conclude that w ⊑
0#ν(N − 1) and 1#ν(0) ⊑ w′, so indeed w R⊑ w′. The latter is also inferred in the
remaining cases for ζ, by obtaining w ⊑ b#ν(n) and b#ν(n+1) ⊑ w′ for some b ∈ {0, 1}
and n < N − 1.
We also need to establish that all computations of T ((Double.inc)[C])⊑ are finite. As

in the preceding argument, in any such computation, intermediate insertion errors
possibly occur only within the two local tape segments, but are managed by the trans-
ducers in the code of Double.inc and the N -reliability of C. In particular, the loop in
lines l7–l10 can cycle at most N − 1 times.
Showing that Double[C].dec reliably computes the appropriate relation is analogous,

and the arguments for Double[C].iszero and Double[C].ismax are straightforward.

An example corollary of Lemmas 4.2 and 4.5 is that

Double[· · ·Double︸ ︷︷ ︸
N

[Enum(1)] · · · ]

is a 2N -reliable counter program. It works with encodings of counter values that are
essentially N -digit binary numbers.
Let us additionally remark that an alternative definition of a double dependent

counter, where the least significant binary digit is kept on the local tape (instead of
the most significant as above) and, in case that digit is 0, the routine for increment
just replaces it by 1, would not give us (λx.2x)-reliability. That is because such incre-
ments would terminate successfully regardless of the auxiliary counter’s local tape,
i.e., without checking that the latter contributes to an encoding of a counter value.
We end our introduction of dependent counter programs by observing that, since

dependent counter programs interact with the auxiliary counter exclusively by calling
its subroutines, which of the latter’s encodings are used is determined by the counter
values. Formally:
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LEMMA 4.6. For any f -reliable Σ-transducing dependent counter program D, there
exist unique functions

N ∈ N+, n ∈ {0, . . . , f(N) − 1} 7→ µ(N, n) ∈ Σ+

N ∈ N+, n ∈ {0, . . . , f(N) − 1} 7→ g(N, n) ∈ {0, . . . , N − 1}

such that, for any N -reliable Σ′-transducing counter program C and any n ∈
{0, . . . , f(N)− 1}, the encoding of counter value n for D[C] is µ(N, n)#ν(g(N, n)), where
ν(0), . . . , ν(N − 1) ∈ Σ′∗ are the encodings for C.

For example, for the (λx.2x)-reliable {0, 1}-transducing dependent counter program
Double, we have that functions

µ(N, n) = ⌊n/N⌋ g(N, n) = n mod N

have the properties stated in Lemma 4.6.

4.3. A Star Operator

As an intermediate stage to the central construction of our lower bound proof for down-
ward rational termination, suppose D is an f -reliable Λ-labelled Σ-transducing depen-
dent counter program and N is a positive integer, and consider the counter program

D[· · ·D︸ ︷︷ ︸
N

[Enum(1)] · · · ]

which is the N -fold composition of D with the 1-reliable Λ′-labelled Σ′-transducing
counter program Enum(1) (recall that Σ′ hence consists of the single letter a0). For
each n ∈ {1, . . . , N}, let us write $n and #n for the separating symbols introduced by
the nth composition (counting from the outermost one).
Let µ and g be the functions as in Lemma 4.6 for D. We have that the N -fold compo-

sition of D with Enum(1) is fN (1)-reliable, and that the encoding of any counter value
k ∈ {0, . . . , fN (1) − 1} is

µ(fN−1(1), k)#1 µ(fN−2(1), g(fN−1(1), k))#2

µ(fN−3(1), g(fN−2(1), g(fN−1(1), k))#3 · · · #N a0.

By observing that control in the N -fold composition does not depend on the line la-
bels that are introduced by the composition construct (cf. the trivial control structure
in Figure 1), and that such labels do not appear in the counter value encodings, sim-
plifying D[· · ·D︸ ︷︷ ︸

N

[Enum(1)] · · · ] by omitting them yields the routines defined in Figure 3,

which we denote by DN .op1, where

op1 ∈ {inc, dec, iszero, ismax}.

The counter program DN thus defined therefore also is fN (1)-reliable and has the
same counter value encodings as the N -fold composition.
The transducers in the loop of DN .op1 consume words that conform to one of the

following two disjoint regular expressions:

ΛΣ∗$1 · · ·ΛΣ∗$NΛ′Σ′∗. Such a tape contains a stack of N − 1 calls of subroutines of
D and a call of a subroutine of the counter program Enum(1), followed by a configu-
ration of the latter. The next step is a step of Enum(1).
ΛΣ∗$1 · · ·ΛΣ∗$n−1ΛΣ∗#nΣ∗#n+1 · · ·Σ

∗#NΣ′∗ where 1 ≤ n ≤ N . After a stack of n−
1 calls of subroutines of D, the configuration of the currently active subroutine is
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transduce w1#1 · · ·wN#Nw′ to lw1#1 · · ·wN#Nw′ where
l is the first label in D.op1, w1, . . . , wN ∈ Σ∗, w′ ∈ Σ′∗

loop : goto {step$, step#}

step$ : transduce l1w1$1 · · · lNwN$N l′w′

by performing on w′ the command at l′ in Enum(1).opN+1
(which may be a transducer, goto, return), where
the command at li in D.opi is call opi+1 for all 1 ≤ i ≤ N,
w1, . . . , wN ∈ Σ∗, w′ ∈ Σ′∗

goto {loop}

step# : transduce l1w1$1 · · · ln−1wn−1$n−1lnwn#nwn+1#n+1 · · ·wN#Nw′

by performing on wn the command at ln in D.opn

(which may be a transducer, goto, call, return), where
1 ≤ n ≤ N, the command at li in D.opi is call opi+1 for all 1 ≤ i ≤ n − 1,
w1, . . . , wN ∈ Σ∗, w′ ∈ Σ′∗

if n > 1 or the command was not a return, then goto {loop}, else return

Fig. 3. Simplifying the N -fold composition of a dependent counter program

followed by outputs of the latest subroutine calls at all deeper levels, ending with
the latest output from the counter program Enum(1).

Given an f -reliable Λ-labelled Σ-transducing dependent counter program D, our key
construction is of a dependent counter program D∗ which is (λN.fN (1))-reliable. In
other words, instead of the family of separate counter programs D1, D2, . . . defined
in Figure 3, we obtain a single dependent counter program, which behaves like DN

whenever it is composed with an N -reliable auxiliary counter.
We define D∗ in Figure 4, which shows any dependent routine D∗.op1. The latter

differs from the routines DN .op1 (cf. Figure 3) as follows:

—The alphabet of D∗.op1 is the union of Λ, Σ, Λ′, Σ′, the two fresh symbols $ and #,

and their hatted versions $̂ and #̂. Thus, the number of separating symbols is 4, in
contrast to 2N in the alphabet of DN .op1.

— Initially, and at the start of each cycle through the main loop, the auxiliary counter is
used to check that the total number of the separators $ and # is Max , and that their
hatted versions do not occur, where Max − 1 is the maximum value of that counter.
An implementation (omitted for readability) is:
(1) check that the auxiliary counter is zero;
(2) check that the hatted symbols do not occur, and hat the first occurence of $ or #;
(3) increment the auxiliary counter until maximal, at each iteration moving the hat

from the unique hatted separator to the next unhatted one;
(4) remove the unique hat, and decrement the auxiliary counter until zero.

We observe that D∗ is computable from D in logarithmic space.

LEMMA 4.7. For every f(x)-reliable dependent counter program D, we have that D∗

is fx(1)-reliable.

PROOF. Suppose C is an N -reliable counter program. As observed above, we have
that DN , the counter program defined in Figure 3, is fN(1)-reliable, and that its en-
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check that the occurrence count of $, # is Max

and that the occurrence count of $̂, #̂ is 0

transduce w1# · · ·wm#w′ to lw1# · · ·wm#w′ where
m ≥ 1, l is the first label in D.op1, w1, . . . , wm ∈ Σ∗, w′ ∈ Σ′∗

loop : check that the occurrence count of $, # is Max

and that the occurrence count of $̂, #̂ is 0

goto {step$, step#}

step$ : transduce l1w1$ · · · lmwm$l′w′

by performing on w′ the command at l′ in Enum(1).opN+1
(which may be a transducer, goto, return), where
m ≥ 1, the command at li in D.opi is call opi+1 for all 1 ≤ i ≤ m,
w1, . . . , wm ∈ Σ∗, w′ ∈ Σ′∗

goto {loop}

step# : transduce l1w1$ · · · ln−1wn−1$lnwn#wn+1# · · ·wm#w′

by performing on wn the command at ln in D.opn

(which may be a transducer, goto, call, return), where
1 ≤ n ≤ m, the command at li in D.opi is call opi+1 for all 1 ≤ i ≤ n − 1,
w1, . . . , wm ∈ Σ∗, w′ ∈ Σ′∗

if n > 1 or the command was not a return, then goto {loop}, else return

Fig. 4. Defining the star operator on dependent counter programs

coding of any counter value k ∈ {0, . . . , fN(1) − 1} is

κ(N, n) = µ(fN−1(1), k)#1 µ(fN−2(1), g(fN−1(1), k))#2

µ(fN−3(1), g(fN−2(1), g(fN−1(1), k))#3 · · · #N a0,

where µ and g are the functions as in Lemma 4.6 for D.
It suffices to establish that D∗[C] is also fN(1)-reliable, with counter-value encodings

µ∗(N, k)#′ν(g∗(N, k)), where:

— the local-tape part

µ∗(N, k) = µ(fN−1(1), k)# µ(fN−2(1), g(fN−1(1), k))#

µ(fN−3(1), g(fN−2(1), g(fN−1(1), k))# · · · # a0

is obtained from the encoding κ(N, k) by erasing the separators’ indices,
— the fresh symbol #′ is introduced by the composition of D∗ and C,
— the auxiliary-counter value g∗(N, k) is 0, and
— the function ν gives the encodings of C.

Let us call a computation of T (DN .op1)⊑ or of T ((D∗.op1)[C])⊑, where

op1 ∈ {inc, dec, iszero, ismax},

a phase if and only if:

— the line label of its initial configuration is either the first one or loop,
— its intermediate configurations do not have line label loop, and
— the line label of its final configuration is either loop or the last one (whose command

is return), or the computation is infinite.

The claim follows from the following observations:
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(1) All phases of T (DN .op1)⊑ are finite by definition, and the same is true for
T ((D∗.op1)[C])⊑ since C is N -reliable.

(2) For every phase of T (DN .op1)⊑, the computation obtained by erasing the sepa-
rators’ indices can be simulated by a phase of T ((D∗.op1)[C])⊑. In the latter, the
initial and final values of the auxiliary counter are zero, and the checks involving
it succeed since the phase of T (DN .op1)⊑ contains transductions which verify that
the total number of separators is N .

(3) For every phase of T ((D∗.op1)[C])⊑, there are three cases:
(a) If the total number of separators never exceeds N , then T (DN .op1)⊑ can simu-

late a computation obtained from the phase by removing the counting checks,
removing the auxiliary tape, and attaching indices 1 to N to the separators.

(b) If the total number of separators does exceed N and the line label of the final
configuration is loop, then the next counting check will fail, so T ((D∗.op1)[C])⊑
cannot have a next phase.

(c) If the total number of separators does exceed N and the phase ends by
T ((D∗.op1)[C])⊑ terminating successfully, then T (DN .op1)⊑ can simulate a
computation obtained from the phase by removing the counting check, remov-
ing the auxiliary tape, attaching indices from 1 to N to the separators that
enabled the counting check to succeed, and removing other separators (spuri-
ously inserted).

We remark that the checking of occurence counts at every cycle through the main
loops in D∗ is necessary. Otherwise, insertion errors could cause infinite computations
by spurious ΛΣ∗$ segments that make the stack of subroutine calls grow unboundedly.
As example corollaries of Lemmas 4.2, 4.5 and 4.7, Double∗ is 2x-reliable, and so

Double∗[Enum(N)] is 2N -reliable. Like the counter program

Double[· · ·Double︸ ︷︷ ︸
N

[Enum(1)] · · · ]

considered earlier, the latter works with encodings of counter values that are essen-
tially N -digit binary numbers.

Carrying on, (Double∗)∗ is 22
. . .

2

︸ ︷︷ ︸
x

-reliable, and so (Double∗)∗[Enum(N)] is 22
. . .

2

︸ ︷︷ ︸
N

-

reliable. The latter counter program is essentially an implementation of Stockmeyer’s
yardstick construction. It provides a tetrationally large reliable counter by working
with a sequence of N reliable counters, each of which is used to count digits in the
binary encoding of the next.

4.4. Simulating Ackermann-Bounded Turing Machines

Given a deterministic Turing machine M, let Test(M) be a dependent routine as fol-
lows, which is computable from M in logarithmic space:

(1) Use the auxiliary counter to insert N blank symbols onto the tape, where N − 1 is
the maximal value of that counter.

(2) Use the auxiliary counter to simulate N steps of M, working with symbols on the
tape.

(3) If M has not halted within the N steps, stop.
(4) Otherwise, use the auxiliary counter to check that there are still only N symbols

on the tape, stopping in case there are more.
(5) Diverge, i.e., enter an infinite loop.
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LEMMA 4.8. For every deterministic Turing machine M and N -reliable counter
program C, we have that M halts within time N if and only if T (Test(M)[C])⊑ has an
infinite computation from the initial line label.

PROOF. The ‘only if ’ direction is trivial, and does not need to involve insertion er-
rors. For the ‘if ’ direction, observe that since C is N -reliable, Test(M)[C] can diverge
only by reaching the artificial infinite loop, in which case it has verified that M had
halted within time N and had not been affected by insertion errors.

We are now equipped to establish that, indeed, downward rational termination is
ACKERMANN-hard:

THEOREM 4.9. Given a deterministic Turing machine M of size K, we have that
a transducer T (M) and a word w1, over an alphabet of linear size, are computable in
elementary time, such that M halts within time AK(K) if and only if T (M)⊑ does not
terminate from w1.

PROOF. Let DK be the dependent counter program (· · · (Double

K−1︷ ︸︸ ︷
∗)∗ · · · )∗. By Lemmas

4.2, 4.5 and 4.7, DK is AK(x)-reliable and DK [Enum(K)] is AK(K)-reliable. Moreover,
since the star operator is computable in logarithmic space, and since each of the K − 1
applications enlarges the alphabet by an additive constant, we have that the counter
program DK [Enum(K)] is computable in time elementary in K and has an alphabet
of size linear in K. It remains to apply Lemma 4.8 to M and DK [Enum(K)]. We thus
obtain a routine

Test(M)[(· · · (Double

K−1︷ ︸︸ ︷
∗)∗ · · · )∗[Enum(K)]]

whose transducer, let us call it T (M), has the required properties.

5. SAFETY MTL SATISFIABILITY

We now show that the satisfiability problem for the safety fragment of MTL is inter-
reducible with the termination problem for gainy transducers (equivalently, for down-
wards monotone transducers, cf. Section 2.5), thus improving the best known upper
and lower bounds for the former. We rely here on results in the literature concern-
ing insertion channel machines (ICMs) [Cécé et al. 1996], a model that is very closely
related to gainy transducers.

5.1. Syntax of MTL

The formulas (negation normal) of MTL are built over a set of atomic events Σ using
monotone Boolean connectives and time-constrained versions of the next operator ©,

the until operator U , and the dual until operator Ũ :

ϕ ::= ⊤ | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | a | ©I ϕ | ϕ1 UI ϕ2 | ϕ1 ŨI ϕ2,

where a ∈ Σ and I ⊆ R≥0 is an interval with endpoints in N ∪ {∞}.5

The primitive operators of MTL can be used to express further temporal operators,
including the constrained eventually operator 3Iϕ ≡ ⊤ UI ϕ and the constrained

always operator �I ϕ ≡ ⊥ ŨI ϕ, as well as further Boolean connectives by translation
to negation normal form.

5Instead of atomic events that determine letters in timed words, atomic propositions could be employed. The
associated complexity considerations do not affect the main results in this work.
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5.2. Semantics of MTL

A timed word over alphabet Σ is a pair ρ = 〈σ, τ〉, where σ is an infinite word over Σ
and τ is an infinite sequence of non-negative reals that is strictly increasing and un-
bounded. The unboundedness assumption on τ is called non-Zenoness since it entails
that each bounded time interval contains only finitely many events.
Given a timed word ρ = 〈σ, τ〉 and an MTL formula ϕ, the satisfaction relation

〈ρ, i〉 |= ϕ (read ‘ρ satisfies ϕ at position i’) is defined as follows:

— 〈ρ, i〉 |= a iff σi = a;
— 〈ρ, i〉 |= ϕ1 ∧ ϕ2 iff 〈ρ, i〉 |= ϕ1 and 〈ρ, i〉 |= ϕ2;
— 〈ρ, i〉 |= ϕ1 ∨ ϕ2 iff 〈ρ, i〉 |= ϕ1 or 〈ρ, i〉 |= ϕ2;
— 〈ρ, i〉 |= ©I ϕ iff τi+1 − τi ∈ I and 〈ρ, i + 1〉 |= ϕ;
— 〈ρ, i〉 |= ϕ1 UI ϕ2 iff there exists j ≥ i such that 〈ρ, j〉 |= ϕ2, τj −τi ∈ I, and 〈ρ, k〉 |= ϕ1

for all k with i ≤ k < j;

— 〈ρ, i〉 |= ϕ1 ŨI ϕ2 iff for all j ≥ i such that τj − τi ∈ I, either 〈ρ, j〉 |= ϕ2 or there exists
k with i ≤ k < j and 〈ρ, k〉 |= ϕ1.

We say that ρ satisfies ϕ if 〈ρ, 0〉 |= ϕ.

5.3. Safety MTL

The satisfiability problem for MTL asks whether a given formula is satisfied by some
timed word. This problem was shown undecidable in [Ouaknine and Worrell 2006a],
motivating the introduction of the sub-logic safety MTL in [Ouaknine and Worrell
2006b]. Safety MTL is the fragment of MTL obtained by requiring that the interval I
in each until operator UI have finite length. Thus safety MTL allows bounded eventu-
alities, such as 3(0,1)a, but not unbounded eventualities, such as 3(0,∞)a. Here notice
that, thanks to the non-Zenoness property, if a timed word ρ fails to satisfy 3(0,1)a then
there is some finite prefix ρ′ of ρ such that all infinite extensions of ρ′ also fail to satisfy
3(0,1)a. Such a property holds in general for safety MTL formulas; in the terminology
of [Henzinger 1992] a formula of safety MTL defines a safety property relative to the
divergence of time.
The satisfiability problem for safety MTL was shown to be decidable in [Ouaknine

and Worrell 2006b] by an argument involving Higman’s Lemma. It was later observed
that this argument yields an upper bound in level Fωω of the fast-growing hierar-
chy [Schmitz 2012]. A non-elementary lower bound (in F3) is given in [Bouyer et al.
2012] and an improved lower bound in F4 is given in [Jenkins 2012].

5.4. Insertion Channel Machines

A channel machine consists of a finite-state automaton acting on an unbounded chan-
nel, or queue. In an insertion channel machine (ICM) the queue is subject to insertion
errors, that is, extra letters can non-deterministically be inserted during a computa-
tion. Formally, a channel machine is a tuple C = 〈S, M, ∆〉, where S is a finite set of
control states, M is a finite set ofmessages, and ∆ ⊆ S×Σ×S is the transition relation
over label set Σ = {m!, m? : m ∈ M}. A transition labelled m! writes message m to the
tail of the channel, and a transition labelled m? reads message m from the head of the
channel. We assume that M contains a special ‘pointer’ symbol ⊳, which is used below
to define a notion of fairness.
We define an operational semantics for insertion channel machines as follows. A

global state of C is a pair γ = 〈s, x〉, where s ∈ S is the control state and x ∈ M∗

represents the contents of the channel. The rules in ∆ induce a Σ-labelled transition

relation on the set of global states thus: 〈s, m!, t〉 ∈ ∆ yields a transition 〈s, x〉
m!
−→

〈t, xm〉 that writes m to the tail of the channel, and 〈s, m?, t〉 ∈ ∆ yields transitions
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〈s, mx〉
m?
−→ 〈t, x〉 and 〈s, x〉

m?
−→ 〈t, x〉. The last transition represents a type of insertion

error: the ‘read’ transition is taken, although no letter is consumed from the head of
the channel.
A computation of an ICM is an infinite sequence of transitions between global states:

〈s0, x0〉
α0−→ 〈s1, x1〉

α1−→ 〈s2.x2〉
α2−→ 〈s3, x3〉

α3−→ . . .

Such a computation is said to be fair if there are infinitely many consecutive pairs of
transitions of the form:

〈si, ⊳x〉
⊳?
−→ 〈si+1, x〉

⊳!
−→ 〈si+2, x⊳〉 (1)

and there are no other transitions that write or read ⊳. Since each read transition (1)
is error-free, in a fair computation, ⊳ is not subject to insertion errors and is read from
the channel and immediately written back to the channel infinitely often. Intuitively
each segment of a computation between consecutive reads of ⊳ represents a cycle of
the channel. The fair termination problem for ICMs asks whether a given ICM has no
infinite fair computation.

5.5. Four Reductions

Theorems 3.11 and 4.9 entail that the satisfiability problem for safety MTL is ACKER-
MANN-complete through four reductions:

ICM fair
termination

gainy rational
termination

safety MTL
satisfiability

(iii)

(iv)(i)

(ii)

The reductions (i) and (ii) are almost immediate and require only logarithmic space.
The idea is that reading and writing in an ICM correspond to input and output in a
transducer, with insertion errors in a channel machine corresponding to gaininess of
the corresponding transducer. Given a transducer T on alphabet Σ, one can construct
an ICM C on channel alphabet Σ ∪ {⊳} such that w R(T ) w′ if and only if C has a
computation from 〈s, ⊳w〉 to 〈s, ⊳w′〉 for some fixed control state s. This can be achieved

by mapping each transition s
a|b
−−→ t of T to transitions s

a?
−→ s′

b!
−→ t in C, where s′

is a new ‘intermediate’ state. The translation in the reverse direction, from channel
machines to transducers, is based on the same idea but with the caveat that the trans-
ducer must keep track of the control state of the ICM at the beginning and end of each
cycle (which can easily be done, e.g., by augmenting the alphabet of the transducer).
Under this correspondence, since each cycle of the channel machine C corresponds to
a single complete transduction of T , a computation of C yields an infinite computation
of the transducer just in case it is fair.
The reduction (iii) is again straightforward and can be done in logarithmic space.

The key idea is that the MTL formula �[0,∞)(m! → 3{1}m?) can be used to capture
the behaviour of an unbounded channel. The formula says that each write-event is
followed in exactly one time unit by a corresponding read-event. Since arbitrarily many
of these events can occur within unit-length intervals, we can model an unbounded
channel. Moreover we capture the behaviour of a fair channel because of the non-
Zenoness assumption on timed words. Finally, in the absence of past operators, it is
not possible to specify in MTL that a read-event be preceeded by a matching write-
event. Thus we model a channel with insertion errors. We refer to [Bouyer et al. 2012]
for full details of this reduction.
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The most complex reduction is (iv): it is doubly exponential, and its details are avail-
able in [Jenkins 2012, Proposition 5.27], which builds on a translation from MTL to
channel machines in [Bouyer et al. 2007].
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